forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
consistent-momentum-strategy.py
159 lines (120 loc) · 6.36 KB
/
consistent-momentum-strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# https://quantpedia.com/strategies/consistent-momentum-strategy/
#
# The investment universe consists of stocks listed at NYSE, AMEX, and NASDAQ, whose price data (at least for the past 7 months) are available
# at the CRSP database. The investor creates a zero-investment portfolio at the end of the month t, longing stocks that are in the top decile
# in terms of returns both in the period from t-7 to t-1 and from t-6 to t, while shorting stocks in the bottom decile in both periods (i.e.
# longing consistent winners and shorting consistent losers). The stocks in the portfolio are weighted equally. The holding period is six months,
# with no rebalancing during the period. There is a one-month skip between the formation and holding period.
#
# QC implementation changes:
# - Universe consists of 500 most liquid stocks traded on NYSE, AMEX, or NASDAQ.
from AlgorithmImports import *
class ConsistentMomentumStrategy(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.coarse_count = 500
self.long = []
self.short = []
self.data = {}
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.period = 7 * 21
self.months = 0
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Rebalance)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
symbol = security.Symbol
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(10)
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(symbol, self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].update(close)
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0 and x.CompanyReference.IsREIT != 1 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
# if len(fine) > self.coarse_count:
# sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
# top_by_market_cap = [x.Symbol for x in sorted_by_market_cap[:self.coarse_count]]
# else:
# top_by_market_cap = [x.Symbol for x in fine]
top_by_market_cap = [x.Symbol for x in fine]
momentum_t71_t60 = { x : (self.data[x].performance_t7t1(), self.data[x].performance_t6t0()) for x in top_by_market_cap}
# Momentum t-7 to t-1 sorting
sorted_by_perf_t71 = sorted(momentum_t71_t60.items(), key = lambda x: x[1][0], reverse = True)
decile = int(len(sorted_by_perf_t71) / 10)
high_by_perf_t71 = [x[0] for x in sorted_by_perf_t71[:decile]]
low_by_perf_t71 = [x[0] for x in sorted_by_perf_t71[-decile:]]
# Momentum t-6 to t sorting
sorted_by_perf_t60 = sorted(momentum_t71_t60.items(), key = lambda x: x[1][1], reverse = True)
decile = int(len(sorted_by_perf_t60) / 10)
high_by_perf_t60 = [x[0] for x in sorted_by_perf_t60[:decile]]
low_by_perf_t60 = [x[0] for x in sorted_by_perf_t60[-decile:]]
self.long = [x for x in high_by_perf_t71 if x in high_by_perf_t60]
self.short = [x for x in low_by_perf_t71 if x in low_by_perf_t60]
self.selection_flag = False
return self.long + self.short
def Rebalance(self):
if self.months == 0:
self.selection_flag = True
self.months += 1
return
if self.months == 1:
# Trade execution and liquidation.
invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
long_count = len(self.long)
short_count = len(self.short)
for symbol in self.long:
self.SetHoldings(symbol, 1/long_count)
for symbol in self.short:
self.SetHoldings(symbol, -1/short_count)
self.months += 1
if self.months == 6:
self.months = 0
class SymbolData():
def __init__(self, symbol, period):
self.Symbol = symbol
self.Price = RollingWindow[float](period)
def update(self, value):
self.Price.Add(value)
def is_ready(self):
return self.Price.IsReady
def performance_t7t1(self):
closes = [x for x in self.Price][21:]
return (closes[0] / closes[-1] - 1)
def performance_t6t0(self):
closes = [x for x in self.Price][:-21]
return (closes[0] / closes[-1] - 1)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))