-
Notifications
You must be signed in to change notification settings - Fork 4
/
kittydar.js
190 lines (162 loc) · 5.37 KB
/
kittydar.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
var hog = require("hog-descriptor"),
nms = require("./nms"),
nnOptions = require("./classifiers/nn-options"),
svmOptions = require("./classifiers/svm-options");
if (process.arch) { // in node
// make sure browserify doesn't pick this require up
var require_ = require;
var Canvas = require_('canvas');
}
exports.Kittydar = Kittydar;
exports.detectCats = function(canvas, options) {
var kittydar = new Kittydar(options);
return kittydar.detectCats(canvas);
}
var defaultParams = {
patchSize: 48, // size of training images in px
minSize: 48, // starting window size
resize: 360, // initial image resize size in px
scaleStep: 6, // scaling step size in px
shiftBy: 6, // px to slide window by
overlapThresh: 0.5, // min overlap ratio to classify as an overlap
minOverlaps: 2, // minumum overlapping rects to classify as a head
HOGparams: { // parameters for HOG descriptor
cellSize: 6, // must divide evenly into shiftBy
blockSize: 2,
blockStride: 1,
bins: 6,
norm: "L2"
},
extractFeatures: function(imagedata, histograms) {
// override if using another set of features
var descriptor = hog.extractHOGFromHistograms(histograms, this.HOGparams);
return descriptor;
},
classify: function(features) {
// override if using another classifier
var output = net.runInput(features)[0];
return {
isCat: output > 0.999,
value: output
};
}
}
function Kittydar(options) {
this.params = {};
extend(this.params, defaultParams);
extend(this.params, options);
if (this.params.classifier == "svm") {
// use the support vector machine as the classifier
extend(this.params, svmOptions);
}
else {
// use the neural network as the classifier
extend(this.params, nnOptions);
}
}
Kittydar.prototype = {
detectCats: function(canvas) {
// get canvases of the image at different scales
var resizes = this.getAllSizes(canvas, this.params.minSize);
var cats = [];
resizes.forEach(function(resize) {
var kitties = this.detectAtScale(resize.imagedata, resize.scale);
cats = cats.concat(kitties);
}.bind(this));
cats = this.combineOverlaps(cats, this.params.overlapThresh, this.params.minOverlaps);
return cats;
},
getAllSizes: function(canvas, minSize) {
// For use with Worker threads, return canvas ImageDatas
// resized to accomodate various window sizes
minSize = minSize || this.params.minSize;
// resize canvas to cut down on number of windows to check
var max = Math.max(canvas.width, canvas.height)
var scale = Math.min(max, this.params.resize) / max;
var resizes = [];
for (var size = minSize; size < max; size += this.params.scaleStep) {
var winScale = (minSize / size) * scale;
var imagedata = this.scaleCanvas(canvas, winScale);
resizes.push({
imagedata: imagedata,
scale: winScale,
size: size
})
}
return resizes;
},
scaleCanvas: function(canvas, scale) {
var width = Math.floor(canvas.width * scale);
var height = Math.floor(canvas.height * scale);
canvas = resizeCanvas(canvas, width, height);
var ctx = canvas.getContext("2d");
var imagedata = ctx.getImageData(0, 0, width, height);
return imagedata;
},
detectAtScale: function(imagedata, scale) {
// Detect using a sliding window of a fixed size.
var histograms = hog.extractHistograms(imagedata, this.params.HOGparams);
var cats = [];
var width = imagedata.width,
height = imagedata.height;
var size = this.params.patchSize;
var shift = this.params.shiftBy;
for (var y = 0; y + size < height; y += shift) {
for (var x = 0; x + size < width; x += shift) {
var histRect = getRect(histograms, x / shift, y / shift, size / shift, size / shift);
var features = this.params.extractFeatures(imagedata, histRect);
var result = this.params.classify(features);
if (result.isCat) {
cats.push({
x: Math.floor(x / scale),
y: Math.floor(y / scale),
width: Math.floor(size / scale),
height: Math.floor(size / scale),
value: result.value
});
}
}
}
return cats;
},
combineOverlaps: function(rects, overlapThresh, minOverlaps) {
cats = nms.combineOverlaps(rects, overlapThresh, minOverlaps);
return cats;
}
}
function getRect(matrix, x, y, width, height) {
var square = new Array(height);
for (var i = 0; i < height; i++) {
square[i] = new Array(width);
for (var j = 0; j < width; j++) {
square[i][j] = matrix[y + i][x + j];
}
}
return square;
}
function resizeCanvas(canvas, width, height) {
var resizeCanvas = createCanvas(width, height);
var ctx = resizeCanvas.getContext('2d');
ctx.patternQuality = "best";
ctx.drawImage(canvas, 0, 0, canvas.width, canvas.height,
0, 0, width, height);
return resizeCanvas;
}
function createCanvas(width, height) {
if (typeof Canvas !== 'undefined') {
// have node-canvas
return new Canvas(width, height);
}
else {
// in browser
var canvas = document.createElement('canvas');
canvas.setAttribute('width', width);
canvas.setAttribute('height', height);
return canvas;
}
}
function extend(object, extensions) {
for (ext in extensions) {
object[ext] = extensions[ext];
}
}