-
Notifications
You must be signed in to change notification settings - Fork 6
/
add_fp64.shader_test
697 lines (649 loc) · 22.2 KB
/
add_fp64.shader_test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# Add two double 'a' and 'b'
# IEEE 754 compliant
[require]
GLSL >= 1.30
[vertex shader]
#version 130
void main()
{
gl_Position = gl_Vertex;
}
[fragment shader]
#version 130
/* Software IEEE floating-point rounding mode. */
uint float_rounding_mode;
const uint float_round_nearest_even = 0u;
const uint float_round_to_zero = 1u;
const uint float_round_down = 2u;
const uint float_round_up = 3u;
/* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
* value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
* any carry out is lost. The result is broken into two 32-bit pieces which
* are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
add64( uint a0, uint a1, uint b0, uint b1,
inout uint z0Ptr,
inout uint z1Ptr )
{
uint z1;
z1 = a1 + b1;
z1Ptr = z1;
z0Ptr = a0 + b0 + uint ( z1 < a1 );
}
/* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
* 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
* 2^64, so any borrow out (carry out) is lost. The result is broken into two
* 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
* `z1Ptr'.
*/
void
sub64( uint a0, uint a1, uint b0, uint b1,
inout uint z0Ptr,
inout uint z1Ptr )
{
z1Ptr = a1 - b1;
z0Ptr = a0 - b0 - uint ( a1 < b1 );
}
/* Shifts the 64-bit value formed by concatenating `a.x' and `a.y' right by the
* number of bits given in `count'. If any nonzero bits are shifted off, they
* are "jammed" into the least significant bit of the result by setting the
* least significant bit to 1. The value of `count' can be arbitrarily large;
* in particular, if `count' is greater than 64, the result will be either 0
* or 1, depending on whether the concatenation of `a.x' and `a.y' is zero or
* nonzero. The result is broken into two 32-bit pieces which are stored at
* the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
shift64RightJamming( uvec2 a,
int count,
inout uint z0Ptr,
inout uint z1Ptr )
{
uint z0;
uint z1;
int negCount = ( - count ) & 31;
if ( count == 0 ) {
z1 = a.y;
z0 = a.x;
} else if ( count < 32 ) {
z1 = ( a.x<<negCount ) |
( a.y>>count ) |
uint ( ( a.y<<negCount ) != 0u );
z0 = a.x>>count;
} else {
if ( count == 32 ) {
z1 = a.x | uint ( a.y != 0u );
} else if ( count < 64 ) {
z1 = ( a.x>>( count & 31 ) ) |
uint ( ( ( a.x<<negCount ) | a.y ) != 0u );
} else {
z1 = uint ( ( a.x | a.y ) != 0u );
}
z0 = 0u;
}
z1Ptr = z1;
z0Ptr = z0;
}
/* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
* by 32 _plus_ the number of bits given in `count'. The shifted result is
* at most 64 nonzero bits; these are broken into two 32-bit pieces which are
* stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
* off form a third 32-bit result as follows: The _last_ bit shifted off is
* the most-significant bit of the extra result, and the other 31 bits of the
* extra result are all zero if and only if _all_but_the_last_ bits shifted off
* were all zero. This extra result is stored in the location pointed to by
* `z2Ptr'. The value of `count' can be arbitrarily large.
* (This routine makes more sense if `a0', `a1', and `a2' are considered
* to form a fixed-point value with binary point between `a1' and `a2'. This
* fixed-point value is shifted right by the number of bits given in `count',
* and the integer part of the result is returned at the locations pointed to
* by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
* corrupted as described above, and is returned at the location pointed to by
* `z2Ptr'.)
*/
void
shift64ExtraRightJamming( uint a0, uint a1, uint a2,
int count,
inout uint z0Ptr,
inout uint z1Ptr,
inout uint z2Ptr )
{
uint z0;
uint z1;
uint z2;
int negCount = ( - count ) & 31;
if ( count == 0 ) {
z2 = a2;
z1 = a1;
z0 = a0;
} else {
if ( count < 32 ) {
z2 = a1<<negCount;
z1 = ( a0<<negCount ) | ( a1>>count );
z0 = a0>>count;
} else {
if ( count == 32 ) {
z2 = a1;
z1 = a0;
} else {
a2 |= a1;
if ( count < 64 ) {
z2 = a0<<negCount;
z1 = a0>>( count & 31 );
} else {
z2 = ( count == 64 ) ? a0 : uint ( a0 != 0u );
z1 = 0u;
}
}
z0 = 0u;
}
z2 |= uint ( a2 != 0u );
}
z2Ptr = z2;
z1Ptr = z1;
z0Ptr = z0;
}
/* Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
* equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
* returns 0.
