-
Notifications
You must be signed in to change notification settings - Fork 0
/
Puzzle_Solver.c
1349 lines (1179 loc) · 53.2 KB
/
Puzzle_Solver.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Team Id: eYRCPlus-PS1#2678
* Author List: Avick Dutta (team leader), Arpan Das, Subhendu Hazra, Asesh Basu
* Filename: Puzzle_Solver.c
* Theme: Puzzle Solver Robot (GLCD) - eYRCPlus
* Functions: left_led_on, left_led_off, right_led_on, right_led_off,
* get_point_cost, get_nearest_point, follow_black_line, follow_black_line_mm,
* turn_robot, change_direction, move_one_cell, match_column, match_row,
* go_to_coordinate, go_to_cell_no, get_pickup_direction, pickup, deposit
* Global Variables: ADC_Value, flag, Left_white_line, Center_white_line, Right_white_line,
* ShaftCountLeft, ShaftCountRight, Degrees, data, input_str, d1_position_map,
* d2_position_map, current_velocity, current_direction,
* pickup_direction, current_grid, current_cell_no, current_coordinate,
* BNW_Thresh, left_velocity_float, right_velocity_float,
* left_velocity, right_velocity
*/
// Note: that predefined function definitions are written in Allman indent style
// and our function definitions are written in K&R indent style
// reference: https://en.wikipedia.org/wiki/Indent_style
#define F_CPU 14745600
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h> //included to support power function
#include "lcd.h"
#include "glcd.h" //User defined LCD library which contains the lcd routines
#include "glcd.c"
#include "glcd_big_font_msg.h" // big ubuntu font stored as image
#include "glcd_big_font_msg.c"
#include <string.h>
void port_init();
void timer5_init();
void velocity(unsigned char, unsigned char);
void motors_delay();
unsigned char ADC_Conversion(unsigned char);
unsigned char ADC_Value;
unsigned char flag = 0;
unsigned char Left_white_line = 0;
unsigned char Center_white_line = 0;
unsigned char Right_white_line = 0;
volatile unsigned long int ShaftCountLeft = 0; //to keep track of left position encoder
volatile unsigned long int ShaftCountRight = 0; //to keep track of right position encoder
volatile unsigned int Degrees; //to accept angle in degrees for turning
char data; //to store received data from UDR1
char input_str[100] = ""; // stores the raw input string
//Function to configure LCD port
void lcd_port_config (void)
{
DDRC = DDRC | 0xF7; //all the LCD pin's direction set as output
PORTC = PORTC & 0x80; // all the LCD pins are set to logic 0 except PORTC 7
}
//ADC pin configuration
void adc_pin_config (void)
{
DDRF = 0x00;
PORTF = 0x00;
DDRK = 0x00;
PORTK = 0x00;
}
//Function to configure ports to enable robot's motion
void motion_pin_config (void)
{
DDRA = DDRA | 0x0F;
PORTA = PORTA & 0xF0;
DDRL = DDRL | 0x18; //Setting PL3 and PL4 pins as output for PWM generation
PORTL = PORTL | 0x18; //PL3 and PL4 pins are for velocity control using PWM.
}
//Function to configure INT4 (PORTE 4) pin as input for the left position encoder
void left_encoder_pin_config (void)
{
DDRE = DDRE & 0xEF; //Set the direction of the PORTE 4 pin as input
PORTE = PORTE | 0x10; //Enable internal pull-up for PORTE 4 pin
}
//Function to configure INT5 (PORTE 5) pin as input for the right position encoder
void right_encoder_pin_config (void)
{
DDRE = DDRE & 0xDF; //Set the direction of the PORTE 4 pin as input
PORTE = PORTE | 0x20; //Enable internal pull-up for PORTE 4 pin
}
//Function to initialize Buzzer
void buzzer_pin_config (void)
{
DDRC = DDRC | 0x08; //Setting PORTC 3 as output
PORTC = PORTC & 0xF7; //Setting PORTC 3 logic low to turnoff buzzer
}
//Function to configure Interrupt switch
void interrupt_switch_config (void)
{
DDRE = DDRE & 0x7F; //PORTE 7 pin set as input
PORTE = PORTE | 0x80; //PORTE7 internal pull-up enabled
}
//Function to configure LED port i.e. pg0 and pg1 for left and right LEDs respectively
void LED_pin_config (void) {
DDRG |= 0b00000011; // all the LED pin's direction set as output
PORTG &= 0b11111100; // all the LED pins are set to logic 0
}
//Function to Initialize PORTS
void port_init()
{
lcd_port_config();
adc_pin_config();
motion_pin_config();
left_encoder_pin_config(); //left encoder pin config
right_encoder_pin_config(); //right encoder pin config
buzzer_pin_config();
LED_pin_config();
interrupt_switch_config();
}
