Skip to content

Commit

Permalink
refine Industry-strength AD naming (#601)
Browse files Browse the repository at this point in the history
Since AD is a task (just like NLP, CV, RecSys) rather than a specific attribute of machine learning models/systems (such as robustness, explainability, performance). This module should be named a bit for consistency with other industry-strength sections.
  • Loading branch information
zhimin-z authored Sep 11, 2024
1 parent 109b621 commit bdf68c0
Showing 1 changed file with 18 additions and 18 deletions.
36 changes: 18 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,11 @@ This repository contains a curated list of awesome open source libraries that wi

| | | |
|-|-|-|
| [⚔ Adversarial Robustness](#adversarial-robustness) | [🔴 Anomaly Detection](#anomaly-detection) | [🤖 AutoML](#automl) |
| [🗺️ Computation Load Distribution](#computation-load-distribution) | [🏷️ Data Labelling & Synthesis](#data-labelling-and-synthesis) | [🧵 Data Pipeline](#data-pipeline) |
| [📓 Data Science Notebook](#ds-notebook) | [💾 Data Storage Optimisation](#data-storage-optimisation) | [💸 Data Stream Processing](#data-stream-processing) |
| [💪 Deployment & Serving](#deployment-and-serving) | [📈 Evaluation & Observability](#evaluation-and-observability) | [🔍 Explainability & Interpretability](#explainability-and-interpretability) |
| [🎁 Feature Store](#feature-store) | [👁️ Industry-strength Computer Vision](#industry-strength-cv) | [🔠 Industry-strength Natural Language Processing](#industry-strength-nlp) |
| [⚔ Adversarial Robustness](#adversarial-robustness) | [🤖 AutoML](#automl) | [🗺️ Computation Load Distribution](#computation-load-distribution) |
| [🏷️ Data Labelling & Synthesis](#data-labelling-and-synthesis) | [🧵 Data Pipeline](#data-pipeline) | [📓 Data Science Notebook](#ds-notebook) |
| [💾 Data Storage Optimisation](#data-storage-optimisation) | [💸 Data Stream Processing](#data-stream-processing) | [💪 Deployment & Serving](#deployment-and-serving) |
| [📈 Evaluation & Observability](#evaluation-and-observability) | [🔍 Explainability & Interpretability](#explainability-and-interpretability) | [🎁 Feature Store](#feature-store) |
| [🔴 Industry-strength Anomaly Detection](#industry-strength-ad) | [👁️ Industry-strength Computer Vision](#industry-strength-cv) | [🔠 Industry-strength Natural Language Processing](#industry-strength-nlp) |
| [🙌 Industry-strength Recommender System](#industry-strength-recsys) | [🍕 Industry-strength Reinforcement Learning](#industry-strength-rl) | [📊 Industry-strength Visualisation](#industry-strength-visualisation) |
| [📅 Metadata Management](#metadata-management) | [📜 Model, Data & Experiment Tracking](#model-data-and-experiment-tracking) | [🔩 Model Compilation, Compression & Optimization](#model-compilation-compression-and-optimization) |
| [🔥 Neural Search](#neural-search) | [🧮 Optimized Computation](#optimized-computation) | [🔏 Privacy & Security](#privacy-security) |
Expand Down Expand Up @@ -98,19 +98,6 @@ Please review our [CONTRIBUTING.md](https://github.com/EthicalML/awesome-product
* [OpenAttack](https://github.com/thunlp/OpenAttack) ![](https://img.shields.io/github/stars/thunlp/OpenAttack.svg?style=social) - OpenAttack is a Python-based textual adversarial attack toolkit, which handles the whole process of textual adversarial attacking, including preprocessing text, accessing the victim model, generating adversarial examples and evaluation.


## Anomaly Detection
* [adtk](https://github.com/arundo/adtk) ![](https://img.shields.io/github/stars/arundo/adtk.svg?style=social) - A Python toolkit for rule-based/unsupervised anomaly detection in time series.
* [Alibi Detect](https://github.com/SeldonIO/alibi-detect) ![](https://img.shields.io/github/stars/SeldonIO/alibi-detect.svg?style=social) - alibi-detect is a Python package focused on outlier, adversarial and concept drift detection.
* [Darts](https://github.com/unit8co/darts) ![](https://img.shields.io/github/stars/unit8co/darts.svg?style=social) - Darts is a library for user-friendly forecasting and anomaly detection on time series.
* [Deequ](https://github.com/awslabs/deequ) ![](https://img.shields.io/github/stars/awslabs/deequ.svg?style=social) - A library built on top of Apache Spark for defining "unit tests for data", which measure data quality in large datasets.
* [Deep Anomaly Detection with Outlier Exposure](https://github.com/hendrycks/outlier-exposure) ![](https://img.shields.io/github/stars/hendrycks/outlier-exposure.svg?style=social) - Outlier Exposure (OE) is a method for improving anomaly detection performance in deep learning models. [Paper](https://arxiv.org/pdf/1812.04606.pdf)
* [PyOD](https://github.com/yzhao062/pyod) ![](https://img.shields.io/github/stars/yzhao062/pyod.svg?style=social) - A Python Toolbox for Scalable Outlier Detection (Anomaly Detection).
* [SUOD](https://github.com/yzhao062/SUOD) ![](https://img.shields.io/github/stars/yzhao062/SUOD.svg?style=social) - SUOD (Scalable Unsupervised Outlier Detection) is an acceleration system for large-scale anomaly/outlier detection.
* [TextAttack](https://github.com/QData/TextAttack) ![](https://img.shields.io/github/stars/QData/TextAttack.svg?style=social) - TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
* [TFDV](https://github.com/tensorflow/data-validation) ![](https://img.shields.io/github/stars/tensorflow/data-validation.svg?style=social) - TFDV (Tensorflow Data Validation) is a library for exploring and validating machine learning data.
* [TODS](https://github.com/datamllab/tods) ![](https://img.shields.io/github/stars/datamllab/tods.svg?style=social) - TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.