*/
bool
eq64( uint a0, uint a1, uint b0, uint b1 )
{
return ( a0 == b0 ) && ( a1 == b1 );
}
/* Packs the sign `zSign', the exponent `zExp', and the significand formed by
* the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
* point value, returning the result. After being shifted into the proper
* positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
* together to form the most significant 32 bits of the result. This means
* that any integer portion of `zFrac0' will be added into the exponent. Since
* a properly normalized significand will have an integer portion equal to 1,
* the `zExp' input should be 1 less than the desired result exponent whenever
* `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
*/
uvec2
packFloat64( uint zSign, uint zExp, uint zFrac0, uint zFrac1 )
{
uvec2 z;
z.x = ( zSign<<31 ) + ( zExp<<20 ) + zFrac0;
z.y = zFrac1;
return z;
}
/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
* and extended significand formed by the concatenation of `zFrac0', `zFrac1',
* and `zFrac2', and returns the proper double-precision floating-point value
* corresponding to the abstract input. Ordinarily, the abstract value is
* simply rounded and packed into the double-precision format, with the inexact
* exception raised if the abstract input cannot be represented exactly.
* However, if the abstract value is too large, the overflow and inexact
* exceptions are raised and an infinity or maximal finite value is returned.
* If the abstract value is too small, the input value is rounded to a
* subnormal number, and the underflow and inexact exceptions are raised if the
* abstract input cannot be represented exactly as a subnormal double-precision
* floating-point number.
* The input significand must be normalized or smaller. If the input
* significand is not normalized, `zExp' must be 0; in that case, the result
* returned is a subnormal number, and it must not require rounding. In the
* usual case that the input significand is normalized, `zExp' must be 1 less
* than the "true" floating-point exponent. The handling of underflow and
* overflow follows the IEEE Standard for Floating-Point Arithmetic.
*/
uvec2
roundAndPackFloat64( uint zSign,
uint zExp,
uint zFrac0,
uint zFrac1,
uint zFrac2 )
{
uint roundingMode;
uint roundNearestEven;
uint increment;
roundingMode = float_rounding_mode;
roundNearestEven = uint ( roundingMode == float_round_nearest_even );
increment = uint ( zFrac2 < 0u );
if ( roundNearestEven == 0u ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0u;
} else {
if ( zSign != 0u ) {
increment = uint ( ( roundingMode == float_round_down ) &&
( zFrac2 != 0u ) );
} else {
increment = uint ( ( roundingMode == float_round_up ) &&
( zFrac2 != 0u ) );
}
}
}
if ( 0x7FDu <= zExp ) {
if ( ( 0x7FDu < zExp ) ||
( ( zExp == 0x7FDu ) &&
eq64( 0x001FFFFFu, 0xFFFFFFFFu, zFrac0, zFrac1 ) &&
( increment != 0u ) ) ) {
if ( ( roundingMode == float_round_to_zero ) ||
( ( zSign != 0u ) && ( roundingMode == float_round_up ) ) ||
( ( zSign == 0u ) &&
( roundingMode == float_round_down ) ) ) {
return packFloat64( zSign, 0x7FEu, 0x000FFFFFu, 0xFFFFFFFFu );
}
return packFloat64( zSign, 0x7FFu, 0u, 0u );
}
if ( zExp < 0u ) {
shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, int (-zExp), zFrac0, zFrac1, zFrac2 );
zExp = 0u;
if ( roundNearestEven != 0u ) {
increment = uint ( zFrac2 < 0u );
} else {
if ( zSign != 0u ) {
increment = uint ( ( roundingMode == float_round_down ) &&
( zFrac2 != 0u ) );
} else {
increment = uint ( ( roundingMode == float_round_up ) &&
( zFrac2 != 0u ) );
}
}
}
}
if ( increment != 0u ) {
add64( zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1 );
zFrac1 &= ~ ( uint ( zFrac2 + zFrac2 == 0u ) & roundNearestEven );
} else {
if ( ( zFrac0 | zFrac1 ) == 0u )
zExp = 0u;
}
return packFloat64( zSign, zExp, zFrac0, zFrac1 );
}
/* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
* number of bits given in `count'. Any bits shifted off are lost. The value
* of `count' must be less than 32. The result is broken into two 32-bit
* pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void shortShift64Left( uint a0, uint a1,
int count,
inout uint z0Ptr,
inout uint z1Ptr )
{
z1Ptr = a1<<count;
z0Ptr =
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
}
/* Returns the number of leading 0 bits before the most-significant 1 bit of
* `a'. If `a' is zero, 32 is returned.
