forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
context_gpu.cu
660 lines (602 loc) · 23.7 KB
/
context_gpu.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#include <algorithm>
#include <atomic>
#include <cstdlib>
#include <string>
#include <unordered_map>
#include <ATen/Context.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include "cub/util_allocator.cuh"
// Needed to be included first to check the CAFFE2_USE_CUDNN macros.
#include "caffe2/core/macros.h"
#include "caffe2/core/blob_stats.h"
#ifdef CAFFE2_USE_CUDNN
#include "caffe2/core/common_cudnn.h"
#endif // CAFFE2_USE_CUDNN
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/string_utils.h"
C10_DEFINE_string(
caffe2_cuda_memory_pool,
"",
"Sets the memory pool used by caffe2. Possible values are "
"none, cnmem, thc and cub.");
// For description of CUB caching allocator configuration, see
// https://nvlabs.github.io/cub/structcub_1_1_caching_device_allocator.html
C10_DEFINE_int(
caffe2_cub_bin_growth,
8,
"If using cub as the memory allocator, sets the growth of bins "
"used by the cub pool.");
C10_DEFINE_int(
caffe2_cub_min_bin,
3,
"If using cub as the memory allocator, sets the min number of "
"bins.");
C10_DEFINE_int(
caffe2_cub_max_bin,
10,
"If using cub as the memory allocator, sets the max number of "
"bins.");
C10_DEFINE_int(
caffe2_cub_max_managed_mb,
10 * 1024,
"If using cub as the memory allocators, sets the maximum amount "
"of memory managed in gigabytes");
C10_DEFINE_bool(
caffe2_cub_print_allocation_events,
false,
"If true CachingDeviceAllocator will print allocation and deallocation "
"events to stdout.");
C10_DEFINE_bool(
caffe2_gpu_memory_tracking,
false,
"If set, logs changes in GPU memory allocations");
C10_DEFINE_int(
caffe2_gpu_memory_report_interval_mb,
128,
"The threshold in MB on how frequently to report memory changes");
namespace at {
REGISTER_CONTEXT(DeviceType::CUDA, caffe2::CUDAContext);
} // namespace at
namespace caffe2 {
// Generic implementation - CUDA will handle the right function to call for us
void CUDAContext::CopyBytesAsync(
size_t nbytes,
const void* src,
Device src_device,
void* dst,
Device dst_device) {
// TODO: verify that the CUDA handles copy from device to device correctly
// even without SetDevice()
// TODO: verify whether source or dest device should be a priority in picking
// the stream
// NB: right now the cross-device copy logic is invoked only in the contexts
// when surrounding code explicitly manages data dependencies and sets up
// events, so it's fine. In order to make it a standalone function proper
// synchronization between stream is required
int gpu_id = 0;
if (dst_device.is_cuda()) {
gpu_id = dst_device.index();
} else if (src_device.is_cuda()) {
gpu_id = src_device.index();
} else {
LOG(FATAL) << "shouldn't be called with non-cuda device";
}
CUDA_ENFORCE(cudaMemcpyAsync(
dst,
src,
nbytes,
cudaMemcpyDefault,
CUDAContext::getCudaObjects().GetStream(gpu_id)));
}
void CUDAContext::CopyBytesSync(
size_t nbytes,
const void* src,
Device src_device,
void* dst,
Device dst_device) {
// This emulates Caffe2 original behavior where sync copy doesn't change the
// device. It's probably better for clarity to switch to the target device
// explicitly here, but in the worst case CUDA would sync for us.
// TODO: change it to CUDAGuard
CUDAContext context(-1); // take current device
CUDA_ENFORCE(cudaMemcpyAsync(
dst, src, nbytes, cudaMemcpyDefault, context.cuda_stream()));
// destructor of context synchronizes
}
// For the CPU context, we also allow a (probably expensive) function
// to copy the data from a cuda context. Inside the function, we create
// a temporary CUDAContext object to carry out the copy. From the caller's
// side, these functions are synchronous with respect to the host, similar
// to a normal CPUContext::CopyBytes<CPUContext, CPUContext> call.