void left_position_encoder_interrupt_init (void) //Interrupt 4 enable
{
cli(); //Clears the global interrupt
EICRB = EICRB | 0x02; // INT4 is set to trigger with falling edge
EIMSK = EIMSK | 0x10; // Enable Interrupt INT4 for left position encoder
sei(); // Enables the global interrupt
}
void right_position_encoder_interrupt_init (void) //Interrupt 5 enable
{
cli(); //Clears the global interrupt
EICRB = EICRB | 0x08; // INT5 is set to trigger with falling edge
EIMSK = EIMSK | 0x20; // Enable Interrupt INT5 for right position encoder
sei(); // Enables the global interrupt
}
void buzzer_on (void)
{
unsigned char port_restore = 0;
port_restore = PINC;
port_restore = port_restore | 0x08;
PORTC = port_restore;
}
void buzzer_off (void)
{
unsigned char port_restore = 0;
port_restore = PINC;
port_restore = port_restore & 0xF7;
PORTC = port_restore;
}
//ISR for right position encoder
ISR(INT5_vect)
{
ShaftCountRight++; //increment right shaft position count
}
//ISR for left position encoder
ISR(INT4_vect)
{
ShaftCountLeft++; //increment left shaft position count
}
// Timer 5 initialized in PWM mode for velocity control
// Prescale:256
// PWM 8bit fast, TOP=0x00FF
// Timer Frequency:225.000Hz
void timer5_init()
{
TCCR5B = 0x00; //Stop
TCNT5H = 0xFF; //Counter higher 8-bit value to which OCR5xH value is compared with
TCNT5L = 0x01; //Counter lower 8-bit value to which OCR5xH value is compared with
OCR5AH = 0x00; //Output compare register high value for Left Motor
OCR5AL = 0xFF; //Output compare register low value for Left Motor
OCR5BH = 0x00; //Output compare register high value for Right Motor
OCR5BL = 0xFF; //Output compare register low value for Right Motor
OCR5CH = 0x00; //Output compare register high value for Motor C1
OCR5CL = 0xFF; //Output compare register low value for Motor C1
TCCR5A = 0xA9; /*{COM5A1=1, COM5A0=0; COM5B1=1, COM5B0=0; COM5C1=1 COM5C0=0}
For Overriding normal port functionality to OCRnA outputs.
{WGM51=0, WGM50=1} Along With WGM52 in TCCR5B for Selecting FAST PWM 8-bit Mode*/
TCCR5B = 0x0B; //WGM12=1; CS12=0, CS11=1, CS10=1 (Prescaler=64)
}
void adc_init()
{
ADCSRA = 0x00;
ADCSRB = 0x00; //MUX5 = 0
ADMUX = 0x20; //Vref=5V external --- ADLAR=1 --- MUX4:0 = 0000
ACSR = 0x80;
ADCSRA = 0x86; //ADEN=1 --- ADIE=1 --- ADPS2:0 = 1 1 0
}
//Function For ADC Conversion
unsigned char ADC_Conversion(unsigned char Ch)
{
unsigned char a;
if(Ch>7)
{
ADCSRB = 0x08;
}
Ch = Ch & 0x07;
ADMUX= 0x20| Ch;
ADCSRA = ADCSRA | 0x40; //Set start conversion bit
while((ADCSRA&0x10)==0); //Wait for conversion to complete
a=ADCH;
ADCSRA = ADCSRA|0x10; //clear ADIF (ADC Interrupt Flag) by writing 1 to it
ADCSRB = 0x00;
return a;
}
//Function To Print Sensor Values At Desired Row And Column Location on LCD
void print_sensor(char row, char coloumn,unsigned char channel)
{
ADC_Value = ADC_Conversion(channel);
lcd_print(row, coloumn, ADC_Value, 3);
}
//Function for velocity control
void velocity (unsigned char left_motor, unsigned char right_motor)
{
OCR5AL = (unsigned char)left_motor;
OCR5BL = (unsigned char)right_motor;
}
//Function used for setting motor's direction
void motion_set (unsigned char Direction)
{
unsigned char PortARestore = 0;
Direction &= 0x0F; // removing upper nibbel for the protection
PortARestore = PORTA; // reading the PORTA original status
PortARestore &= 0xF0; // making lower direction nibbel to 0
PortARestore |= Direction; // adding lower nibbel for forward command and restoring the PORTA status
PORTA = PortARestore; // executing the command
}
void forward (void) //both wheels forward
{
motion_set(0x06);
}
void back (void) //both wheels backward
{
motion_set(0x09);
}
void left (void) //Left wheel backward, Right wheel forward
{
motion_set(0x05);
}
void right (void) //Left wheel forward, Right wheel backward
{
motion_set(0x0A);
}
void soft_left (void) //Left wheel stationary, Right wheel forward
{
motion_set(0x04);
}
void soft_right (void) //Left wheel forward, Right wheel is stationary
{
motion_set(0x02);
}
void soft_left_2 (void) //Left wheel backward, right wheel stationary
{
motion_set(0x01);
}
void soft_right_2 (void) //Left wheel stationary, Right wheel backward
{
motion_set(0x08);
}
void stop (void)
{
motion_set(0x00);
}
//Function used for turning robot by specified degrees
void angle_rotate(unsigned int Degrees)
