Skip to content
This repository has been archived by the owner on Jul 17, 2023. It is now read-only.

Latest commit

 

History

History
77 lines (69 loc) · 2.98 KB

README.md

File metadata and controls

77 lines (69 loc) · 2.98 KB

fixmycity survey results

Analysis of the Survey Results for FixMyCity Author: Tümer Tosik

Project Organization

├── LICENSE
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── models             <- Model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to generate and load data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 summary
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   ├── visualization  <- Scripts to create visualizations
│   │   └── visualize.py
│   │
│   └── exploration    <- Scripts to explore dataset
└── README.md          <- The top-level README for developers using this project.

Reproducing Results

  1. Setup environment
	conda create --name fixmycity python=3.8
    conda activate fixmycity
  1. Install requirements:
    python -m pip install -U pip setuptools wheel
    python -m pip install -r requirements.txt
  1. Move raw datafiles into data/raw and run:
    python src/data/make_dataset.py
  1. Train respective models:
    python src/models/train_model.py --experiment="<experiment name>"

You can choose between ["MS", "CP", "SE", "all"]

Notes:

  • Tr_li-Breite, Tr_re-Breite, RVA-Breite were replaced by their respective meter values

Project based on the cookiecutter data science project template. #cookiecutterdatascience