template <>
inline void CPUContext::CopyBytes<CUDAContext, CPUContext>(
size_t nbytes,
const void* src,
void* dst) {
CUDAContext context(GetGPUIDForPointer(src));
context.CopyBytes<CUDAContext, CPUContext>(nbytes, src, dst);
}
template <>
inline void CPUContext::CopyBytes<CPUContext, CUDAContext>(
size_t nbytes,
const void* src,
void* dst) {
CUDAContext context(GetGPUIDForPointer(dst));
context.CopyBytes<CPUContext, CUDAContext>(nbytes, src, dst);
}
} // namespace caffe2
namespace caffe2 {
ThreadLocalCUDAObjects& CUDAContext::getCudaObjects() {
static thread_local ThreadLocalCUDAObjects cuda_objects_;
return cuda_objects_;
}
// TODO(jiayq): these variables shouldn't be currently accessed during static
// initialization. We should consider moving them to a Mayer's singleton to
// be totally safe against SIOF.
// Static global variables for setting up the memory pool.
CudaMemoryPoolType g_cuda_memory_pool_type;
std::unique_ptr<cub::CachingDeviceAllocator> g_cub_allocator;
// an unordered map that holds the map from the cuda memory pointer to the
// device id that it is allocated from. This is used in the cuda memory pool
// cases, where we need the device id to carry out the deletion.
// Note(jiayq): an alternate approach is to use cudaGetPointerAttributes, but
// that is usually quite slow. We might want to benchmark the speed difference
// though.
// Note(jiayq): another alternate approach is to augment the Tensor class that
// would allow one to record the device id. However, this does not address any
// non-tensor allocation and deallocation.
// Ideally, a memory pool should already have the device id information, as
// long as we are using UVA (as of CUDA 5 and later) so the addresses are
// unique.
static std::unordered_map<void*, uint8_t> g_cuda_device_affiliation;
// Data structures for optional memory tracking. Access to these structures
// is guarded by the CUDAContext::mutex.
static std::unordered_map<void*, long> g_size_map;
static std::vector<long> g_total_by_gpu_map(C10_COMPILE_TIME_MAX_GPUS, 0);
static std::vector<long> g_max_by_gpu_map(C10_COMPILE_TIME_MAX_GPUS, 0);
static long g_total_mem = 0;
static long g_last_rep = 0;
CudaMemoryPoolType GetCudaMemoryPoolType() {
return g_cuda_memory_pool_type;
}
///////////////////////////////////////////////////////////////////////////////
// A wrapper to allow us to lazily initialize all cuda environments that Caffe
// uses. This gets done the first time a caffe2::CUDAContext::New() gets called
// which is probably the decisive indication that this caffe2 run is going to
// use GPUs. We avoid cuda initialization with core/init.h functionalities so
// that we have minimal resource impact in case we will need to run multiple
// caffe2 instances on a GPU machine.
///////////////////////////////////////////////////////////////////////////////
static void Caffe2InitializeCuda() {
// If the current run does not have any cuda devices, do nothing.
if (!HasCudaGPU()) {
VLOG(1) << "No cuda gpu present. Skipping.";
return;
}
C10_LOG_API_USAGE_ONCE("caffe2.init.cuda");
// Check if the number of GPUs matches the expected compile-time max number
// of GPUs.
CAFFE_ENFORCE_LE(
NumCudaDevices(),
C10_COMPILE_TIME_MAX_GPUS,
"Number of CUDA devices on the machine is larger than the compiled "
"max number of gpus expected (",
C10_COMPILE_TIME_MAX_GPUS,
"). Increase that and recompile.");
for (DeviceIndex i = 0; i < NumCudaDevices(); ++i) {
CUDAGuard g(i);
// Enable peer access.
const int peer_group = i / CAFFE2_CUDA_MAX_PEER_SIZE;
const int peer_start = peer_group * CAFFE2_CUDA_MAX_PEER_SIZE;
const int peer_end = std::min(
NumCudaDevices(), (peer_group + 1) * CAFFE2_CUDA_MAX_PEER_SIZE);
VLOG(1) << "Enabling peer access within group #" << peer_group
<< ", from gpuid " << peer_start << " to " << peer_end - 1
<< ", for gpuid " << i << ".";
for (int j = peer_start; j < peer_end; ++j) {
if (i == j) continue;
int can_access;
CUDA_ENFORCE(cudaDeviceCanAccessPeer(&can_access, i, j));
if (can_access) {
VLOG(1) << "Enabling peer access from " << i << " to " << j;
// Note: just for future reference, the 0 here is not a gpu id, it is
// a reserved flag for cudaDeviceEnablePeerAccess that should always be
// zero currently.