{
float ReqdShaftCount = 0;
unsigned long int ReqdShaftCountInt = 0;
ReqdShaftCount = (float) Degrees/ 4.090; // division by resolution to get shaft count
ReqdShaftCountInt = (unsigned int) ReqdShaftCount;
ShaftCountRight = 0;
ShaftCountLeft = 0;
while (1)
{
if((ShaftCountRight >= ReqdShaftCountInt) | (ShaftCountLeft >= ReqdShaftCountInt))
break;
}
stop(); //Stop robot
}
//Function used for moving robot forward by specified distance
void linear_distance_mm(unsigned int DistanceInMM)
{
float ReqdShaftCount = 0;
unsigned long int ReqdShaftCountInt = 0;
ReqdShaftCount = DistanceInMM / 5.338; // division by resolution to get shaft count
ReqdShaftCountInt = (unsigned long int) ReqdShaftCount;
ShaftCountRight = 0;
while(1)
{
if(ShaftCountRight > ReqdShaftCountInt)
{
break;
}
}
stop(); //Stop robot
}
void forward_mm(unsigned int DistanceInMM)
{
forward();
linear_distance_mm(DistanceInMM);
}
void back_mm(unsigned int DistanceInMM)
{
back();
linear_distance_mm(DistanceInMM);
}
void left_degrees(unsigned int Degrees)
{
// 88 pulses for 360 degrees rotation 4.090 degrees per count
left(); //Turn left
angle_rotate(Degrees);
}
void right_degrees(unsigned int Degrees)
{
// 88 pulses for 360 degrees rotation 4.090 degrees per count
right(); //Turn right
angle_rotate(Degrees);
}
void soft_left_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_left(); //Turn soft left
Degrees=Degrees*2;
angle_rotate(Degrees);
}
void soft_right_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_right(); //Turn soft right
Degrees=Degrees*2;
angle_rotate(Degrees);
}
void soft_left_2_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_left_2(); //Turn reverse soft left
Degrees=Degrees*2;
angle_rotate(Degrees);
}
void soft_right_2_degrees(unsigned int Degrees)
{
// 176 pulses for 360 degrees rotation 2.045 degrees per count
soft_right_2(); //Turn reverse soft right
Degrees=Degrees*2;
angle_rotate(Degrees);
}
//Function To Initialize UART2
// desired baud rate:9600
// actual baud rate:9600 (error 0.0%)
// char size: 8 bit
// parity: Disabled
void uart2_init(void)
{
UCSR2B = 0x00; //disable while setting baud rate
UCSR2A = 0x00;
UCSR2C = 0x06;
UBRR2L = 0x5F; //set baud rate lo
UBRR2H = 0x00; //set baud rate hi
UCSR2B = 0x98;
}
SIGNAL(SIG_USART2_RECV) { // ISR for receive complete interrupt
data = UDR2; // making copy of data from UDR2 in 'data' variable
UDR2 = data; // echo data back to PC
strcat(input_str, &data); // concatenate each ascii character received to string input_str
//GLCD_DisplayChar(data);
}
void init_devices (void)
{
cli(); //Clears the global interrupts
port_init();
lcd_set_4bit();
lcd_init();
GLCD_Init();
uart2_init(); //Initialize UART2 for serial communication
adc_init();
timer5_init();
left_position_encoder_interrupt_init();
right_position_encoder_interrupt_init();
sei(); //Enables the global interrupts
}
// #########################################################################################################
// ################################ my functions and variables start #######################################
// #########################################################################################################
// ################################ declaring global variables start #######################################
// mapping / setting cell co-ordinates in D1
// 12 cells, 4 points in each cell, 2 index for row-column in each point
// 4 points for each cell are sorted in this order: top-left, top-right, bottom-right, bottom-left
int d1_position_map[12][4][2] = {
{{0, 0}, {0, 1}, {1, 1}, {1, 0}}, {{0, 1}, {0, 2}, {1, 2}, {1, 1}}, {{0, 2}, {0, 3}, {1, 3}, {1, 2}}, {{0, 3}, {0, 4}, {1, 4}, {1, 3}},
{{1, 0}, {1, 1}, {2, 1}, {2, 0}}, {{1, 1}, {1, 2}, {2, 2}, {2, 1}}, {{1, 2}, {1, 3}, {2, 3}, {2, 2}}, {{1, 3}, {1, 4}, {2, 4}, {2, 3}},
{{2, 0}, {2, 1}, {3, 1}, {3, 0}}, {{2, 1}, {2, 2}, {3, 2}, {3, 1}}, {{2, 2}, {2, 3}, {3, 3}, {3, 2}}, {{2, 3}, {2, 4}, {3, 4}, {3, 3}}
};
// mapping / setting cell co-ordinates in D2
// 24 cells, 4 points in each cell, 2 index for row-column in each point
// 4 points for each cell are sorted in this order: top-left, top-right, bottom-right, bottom-left
int d2_position_map[24][4][2] = {
