Skip to content

🎬 Open-source programmatic video composition framework with AI capabilities for Python

License

Notifications You must be signed in to change notification settings

FolhaSP/mosaico

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mosaico

License Python PyPI Downloads Stars

Mosaico is a Python library for programmatically creating and managing video compositions. It provides a high-level interface for working with media assets, positioning elements, applying effects, and generating video scripts.

Installation

pip install mosaico

Features

  • AI-powered script generation for videos
  • Rich media asset management (audio, images, text, subtitles)
  • Flexible positioning system (absolute, relative, region-based)
  • Built-in effects (pan, zoom) with extensible effect system
  • Text-to-speech synthesis integration
  • Integration with popular ML frameworks, such as Haystack and LangChain

Quick Start

Easily create and render a video project from a script generator:

from mosaico.audio_transcribers.assemblyai import AssemblyAIAudioTranscriber
from mosaico.script_generators.news import NewsVideoScriptGenerator
from mosaico.speech_synthesizers.elevenlabs import ElevenLabsSpeechSynthesizer
from mosaico.video.project import VideoProject
from mosaico.video.rendering import render_video


# Import your media
media = [
    Media.from_path("background.jpg", metadata={"description": "Background image"}),
    Media.from_path("image1.jpg", metadata={"description": "Image 1"}),
    Media.from_path("image2.jpg", metadata={"description": "Image 2"}),
    Media.from_path("image3.jpg", metadata={"description": "Image 3"}),
]

# Textual context for the video
context = "..."

# Create script generator
script_generator = NewsVideoScriptGenerator(
    context=context,
    language="pt",
    num_paragraphs=8,
)

# Create speech synthesizer
speech_synthesizer = ElevenLabsSpeechSynthesizer(
    voice_id="Xb7hH8MSUJpSbSDYk0k2",
    voice_stability=0.8,
    voice_similarity_boost=0.75,
    voice_speaker_boost=False,
)

# Create audio transcriber for captions
audio_transcriber = AssemblyAIAudioTranscriber()

# Create project
project = (
    VideoProject.from_script_generator(script_generator, media)
    .with_title("My Breaking News Video")
    .with_fps(30)
    .with_resolution((1920, 1080))
    .add_narration(speech_synthesizer)
    .add_captions_from_transcriber(audio_transcriber, overwrite=True)
)

# Render project
render_video(project, "My-Breaking-News-Video.mp4")

Or create a video project from scratch:

from mosaico.video.project import VideoProject
from mosaico.assets import ImageAsset, TextAsset, AudioAsset, AssetReference

# Import your media as production-ready assets
assets = [
    ImageAsset.from_path("background.jpg", metadata={"description": "Background image"}),
    ImageAsset.from_path("image1.jpg", metadata={"description": "Image 1"}),
    ImageAsset.from_path("image2.jpg", metadata={"description": "Image 2"}),
    ImageAsset.from_path("image3.jpg", metadata={"description": "Image 3"}),
    TextAsset.from_data("Subtitle 1"),
    TextAsset.from_data("Subtitle 2"),
    TextAsset.from_data("Subtitle 3"),
    AudioAsset.from_path("narration.mp3"),
]

asset_references = [
    AssetReference.from_asset(background, start_time=0, end_time=10),
    AssetReference.from_asset(image1, start_time=10, end_time=20),
    AssetReference.from_asset(image2, start_time=20, end_time=30),
    AssetReference.from_asset(image3, start_time=30, end_time=40),
    AssetReference.from_asset(subtitle1, start_time=40, end_time=50),
    AssetReference.from_asset(subtitle2, start_time=50, end_time=60),
    AssetReference.from_asset(subtitle3, start_time=60, end_time=70),
    AssetReference.from_asset(narration, start_time=70, end_time=80),
]

scene = Scene(description="My Scene").add_asset_references(asset_references)

project = (
    VideoProject()
    .with_title("My Breaking News Video")
    .with_fps(30)
    .with_resolution((1920, 1080))
    .add_assets(assets)
    # Add the asset references as scene events to the timeline
    .add_timeline_events(scene)
    # Or add asset references directly to the timeline
    # .add_timeline_events(asset_references)
)

# Render project
render_video(project, "My-Breaking-News-Video.mp4")

Cookbook

For common usage patterns and examples, see our Cookbook. Some examples include:

  • Creating basic videos with background and text
  • Building photo slideshows with music
  • Generating news videos from articles
  • Working with different asset types
  • Applying effects and animations
  • Using AI for script generation

Documentation

Comprehensive documentation is available here. Documentation includes:

  • Getting Started: Installation, setup, and basic usage
  • Concepts: Overview of key concepts and terminology
  • Cookbook: Examples and tutorials for common tasks
  • API Reference: Detailed reference for all classes and functions
  • Development: Information for contributors and developers
  • Roadmap: Future plans and features

References