forked from shibing624/pycorrector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradio_demo.py
78 lines (67 loc) · 2.99 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description: pip install gradio
"""
import gradio as gr
import operator
import torch
from transformers import BertTokenizerFast, BertForMaskedLM
tokenizer = BertTokenizerFast.from_pretrained("shibing624/macbert4csc-base-chinese")
model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
def ai_text(text):
with torch.no_grad():
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
def to_highlight(corrected_sent, errs):
output = [{"entity": "纠错", "word": err[1], "start": err[2], "end": err[3]} for i, err in
enumerate(errs)]
return {"text": corrected_sent, "entities": output}
def get_errors(corrected_text, origin_text):
sub_details = []
for i, ori_char in enumerate(origin_text):
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
# add unk word
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
continue
if i >= len(corrected_text):
continue
if ori_char != corrected_text[i]:
if ori_char.lower() == corrected_text[i]:
# pass english upper char
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
sub_details.append((ori_char, corrected_text[i], i, i + 1))
sub_details = sorted(sub_details, key=operator.itemgetter(2))
return corrected_text, sub_details
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
corrected_text = _text[:len(text)]
corrected_text, details = get_errors(corrected_text, text)
print(text, ' => ', corrected_text, details)
return to_highlight(corrected_text, details), details
if __name__ == '__main__':
print(ai_text('少先队员因该为老人让坐'))
examples = [
['真麻烦你了。希望你们好好的跳无'],
['少先队员因该为老人让坐'],
['机七学习是人工智能领遇最能体现智能的一个分知'],
['今天心情很好'],
['他法语说的很好,的语也不错'],
['他们的吵翻很不错,再说他们做的咖喱鸡也好吃'],
]
gr.Interface(
ai_text,
inputs="textbox",
outputs=[
gr.outputs.HighlightedText(
label="Output",
show_legend=True,
),
gr.outputs.JSON(
label="JSON Output"
)
],
title="Chinese Spelling Correction Model shibing624/macbert4csc-base-chinese",
description="Copy or input error Chinese text. Submit and the machine will correct text.",
article="Link to <a href='https://github.com/shibing624/pycorrector' style='color:blue;' target='_blank\'>Github REPO</a>",
examples=examples
).launch()