-
Notifications
You must be signed in to change notification settings - Fork 15
/
model.py
231 lines (192 loc) · 8.73 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class DINOHead(nn.Module):
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True,
nlayers=3, hidden_dim=2048, bottleneck_dim=256):
super().__init__()
nlayers = max(nlayers, 1)
if nlayers == 1:
self.mlp = nn.Linear(in_dim, bottleneck_dim)
elif nlayers != 0:
layers = [nn.Linear(in_dim, hidden_dim)]
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
for _ in range(nlayers - 2):
layers.append(nn.Linear(hidden_dim, hidden_dim))
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
layers.append(nn.Linear(hidden_dim, bottleneck_dim))
self.mlp = nn.Sequential(*layers)
self.apply(self._init_weights)
self.last_layer = nn.utils.weight_norm(nn.Linear(in_dim, out_dim, bias=False))
self.last_layer.weight_g.data.fill_(1)
if norm_last_layer:
self.last_layer.weight_g.requires_grad = False
def _init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x_proj = self.mlp(x)
x = nn.functional.normalize(x, dim=-1, p=2)
# x = x.detach()
logits = self.last_layer(x)
return x_proj, logits
class ContrastiveLearningViewGenerator(object):
"""Take two random crops of one image as the query and key."""
def __init__(self, base_transform, n_views=2):
self.base_transform = base_transform
self.n_views = n_views
def __call__(self, x):
if not isinstance(self.base_transform, list):
return [self.base_transform(x) for i in range(self.n_views)]
else:
return [self.base_transform[i](x) for i in range(self.n_views)]
class SupConLoss(torch.nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR
From: https://github.com/HobbitLong/SupContrast"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
def info_nce_logits(features, n_views=2, temperature=1.0, device='cuda'):
b_ = 0.5 * int(features.size(0))
labels = torch.cat([torch.arange(b_) for i in range(n_views)], dim=0)
labels = (labels.unsqueeze(0) == labels.unsqueeze(1)).float()
labels = labels.to(device)
features = F.normalize(features, dim=1)
similarity_matrix = torch.matmul(features, features.T)
# discard the main diagonal from both: labels and similarities matrix
mask = torch.eye(labels.shape[0], dtype=torch.bool).to(device)
labels = labels[~mask].view(labels.shape[0], -1)
similarity_matrix = similarity_matrix[~mask].view(similarity_matrix.shape[0], -1)
# select and combine multiple positives
positives = similarity_matrix[labels.bool()].view(labels.shape[0], -1)
# select only the negatives the negatives
negatives = similarity_matrix[~labels.bool()].view(similarity_matrix.shape[0], -1)
logits = torch.cat([positives, negatives], dim=1)
labels = torch.zeros(logits.shape[0], dtype=torch.long).to(device)
logits = logits / temperature
return logits, labels
def get_params_groups(model):
regularized = []
not_regularized = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
# we do not regularize biases nor Norm parameters
if name.endswith(".bias") or len(param.shape) == 1:
not_regularized.append(param)
else:
regularized.append(param)
return [{'params': regularized}, {'params': not_regularized, 'weight_decay': 0.}]
class DistillLoss(nn.Module):
def __init__(self, warmup_teacher_temp_epochs, nepochs,
ncrops=2, warmup_teacher_temp=0.07, teacher_temp=0.04,
student_temp=0.1):
super().__init__()
self.student_temp = student_temp
self.ncrops = ncrops
self.teacher_temp_schedule = np.concatenate((
np.linspace(warmup_teacher_temp,
teacher_temp, warmup_teacher_temp_epochs),
np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
))
def forward(self, student_output, teacher_output, epoch):
"""
Cross-entropy between softmax outputs of the teacher and student networks.
"""
student_out = student_output / self.student_temp
student_out = student_out.chunk(self.ncrops)
# teacher centering and sharpening
temp = self.teacher_temp_schedule[epoch]
teacher_out = F.softmax(teacher_output / temp, dim=-1)
teacher_out = teacher_out.detach().chunk(2)
total_loss = 0
n_loss_terms = 0
for iq, q in enumerate(teacher_out):
for v in range(len(student_out)):
if v == iq:
# we skip cases where student and teacher operate on the same view
continue
loss = torch.sum(-q * F.log_softmax(student_out[v], dim=-1), dim=-1)
total_loss += loss.mean()
n_loss_terms += 1
total_loss /= n_loss_terms
return total_loss