-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_dffd_grpA.py
260 lines (201 loc) · 9.13 KB
/
train_dffd_grpA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch
from utilscopy.utils import data_prefetcher_two, cal_fam, setup_seed, calRes
from pretrainedmodels import xception
import utilscopy.datasets_profiles as dp
from torch.utils.data import DataLoader
from torch.optim import Adam
import numpy as np
import argparse
import random
import os
import time
np.set_printoptions(precision=3)
parser = argparse.ArgumentParser()
parser.add_argument('--device', default="cuda:0", type=str)
parser.add_argument('--modelname', default="xception", type=str)
parser.add_argument('--distributed', default=False, action='store_true')
parser.add_argument('--upper', default="xbase", type=str,
help='the prefix used in save files')
parser.add_argument('--eH', default=120, type=int)
parser.add_argument('--eW', default=120, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--max_batch', default=500000, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--logbatch', default=3000, type=int)
parser.add_argument('--savebatch', default=30000, type=int)
parser.add_argument('--seed', default=5, type=int)
parser.add_argument('--lr', default=0.0002, type=float, help='learning rate')
parser.add_argument('--pin_memory', '-p', default=False, action='store_true')
parser.add_argument('--resume_model', default=None)
parser.add_argument('--resume_optim', default=None)
parser.add_argument('--save_model', default=True, action='store_true')
parser.add_argument('--save_optim', default=True, action='store_true')
args = parser.parse_args()
upper = args.upper
def Eval(model, lossfunc, dtloader):
model.eval()
sumloss = 0.
y_true_all = None
y_pred_all = None
with torch.no_grad():
for (j, batch) in enumerate(dtloader):
x, y_true = batch
y_pred = model.forward(x.cuda())
loss = lossfunc(y_pred, y_true.cuda())
sumloss += loss.detach()*len(x)
y_pred = torch.nn.functional.softmax(
y_pred.detach(), dim=1)[:, 1].flatten()
if y_true_all is None:
y_true_all = y_true
y_pred_all = y_pred
else:
y_true_all = torch.cat((y_true_all, y_true))
y_pred_all = torch.cat((y_pred_all, y_pred))
return sumloss/len(y_true_all), y_true_all.detach(), y_pred_all.detach()
def Log(log):
print(log)
path = "logs/croppedimgs/logs_dffd_grpA/"
if os.path.exists(path):
pass
else:
os.makedirs(path)
with open("logs/croppedimgs/logs_dffd_grpA/"+upper+"_"+modelname+".log", "a") as f:
f.write(log+"\n")
f.close()
modelname = args.modelname
if __name__ == "__main__":
Log("\nModel:%s BatchSize:%d lr:%f" % (modelname, args.batch_size, args.lr))
torch.cuda.set_device(args.device)
setup_seed(args.seed)
print("cudnn.version:%s enabled:%s benchmark:%s deterministic:%s" % (torch.backends.cudnn.version(), torch.backends.cudnn.enabled, torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic))
MAX_TPR_4 = 0.
model = xception(num_classes=2, pretrained=False).cuda()
if args.distributed:
model = torch.nn.DataParallel(model)
optim = Adam(model.parameters(), lr=args.lr, weight_decay=0)
if args.resume_model is not None:
model.load_state_dict(torch.load(args.resume_model))
if args.resume_optim is not None:
optim.load_state_dict(torch.load(args.resume_optim))
lossfunc = torch.nn.CrossEntropyLoss()
dataset = dp.DFFDA()
trainsetR = dataset.getTrainsetR()
trainsetF = dataset.getTrainsetF()
validset = dataset.getValidset()
testsetR = dataset.getTestsetR()
TestsetList, TestsetName = dataset.getsetlist(real=False, setType=2)
setup_seed(args.seed)
traindataloaderR = DataLoader(
trainsetR,
batch_size=int(args.batch_size/2),
shuffle=True,
pin_memory=args.pin_memory,
num_workers=args.num_workers
)
traindataloaderF = DataLoader(
trainsetF,
batch_size=int(args.batch_size/2),
shuffle=True,
pin_memory=args.pin_memory,
num_workers=args.num_workers
)
validdataloader = DataLoader(
validset,
batch_size=args.batch_size*2,
pin_memory=args.pin_memory,
num_workers=args.num_workers
)
testdataloaderR = DataLoader(
testsetR,
batch_size=args.batch_size*2,
pin_memory=args.pin_memory,
num_workers=args.num_workers
)
testdataloaderList = []
for tmptestset in TestsetList:
testdataloaderList.append(
DataLoader(
tmptestset,
batch_size=args.batch_size*2,
pin_memory=args.pin_memory,
num_workers=args.num_workers
)
)
print("Loaded model")
batchind = 0
e = 0
sumcnt = 0
sumloss = 0.
