forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
volatility-risk-premium-effect.py
91 lines (70 loc) · 3.49 KB
/
volatility-risk-premium-effect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# https://quantpedia.com/strategies/volatility-risk-premium-effect/
#
# Each month, at-the-money straddle, with one month until maturity, is sold at the bid price with a 5% option premium, and an offsetting 15%
# out-of-the-money puts are bought (at the ask price) as insurance against a market crash. The remaining cash and received option premium are
# invested in the index. The strategy is rebalanced monthly.
from AlgorithmImports import *
class VolatilityRiskPremiumEffect(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetCash(100000)
data = self.AddEquity("SPY", Resolution.Minute)
data.SetLeverage(5)
self.symbol = data.Symbol
option = self.AddOption("SPY", Resolution.Minute)
option.SetFilter(-20, 20, 25, 35)
self.last_day = -1
def OnData(self, slice):
# Check once a day.
if self.Time.day == self.last_day:
return
self.last_day = self.Time.day
for i in slice.OptionChains:
chains = i.Value
if not self.Portfolio.Invested:
# divide option chains into call and put options
calls = list(filter(lambda x: x.Right == OptionRight.Call, chains))
puts = list(filter(lambda x: x.Right == OptionRight.Put, chains))
# if lists are empty return
if not calls or not puts:
return
underlying_price = self.Securities[self.symbol].Price
expiries = [i.Expiry for i in puts]
# determine expiration date nearly one month
expiry = min(
expiries, key=lambda x: abs((x.date() - self.Time.date()).days - 30)
)
strikes = [i.Strike for i in puts]
# determine at-the-money strike
strike = min(strikes, key=lambda x: abs(x - underlying_price))
# determine 15% out-of-the-money strike
otm_strike = min(
strikes, key=lambda x: abs(x - float(0.85) * underlying_price)
)
atm_call = [
i for i in calls if i.Expiry == expiry and i.Strike == strike
]
atm_put = [i for i in puts if i.Expiry == expiry and i.Strike == strike]
otm_put = [
i for i in puts if i.Expiry == expiry and i.Strike == otm_strike
]
if atm_call and atm_put and otm_put:
options_q = int(
self.Portfolio.MarginRemaining / (underlying_price * 100)
)
# Set max leverage.
self.Securities[atm_call[0].Symbol].MarginModel = BuyingPowerModel(
5
)
self.Securities[atm_put[0].Symbol].MarginModel = BuyingPowerModel(5)
self.Securities[otm_put[0].Symbol].MarginModel = BuyingPowerModel(5)
# sell at-the-money straddle
self.Sell(atm_call[0].Symbol, options_q)
self.Sell(atm_put[0].Symbol, options_q)
# buy 15% out-of-the-money put
self.Buy(otm_put[0].Symbol, options_q)
# buy index.
self.SetHoldings(self.symbol, 1)
invested = [x.Key for x in self.Portfolio if x.Value.Invested]
if len(invested) == 1:
self.Liquidate(self.symbol)