{{0, 0}, {0, 1}, {1, 1}, {1, 0}}, {{0, 1}, {0, 2}, {1, 2}, {1, 1}}, {{0, 2}, {0, 3}, {1, 3}, {1, 2}}, {{0, 3}, {0, 4}, {1, 4}, {1, 3}}, {{0, 4}, {0, 5}, {1, 5}, {1, 4}}, {{0, 5}, {0, 6}, {1, 6}, {1, 5}},
{{1, 0}, {1, 1}, {2, 1}, {2, 0}}, {{1, 1}, {1, 2}, {2, 2}, {2, 1}}, {{1, 2}, {1, 3}, {2, 3}, {2, 2}}, {{1, 3}, {1, 4}, {2, 4}, {2, 3}}, {{1, 4}, {1, 5}, {2, 5}, {2, 4}}, {{1, 5}, {1, 6}, {2, 6}, {2, 5}},
{{2, 0}, {2, 1}, {3, 1}, {3, 0}}, {{2, 1}, {2, 2}, {3, 2}, {3, 1}}, {{2, 2}, {2, 3}, {3, 3}, {3, 2}}, {{2, 3}, {2, 4}, {3, 4}, {3, 3}}, {{2, 4}, {2, 5}, {3, 5}, {3, 4}}, {{2, 5}, {2, 6}, {3, 6}, {3, 5}},
{{3, 0}, {3, 1}, {4, 1}, {4, 0}}, {{3, 1}, {3, 2}, {4, 2}, {4, 1}}, {{3, 2}, {3, 3}, {4, 3}, {4, 2}}, {{3, 3}, {3, 4}, {4, 4}, {4, 3}}, {{3, 4}, {3, 5}, {4, 5}, {4, 4}}, {{3, 5}, {3, 6}, {4, 6}, {4, 5}}
};
unsigned char current_velocity = 127; // value can be 0-255, default velocity 127
char current_direction = 'N'; // value can be E/W/N/S i.e. east, west, north or south respectively, Default N
char pickup_direction = '\0'; // value can be L or R i.e. left or right respectively
int current_grid = -1; // value can be 1 or 2 i.e. D1 or D2, initially -1 as invalid
int current_cell_no = -1; // value can be 0 to 11 for D1, 0-23 for D2, initially -1 as invalid
int current_coordinate[2] = {-1, -1}; // co-ordinate of the cell i.e. row-column number from position map, initially -1, -1 as invalid
int BNW_Thresh = 40; // black and white threshold value, default 28 [formula: ((W+B)/2)-(B/3)]
float left_velocity_float, right_velocity_float; // stores velocity of left and right wheel respectively as float
unsigned char left_velocity, right_velocity; // stores velocity of left and right wheel respectively as unsigned char
// ################################ declaring global variables end #########################################
/*
* Function Name: left_led_on
* Input: None
* Output: It turns on the left RGB LED
* Logic: PORT G0 is configured for left RGB LED, writing logic high to PG0
* Example Call: left_led_on()
*/
void left_led_on (void) {
unsigned char port_restore = 0;
port_restore = PING;
port_restore |= 0b00000001;
PORTG = port_restore;
}
/*
* Function Name: left_led_off
* Input: None
* Output: It turns of the left RGB LED
* Logic: PORT G0 is configured for left RGB LED, writing logic low to PG0
* Example Call: left_led_on()
*/
void left_led_off (void) {
unsigned char port_restore = 0;
port_restore = PING;
port_restore &= 0b11111110;
PORTG = port_restore;
}
/*
* Function Name: right_led_on
* Input: None
* Output: It turns on the right RGB LED
* Logic: PORT G1 is configured for right RGB LED, writing logic high to PG1
* Example Call: right_led_on()
*/
void right_led_on (void) {
unsigned char port_restore = 0;
port_restore = PING;
port_restore |= 0b00000010;
PORTG = port_restore;
}
/*
* Function Name: right_led_off
* Input: None
* Output: It turns on the right RGB LED
* Logic: PORT G1 is configured for right RGB LED, writing logic low to PG1
* Example Call: right_led_off()
*/
void right_led_off (void) {
unsigned char port_restore = 0;
port_restore = PING;
port_restore &= 0b11111101;
PORTG = port_restore;
}
/*
* Function Name: get_point_cost
* Input: current_point - int array containing row & column number of current coordinate point,
* target_point - int array containing row & column number of target coordinate point
* Output: total_cost - int which is the calculated cost between current and target coordinate point
* Logic: It calculates the cost of traveling between two points i.e. calculating row difference and
* column difference and make sum of them
* Example Call: get_point_cost(current_point, target_point)
*/
int get_point_cost (int current_point[2], int target_point[2]) {
int total_cost;
total_cost = abs(current_point[0] - target_point[0]) + abs(current_point[1] - target_point[1]);
return total_cost;
}
// It receives current point and target cell which contains 4 points and returns nearest point from current point among those 4 points
/*
* Function Name: get_nearest_point
* Input: current_point - int array containing row & column number of current coordinate point,
* target_cell - 2D int array contains target cell's 4 points with coordinate based on row & column
* Output: nearest_point - int array containing row & column number of nearest coordinate point among 4 points of target_cell
