Skip to content

Latest commit

 

History

History
124 lines (114 loc) · 8.68 KB

Configuration.md

File metadata and controls

124 lines (114 loc) · 8.68 KB

Spark Configurations for Gazelle Plugin

There are many configuration could impact the Gazelle Plugin performance and can be fine tune in Spark. You can add these configuration into spark-defaults.conf to enable or disable the setting.

Parameters Description Recommend Setting
spark.driver.extraClassPath To add Arrow Data Source and Gazelle Plugin jar file in Spark Driver /path/to/jar_file1:/path/to/jar_file2
spark.executor.extraClassPath To add Arrow Data Source and Gazelle Plugin jar file in Spark Executor /path/to/jar_file1:/path/to/jar_file2
spark.executorEnv.LIBARROW_DIR To set up the location of Arrow library, by default it will search the loation of jar to be uncompressed /path/to/arrow_library/
spark.executorEnv.CC To set up the location of gcc /path/to/gcc/
spark.executor.memory To set up how much memory to be used for Spark Executor.
spark.memory.offHeap.size To set up how much memory to be used for Java OffHeap.
Please notice Gazelle Plugin will leverage this setting to allocate memory space for native usage even offHeap is disabled.
The value is based on your system and it is recommended to set it larger if you are facing Out of Memory issue in Gazelle Plugin
30G
spark.sql.sources.useV1SourceList Choose to use V1 source avro
spark.sql.join.preferSortMergeJoin To turn on/off preferSortMergeJoin in Spark. In gazelle we recomend to turn off this to get better performance true
spark.plugins To turn on Gazelle Plugin com.intel.oap.GazellePlugin
spark.shuffle.manager To turn on Gazelle Columnar Shuffle Plugin org.apache.spark.shuffle.sort.ColumnarShuffleManager
spark.sql.shuffle.partitions shuffle partition size, it's recomended to use the same number of your total cores 200
spark.oap.sql.columnar.batchscan Enable or Disable Columnar Batchscan, default is true true
spark.oap.sql.columnar.hashagg Enable or Disable Columnar Hash Aggregate, default is true true
spark.oap.sql.columnar.projfilter Enable or Disable Columnar Project and Filter, default is true true
spark.oap.sql.columnar.codegen.sort Enable or Disable Columnar Sort, default is true true
spark.oap.sql.columnar.window Enable or Disable Columnar Window, default is true true
spark.oap.sql.columnar.shuffledhashjoin Enable or Disable ShffuledHashJoin, default is true true
spark.oap.sql.columnar.sortmergejoin Enable or Disable Columnar Sort Merge Join, default is true true
spark.oap.sql.columnar.union Enable or Disable Columnar Union, default is true true
spark.oap.sql.columnar.expand Enable or Disable Columnar Expand, default is true true
spark.oap.sql.columnar.broadcastexchange Enable or Disable Columnar Broadcast Exchange, default is true true
spark.oap.sql.columnar.nanCheck Enable or Disable Nan Check, default is true true
spark.oap.sql.columnar.hashCompare Enable or Disable Hash Compare in HashJoins or HashAgg, default is true true
spark.oap.sql.columnar.broadcastJoin Enable or Disable Columnar BradcastHashJoin, default is true true
spark.oap.sql.columnar.sortmergejoin.lazyread Enable or Disable lazy reading on Sort result. On disable, whole partition will be cached before doing SortMergeJoin false
spark.oap.sql.columnar.wholestagecodegen Enable or Disable Columnar WholeStageCodeGen, default is true true
spark.oap.sql.columnar.preferColumnar Enable or Disable Columnar Operators, default is false.
This parameter could impact the performance in different case. In some cases, to set false can get some performance boost.
false
spark.oap.sql.columnar.joinOptimizationLevel Fallback to row operators if there are several continous joins 18
spark.sql.execution.arrow.maxRecordsPerBatch Set up the Max Records per Batch 10000
spark.sql.execution.sort.spillThreshold Set up the Max sort in memory threshold in bytes, default is disabled -1
spark.oap.sql.columnar.wholestagecodegen.breakdownTime Enable or Disable metrics in Columnar WholeStageCodeGen false
spark.oap.sql.columnar.tmp_dir Set up a folder to store the codegen files, default is disabled ""
spark.oap.sql.columnar.shuffle.customizedCompression.codec Set up the codec to be used for Columnar Shuffle, default is lz4. The other option is fastpfor which can bring better perf on compressing fixed-size based contents like int lz4
spark.oap.sql.columnar.numaBinding Set up NUMABinding, default is false true
spark.oap.sql.columnar.coreRange Set up the core range for NUMABinding, only works when numaBinding set to true.
The setting is based on the number of cores in your system(lscpu
grep node[0-4]). Use 72 cores as an example.

