Code and Data for the ECAI 2023 paper Create and Find Flatness: Building Flat Training Spaces in Advance for Continual Learning.
The Code is based on UER-py. Requirements and Code Structure are consistent with its.
For Text Classification tasks, we used the data provided by LAMOL. You can find the data from link to data. Please download it and put it into the datasets folder. Then uncompress and pre-process the data:
tar -xvzf LAMOL.tar.gz
cd ../scripts
python preprocess.py
For NER tasks, we used the CoNLL-03 and OntoNotes-5.0 datasets. We put the CoNLL-03 in the ./datasets folder. For OntoNotes-5.0, you could apply for it from link and pre-process it to the same format as the CoNLL-03.
The pretrained model could be downloaded from link and put in the ./models folder.
We use sequence order1 and sampled setting to illustrate the fine-tuning of different methods
# Example for Sequentially fine-tuning
python3 finetune/run_cls_seq.py --pretrained_model_path models/bert_base_en_uncased_model.bin --vocab_path models/google_uncased_en_vocab.txt \
--batch_size 8 --learning_rate 3e-5 --seq_length 256 \
--train_path None --dev_path None --log_path log/seq_sampled_order1.log \
--config_path models/bert/base_config.json \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--tasks ag yelp yahoo \
--epochs 4 3 2 --replay --n_labeled 2000 --n_val 2000 --seed 7 ;
# Example for Sequentially fine-tuning with Replay
python3 finetune/run_cls_seq.py --pretrained_model_path models/bert_base_en_uncased_model.bin --vocab_path models/google_uncased_en_vocab.txt \
--batch_size 8 --learning_rate 3e-5 --seq_length 256 \
--train_path None --dev_path None --log_path log/replay_sampled_order1.log \
--config_path models/bert/base_config.json \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--tasks ag yelp yahoo \
--epochs 4 3 2 --n_labeled 2000 --n_val 2000 --seed 7;
# Example for Elastic Weight Consolidation
python3 finetune/run_cls_ewcloss.py --pretrained_model_path models/bert_base_en_uncased_model.bin --vocab_path models/google_uncased_en_vocab.txt \
--batch_size 8 --learning_rate 3e-5 --seq_length 256 \
--train_path None --dev_path None --log_path log/EWC_sampled_order1.log \
--config_path models/bert/base_config.json \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--tasks ag yelp yahoo \
--epochs 4 3 2 --lamda 100000 --n_labeled 2000 --n_val 2000 --seed 7;
# Example for Multitask-Learning
python3 finetune/run_cls_mt.py --pretrained_model_path models/bert_base_en_uncased_model.bin --vocab_path models/google_uncased_en_vocab.txt \
--batch_size 8 --learning_rate 3e-5 --seq_length 256 \
--log_path log/mt_3task_sampled.log \
--config_path models/bert/base_config.json \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--tasks ag yelp yahoo \
--epochs_num 3 --evaluate_steps 500 --n_labeled 2000 --n_val 2000 --seed 7;
# Example for our method C&F
python3 finetune/run_cls_cf.py --pretrained_model_path models/bert_base_en_uncased_model.bin --vocab_path models/google_uncased_en_vocab.txt --config_path models/bert/base_config.json \
--batch_size 8 --learning_rate 3e-5 --seq_length 256 \
--train_path None --dev_path None --log_path log/CF_sampled_order1.log \
--config_path models/bert/base_config.json \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--tasks ag yelp yahoo --epochs 4 3 2 \
--rho 0.65 --adaptive --lamda 50000 --n_labeled 2000 --gamma 0.95 --n_val 500 --fisher_estimation_sample_size 1024 --seed 7 ;
# Example for length-5 task and sequence order4
python3 finetune/run_cls_cf.py --pretrained_model_path models/bert_base_en_uncased_model.bin --vocab_path models/google_uncased_en_vocab.txt --config_path models/bert/base_config.json \
--batch_size 8 --learning_rate 3e-5 --seq_length 256 \
--train_path None --dev_path None --log_path log/CF_full_order4.log \
--config_path models/bert/base_config.json \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--tasks ag yelp amazon yahoo dbpedia --epochs 4 3 3 2 1 \
--rho 0.65 --adaptive --lamda 100000 --n_labeled -1 --gamma 0.95 --n_val 500 --fisher_estimation_sample_size 1024 --seed 7 ;
# Example for CoNLL-03 dataset on order1.
python3 finetune/run_ner_kd_cf.py --pretrained_model_path models/bert_base_en_uncased_model.bin --vocab_path models/google_uncased_en_vocab.txt --config_path models/bert/base_config.json \
--batch_size 32 --learning_rate 5e-5 --seq_length 128 \
--train_path datasets/CoNLL03/train.tsv --dev_path datasets/CoNLL03/dev.tsv --test_path datasets/CoNLL03/test.tsv --log_path log/CoNLL03_0123_CF.log \
--config_path models/bert/base_config.json \
--embedding word_pos_seg --encoder transformer --mask fully_visible --temperature 2 \
--tasks_order 0 1 2 3 --epochs 20 20 20 20 --rho 0.65 --lamda 1000 --adaptive --fisher_estimation_sample_size 1024 --seed 7 ;
@article{shi2023create,
title={Create and Find Flatness: Building Flat Training Spaces in Advance for Continual Learning},
author={Shi, Wenhang and Chen, Yiren and Zhao, Zhe and Lu, Wei and Yan, Kimmo and Du, Xiaoyong},
journal={arXiv preprint arXiv:2309.11305},
year={2023}
}
If you have any question, please contact Wenhang Shi via wenhangshi@ruc.edu.cn.