-
Notifications
You must be signed in to change notification settings - Fork 23
/
callbacks.py
164 lines (121 loc) · 5.51 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import itertools
import matplotlib.font_manager as font_manager
from tqdm import tqdm
import hyperparameters
#os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
class BestModelWeights(tf.keras.callbacks.Callback):
def __init__(self, metric="val_accuracy", metric_type="max"):
super(BestModelWeights, self).__init__()
self.metric = metric
self.metric_type = metric_type
if self.metric_type not in ["min", "max"]:
raise NameError('metric_type must be min or max')
def on_train_begin(self, logs=None):
if self.metric_type == "min":
self.best_metric = np.inf
else:
self.best_metric = -np.inf
self.best_epoch = 0
self.model_best_weights = None
def on_epoch_end(self, epoch, logs=None):
if self.metric_type == "min":
if self.best_metric >= logs[self.metric]:
self.model_best_weights = self.model.get_weights()
self.best_metric = logs[self.metric]
self.best_epoch = epoch
else:
if self.best_metric <= logs[self.metric]:
self.model_best_weights = self.model.get_weights()
self.best_metric = logs[self.metric]
self.best_epoch = epoch
def on_train_end(self, logs=None):
self.model.set_weights(self.model_best_weights)
print(f"\nBest weights is set, Best Epoch was : {self.best_epoch+1}\n")
class ShowProgress(tf.keras.callbacks.Callback):
def __init__(self, epochs, step_show=1, metric="accuracy"):
super(ShowProgress, self).__init__()
self.epochs = epochs
self.step_show = step_show
self.metric = metric
def on_train_begin(self, logs=None):
self.pbar = tqdm(range(self.epochs))
def on_epoch_end(self, epoch, logs=None):
if (epoch + 1) % self.step_show == 0:
self.pbar.set_description(f"Epoch : {epoch + 1} / {self.epochs}, Train {self.metric} : {round(logs[self.metric], 4)}, Valid {self.metric} : {round(logs['val_' + self.metric], 4)}")
self.pbar.update(self.step_show)
def LearningRateScheduler():
def scheduler(epoch, lr):
if epoch < hyperparameters.LEARNING_RATE_DECAY_STRATPOINT:
return lr
else:
if epoch % hyperparameters.LEARNING_RATE_DECAY_STEP == 0:
lr = lr * tf.math.exp(hyperparameters.LEARNING_RATE_DECAY_PARAMETERS)
return lr
return tf.keras.callbacks.LearningRateScheduler(scheduler)
def plot_confusion_matrix(cm,
target_names,
title='Confusion matrix',
cmap=None,
normalize=True):
"""
given a sklearn confusion matrix (cm), make a nice plot
Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix
target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']
title: the text to display at the top of the matrix
cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.html
plt.get_cmap('jet') or plt.cm.Blues
normalize: If False, plot the raw numbers
If True, plot the proportions
Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix created by
# sklearn.metrics.confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of the classes
title = best_estimator_name) # title of graph
Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
legend_font = font_manager.FontProperties(family='Times New Roman', weight='bold', style='normal', size=15)
CM_axis_font = {'fontname':'Times New Roman', 'size':'14', 'weight':'bold', 'color':'black'}
CM_tick_font = {'fontname':'Times New Roman', 'size':'10', 'weight':'bold', 'color':'black'}
AL_axis_font = {'fontname':'Times New Roman', 'size':'18', 'weight':'bold', 'color':'black'}
AL_tick_font = {'fontname':'Times New Roman', 'size':'13', 'weight':'bold', 'color':'black'}
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
#plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
#plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label', **CM_axis_font)
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass), **CM_axis_font)
plt.xticks(rotation=90, **CM_tick_font)
plt.yticks(**CM_tick_font)