*/
uint
countLeadingZeros32( uint a )
{
if ( a == 0u )
return 32u;
uint shiftCount = 0u;
if ( ( a & 0xFFFF0000u ) == 0u ) { shiftCount += 16u; a <<= 16; }
if ( ( a & 0xFF000000u ) == 0u ) { shiftCount += 8u; a <<= 8; }
if ( ( a & 0xF0000000u ) == 0u ) { shiftCount += 4u; a <<= 4; }
if ( ( a & 0xC0000000u ) == 0u ) { shiftCount += 2u; a <<= 2; }
if ( ( a & 0x80000000u ) == 0u ) { shiftCount += 1u; }
return shiftCount;
}
/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
* and significand formed by the concatenation of `zSig0' and `zSig1', and
* returns the proper double-precision floating-point value corresponding
* to the abstract input. This routine is just like `roundAndPackFloat64'
* except that the input significand has fewer bits and does not have to be
* normalized. In all cases, `zExp' must be 1 less than the "true" floating-
* point exponent.
*/
uvec2
normalizeRoundAndPackFloat64( uint zSign,
uint zExp,
uint zFrac0,
uint zFrac1 )
{
int shiftCount;
uint zFrac2;
if ( zFrac0 == 0u ) {
zFrac0 = zFrac1;
zFrac1 = 0u;
zExp -= 32u;
}
shiftCount = int ( countLeadingZeros32( zFrac0 ) ) - 11;
if ( 0 <= shiftCount ) {
zFrac2 = 0u;
shortShift64Left( zFrac0, zFrac1, shiftCount, zFrac0, zFrac1 );
} else {
shift64ExtraRightJamming(
zFrac0, zFrac1, 0u, - shiftCount, zFrac0, zFrac1, zFrac2 );
}
zExp -= uint ( shiftCount );
return roundAndPackFloat64( zSign, zExp, zFrac0, zFrac1, zFrac2 );
}
/* Returns 1 if the double-precision floating-point value `a' is a NaN;
* otherwise returns 0.
*/
bool
float64_is_nan( uvec2 a )
{
return ( 0xFFE00000u <= ( a.y<<1 ) ) &&
( ( a.x != 0u ) || ( ( a.y & 0x000FFFFFu ) != 0u ) );
}
/* Returns 1 if the double-precision floating-point value `a' is a signaling
* NaN; otherwise returns 0.
*/
bool
float64_is_signaling_nan( uvec2 a )
{
return ( ( ( a.y>>19 ) & 0xFFFu ) == 0xFFEu ) &&
( ( a.x != 0u ) || ( ( a.y & 0x0007FFFFu ) != 0u ) );
}
/* Takes two double-precision floating-point values `a' and `b', one of which
* is a NaN, and returns the appropriate NaN result. If either `a' or `b' is
* a signaling NaN, the invalid exception is raised.
*/
uvec2
propagateFloat64NaN( uvec2 a, uvec2 b )
{
bool aIsNaN;
bool aIsSignalingNaN;
bool bIsNaN;
bool bIsSignalingNaN;
aIsNaN = float64_is_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
a.y |= 0x00080000u;
b.y |= 0x00080000u;
if ( aIsNaN ) {
return ( aIsSignalingNaN && bIsNaN ) ? b : a;
} else {
return b;
}
}
/* Returns the fraction bits of the double-precision floating-point value `a'.*/
uvec2
extractFloat64Frac( uvec2 a )
{
return uvec2( a.x & 0x000FFFFFu, a.y );
}
/* Returns the exponent bits of the double-precision floating-point value `a'.*/
uint
extractFloat64Exp( uvec2 a )
{
return (a.x>>20) & 0x7FFu;
}
/* Returns the sign bit of the double-precision floating-point value `a'.*/
uint
extractFloat64Sign( uvec2 a )
{
return (a.x>>31);
}
/* Returns the result of adding the absolute values of the double-precision
* floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
* before being returned. `zSign' is ignored if the result is a NaN. The
* addition is performed according to the IEEE Standard for Floating-Point
* Arithmetic.
