-
Notifications
You must be signed in to change notification settings - Fork 10
/
filter_fourier.py
232 lines (172 loc) · 7.79 KB
/
filter_fourier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import torch.fft
import torchvision.transforms as transforms
import cv2
import numpy as np
import matplotlib.pyplot as plt
import cv2
import numpy as np
# Filtering function: Input optical flow field to filter out high-frequency noise.
def gaussian_pdf(x, mean, std):
return (1 / (std * torch.sqrt(2 * torch.tensor(3.141592653589793))) *
torch.exp(-((x - mean) ** 2) / (2 * std ** 2)))
def gaussian_density(length = 20, amplitude = 2, mean = 19, sigma = 3):
x = torch.arange(0, length, 1.0)
gaussian = amplitude * torch.exp(-(x - mean)**2 / (2 * sigma**2))
gaussian = torch.clip(gaussian, max = 1, min = 0)
return gaussian.cuda()
def fourier_filter(fea):
L, C , H , W = fea.shape
mean = 0
std = 3
_x = torch.linspace(-10, 10, H) # Define 128 values within the range of -5 to 5.
X, Y = torch.meshgrid(_x, _x) # Generate grid coordinates.
gaussian_map = (gaussian_pdf(X, mean, std).cuda()) * (gaussian_pdf(Y, mean, std).cuda())
gaussian_map = gaussian_map.unsqueeze(0).repeat(1, C, 1, 1)
gaussian_map = torch.clip((gaussian_map)/gaussian_map.max() * 3 , min = 0, max = 1)
# lowpass_filter = torch.zeros(H,H).cuda()
# for i in range(H):
# for j in range(H):
# if np.sqrt((i - H//2)**2 + (j - H//2)**2) <= 10:
# lowpass_filter[i, j] = 1
x = torch.fft.fft2(fea, dim=(-2, -1))
x_shifted = torch.fft.fftshift(x) # 1,3,128,128
x_shifted = x_shifted * gaussian_map# lowpass_filter # * gaussian_map
reconstructed_x = torch.fft.ifftshift(x_shifted)
reconstructed_x = torch.fft.ifft2(reconstructed_x, dim=(-2, -1))
reconstructed_x = torch.real(reconstructed_x)
return reconstructed_x
def fourier_filter_1D(fea, dim):
# idex = freq * L / 25
L, C , H , W = fea.shape
mean = 0
std = 3
fft_result = torch.fft.rfft(fea, dim=dim)
# 低通滤波
cutoff_freq = 10 # 保留前 10 个频率
# mask = gaussian_density(length = L, mean = 0, sigma = 5, amplitude = 2)[:, None, None, None]
# fft_result = mask * fft_result
fft_result[L//4:] = 0 # 设置高频部分为 0
# 对 H 维度进行逆傅里叶变换
filtered_tensor = torch.fft.irfft(fft_result,n= L, dim=dim)
filtered_tensor = torch.real(filtered_tensor)
return filtered_tensor
def hf_loss(fea, mask, dim):
mask = 1- mask # gaussian_density(length = L, mean = 0, sigma = 12, amplitude = 2)
fft_result = torch.fft.rfft(fea, dim=dim)
fft_result = fft_result * mask
fft_result = fft_result.abs()
return fft_result
def hf_loss_2(fea_x, fea_y, dim):
'''
与GT计算频域损失
'''
fft_result_x = torch.fft.rfft(fea_x, dim=dim)
fft_result_y = torch.fft.rfft(fea_y, dim=dim)
# fft_result = fft_result.abs()
loss = (fft_result_y - fft_result_x).abs()
return loss
class KalmanFilter1D:
def __init__(self, A, H, Q, R, x_init, P_init):
self.A = torch.tensor(A, requires_grad=False)
self.H = torch.tensor(H, requires_grad=False)
self.Q = torch.tensor(Q, requires_grad=False)
self.R = torch.tensor(R, requires_grad=False)
self.x = torch.tensor(x_init, requires_grad=True)
self.P = torch.tensor(P_init, requires_grad=True)
def update(self, z):
# 预测步骤
x_pred = self.A * self.x
P_pred = self.A * self.P * self.A + self.Q
# 更新步骤
K = P_pred * self.H / (self.H * P_pred * self.H + self.R)
self.x = x_pred + K * (z - self.H * x_pred)
self.P = (1 - K * self.H) * P_pred
return self.x
def kalman_filter(observations, dim):
kf = KalmanFilter1D(A=1., H=1., Q=0.01, R=0.1, x_init=0., P_init=1.)
