forked from yusuketomoto/chainer-fast-neuralstyle
-
Notifications
You must be signed in to change notification settings - Fork 9
/
net.py
executable file
·103 lines (91 loc) · 4.01 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import math
import numpy as np
import chainer
import chainer.links as L
import chainer.functions as F
from chainer import Variable
class ResidualBlock(chainer.Chain):
def __init__(self, n_in, n_out, stride=1, ksize=3):
w = math.sqrt(2)
super(ResidualBlock, self).__init__(
c1=L.Convolution2D(n_in, n_out, ksize, stride, 1, w),
c2=L.Convolution2D(n_out, n_out, ksize, 1, 1, w),
b1=L.BatchNormalization(n_out),
b2=L.BatchNormalization(n_out)
)
def __call__(self, x, test):
h = F.relu(self.b1(self.c1(x), test=test))
h = self.b2(self.c2(h), test=test)
if x.data.shape != h.data.shape:
xp = chainer.cuda.get_array_module(x.data)
n, c, hh, ww = x.data.shape
pad_c = h.data.shape[1] - c
p = xp.zeros((n, pad_c, hh, ww), dtype=xp.float32)
p = chainer.Variable(p, volatile=test)
x = F.concat((p, x))
if x.data.shape[2:] != h.data.shape[2:]:
x = F.average_pooling_2d(x, 1, 2)
return h + x
class FastStyleNet(chainer.Chain):
def __init__(self):
super(FastStyleNet, self).__init__(
c1=L.Convolution2D(3, 32, 9, stride=1, pad=4),
c2=L.Convolution2D(32, 64, 4, stride=2, pad=1),
c3=L.Convolution2D(64, 128, 4,stride=2, pad=1),
r1=ResidualBlock(128, 128),
r2=ResidualBlock(128, 128),
r3=ResidualBlock(128, 128),
r4=ResidualBlock(128, 128),
r5=ResidualBlock(128, 128),
d1=L.Deconvolution2D(128, 64, 4, stride=2, pad=1),
d2=L.Deconvolution2D(64, 32, 4, stride=2, pad=1),
d3=L.Deconvolution2D(32, 3, 9, stride=1, pad=4),
b1=L.BatchNormalization(32),
b2=L.BatchNormalization(64),
b3=L.BatchNormalization(128),
b4=L.BatchNormalization(64),
b5=L.BatchNormalization(32),
)
def __call__(self, x, test=False):
h = self.b1(F.elu(self.c1(x)), test=test)
h = self.b2(F.elu(self.c2(h)), test=test)
h = self.b3(F.elu(self.c3(h)), test=test)
h = self.r1(h, test=test)
h = self.r2(h, test=test)
h = self.r3(h, test=test)
h = self.r4(h, test=test)
h = self.r5(h, test=test)
h = self.b4(F.elu(self.d1(h)), test=test)
h = self.b5(F.elu(self.d2(h)), test=test)
y = self.d3(h)
return (F.tanh(y)+1)*127.5
class VGG(chainer.Chain):
def __init__(self):
super(VGG, self).__init__(
conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1),
conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),
conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),
conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),
conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1)
)
self.train = False
self.mean = np.asarray(120, dtype=np.float32)
def preprocess(self, image):
return np.rollaxis(image - self.mean, 2)
def __call__(self, x):
y1 = F.relu(self.conv1_2(F.relu(self.conv1_1(x))))
h = F.max_pooling_2d(y1, 2, stride=2)
y2 = F.relu(self.conv2_2(F.relu(self.conv2_1(h))))
h = F.max_pooling_2d(y2, 2, stride=2)
y3 = F.relu(self.conv3_3(F.relu(self.conv3_2(F.relu(self.conv3_1(h))))))
h = F.max_pooling_2d(y3, 2, stride=2)
y4 = F.relu(self.conv4_3(F.relu(self.conv4_2(F.relu(self.conv4_1(h))))))
return [y1, y2, y3, y4]