-
Notifications
You must be signed in to change notification settings - Fork 24
/
crf.py
44 lines (31 loc) · 1.39 KB
/
crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import numpy as np
import cv2
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral
def apply_crf(ori_image, mask):
""" Conditional Random Field
ori_image: np.array with value between 0-255
mask: np.array with value between 0-1
"""
## Grayscale to RGB
# if len(mask.shape) < 3:
# mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
## Converting the anotations RGB to single 32 bit color
annotated_label = mask.astype(np.int32)
# annotated_label = mask[:,:,0] + (mask[:,:,1]<<8) + (mask[:,:,2]<<16)
## Convert the 32bit integer color to 0,1, 2, ... labels.
colors, labels = np.unique(annotated_label, return_inverse=True)
n_labels = 2
## Setting up the CRF model
d = dcrf.DenseCRF2D(ori_image.shape[1], ori_image.shape[0], n_labels)
## Get unary potentials (neg log probability)
U = unary_from_labels(labels, n_labels, gt_prob=0.7, zero_unsure=False)
d.setUnaryEnergy(U)
## This adds the color-independent term, features are the locations only.
d.addPairwiseGaussian(sxy=(3, 3), compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
## Run Inference for 10 steps
Q = d.inference(10)
## Find out the most probable class for each pixel.
MAP = np.argmax(Q, axis=0)
return MAP.reshape((ori_image.shape[0], ori_image.shape[1]))