*/
uvec2
addFloat64Fracs( uvec2 a, uvec2 b, uint zSign )
{
uvec2 aFrac;
uvec2 bFrac;
uint aExp;
uint bExp;
uint zExp;
uint zFrac0;
uint zFrac1;
uint zFrac2;
int expDiff;
aFrac = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
bFrac = extractFloat64Frac( b );
bExp = extractFloat64Exp( b );
expDiff = int ( aExp ) - int ( bExp );
if ( 0 < expDiff ) {
if ( aExp == 0x7FFu ) {
if ( ( aFrac.x | aFrac.y ) != 0u ) {
return propagateFloat64NaN( a, b );
}
return a;
}
if ( bExp == 0u ) {
--expDiff;
} else {
bFrac.x |= 0x00100000u;
}
shift64ExtraRightJamming(
bFrac.x, bFrac.y, 0u, expDiff, bFrac.x, bFrac.y, zFrac2 );
zExp = aExp;
} else if ( expDiff < 0 ) {
if ( bExp == 0x7FFu ) {
if ( ( bFrac.x | bFrac.y ) != 0u ) {
return propagateFloat64NaN( a, b );
}
return packFloat64( zSign, 0x7FFu, 0u, 0u );
}
if ( aExp == 0u ) {
++expDiff;
} else {
aFrac.x |= 0x00100000u;
}
shift64ExtraRightJamming(
aFrac.x, aFrac.y, 0u, - expDiff, aFrac.x, aFrac.y, zFrac2 );
zExp = bExp;
} else {
if ( aExp == 0x7FFu ) {
if ( ( aFrac.x | aFrac.y | bFrac.x | bFrac.y ) != 0u ) {
return propagateFloat64NaN( a, b );
}
return a;
}
add64( aFrac.x, aFrac.y, bFrac.x, bFrac.y, zFrac0, zFrac1 );
if ( aExp == 0u ) {
return packFloat64( zSign, 0u, zFrac0, zFrac1 );
}
zFrac2 = 0u;
zFrac0 |= 0x00200000u;
zExp = aExp;
shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2 );
return roundAndPackFloat64( zSign, zExp, zFrac0, zFrac1, zFrac2 );
}
aFrac.x |= 0x00100000u;
add64( aFrac.x, aFrac.y, bFrac.x, bFrac.y, zFrac0, zFrac1 );
--zExp;
if ( zFrac0 < 0x00200000u ) {
return roundAndPackFloat64( zSign, zExp, zFrac0, zFrac1, zFrac2 );
}
++zExp;
shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2 );
return roundAndPackFloat64( zSign, zExp, zFrac0, zFrac1, zFrac2 );
}
/* Returns the result of subtracting the absolute values of the double-
* precision floating-point values `a' and `b'. If `zSign' is 1, the
* difference is negated before being returned. `zSign' is ignored if the
* result is a NaN. The subtraction is performed according to the IEEE
* Standard for Floating-Point Arithmetic.
*/
uvec2
subFloat64Fracs( uvec2 a, uvec2 b, uint zSign )
{
uvec2 aFrac;
uvec2 bFrac;
uvec2 z;
uint aExp;
uint bExp;
uint zExp;
uint zFrac0;
uint zFrac1;
int expDiff;
aFrac = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
bFrac = extractFloat64Frac( b );
bExp = extractFloat64Exp( b );
expDiff = int ( aExp ) - int ( bExp );
shortShift64Left( aFrac.x, aFrac.y, 10, aFrac.x, aFrac.y );
shortShift64Left( bFrac.x, bFrac.y, 10, bFrac.x, bFrac.y );
if ( 0 < expDiff ) {
if ( aExp == 0x7FFu ) {
if ( ( aFrac.x | aFrac.y ) != 0u ) {
return propagateFloat64NaN( a, b );
}
return a;
}
if ( bExp == 0u ) {
--expDiff;
} else {
bFrac.x |= 0x40000000u;
}
shift64RightJamming( bFrac, expDiff, bFrac.x, bFrac.y );
aFrac.x |= 0x40000000u;
sub64( aFrac.x, aFrac.y, bFrac.x, bFrac.y, zFrac0, zFrac1 );
zExp = aExp;
--zExp;
return normalizeRoundAndPackFloat64(
zSign, zExp - 10u, zFrac0, zFrac1 );
}
if ( expDiff < 0 ) {
if ( bExp == 0x7FFu ) {
if ( ( bFrac.x | bFrac.y ) != 0u ) {
return propagateFloat64NaN( a, b );
}
return packFloat64( zSign ^ 1u, 0x7FFu, 0u, 0u );
}
if ( aExp == 0u ) {
++expDiff;
} else {
aFrac.x |= 0x40000000u;
}
shift64RightJamming( aFrac, - expDiff, aFrac.x, aFrac.y );
bFrac.x |= 0x40000000u;
sub64( bFrac.x, bFrac.y, aFrac.x, aFrac.y, zFrac0, zFrac1 );
zExp = bExp;
zSign ^= 1u;
--zExp;
return normalizeRoundAndPackFloat64(
zSign, zExp - 10u, zFrac0, zFrac1 );
}