* Logic: We are calculating traveling cost i.e. distance between current point and each of target cell's 4 points (top-left,
* top-right, bottom-right, bottom-left) and returning that point with lowest cost
* Example Call: get_nearest_point(current_coordinate, d1_position_map[target_cell_no])
*/
int * get_nearest_point (int current_point[2], int target_cell[4][2]) {
int * nearest_point = malloc(2 * sizeof(int));
int i, current_cost, lowest_cost = 100;
for (i=0; i<4; i++) {
current_cost = get_point_cost(current_point, target_cell[i]);
if (current_cost < lowest_cost) {
nearest_point[0] = target_cell[i][0];
nearest_point[1] = target_cell[i][1];
lowest_cost = current_cost;
}
}
return nearest_point;
}
// It follows a 1cm thick black line on white surface
/*
* Function Name: read_wl_sensor_values
* Input: Global variables Left_white_line, Center_white_line, Right_white_line
* Output: It updates global variables Left_white_line, Center_white_line, Right_white_line
* Logic: It reads all 3 white line sensor values by using function ADC_Conversion()
* Example Call: read_wl_sensor_values()
*/
void read_wl_sensor_values () {
Left_white_line = ADC_Conversion(3); //Getting data of Left WL Sensor
Center_white_line = ADC_Conversion(2); //Getting data of Center WL Sensor
Right_white_line = ADC_Conversion(1); //Getting data of Right WL Sensor
}
/*
* Function Name: follow_black_line
* Input: Left_white_line, Center_white_line, Right_white_line are global variables,
* direction can be 'F' or 'B' as forward or backward respectively
* Output: It follows a 1cm thick black line on white surface
* Logic: To follow a 1cm black line, we can linearly forward the robot if all three white line sensors
* are on white surface or the center white line sensor is on the black surface. We decrease velocity of the
* right wheel and increase velocity of the left wheel if right white line sensor is on the black surface and
* other twos are on the white surface. Similarly we decrease velocity of the left wheel and increase velocity
* of the right wheel if left white line sensor is on the black surface and other twos are on the white surface.
* This way the robot follows a 1cm thick black line.
*
* Example Call: follow_black_line('F')
*/
void follow_black_line (char direction) {
flag = 0;
if (((Left_white_line <= BNW_Thresh) && (Center_white_line <= BNW_Thresh) && (Right_white_line <= BNW_Thresh)) || (Center_white_line > BNW_Thresh)) {
flag = 1;
if (direction == 'F') forward();
else back();
velocity(left_velocity, right_velocity);
}
if((Left_white_line <= BNW_Thresh) && (Center_white_line <= BNW_Thresh) && (Right_white_line > BNW_Thresh) && (flag == 0)) {
flag = 1;
if (direction == 'F') {
forward();
velocity(left_velocity+30, right_velocity-50);
} else {
back();
velocity(left_velocity-50, right_velocity+30);
}
}
if((Left_white_line > BNW_Thresh) && (Center_white_line <= BNW_Thresh) && (Right_white_line <= BNW_Thresh) && (flag == 0)) {
flag = 1;
if (direction == 'F') {
forward();
velocity(left_velocity-50, right_velocity+30);
} else {
back();
velocity(left_velocity+30, right_velocity-50);
}
}
}
// It follows a black line up to a fixed distance
/*
* Function Name: follow_black_line_mm
* Input: DistanceInMM - is a unsigned integer,
* direction - is a char variable
* Output: It follows a 1cm thick black line up to a specific distance
* Logic: It calculates required shaft count to travel up to DistanceInMM
* and follows the black line. ShaftCountRight and ShaftCountLeft are initially
* set to 0. While moving the robot, we increase them and When the ShaftCountRight
* or ShaftCountLeft reaches as required, we stop the robot
* Example Call: follow_black_line_mm(100, 'F')
*/
void follow_black_line_mm (unsigned int DistanceInMM, char direction) {
float ReqdShaftCount = 0;
unsigned long int ReqdShaftCountInt = 0;
ReqdShaftCount = DistanceInMM / 5.338; // division by resolution to get shaft count
ReqdShaftCountInt = (unsigned long int) ReqdShaftCount;
ShaftCountRight = 0;
ShaftCountLeft = 0;
while(1) {
read_wl_sensor_values();
if(ShaftCountRight > ReqdShaftCountInt || ShaftCountLeft > ReqdShaftCountInt) {
break;
} else {
follow_black_line(direction);
}
}
stop(); //Stop robot
}
// It turns the robot left/right by 5 degrees until encounters a black line.