## AutoML
* [AutoGluon](https://github.com/autogluon/autogluon) ![](https://img.shields.io/github/stars/autogluon/autogluon.svg?style=social) - Automated feature, model, and hyperparameter selection for tabular, image, and text data on top of popular machine learning libraries (Scikit-Learn, LightGBM, CatBoost, PyTorch, MXNet).
* [Autokeras](https://github.com/keras-team/autokeras) ![](https://img.shields.io/github/stars/keras-team/autokeras.svg?style=social) - AutoML library for Keras based on ["Auto-Keras: Efficient Neural Architecture Search with Network Morphism"](https://arxiv.org/abs/1806.10282).
Expand Down Expand Up @@ -417,6 +404,19 @@ Please review our [CONTRIBUTING.md](https://github.com/EthicalML/awesome-product
* [Hopsworks Feature Store](https://github.com/logicalclocks/hopsworks) ![](https://img.shields.io/github/stars/logicalclocks/hopsworks.svg?style=social) - Offline/Online Feature Store for ML [(Video)](https://www.youtube.com/watch?v=N1BjPk1smdg).


## Industry-strength AD
* [adtk](https://github.com/arundo/adtk) ![](https://img.shields.io/github/stars/arundo/adtk.svg?style=social) - A Python toolkit for rule-based/unsupervised anomaly detection in time series.
* [Alibi Detect](https://github.com/SeldonIO/alibi-detect) ![](https://img.shields.io/github/stars/SeldonIO/alibi-detect.svg?style=social) - alibi-detect is a Python package focused on outlier, adversarial and concept drift detection.
* [Darts](https://github.com/unit8co/darts) ![](https://img.shields.io/github/stars/unit8co/darts.svg?style=social) - Darts is a library for user-friendly forecasting and anomaly detection on time series.
* [Deequ](https://github.com/awslabs/deequ) ![](https://img.shields.io/github/stars/awslabs/deequ.svg?style=social) - A library built on top of Apache Spark for defining "unit tests for data", which measure data quality in large datasets.
* [Deep Anomaly Detection with Outlier Exposure](https://github.com/hendrycks/outlier-exposure) ![](https://img.shields.io/github/stars/hendrycks/outlier-exposure.svg?style=social) - Outlier Exposure (OE) is a method for improving anomaly detection performance in deep learning models. [Paper](https://arxiv.org/pdf/1812.04606.pdf)
* [PyOD](https://github.com/yzhao062/pyod) ![](https://img.shields.io/github/stars/yzhao062/pyod.svg?style=social) - A Python Toolbox for Scalable Outlier Detection (Anomaly Detection).
* [SUOD](https://github.com/yzhao062/SUOD) ![](https://img.shields.io/github/stars/yzhao062/SUOD.svg?style=social) - SUOD (Scalable Unsupervised Outlier Detection) is an acceleration system for large-scale anomaly/outlier detection.
* [TextAttack](https://github.com/QData/TextAttack) ![](https://img.shields.io/github/stars/QData/TextAttack.svg?style=social) - TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
* [TFDV](https://github.com/tensorflow/data-validation) ![](https://img.shields.io/github/stars/tensorflow/data-validation.svg?style=social) - TFDV (Tensorflow Data Validation) is a library for exploring and validating machine learning data.
* [TODS](https://github.com/datamllab/tods) ![](https://img.shields.io/github/stars/datamllab/tods.svg?style=social) - TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.


## Industry Strength CV
* [Deep Lake](https://github.com/activeloopai/deeplake) ![](https://img.shields.io/github/stars/activeloopai/deeplake.svg?style=social) - Deep Lake is a data infrastructure optimized for computer vision.
* [Detectron2](https://github.com/facebookresearch/detectron2) ![](https://img.shields.io/github/stars/facebookresearch/detectron2.svg?style=social) - Detectron2 is Facebook AI Research's next generation library that provides state-of-the-art detection and segmentation algorithms.
Expand Down

0 comments on commit bdf68c0

Please sign in to comment.