Example thrift-server configuration

Here's one example of the thrift-server configuration

THRIFTSERVER_CONFIG="--name ${runname}
--num-executors 72
--driver-memory 20g
--executor-memory 6g
--executor-cores 6
--master yarn
--deploy-mode client
--conf spark.executor.memoryOverhead=384
--conf spark.executorEnv.CC=/home/sparkuser/miniconda3/envs/arrow-new/bin/gcc
--conf spark.plugins=com.intel.oap.GazellePlugin
--conf spark.executorEnv.LD_LIBRARY_PATH=/home/sparkuser/miniconda3/envs/arrow-new/lib/:/home/sparkuser/miniconda3/envs/arrow-new/lib64/
--conf spark.executorEnv.LIBARROW_DIR=/home/sparkuser/miniconda3/envs/arrow-new
--conf spark.driver.extraClassPath=${nativesql_jars}
--conf spark.executor.extraClassPath=${nativesql_jars}
--conf spark.shuffle.manager=org.apache.spark.shuffle.sort.ColumnarShuffleManager
--conf spark.sql.join.preferSortMergeJoin=false
--conf spark.sql.inMemoryColumnarStorage.batchSize=${batchsize}
--conf spark.sql.execution.arrow.maxRecordsPerBatch=${batchsize}
--conf spark.sql.parquet.columnarReaderBatchSize=${batchsize}
--conf spark.sql.autoBroadcastJoinThreshold=10M
--conf spark.sql.broadcastTimeout=600
--conf spark.sql.crossJoin.enabled=true
--conf spark.driver.maxResultSize=20g
--hiveconf hive.server2.thrift.port=10001
--hiveconf hive.server2.thrift.bind.host=sr270
--conf spark.sql.codegen.wholeStage=true
--conf spark.sql.shuffle.partitions=432
--conf spark.memory.offHeap.enabled=true
--conf spark.memory.offHeap.size=15g
--conf spark.kryoserializer.buffer.max=128m
--conf spark.kryoserializer.buffer=32m
--conf spark.oap.sql.columnar.preferColumnar=false
--conf spark.oap.sql.columnar.sortmergejoin.lazyread=true
--conf spark.sql.execution.sort.spillThreshold=2147483648
--conf spark.executorEnv.LD_PRELOAD=/home/sparkuser/miniconda3/envs/arrow-new/lib/libjemalloc.so
--conf spark.executorEnv.MALLOC_CONF=background_thread:true,dirty_decay_ms:0,muzzy_decay_ms:0,narenas:2
--conf spark.executorEnv.MALLOC_ARENA_MAX=2
--conf spark.oap.sql.columnar.numaBinding=true
--conf spark.oap.sql.columnar.coreRange=0-35,72-107|36-71,108-143
--conf spark.oap.sql.columnar.joinOptimizationLevel=18
--conf spark.oap.sql.columnar.shuffle.customizedCompression.codec=lz4
--conf spark.yarn.appMasterEnv.LD_PRELOAD=/home/sparkuser/miniconda3/envs/arrow-new/lib/libjemalloc.so"

Below is an example for spark-default.conf, if you are using conda to install OAP project.

Example spark-defaults.conf

spark.sql.sources.useV1SourceList avro
spark.sql.join.preferSortMergeJoin false
spark.plugins com.intel.oap.GazellePlugin
spark.shuffle.manager org.apache.spark.shuffle.sort.ColumnarShuffleManager

# note Gazelle Plugin depends on arrow data source
spark.driver.extraClassPath $HOME/miniconda2/envs/oapenv/oap_jars/spark-columnar-core-<version>-jar-with-dependencies.jar:$HOME/miniconda2/envs/oapenv/oap_jars/spark-arrow-datasource-standard-<version>-jar-with-dependencies.jar
spark.executor.extraClassPath $HOME/miniconda2/envs/oapenv/oap_jars/spark-columnar-core-<version>-jar-with-dependencies.jar:$HOME/miniconda2/envs/oapenv/oap_jars/spark-arrow-datasource-standard-<version>-jar-with-dependencies.jar

spark.executorEnv.LIBARROW_DIR      $HOME/miniconda2/envs/oapenv
spark.executorEnv.CC                $HOME/miniconda2/envs/oapenv/bin/gcc
######

Before you start spark, you must use below command to add some environment variables.

export CC=$HOME/miniconda2/envs/oapenv/bin/gcc
export LIBARROW_DIR=$HOME/miniconda2/envs/oapenv/

Notes on driver

In gazelle spark driver is used to C++ code generation for different operators. This means driver takes more tasks than vanilla Spark, so it's better to consider allocate more resource to driver. By default, driver will compile C++ codes with best optimizations targeting for local CPU architecture:

-O3 -march=native

This could be override by a local environment variable before starting driver:

export CODEGEN_OPTION=" -O1 -mavx2 -fno-semantic-interposition "