forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trend-following-effect-in-stocks.py
125 lines (92 loc) · 5 KB
/
trend-following-effect-in-stocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# https://quantpedia.com/strategies/trend-following-effect-in-stocks/
#
# The investment universe consists of US-listed companies. A minimum stock price filter is used to avoid penny stocks, and a minimum
# daily liquidity filter is used to avoid stocks that are not liquid enough. The entry signal occurs if today’s close is greater than
# or equal to the highest close during the stock’s entire history. A 10-period average true range trailing stop is used as an exit
# signal. The investor holds all stocks which satisfy entry criterion and are not stopped out. The portfolio is equally weighted and
# rebalanced daily. Transaction costs of 0.5% round-turn are deducted from each trade to account for estimated commission and slippage.
#
# QC implementation:
# - Universe consists of top 100 liquid US stocks.
import numpy as np
from AlgorithmImports import *
class TrendFollowingStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetCash(100000)
self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x)))
self.course_count = 100
self.long = []
self.max_close = {}
self.atr = {}
self.sl_order = {}
self.sl_price = {}
self.selection = []
self.period = 10*12*21
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
symbol = security.Symbol
if symbol not in self.atr:
self.atr[symbol] = self.ATR(symbol, 10, Resolution.Daily)
if symbol not in self.max_close:
hist = self.History([self.Symbol(symbol)], self.period, Resolution.Daily)
if 'close' in hist.columns:
closes = hist['close']
self.max_close[symbol] = max(closes)
def CoarseSelectionFunction(self, coarse):
if self.IsWarmingUp: return
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5],
key=lambda x: x.DollarVolume, reverse=True)
self.selection = [x.Symbol for x in selected[:self.course_count]]
return self.selection
def OnData(self, data):
if self.IsWarmingUp:
return
for symbol in self.selection:
if symbol in data.Bars:
price = data[symbol].Value
if symbol not in self.max_close: continue
if price >= self.max_close[symbol]:
self.max_close[symbol] = price
self.long.append(symbol)
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
count = len(self.long) + len(stocks_invested)
if count == 0: return
# Update stoploss orders
for symbol in stocks_invested:
if not self.Securities[symbol].IsTradable:
self.Liquidate(symbol)
if self.atr[symbol].Current.Value == 0: continue
# Move SL
if symbol not in self.sl_price: continue
self.SetHoldings(symbol, 1 / count)
new_sl = self.Securities[symbol].Price - self.atr[symbol].Current.Value
if new_sl > self.sl_price[symbol]:
update_order_fields = UpdateOrderFields()
update_order_fields.StopPrice = new_sl # Update SL price
quantity = self.CalculateOrderQuantity(symbol, (1 / count))
update_order_fields.Quantity = quantity # Update SL quantity
self.sl_price[symbol] = new_sl
self.sl_order[symbol].Update(update_order_fields)
# self.Log('SL MOVED on ' + str(symbol) + ' to: ' + str(new_sl))
# Open new trades
for symbol in self.long:
if not self.Portfolio[symbol].Invested and self.atr[symbol].Current.Value != 0:
price = data[symbol].Value
if self.Securities[symbol].IsTradable:
unit_size = self.CalculateOrderQuantity(symbol, (1 / count))
self.MarketOrder(symbol, unit_size)
sl_price = price - self.atr[symbol].Current.Value
self.sl_price[symbol] = sl_price
if unit_size != 0:
self.sl_order[symbol] = self.StopMarketOrder(symbol, -unit_size, sl_price, 'SL')
# self.Log('SL SET on ' + str(symbol) + ' to: ' + str(sl_price))
self.long.clear()
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))