filtered_values = torch.zeros_like(observations)
for idx in range(observations.size(dim)):
obs_slice = tuple(slice(None) if i != dim else idx for i in range(len(observations.size())))
obs = observations[obs_slice]
filtered_value = kf.update(obs)
filtered_values[obs_slice] = filtered_value
return filtered_values
def naive_filter(fea):
L, C , H , W = fea.shape
fea_mask = fea.abs()>(1/64)
fea = fea*fea_mask
return fea
# def fourier_filter(x):
# L, C , H , W = x.shape
# mean = 0
# std = 3
# _x = torch.linspace(-5, 5, H) # 定义一个范围为-5到5的128个值
# X, Y = torch.meshgrid(_x, _x) # Generate grid coordinates.
# gaussian_map = (gaussian_pdf(X, mean, std).cuda()) * (gaussian_pdf(Y, mean, std).cuda())
# gaussian_map = gaussian_map.unsqueeze(0).repeat(1, C, 1, 1)
# gaussian_map = (gaussian_map)/gaussian_map.max()
# x = torch.fft.fft2(x, dim=(-2, -1))
# x_shifted = torch.fft.fftshift(x) # 1,3,128,128
# x_shifted = x_shifted # * gaussian_map
# reconstructed_x = torch.fft.ifftshift(x_shifted)
# reconstructed_x = torch.fft.ifft2(reconstructed_x, dim=(-2, -1))
# reconstructed_x = torch.abs(reconstructed_x)
# return reconstructed_x
if __name__ == '__main__':
# 读取视频
gd = gaussian_density(length = 20, mean = 0, sigma = 5, amplitude = 2)
print(gd)
print(gd[:10])
# cap = cv2.VideoCapture('your_path/demo/s2_20w_newae_crema_s1_10_s2_11-j-sl-vr-of-tr-rmm-ddim0200_1.00/7_s76_1076_ITH_FEA_XX.mp4')
# # 生成均值为0,标准差为3的高斯概率密度分布张量
# mean = 0
# std = 3
# x = torch.linspace(-5, 5, 128) # 定义一个范围为-5到5的128个值
# X, Y = torch.meshgrid(x, x) # Generate grid coordinates.
# gaussian_map = gaussian_pdf(X, mean, std) * gaussian_pdf(Y, mean, std)
# gaussian_map = gaussian_map.unsqueeze(0).repeat(1, 3, 1, 1)
# gaussian_map = ( gaussian_map)/gaussian_map.max()
# # 输入数据,假设frames是一个包含L帧RGB图像的numpy数组,形状为(L, 3, H, W)
# frames = np.random.randint(0, 255, (100, 3, 256, 256)).astype(np.uint8)
# # 设置输出视频的名称、帧率和分辨率
# def generate_video(frames):
# video_name = 'output_video.avi'
# fps = 25
# resolution = (128, 128)
# # 创建视频写入对象
# fourcc = cv2.VideoWriter_fourcc(*'XVID')
# video = cv2.VideoWriter(video_name, fourcc, fps, resolution)
# # 逐帧将图像写入视频
# for i in range(frames.shape[0]):
# frame = frames[i][:,:,:].transpose(1, 2, 0).astype(np.uint8) # 调整通道顺序(H, W, 3)
# video.write(frame)
# # 释放资源并保存视频
# video.release()
# # 存储还原后的图像帧
# reconstructed_frames = []
# # 循环遍历视频的每一帧
# while(cap.isOpened()):
# ret, frame = cap.read()
# if not ret:
# break
# # 将当前帧转换为 PyTorch 张量
# frame = torch.tensor(frame)
# frame = frame.permute(2, 0, 1).unsqueeze(0).float()
# # 对当前帧进行 2D 傅里叶变换
# fft_frame = torch.fft.fft2(frame, dim=(-2, -1))
# fft_frame_shifted = torch.fft.fftshift(fft_frame) # 1,3,128,128
# # 将频域展开形式还原回图像
# # fft_frame_shifted = fft_frame_shifted * gaussian_map
# reconstructed_frame = torch.fft.ifftshift(fft_frame_shifted)
# reconstructed_frame = torch.fft.ifft2(reconstructed_frame, dim=(-2, -1))
# reconstructed_frame = torch.abs(reconstructed_frame)
# # 将还原后的图像帧添加到列表中
# reconstructed_frames.append(reconstructed_frame)
# # 将还原后的图像帧转换为数组
# reconstructed_frames = torch.cat(reconstructed_frames, dim=0)
# # 将还原后的图像帧转换为 numpy 数组
# reconstructed_frames = (reconstructed_frames).to(torch.int32)
# reconstructed_frames = reconstructed_frames.squeeze(1).numpy()
# # 显示还原后的视频
# generate_video(reconstructed_frames)