generated from FNNDSC/python-chrisapp-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
105 lines (94 loc) · 4.06 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import json
class Pipeline:
def __init__(self, client):
self.cl = client
def pluginParameters_setInNodes(self,
d_piping: dict,
d_pluginParameters: dict
) -> dict:
"""
Override default parameters in the `d_piping`
Args:
d_piping (dict): the current default parameters for the
plugins in a pipeline
d_pluginParameters (dict): a list of plugins and parameters to
set in the response
Returns:
dict: a new piping structure with changes to some parameter values
if required. If no d_pluginParameters is passed, simply
return the piping unchanged.
"""
for pluginTitle, d_parameters in d_pluginParameters.items():
for piping in d_piping:
if pluginTitle in piping.get('title'):
for k, v in d_parameters.items():
for d_default in piping.get('plugin_parameter_defaults'):
if k in d_default.get('name'):
d_default['default'] = v
return d_piping
def pipelineWithName_getNodes(
self,
str_pipelineName: str,
d_pluginParameters: dict = {}
) -> dict:
"""
Find a pipeline that contains the passed name <str_pipelineName>
and if found, return a nodes dictionary. Optionally set relevant
plugin parameters to values described in <d_pluginParameters>
Args:
str_pipelineName (str): the name of the pipeline to find
d_pluginParameters (dict): a set of optional plugin parameter
overrides
Returns:
dict: node dictionary (name, compute env, default parameters)
and id of the pipeline
"""
# pudb.set_trace()
id_pipeline: int = -1
ld_node: list = []
d_pipeline: dict = self.cl.get_pipelines({'name': str_pipelineName})
if 'data' in d_pipeline:
id_pipeline: int = d_pipeline['data'][0]['id']
d_response: dict = self.cl.get_pipeline_default_parameters(
id_pipeline, {'limit': 1000}
)
if 'data' in d_response:
ld_node = self.pluginParameters_setInNodes(
self.cl.compute_workflow_nodes_info(d_response['data'], True),
d_pluginParameters)
for piping in ld_node:
if piping.get('compute_resource_name'):
del piping['compute_resource_name']
return {
'nodes': ld_node,
'id': id_pipeline
}
def workflow_schedule(self,
inputDataNodeID: str,
str_pipelineName: str,
d_pluginParameters: dict = {}
) -> dict:
"""
Schedule a workflow that has name <str_pipelineName> off a given node id
of <inputDataNodeID>.
Args:
inputDataNodeID (str): id of parent node
str_pipelineName (str): substring of workflow name to connect
d_pluginParameters (dict): optional structure of default parameter
overrides
Returns:
dict: result from calling the client `get_workflow_plugin_instances`
"""
d_pipeline: dict = self.pipelineWithName_getNodes(
str_pipelineName, d_pluginParameters
)
d_workflow: dict = self.cl.create_workflow(
d_pipeline['id'],
{
'previous_plugin_inst_id': inputDataNodeID,
'nodes_info': json.dumps(d_pipeline['nodes'])
})
d_workflowInst: dict = self.cl.get_workflow_plugin_instances(
d_workflow['id'], {'limit': 1000}
)
return d_workflowInst