// It is ok if peer access is already enabled...
cudaError_t err = cudaDeviceEnablePeerAccess(j, 0);
if ((err != cudaErrorPeerAccessAlreadyEnabled) &&
(err != cudaSuccess)) {
CAFFE_THROW(cudaGetErrorString(err));
}
cudaGetLastError(); // reset cuda error code
}
}
}
#ifdef CAFFE2_USE_CUDNN
// Check the versions of cuDNN that were compiled and linked with are compatible
CheckCuDNNVersions();
#endif // CAFFE2_USE_CUDNN
}
static void SetUpCub() {
VLOG(1) << "Setting up cub memory pool.";
// Sets up the cub memory pool
try {
g_cub_allocator.reset(new cub::CachingDeviceAllocator(
FLAGS_caffe2_cub_bin_growth,
FLAGS_caffe2_cub_min_bin,
FLAGS_caffe2_cub_max_bin,
size_t(FLAGS_caffe2_cub_max_managed_mb) * 1024L * 1024L,
false,
FLAGS_caffe2_cub_print_allocation_events));
} catch (...) {
CAFFE_THROW("Some error happened at cub initialization.");
}
VLOG(1) << "Done setting up cub memory pool.";
}
static void Caffe2SetCUDAMemoryPool() {
if (FLAGS_caffe2_cuda_memory_pool == "" ||
FLAGS_caffe2_cuda_memory_pool == "none") {
g_cuda_memory_pool_type = CudaMemoryPoolType::NONE;
} else if (FLAGS_caffe2_cuda_memory_pool == "cnmem") {
CAFFE_THROW("CNMEM is no longer used by Caffe2. Use cub instead. "
"This error message may go away in the future.");
} else if (FLAGS_caffe2_cuda_memory_pool == "cub") {
// Sets up cub.
g_cuda_memory_pool_type = CudaMemoryPoolType::CUB;
SetUpCub();
} else if (FLAGS_caffe2_cuda_memory_pool == "thc") {
g_cuda_memory_pool_type = CudaMemoryPoolType::THC;
// Initialize caching allocator
at::globalContext().lazyInitCUDA();
} else {
CAFFE_THROW(
"Unrecognized cuda memory pool type: ", FLAGS_caffe2_cuda_memory_pool);
}
}
/**
* An allocator that does the CPU memory allocation with pinned memory.
*
* This is needed because if we want to do any asynchronous cuda memcpy,
* the underlying CPU memory also needs to be allocated into pinned memory
* space. As a result, whenever Caffe2 is built with GPU and there is
* GPU present during runtime, at global initialization time we will set
* the CPU memory allocator to allocate pinned memory.
*
* NB: This behavior is probably too aggressive. We should consider asking users
* to do on-demand memory pinning (like exposed in PyTorch APIs) instead.
*/
struct CAFFE2_CUDA_API PinnedCPUAllocator final : public at::Allocator {
PinnedCPUAllocator() {
baseAllocator_ = GetDefaultCPUAllocator();
}
~PinnedCPUAllocator() override {}
at::DataPtr allocate(size_t nbytes) const override {
if (nbytes == 0) {
// replicate c10::alloc_cpu behavior - return nullptr
return {nullptr, nullptr, &Delete, at::Device(CPU)};
}
void* data;
at::DataPtr data_ptr;
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
if (IsNUMAEnabled()) {
at::DeleterFnPtr expected_deleter = baseAllocator_->raw_deleter();
data_ptr = baseAllocator_->allocate(nbytes);
data = data_ptr.get();
CAFFE_ENFORCE(data);
CUDA_ENFORCE(cudaHostRegister(data, nbytes, cudaHostRegisterDefault));
CAFFE_ENFORCE(
data_ptr.compare_exchange_deleter(expected_deleter, &Delete),
"Failed to swap deleter (already swapped?)");
} else {
CUDA_ENFORCE(cudaMallocHost(&data, nbytes));
profiledCPUMemoryReporter().New(data, nbytes);
data_ptr = {data, data, &Delete, at::Device(CPU)};
}
memset(data, 0, nbytes);
return data_ptr;
}
at::DeleterFnPtr raw_deleter() const override {
return &Delete;
}
private:
static void Delete(void* data) {
if (!data) {
return;
}
// Caffe2 uses a lazy way to figure out if one is actually going to use GPUs
// or not. If a CUDAContext::New() call is made, inside the CUDAContext
// function we will switch the cpu side allocator to a PinnedCPUAllocator.