/*
* Function Name: turn_robot
* Input: direction is a char variable which can be 'L' or 'R' as left or right respectively
* Output: This function rotates the robot perfect 90 degrees left or right
* Logic: At first it reads all white line sensor values and increase velocity to current velocity + 10
* left_degrees(90)3is static and does not always as per hardware and physical limitations.
* So, we have to rotate the robot dynamically. We rotate the robot by 5 degrees until
* the center white line sensor detects a black line. But to do that we have to cross/overcome
* current black line and the thick black number inside a cell. If direction is 'L' then
* we rotate the robot left by 75 degrees using left_degrees(75) and if direction is 'R'
* then rotate the robot right by 75 degrees using right_degrees(75). After that, we rotate
* the robot by 5 degrees in mentioned direction until the center white line sensor detects
* a black line.
* Example Call: turn_robot('L')
*/
void turn_robot (char direction) {
read_wl_sensor_values();
velocity(current_velocity+10, current_velocity+10);
if (direction == 'L') {
left_degrees(75);
read_wl_sensor_values();
while (Center_white_line <= BNW_Thresh) {
read_wl_sensor_values();
left_degrees(5);
}
} else {
right_degrees(75);
read_wl_sensor_values();
while (Center_white_line <= BNW_Thresh) {
read_wl_sensor_values();
right_degrees(5);
}
}
velocity(current_velocity-10 ,current_velocity-10);
_delay_ms(500);
}
// It changes the direction of the robot i.e. east/west/north/south.
/*
* Function Name: change_direction
* Input: desired_direction is a unsigned char variable which can be 'E'/'W'/'N'/'S' as
* ease, west, north or south respectively
* Output: It changes the robots direction to ease, west, north or south and updates its current
* direction which is stored in global variable current_direction
* Logic: if current direction is north and desired direction is west then
* we turn the robot left by 90 degrees using turn_robot('L') and updates current direction to west
* if current direction is north and desired direction is east then
* we turn the robot right by 90 degrees using turn_robot('R') and updates current direction to east
* if current direction is north and desired direction is south then
* if current column is 0 then we turn the robot right by 90 degrees using turn_robot('R') two times
* else we turn the robot left by 90 degrees using turn_robot('L') two times
* and update current direction to south
* if current direction is south and desired direction is north then
* if current column is 0 then we turn the robot left by 90 degrees using turn_robot('L') two times
* else we turn the robot right by 90 degrees using turn_robot('R') two times
* and update current direction to north
* if current direction is south and desired direction is east then
* we turn the robot left by 90 degrees using turn_robot('L') and updates current direction to east
* if current direction is south and desired direction is west then
* we turn the robot right by 90 degrees using turn_robot('R') and updates current direction to west
* if current direction is east and desired direction is north then
* we turn the robot left by 90 degrees using turn_robot('L') and updates current direction to north
* if current direction is east and desired direction is west then
* if current row is 0 then we turn the robot right by 90 degrees using turn_robot('R') two times
* else we turn the robot left by 90 degrees using turn_robot('L') two times
* and update current direction to west
* if current direction is east and desired direction is south then
* we turn the robot right by 90 degrees using turn_robot('R') and updates current direction to south
* if current direction is west and desired direction is north then
* we turn the robot right by 90 degrees using turn_robot('R') and updates current direction to north
* if current direction is west and desired direction is east then
* if current row is 0 then we turn the robot left by 90 degrees using turn_robot('L') two times
* else we turn the robot right by 90 degrees using turn_robot('R') two times
* and update current direction to east
* if current direction is west and desired direction is south then
* we turn the robot left by 90 degrees using turn_robot('L') and updates current direction to south
* Example Call: change_direction('N')
*/
void change_direction (unsigned char desired_direction) {
if (current_direction == desired_direction) return;
if (current_direction == 'N' && desired_direction == 'W') { // north
