There are three numeric types in Python:
- int (e.g. 2, 4, 20)
- bool (e.g. False and True, acting like 0 and 1)
- float (e.g. 5.0, 1.6)
- complex (e.g. 5+6j, 4-3j)
a = pow(2, 3) ## Or: 2 ** 3
b = abs(5) ## <real> = abs(<num>)
from math import e, pi
from math import cos, acos, sin, asin, tan, atan, degrees, radians
from math import log, log10, log2
<float> = log(<real> [, base]) # Base e, if not specified.
from math import inf, nan, isinf, isnan
float('inf'), float('nan')
from statistics import mean, median, variance, pvariance, pstdev
from random import random, randint, choice, shuffle
<float> = random()
<int> = randint(from_inclusive, to_inclusive)
<el> = choice(<list>)
shuffle(<list>)
- Every function returns an iterator.
- If you want to print the iterator, you need to pass it to the list() function!
from itertools import product, combinations, combinations_with_replacement, permutations
>>> product([0, 1], repeat=3)
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]
>>> product('ab', '12')
[('a', '1'), ('a', '2'),
('b', '1'), ('b', '2')]
>>> combinations('abc', 2)
[('a', 'b'), ('a', 'c'), ('b', 'c')]
>>> combinations_with_replacement('abc', 2)
[('a', 'a'), ('a', 'b'), ('a', 'c'),
('b', 'b'), ('b', 'c'),
('c', 'c')]
>>> permutations('abc', 2)
[('a', 'b'), ('a', 'c'),
('b', 'a'), ('b', 'c'),
('c', 'a'), ('c', 'b')]
"""
def test_integer_numbers():
"""Integer type
Int, or integer, is a whole number, positive or negative,
without decimals, of unlimited length.
"""
positive_integer = 1
negative_integer = -3255522
big_integer = 35656222554887711
assert isinstance(positive_integer, int)
assert isinstance(negative_integer, int)
assert isinstance(big_integer, int)
def test_booleans():
"""Boolean
Booleans represent the truth values False and True. The two objects representing the values
False and True are the only Boolean objects. The Boolean type is a subtype of the integer type,
and Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the
exception being that when converted to a string, the strings "False" or "True" are returned,
respectively.
"""
true_boolean = True
false_boolean = False
assert true_boolean
assert not false_boolean
assert isinstance(true_boolean, bool)
assert isinstance(false_boolean, bool)
# Let's try to cast boolean to string.
assert str(true_boolean) == "True"
assert str(false_boolean) == "False"
def test_float_numbers():
"""Float type
Float, or "floating point number" is a number, positive or negative,
containing one or more decimals.
"""
float_number = 7.0
# Another way of declaring float is using float() function.
float_number_via_function = float(7)
float_negative = -35.59
assert float_number == float_number_via_function
assert isinstance(float_number, float)
assert isinstance(float_number_via_function, float)
assert isinstance(float_negative, float)
# Float can also be scientific numbers with an "e" to indicate
# the power of 10.
float_with_small_e = 35e3
float_with_big_e = 12E4
assert float_with_small_e == 35000
assert float_with_big_e == 120000
assert isinstance(12E4, float)
assert isinstance(-87.7e100, float)
def test_complex_numbers():
"""Complex Type"""
complex_number_1 = 5 + 6j
complex_number_2 = 3 - 2j
assert isinstance(complex_number_1, complex)
assert isinstance(complex_number_2, complex)
assert complex_number_1 * complex_number_2 == 27 + 8j
def test_number_operators():
"""Basic operations"""
# Addition.
assert 2 + 4 == 6
# Multiplication.
assert 2 * 4 == 8
# Division always returns a floating point number.
assert 12 / 3 == 4.0
assert 12 / 5 == 2.4
assert 17 / 3 == 5.666666666666667
# Modulo operator returns the remainder of the division.
assert 12 % 3 == 0
assert 13 % 3 == 1
# Floor division discards the fractional part.
assert 17 // 3 == 5
# Raising the number to specific power.
assert 5 ** 2 == 25 # 5 squared
assert 2 ** 7 == 128 # 2 to the power of 7
# There is full support for floating point; operators with
# mixed type operands convert the integer operand to floating point.
assert 4 * 3.75 - 1 == 14.0