// But, if one calls CPUContext::New() before any cuda allocations,
// PinnedCPUAllocator can still delete the corresponding memory.
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
if (IsNUMAEnabled()) {
CUDA_ENFORCE(cudaHostUnregister(data));
GetDefaultCPUAllocator()->raw_deleter()(data);
} else {
cudaError_t err = cudaFreeHost(data);
profiledCPUMemoryReporter().Delete(data);
if (err == cudaErrorInvalidValue) {
free(data);
// Calling cudaGetLastError will reset the cuda error.
cudaError_t _err = cudaGetLastError();
} else {
// For all other errors, still do a cuda check.
CUDA_ENFORCE(err);
}
}
}
at::Allocator* baseAllocator_;
};
static PinnedCPUAllocator g_pinned_cpu_alloc;
// An initialization function that sets the CPU side to use pinned cpu
// allocator.
void Caffe2UsePinnedCPUAllocator() {
#if C10_ASAN_ENABLED
// Note(jiayq): for more details, see
// https://github.com/google/sanitizers/issues/629
LOG(WARNING) << "There are known issues between address sanitizer and "
"cudaMallocHost. As a result, caffe2 will not enable pinned "
"memory allocation in asan mode. If you are expecting any "
"behavior that depends on asan, be advised that it is not "
"turned on.";
#else
if (!HasCudaGPU()) {
VLOG(1) << "No GPU present. I won't use pinned allocator then.";
return;
}
VLOG(1) << "Caffe2 gpu: setting CPUAllocator to PinnedCPUAllocator.";
// If CUDA is enabled, using CPU allocators other than PinnedCPUAllocator
// will cause memory corruptions. Therefore, we need to set the priority
// to highest to avoid being overwritten.
SetCPUAllocator(
&g_pinned_cpu_alloc,
std::numeric_limits<uint8_t>::max() /* priority */);
#endif
}
// Caffe2CudaInitializerHelper is a minimal struct whose sole purpose is to
// detect the first hint that this Caffe2 run is going to use GPU: either
// CUDAContext is initialized or CUDAContext::New is called. It then runs
// all the related cuda initialization functions.
namespace {
struct Caffe2CudaInitializerHelper {
Caffe2CudaInitializerHelper() {
// We cannot use bool because nvcc changes bool to __nv_bool which does
// not have a std::atomic instantiation.
static std::atomic<char> first_call(1);
if (first_call.fetch_and((char)0)) {
Caffe2InitializeCuda();
Caffe2SetCUDAMemoryPool();
Caffe2UsePinnedCPUAllocator();
}
}
};
} // namespace
/**
* A utility function to rectify the gpu id. If the context specifies the
* gpu id to be -1, it means that we will just use the current gpu id when
* the function is being called.