turn_robot('L');
current_direction = 'W';
} else if (current_direction == 'N' && desired_direction == 'E') { // north
turn_robot('R');
current_direction = 'E';
} else if (current_direction == 'N' && desired_direction == 'S') { // north
if (current_coordinate[1] == 0) {
turn_robot('R');
turn_robot('R');
} else {
turn_robot('L');
turn_robot('L');
}
current_direction = 'S';
} else if (current_direction == 'S' && desired_direction == 'N') { //south
if (current_coordinate[1] == 0) {
turn_robot('L');
turn_robot('L');
} else {
turn_robot('R');
turn_robot('R');
}
current_direction = 'N';
} else if (current_direction == 'S' && desired_direction == 'E') { //south
turn_robot('L');
current_direction = 'E';
} else if (current_direction == 'S' && desired_direction == 'W') { //south
turn_robot('R');
current_direction = 'W';
} else if (current_direction == 'E' && desired_direction == 'N') { //east
turn_robot('L');
current_direction = 'N';
} else if (current_direction == 'E' && desired_direction == 'W') { //east
if (current_coordinate[0] == 0) {
turn_robot('R');
turn_robot('R');
} else {
turn_robot('L');
turn_robot('L');
}
current_direction = 'W';
} else if (current_direction == 'E' && desired_direction == 'S') { //east
turn_robot('R');
current_direction = 'S';
} else if (current_direction == 'W' && desired_direction == 'N') { //west
turn_robot('R');
current_direction = 'N';
} else if (current_direction == 'W' && desired_direction == 'E') { //west
if (current_coordinate[0] == 0) {
turn_robot('L');
turn_robot('L');
} else {
turn_robot('R');
turn_robot('R');
}
current_direction = 'E';
} else if (current_direction == 'W' && desired_direction == 'S') { //west
turn_robot('L');
current_direction = 'S';
}
}
// It follows a black line until encounter a 3x3 cm black square.
/*
* Function Name: move_one_cell
* Input: Reads global variables Left_white_line, Center_white_line, Right_white_line, BNW_Thresh
* Output: It moved the robot 1 cell in forward direction i.e. robot forwards until get a 3x3 black square
* Logic: If right and center white line sensors are on black surface and left white line sensor is on white
* surface, we also detect it as a 3x3cm black square.
* If left and center white line sensors are on the black surface and right white line sensor is on
* white surface, we detect it as a 3x3cm black square.
* Again, if all three white line sensors are on black surface, we also detect it as a 3x3cm black square.
* After all, forward the robot 5 cm to make the wheels on the 3x3cm black squares.
* Example Call: move_one_cell()
*/
void move_one_cell () {
read_wl_sensor_values();
while (!(((Left_white_line > BNW_Thresh) && (Center_white_line > BNW_Thresh)) || ((Center_white_line > BNW_Thresh) && (Right_white_line > BNW_Thresh)) // 1-2 or 3-2 on white
|| ((Left_white_line > BNW_Thresh) && (Center_white_line > BNW_Thresh) && (Right_white_line > BNW_Thresh)))) { // center on black
read_wl_sensor_values();
follow_black_line('F');
}
// this delay is important: if disabled, the bot may get our of line
_delay_ms(200); // delay
// adjust 10/2 cm forward to make the wheels on the 3x3cm black squares.
follow_black_line_mm(50, 'F');
}
// It is a helper function, used to match columns.
/*
* Function Name: match_column
* Input: target_coordinate is a int array which holds a co-ordinate i.e. row, column number
* Output: It updates current co-ordinate's column number i.e. the global variable current_coordinate[1]
* Logic: Until current co-ordinate's column > target co-ordinates's column, we repeat the process indented below
* change direction to west by using change_direction('W') and then move the robot by one cell
* forward by using move_one_cell(). After that we update current co-ordinate's column number by decreasing 1
* All after above, Until current co-ordinate's column < target co-ordinates's column, we repeat the process indented below
* change direction to east by using change_direction('E') and then move the robot by one cell
* forward by using move_one_cell(). After that we update current co-ordinate's column number by increase 1
* Example Call: match_column((int){1, 3})
*/
void match_column (int target_coordinate[]) {
while (current_coordinate[1] > target_coordinate[1]) {
change_direction('W');
move_one_cell();
current_coordinate[1]--;
}
while (current_coordinate[1] < target_coordinate[1]) {// go east/west until both position on same column
change_direction('E');
move_one_cell();
current_coordinate[1]++;
}
}
// It is a helper function, used to match rows.
