-
Origin Repo:huawei-noah/noah-research
-
Code:tnt.py
-
Evaluate Transforms:
# backend: pil # input_size: 224x224 transforms = T.Compose([ T.Resize(248, interpolation='bicubic'), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ])
-
Model Details:
Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model TNT-S tnt_s 23.8 5.2 81.53 95.74 Download
-
Citation:
@misc{han2021transformer, title={Transformer in Transformer}, author={Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang}, year={2021}, eprint={2103.00112}, archivePrefix={arXiv}, primaryClass={cs.CV} }