-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.py
292 lines (279 loc) · 13.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import json
import logging
import os
import blobfile as bf
import torch
from datasets import load_dataset
from pytorch_lightning import seed_everything
from tqdm import tqdm
from arguments import parse_args
from models import get_model, get_multi_apply_fn
from rewards import get_reward_losses
from training import LatentNoiseTrainer, get_optimizer
def main(args):
seed_everything(args.seed)
bf.makedirs(f"{args.save_dir}/logs/{args.task}")
# Set up logging and name settings
logger = logging.getLogger()
settings = (
f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
f"_reg{args.reg_weight if args.enable_reg else '0'}"
f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
)
file_stream = open(f"{args.save_dir}/logs/{args.task}/{settings}.txt", "w")
handler = logging.StreamHandler(file_stream)
formatter = logging.Formatter("%(asctime)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel("INFO")
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(formatter)
logger.addHandler(consoleHandler)
logging.info(args)
if args.device_id is not None:
logging.info(f"Using CUDA device {args.device_id}")
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id
device = torch.device("cuda")
if args.dtype == "float32":
dtype = torch.float32
elif args.dtype == "float16":
dtype = torch.float16
# Get reward losses
reward_losses = get_reward_losses(args, dtype, device, args.cache_dir)
# Get model and noise trainer
pipe = get_model(
args.model, dtype, device, args.cache_dir, args.memsave, args.cpu_offloading
)
trainer = LatentNoiseTrainer(
reward_losses=reward_losses,
model=pipe,
n_iters=args.n_iters,
n_inference_steps=args.n_inference_steps,
seed=args.seed,
save_all_images=args.save_all_images,
device=device,
no_optim=args.no_optim,
regularize=args.enable_reg,
regularization_weight=args.reg_weight,
grad_clip=args.grad_clip,
log_metrics=args.task == "single" or not args.no_optim,
imageselect=args.imageselect,
)
# Create latents
if args.model == "flux":
# currently only support 512x512 generation
shape = (1, 16 * 64, 64)
elif args.model != "pixart":
height = pipe.unet.config.sample_size * pipe.vae_scale_factor
width = pipe.unet.config.sample_size * pipe.vae_scale_factor
shape = (
1,
pipe.unet.in_channels,
height // pipe.vae_scale_factor,
width // pipe.vae_scale_factor,
)
else:
height = pipe.transformer.config.sample_size * pipe.vae_scale_factor
width = pipe.transformer.config.sample_size * pipe.vae_scale_factor
shape = (
1,
pipe.transformer.config.in_channels,
height // pipe.vae_scale_factor,
width // pipe.vae_scale_factor,
)
enable_grad = not args.no_optim
if args.enable_multi_apply:
multi_apply_fn = get_multi_apply_fn(
model_type=args.multi_step_model,
seed=args.seed,
pipe=pipe,
cache_dir=args.cache_dir,
device=device,
dtype=dtype,
)
else:
multi_apply_fn = None
if args.task == "single":
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
os.makedirs(f"{save_dir}", exist_ok=True)
init_image, best_image, total_init_rewards, total_best_rewards = trainer.train(
latents, args.prompt, optimizer, save_dir, multi_apply_fn
)
best_image.save(f"{save_dir}/best_image.png")
init_image.save(f"{save_dir}/init_image.png")
elif args.task == "example-prompts":
fo = open("assets/example_prompts.txt", "r")
prompts = fo.readlines()
fo.close()
for i, prompt in tqdm(enumerate(prompts)):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = prompt.strip()
name = f"{i:03d}_{prompt[:150]}.png"
save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}"
os.makedirs(save_dir, exist_ok=True)
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, save_dir, multi_apply_fn
)
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
best_image.save(f"{save_dir}/best_image.png")
init_image.save(f"{save_dir}/init_image.png")
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(prompts)
total_init_rewards[k] /= len(prompts)
# save results to directory
with open(f"{args.save_dir}/example-prompts/{settings}/results.txt", "w") as f:
f.write(
f"Mean initial all rewards: {total_init_rewards}\n"
f"Mean best all rewards: {total_best_rewards}\n"
)
elif args.task == "t2i-compbench":
prompt_list_file = f"../T2I-CompBench/examples/dataset/{args.prompt}.txt"
fo = open(prompt_list_file, "r")
prompts = fo.readlines()
fo.close()
os.makedirs(f"{args.save_dir}/{args.task}/{settings}/samples", exist_ok=True)
for i, prompt in tqdm(enumerate(prompts)):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = prompt.strip()
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, None, multi_apply_fn
)
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
name = f"{prompt}_{i:06d}.png"
best_image.save(f"{args.save_dir}/{args.task}/{settings}/samples/{name}")
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(prompts)
total_init_rewards[k] /= len(prompts)
elif args.task == "parti-prompts":
parti_dataset = load_dataset("nateraw/parti-prompts", split="train")
total_reward_diff = 0.0
total_best_reward = 0.0
total_init_reward = 0.0
total_improved_samples = 0
for index, sample in enumerate(parti_dataset):
os.makedirs(
f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True
)
prompt = sample["Prompt"]
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, multi_apply_fn
)
best_image.save(
f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png"
)
open(
f"{args.save_dir}/{args.task}/{settings}/{index}/prompt.txt", "w"
).write(
f"{prompt} \n Initial Rewards: {init_rewards} \n Best Rewards: {best_rewards}"
)
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
initial_reward = init_rewards[args.benchmark_reward]
best_reward = best_rewards[args.benchmark_reward]
total_reward_diff += best_reward - initial_reward
total_best_reward += best_reward
total_init_reward += initial_reward
if best_reward < initial_reward:
total_improved_samples += 1
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
improvement_percentage = total_improved_samples / parti_dataset.num_rows
mean_best_reward = total_best_reward / parti_dataset.num_rows
mean_init_reward = total_init_reward / parti_dataset.num_rows
mean_reward_diff = total_reward_diff / parti_dataset.num_rows
logging.info(
f"Improvement percentage: {improvement_percentage:.4f}, "
f"mean initial reward: {mean_init_reward:.4f}, "
f"mean best reward: {mean_best_reward:.4f}, "
f"mean reward diff: {mean_reward_diff:.4f}"
)
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(parti_dataset)
total_init_rewards[k] /= len(parti_dataset)
# save results
os.makedirs(f"{args.save_dir}/parti-prompts/{settings}", exist_ok=True)
with open(f"{args.save_dir}/parti-prompts/{settings}/results.txt", "w") as f:
f.write(
f"Mean improvement: {improvement_percentage:.4f}, "
f"mean initial reward: {mean_init_reward:.4f}, "
f"mean best reward: {mean_best_reward:.4f}, "
f"mean reward diff: {mean_reward_diff:.4f}\n"
f"Mean initial all rewards: {total_init_rewards}\n"
f"Mean best all rewards: {total_best_rewards}"
)
elif args.task == "geneval":
prompt_list_file = "../geneval/prompts/evaluation_metadata.jsonl"
with open(prompt_list_file) as fp:
metadatas = [json.loads(line) for line in fp]
outdir = f"{args.save_dir}/{args.task}/{settings}"
for index, metadata in enumerate(metadatas):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=True)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = metadata["prompt"]
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, None, multi_apply_fn
)
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
outpath = f"{outdir}/{index:0>5}"
os.makedirs(f"{outpath}/samples", exist_ok=True)
with open(f"{outpath}/metadata.jsonl", "w") as fp:
json.dump(metadata, fp)
best_image.save(f"{outpath}/samples/{args.seed:05}.png")
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(parti_dataset)
total_init_rewards[k] /= len(parti_dataset)
else:
raise ValueError(f"Unknown task {args.task}")
# log total rewards
logging.info(f"Mean initial rewards: {total_init_rewards}")
logging.info(f"Mean best rewards: {total_best_rewards}")
if __name__ == "__main__":
args = parse_args()
main(args)