-
Notifications
You must be signed in to change notification settings - Fork 4
/
example_2.py
157 lines (119 loc) · 5.23 KB
/
example_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import streamlit as st
import pandas as pd
import common
__author__ = 'Aleksandar Anžel'
__copyright__ = ''
__credits__ = ['Aleksandar Anžel', 'Georges Hattab']
__license__ = 'GNU General Public License v3.0'
__version__ = '1.0'
__maintainer__ = 'Aleksandar Anžel'
__email__ = 'aleksandar.anzel@uni-marburg.de'
__status__ = 'Dev'
CALCULATED_DATA_SET_NAME = 'calculated.pkl'
path_example_2_root_data = os.path.join('..', 'Data', 'cached', 'example_2')
path_example_2_transcriptomics = os.path.join(path_example_2_root_data,
'transcriptomics')
path_example_2_transcriptomics_control_1 = os.path.join(
path_example_2_transcriptomics, 'CONTROL_1.csv')
path_example_2_transcriptomics_control_2 = os.path.join(
path_example_2_transcriptomics, 'CONTROL_2.csv')
path_example_2_transcriptomics_control_3 = os.path.join(
path_example_2_transcriptomics, 'CONTROL_3.csv')
path_example_2_transcriptomics_benz_1 = os.path.join(
path_example_2_transcriptomics, 'BENZ_1.csv')
path_example_2_transcriptomics_benz_2 = os.path.join(
path_example_2_transcriptomics, 'BENZ_2.csv')
path_example_2_transcriptomics_benz_3 = os.path.join(
path_example_2_transcriptomics, 'BENZ_3.csv')
path_example_2_transcriptomics_phe_1 = os.path.join(
path_example_2_transcriptomics, 'PHE_1.csv')
path_example_2_transcriptomics_phe_2 = os.path.join(
path_example_2_transcriptomics, 'PHE_1.csv')
path_example_2_transcriptomics_phe_3 = os.path.join(
path_example_2_transcriptomics, 'PHE_3.csv')
path_example_2_transcriptomics_pov_1 = os.path.join(
path_example_2_transcriptomics, 'POV_1.csv')
path_example_2_transcriptomics_pov_2 = os.path.join(
path_example_2_transcriptomics, 'POV_2.csv')
path_example_2_transcriptomics_pov_3 = os.path.join(
path_example_2_transcriptomics, 'POV_3.csv')
path_example_2_transcriptomics_final = os.path.join(
path_example_2_transcriptomics, 'Final_compressed.csv')
path_example_2_transcriptomics_prec_1 = os.path.join(
path_example_2_transcriptomics, CALCULATED_DATA_SET_NAME)
path_example_2_viz = os.path.join(
path_example_2_root_data, 'visualizations')
def upload_multiple(key_suffix):
available_data_set_types = {
'Transcriptomics': {
'Processed data set 1': 'CALC'}
}
selected_data_set_type = st.selectbox(
'What kind of data set do you want to see?',
list(available_data_set_types[key_suffix].keys()),
key='Example_2_' + key_suffix)
if key_suffix == 'Transcriptomics':
return_path = path_example_2_transcriptomics_prec_1
else:
pass
return (return_path,
available_data_set_types[key_suffix][selected_data_set_type])
def upload_intro(folder_path, key_suffix):
st.header(key_suffix + ' data')
st.markdown('')
return_path = None
return_path, data_set_type = upload_multiple(key_suffix)
if return_path is None:
st.warning('Upload your data set')
# We return DataFrame if we work with tabular data format or precalculated
# We return folder_path if we work with archived data
# Data_set_type is always returned
if data_set_type == 'CALC':
return_path_or_df = common.get_cached_dataframe(return_path)
else:
return_path_or_df = return_path
return return_path_or_df, data_set_type
def example_2_transcriptomics():
key_suffix = 'Transcriptomics'
cache_folder_path = path_example_2_transcriptomics
folder_path_or_df, data_set_type = upload_intro(
cache_folder_path, key_suffix)
return common.work_with_csv(
folder_path_or_df, cache_folder_path, key_suffix)
def create_main_example_2():
col_1, col_2 = st.columns([1, 2])
col_1.info('''
This data set comes from the following paper:
**Merchel Piovesan Pereira, B., Wang, X., & Tagkopoulos, I. (2020).
Short- and Long-Term Transcriptomic Responses of Escherichia coli
to Biocides: a Systems Analysis. Applied and environmental
microbiology, 86(14), e00708-20.
https://doi.org/10.1128/AEM.00708-20**. Analyzed samples
were processed in DNA Technologies Core, Genome and Biomedical
Sciences Facility (GBSF) (38.535244, -121.764920).
A precise location is shown on the map located on the right.
It contains **transcriptomics** data.
''')
col_2.map(pd.DataFrame({'lat': [38.53524478359195],
'lon': [-121.76492092285179]}),
zoom=8, use_container_width=True)
example_2_omics_list = ['Transcriptomics']
choose_omics = st.multiselect(
'What kind of omic data do you want to explore?', example_2_omics_list)
charts = [] # An empty list to hold all pairs (visualizations, key)
for i in choose_omics:
if i == 'Transcriptomics':
charts += example_2_transcriptomics()
else:
pass
st.markdown('---')
for i in charts:
type_of_chart = type(i[0])
with st.spinner('Visualizing...'):
if 'altair' in str(type_of_chart):
st.altair_chart(i[0], use_container_width=True)
common.save_chart(i[0], path_example_2_viz, i[1])
else:
pass
return None