-
Paper:ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network
-
Origin Repo:clovaai/rexnet
-
Code:rexnet.py
-
Evaluate Transforms:
# backend: pil # input_size: 224x224 transforms = T.Compose([ T.Resize(256, interpolation='bicubic'), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
-
Model Details:
Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model ReXNet-1.0 rexnet_1_0 4.8 0.4 77.86 93.87 Download ReXNet-1.3 rexnet_1_3 7.6 0.7 79.50 94.68 Download ReXNet-1.5 rexnet_1_5 7.6 0.7 80.32 95.17 Download ReXNet-2.0 rexnet_2_0 16.0 1.5 81.64 95.66 Download ReXNet-3.0 rexnet_3_0 34.0 3.4 82.45 96.26 Download
-
Citation:
@article{han2020rexnet, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, author = {Han, Dongyoon and Yun, Sangdoo and Heo, Byeongho and Yoo, YoungJoon}, journal = {arXiv preprint arXiv:2007.00992}, year = {2020}, }