/*
* Function Name: match_row
* Input: target_coordinate is a int array which holds a co-ordinate i.e. row, column number
* Output: It updates current co-ordinate's row number i.e. the global variable current_coordinate[0]
* Logic: Until current co-ordinate's row > target co-ordinates's row, we repeat the process indented below
* change direction to north by using change_direction('N') and then move the robot by one cell
* forward by using move_one_cell(). After that we update current co-ordinate's column number by decreasing 1
* All after above, Until current co-ordinate's row < target co-ordinates's row, we repeat the process indented below
* change direction to south by using change_direction('S') and then move the robot by one cell
* forward by using move_one_cell(). After that we update current co-ordinate's column number by increase 1
* Example Call: match_row((int){1, 3})
*/
void match_row (int target_coordinate[]) {
while (current_coordinate[0] > target_coordinate[0]) {// go north/south until both position on same row
change_direction('N');
move_one_cell();
current_coordinate[0]--;
}
while (current_coordinate[0] < target_coordinate[0]) {// go north/south until both position on same row
change_direction('S');
move_one_cell();
current_coordinate[0]++;
}
}
// It is used to move the robot to a particular coordinate.
// constraint: when we are in D1, then we cannot put co-ordinate of D2 and vice-versa. To do that, first cross the bridge.
/*
* Function Name: go_to_coordinate
* Input: target_coordinate is a int array which holds a co-ordinate i.e. row, column number
* Output: It moves the robot to a specific co-ordinate by using match_column and match_row functions
* Logic: If the robot is currently in D1 then
* If current direction is east or west then
* move the robot and match robot's and target co-ordinate's column
* move the robot and match robot's and target co-ordinate's row
* else
* move the robot and match robot's and target co-ordinate's row
* move the robot and match robot's and target co-ordinate's column
* else
* If target co-ordinate's row number is 2 and column number is 0 then
* move the robot and match robot's and target co-ordinate's row
* move the robot and match robot's and target co-ordinate's column
* else
* move the robot and match robot's and target co-ordinate's column
* move the robot and match robot's and target co-ordinate's row
* Example Call: go_to_coordinate((int){1, 3})
*/
void go_to_coordinate (int target_coordinate[]) {
if (current_grid == 1) {
if (current_direction == 'E' || current_direction == 'W') { // match column then row
match_column(target_coordinate);
match_row(target_coordinate);
} else { // current_direction = N/S // match row then column
match_row(target_coordinate);
match_column(target_coordinate);
}
} else { // if robot is in d2, and target is bridge point, match row, then column
if (target_coordinate[0] == 2 && target_coordinate[1] == 0) {
match_row(target_coordinate);
match_column(target_coordinate);
} else {
match_column(target_coordinate);
match_row(target_coordinate);
}
}
}
// It is used to go to nearest co-ordinate point of a cell from current point's co-ordinate.
/*
* Function Name: go_to_cell_no
* Input: target_division - is an int variable which can be 1 or 2 as D1 or D2 respectively,
* target_cell_no - is an int variable which can be 0-11 in D1 and 0-23 in D2
* Output: It moves the robot to nearest among 4 points (top-left, top-right, bottom-right, bottom-left)
* of a given cell number with target division
* Logic: It creates an integer pointer to store a co-ordinate. Then if the target division is 1 i.e. D1
* then copy returned data from get_nearest_point(current_coordinate, d1_position_map[target_cell_no])
* to nearest_point. Note that we are using d1_position_map here
* else copy returned data from get_nearest_point(current_coordinate, d2_position_map[target_cell_no])
* to nearest_point. Note that we are using d2_position_map here this time
* Example Call: go_to_cell_no(2, 5)
*/
void go_to_cell_no (int target_division, int target_cell_no) {
int * nearest_point = (int *) malloc(2 * sizeof(int));
if (target_division == 1) { // go to cell no in D1
memcpy(nearest_point, get_nearest_point(current_coordinate, d1_position_map[target_cell_no]), 2 * sizeof(int));
} else { // go to cell no in D2
memcpy(nearest_point, get_nearest_point(current_coordinate, d2_position_map[target_cell_no]), 2 * sizeof(int));
}
go_to_coordinate(nearest_point);
// after reaching, update current_cell_no
current_cell_no = target_cell_no;
}
// It is used to get the pickup direction i.e. L or R i.e. left or right respectively.
/*
* Function Name: get_pickup_direction
* Input: Global variable current_direction.
* Output: It updates the global variable pickup_direction which can be 'L' or 'R' as left or right respectively
* Logic: Integer left and right is initialized with 0
* if current direction of the robot is north then
* i = 0
* if i < 4 then
* if current co-ordinate's column number > d1_position_map[current_cell_no][i][1] then left = left + 1
* else current co-ordinate's column number < d1_position_map[current_cell_no][i][1] then right = right + 1
* i = i + 1
* if current direction of the robot is south then
* i = 0
* if i < 4 then