*/
static inline DeviceIndex RectifyGPUID(DeviceIndex gpu_id) {
return gpu_id == -1 ? CaffeCudaGetDevice() : gpu_id;
}
CUDAContext::CUDAContext(DeviceIndex gpu_id)
: gpu_id_(RectifyGPUID(gpu_id)), random_seed_(RandomNumberSeed()) {
static Caffe2CudaInitializerHelper g_cuda_initializer_;
}
CUDAContext::CUDAContext(const DeviceOption& option)
: gpu_id_(
option.has_device_id() ? RectifyGPUID(option.device_id())
: CaffeCudaGetDevice()),
random_seed_(
option.has_random_seed() ? option.random_seed()
: RandomNumberSeed()) {
static Caffe2CudaInitializerHelper g_cuda_initializer_;
DCHECK_EQ(option.device_type(), PROTO_CUDA);
}
CUDAContext::~CUDAContext() {
try {
if (curand_generator_) {
CURAND_CHECK(curandDestroyGenerator(curand_generator_));
}
// CUDAContext is used in 2 cases now:
// - long-lived instance inside OperatorBase in which case what happens in
// destructor doesn't really matter
// - short-lived on-the-fly instances that are utilized as CUDAGuard - in
// this case there's only one stream id (passed to SwitchToDevice) and
// it's preferrable to synchronize in the destructor
FinishDeviceComputation();
} catch (const std::exception& e) {
LOG(ERROR) << "Encountered following in " << __FUNCTION__ << ": " << e.what();
}
}
// shared mutex to lock out alloc / free during NCCL launches
std::mutex& CUDAContext::mutex() {
static std::mutex m;
return m;
}
std::vector<long> CUDAContext::TotalMemoryByGpu() {
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
CAFFE_ENFORCE(
FLAGS_caffe2_gpu_memory_tracking,
"Pass --caffe2_gpu_memory_tracking to enable memory stats");
return g_total_by_gpu_map;
}
std::vector<long> CUDAContext::MaxMemoryByGpu() {
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
CAFFE_ENFORCE(
FLAGS_caffe2_gpu_memory_tracking,
"Pass --caffe2_gpu_memory_tracking to enable memory stats");
return g_max_by_gpu_map;
}
namespace {
void TrackMemoryAlloc(size_t nbytes) {
int this_gpu = CaffeCudaGetDevice();
g_total_by_gpu_map[this_gpu] += nbytes;
g_max_by_gpu_map[this_gpu] =
std::max(g_max_by_gpu_map[this_gpu], g_total_by_gpu_map[this_gpu]);
g_total_mem += nbytes;
if (g_total_mem - g_last_rep >
FLAGS_caffe2_gpu_memory_report_interval_mb * 1024 * 1024) {
for (int gpu = 0; gpu < g_total_by_gpu_map.size(); gpu++) {
long t = g_total_by_gpu_map[gpu];
long max_t = g_max_by_gpu_map[gpu];
if (max_t > 0) {
if (max_t != t) {
VLOG(1) << "GPU " << gpu << ": " << t / 1024 / 1024 << " MB"
<< " (max: " << max_t / 1024 / 1024 << " MB)";
} else {
VLOG(1) << "GPU " << gpu << ": " << t / 1024 / 1024 << " MB";
}
}
}
VLOG(1) << "Total: " << g_total_mem / 1024 / 1024 << " MB";
g_last_rep = g_total_mem;
}
}
}
struct DefaultCUDAAllocator final : public at::Allocator {
DefaultCUDAAllocator() {}
~DefaultCUDAAllocator() override {}
at::DataPtr allocate(size_t nbytes) const override {
// Lock the mutex
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
// A one-time caffe2 cuda initializer.
static Caffe2CudaInitializerHelper g_cuda_initializer_;
void* ptr = nullptr;
if (FLAGS_caffe2_gpu_memory_tracking) {
TrackMemoryAlloc(nbytes);
}
switch (g_cuda_memory_pool_type) {
case CudaMemoryPoolType::NONE:
if (nbytes != 0) {
CUDA_ENFORCE(cudaMalloc(&ptr, nbytes));
}
if (FLAGS_caffe2_gpu_memory_tracking) {
g_size_map[ptr] = nbytes;
g_cuda_device_affiliation[ptr] = CaffeCudaGetDevice();
}
return {ptr, ptr, &Delete, at::Device(CUDA, CaffeCudaGetDevice())};
case CudaMemoryPoolType::CUB:
if (nbytes != 0) {
CUDA_ENFORCE(g_cub_allocator->DeviceAllocate(&ptr, nbytes));
}
g_cuda_device_affiliation[ptr] = CaffeCudaGetDevice();
VLOG(2) << "CUB allocating pointer " << ptr << " on device "
<< CaffeCudaGetDevice();
if (FLAGS_caffe2_gpu_memory_tracking) {
g_size_map[ptr] = nbytes;
}
return {ptr, ptr, &Delete, at::Device(CUDA, CaffeCudaGetDevice())};
case CudaMemoryPoolType::THC:
{
// The reason we have this stream guard here is to preserve
// the historical behavior of the 'thc' allocator in Caffe2,
// which is to put all allocations on the same (default)
// stream. This behavior is morally wrong (since passing
// allocations between streams allows for the possibility
// of you handing out some memory that an old stream
// is still working on), but it doesn't seem to cause issues
// in Caffe2 today. Our hypothesis for why this is the case
// is that Caffe2 doesn't really do very many allocations
// on the fly; instead they allocate once and then reuse
// the allocations for the whole program. In this case,
// the hazard is avoided.
