forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
asset-class-trend-following.py
58 lines (47 loc) · 1.75 KB
/
asset-class-trend-following.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# region imports
from AlgorithmImports import *
# endregion
# https://quantpedia.com/strategies/asset-class-trend-following/
#
# Use 5 ETFs (SPY - US stocks, EFA - foreign stocks, IEF - bonds, VNQ - REITs,
# GSG - commodities), equal weight the portfolio. Hold asset class ETF only when
# it is over its 10 month Simple Moving Average, otherwise stay in cash.
#
# QC implementation:
# - SMA with period of 210 days is used.
class AssetClassTrendFollowing(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.sma = {}
period = 10 * 21
self.SetWarmUp(period, Resolution.Daily)
self.symbols = ["SPY", "EFA", "IEF", "VNQ", "GSG"]
self.rebalance_flag = False
self.tracked_symbol = None
for symbol in self.symbols:
self.AddEquity(symbol, Resolution.Minute)
self.sma[symbol] = self.SMA(symbol, period, Resolution.Daily)
self.recent_month = -1
def OnData(self, data):
# rebalance once a month
if self.Time.month == self.recent_month:
return
if self.Time.hour != 9 and self.Time.minute != 31:
return
self.recent_month = self.Time.month
long = [
symbol
for symbol in self.symbols
if symbol in data
and data[symbol]
and self.sma[symbol].IsReady
and data[symbol].Value > self.sma[symbol].Current.Value
]
# trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))