while True:
prefetcher = data_prefetcher_two(traindataloaderR, traindataloaderF)
data, y_true = prefetcher.next()
while data is not None and batchind < args.max_batch:
stime = time.time()
sumcnt += len(data)
''' ↓ the implementation of RFM ↓ '''
model.eval()
mask = cal_fam(model, data)
imgmask = torch.ones_like(mask)
imgh = imgw = 224
for i in range(len(mask)):
maxind = np.argsort(mask[i].cpu().numpy().flatten())[::-1]
pointcnt = 0
for pointind in maxind:
pointx = pointind//imgw
pointy = pointind % imgw
if imgmask[i][0][pointx][pointy] == 1:
maskh = random.randint(1, args.eH)
maskw = random.randint(1, args.eW)
sh = random.randint(1, maskh)
sw = random.randint(1, maskw)
top = max(pointx-sh, 0)
bot = min(pointx+(maskh-sh), imgh)
lef = max(pointy-sw, 0)
rig = min(pointy+(maskw-sw), imgw)
imgmask[i][:, top:bot, lef:rig] = torch.zeros_like(imgmask[i][:, top:bot, lef:rig])
pointcnt += 1
if pointcnt >= 3:
break
data = imgmask * data + (1-imgmask) * (torch.rand_like(data)*2-1.)
''' ↑ the implementation of RFM ↑ '''
model.train()
y_pred = model.forward(data)
loss = lossfunc(y_pred, y_true)
flood = (loss-0.04).abs() + 0.04
sumloss += loss.detach()*len(data)
data, y_true = prefetcher.next()
optim.zero_grad()
flood.backward()
optim.step()
batchind += 1
print("Train %06d loss:%.5f avgloss:%.5f lr:%.6f time:%.4f" % (batchind, loss, sumloss/sumcnt, optim.param_groups[0]["lr"], time.time()-stime), end="\r")
if batchind % args.logbatch == 0:
print()
Log("epoch:%03d batch:%06d loss:%.5f avgloss:%.5f" % (e, batchind, loss, sumloss/sumcnt))
loss_valid, y_true_valid, y_pred_valid = Eval(model, lossfunc, validdataloader)
ap, acc, AUC, TPR_2, TPR_3, TPR_4 = calRes(y_true_valid, y_pred_valid)
Log("AUC:%.6f TPR_2:%.6f TPR_3:%.6f TPR_4:%.6f %s" % (AUC, TPR_2, TPR_3, TPR_4, "validset"))
loss_r, y_true_r, y_pred_r = Eval(model, lossfunc, testdataloaderR)
sumAUC = sumTPR_2 = sumTPR_3 = sumTPR_4 = 0
for i, tmptestdataloader in enumerate(testdataloaderList):
loss_f, y_true_f, y_pred_f = Eval(model, lossfunc, tmptestdataloader)
ap, acc, AUC, TPR_2, TPR_3, TPR_4 = calRes(torch.cat((y_true_r, y_true_f)), torch.cat((y_pred_r, y_pred_f)))
sumAUC += AUC
sumTPR_2 += TPR_2
sumTPR_3 += TPR_3
sumTPR_4 += TPR_4
Log("AUC:%.6f TPR_2:%.6f TPR_3:%.6f TPR_4:%.6f %s" % (AUC, TPR_2, TPR_3, TPR_4, TestsetName[i]))
if len(testdataloaderList) > 1:
Log("AUC:%.6f TPR_2:%.6f TPR_3:%.6f TPR_4:%.6f Test" %
(sumAUC/len(testdataloaderList), sumTPR_2/len(testdataloaderList), sumTPR_3/len(testdataloaderList), sumTPR_4/len(testdataloaderList)))
TPR_4 = (sumTPR_4)/len(testdataloaderList)
if batchind % args.savebatch == 0 or TPR_4 > MAX_TPR_4:
MAX_TPR_4 = TPR_4
if args.save_model:
os.makedirs('models/croppedimgs/models_dffd_grpA', exist_ok=True)
torch.save(model.state_dict(), "models/croppedimgs/models_dffd_grpA/" + upper+"_"+modelname+"_model_batch_"+str(batchind))
if args.save_optim:
os.makedirs('models/croppedimgs/models_dffd_grpA', exist_ok=True)
torch.save(optim.state_dict(), "models/croppedimgs/models_dffd_grpA/" + upper+"_"+modelname+"_optim_batch_"+str(batchind))
print("-------------------------------------------")
e += 1