//
// We intend to remove this stream guard, but the benefit
// to putting all allocations on the same stream is it
// reduces per-stream fragmentation, and this helps
// some models that are currently running with the thc
// allocator fit in memory. We will need to find some
// way of resolving this problem.
cuda::CUDAStreamGuard g(
Stream(
Stream::DEFAULT,
Device(kCUDA, CaffeCudaGetDevice())
));
ptr = cuda::CUDACachingAllocator::raw_alloc(nbytes);
}
if (FLAGS_caffe2_gpu_memory_tracking) {
g_size_map[ptr] = nbytes;
g_cuda_device_affiliation[ptr] = CaffeCudaGetDevice();
}
return {ptr, ptr, &Delete, at::Device(CUDA, CaffeCudaGetDevice())};
}
return {nullptr, nullptr, &Delete, at::Device(CUDA, CaffeCudaGetDevice())};
}
at::DeleterFnPtr raw_deleter() const override {
return &Delete;
}
private:
static void Delete(void* ptr) {
// lock the mutex
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
if (FLAGS_caffe2_gpu_memory_tracking) {
auto sz_it = g_size_map.find(ptr);
DCHECK(sz_it != g_size_map.end());
auto aff_it = g_cuda_device_affiliation.find(ptr);
DCHECK(aff_it != g_cuda_device_affiliation.end());
g_total_mem -= sz_it->second;
g_total_by_gpu_map[aff_it->second] -= sz_it->second;
g_size_map.erase(sz_it);
}
switch (g_cuda_memory_pool_type) {
case CudaMemoryPoolType::NONE: {
// If memory pool is not set up, use simple cudaFree.
cudaError_t error = cudaFree(ptr);
// For some reason, in Python runtime we sometimes delete a data pointer
// after the cuda runtime exits - this is odd but is probably caused by
// a static workspace that pycaffe2 uses, and the destruction got
// entangled in some race condition. Anyway, since cuda runtime is
// exiting anyway, we will not need to worry about memory leak, so we
// basically ignore it. This is definitely not ideal but works for now.
if (error != cudaSuccess && error != cudaErrorCudartUnloading) {
LOG(FATAL) << "Error at: " << __FILE__ << ":" << __LINE__ << ": "
<< cudaGetErrorString(error);
}
if (FLAGS_caffe2_gpu_memory_tracking) {
g_cuda_device_affiliation.erase(g_cuda_device_affiliation.find(ptr));
}
break;
}
case CudaMemoryPoolType::CUB: {
auto it = g_cuda_device_affiliation.find(ptr);
DCHECK(it != g_cuda_device_affiliation.end());
VLOG(2) << "CUB freeing pointer " << ptr << " on device " << it->second;
CUDA_ENFORCE(g_cub_allocator->DeviceFree(it->second, ptr));
g_cuda_device_affiliation.erase(it);
break;
}
case CudaMemoryPoolType::THC: {
cuda::CUDACachingAllocator::raw_delete(ptr);
if (FLAGS_caffe2_gpu_memory_tracking) {
g_cuda_device_affiliation.erase(g_cuda_device_affiliation.find(ptr));
}
break;
}
}
}
};
static DefaultCUDAAllocator g_cuda_alloc;
REGISTER_ALLOCATOR(CUDA, &g_cuda_alloc);
} // namespace caffe2
namespace at {
REGISTER_COPY_BYTES_FUNCTION(
DeviceType::CUDA,
DeviceType::CUDA,
caffe2::CUDAContext::CopyBytesSync,
caffe2::CUDAContext::CopyBytesAsync);
REGISTER_COPY_BYTES_FUNCTION(
DeviceType::CUDA,
DeviceType::CPU,
caffe2::CUDAContext::CopyBytesSync,
caffe2::CUDAContext::CopyBytesAsync);
REGISTER_COPY_BYTES_FUNCTION(
DeviceType::CPU,
DeviceType::CUDA,
caffe2::CUDAContext::CopyBytesSync,
caffe2::CUDAContext::CopyBytesAsync);
} // namespace at