if ( aExp == 0x7FFu ) {
if ( ( aFrac.x | aFrac.y | bFrac.x | bFrac.y ) != 0u ) {
return propagateFloat64NaN( a, b );
}
return uvec2( 0xFFFFFFFFu, 0xFFFFFFFFu );
}
if ( aExp == 0u ) {
aExp = 1u;
bExp = 1u;
}
if ( bFrac.x < aFrac.x ) {
sub64( aFrac.x, aFrac.y, bFrac.x, bFrac.y, zFrac0, zFrac1 );
zExp = aExp;
--zExp;
return normalizeRoundAndPackFloat64(
zSign, zExp - 10u, zFrac0, zFrac1 );
}
if ( aFrac.x < bFrac.x ) {
sub64( bFrac.x, bFrac.y, aFrac.x, aFrac.y, zFrac0, zFrac1 );
zExp = bExp;
zSign ^= 1u;
--zExp;
return normalizeRoundAndPackFloat64( zSign, zExp - 10u, zFrac0, zFrac1 );
}
if ( bFrac.y < aFrac.y ) {
sub64( aFrac.x, aFrac.y, bFrac.x, bFrac.y, zFrac0, zFrac1 );
zExp = aExp;
--zExp;
return normalizeRoundAndPackFloat64(
zSign, zExp - 10u, zFrac0, zFrac1 );
}
if ( aFrac.y < bFrac.y ) {
sub64( bFrac.x, bFrac.y, aFrac.x, aFrac.y, zFrac0, zFrac1 );
zExp = bExp;
zSign ^= 1u;
--zExp;
return normalizeRoundAndPackFloat64( zSign, zExp - 10u, zFrac0, zFrac1 );
}
return packFloat64(
uint ( float_rounding_mode == float_round_down ), 0u, 0u, 0u );
}
/* Returns the result of adding the double-precision floating-point values
* `a' and `b'. The operation is performed according to the IEEE Standard for
* Floating-Point Arithmetic.
*/
uvec2
add_fp64( uvec2 a, uvec2 b )
{
uint aSign;
uint bSign;
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
if ( aSign == bSign ) {
return addFloat64Fracs( a, b, aSign );
} else {
return subFloat64Fracs( a, b, aSign );
}
}
uniform uvec2 a;
uniform uvec2 b;
uniform uvec2 expected;
void main()
{
/* Generate green if the expected value is producted, red
* otherwise.
*/
gl_FragColor = add_fp64(a,b) == expected
? vec4(0.0, 1.0, 0.0, 1.0)
: vec4(1.0, 0.0, 0.0, 1.0);
}
[test]
# A bunch of tests to run. The 'uniform' lines set the uniforms. The
# 'draw rect' line draws a rectangle that covers the whole window.
# The 'probe all' line verifies that every pixel contains the expected
# color.
# Try +0.0 and +0.0
uniform uvec2 a 0x00000000 0x00000000
uniform uvec2 b 0x00000000 0x00000000
uniform uvec2 expected 0x00000000 0x00000000
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0
# Try +2.0 and +2.0
uniform uvec2 a 0x40000000 0x00000000
uniform uvec2 b 0x40000000 0x00000000
uniform uvec2 expected 0x40100000 0x00000000
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0
# Try +0.0 and +50.0
uniform uvec2 a 0x00000000 0x00000000
uniform uvec2 b 0x40490000 0x00000000
uniform uvec2 expected 0x40490000 0x00000000
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0
# Try +0.0 and -50.0
uniform uvec2 a 0x00000000 0x00000000
uniform uvec2 b 0xC0490000 0x00000000
uniform uvec2 expected 0xC0490000 0x00000000
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0
# Try +1.5 and +50.0
uniform uvec2 a 0x3FF80000 0x00000000
uniform uvec2 b 0x40490000 0x00000000
uniform uvec2 expected 0x4049C000 0x00000000
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0
# Try +1.5 and +1.000002
uniform uvec2 a 0x3FF80000 0x00000000
uniform uvec2 b 0x3FF00002 0x18DEF417
uniform uvec2 expected 0x40040001 0x0C6F7A0B
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0
# Try +1.5 and +INF
uniform uvec2 a 0x3FF80000 0x00000000
uniform uvec2 b 0x7FF00000 0x00000000
uniform uvec2 expected 0x7FF00000 0x00000000
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0
# Try +1.5 and NaN
uniform uvec2 a 0x3FF80000 0x00000000
uniform uvec2 b 0x7FF00000 0x00000001
uniform uvec2 expected 0x7FF00000 0x00080001
draw rect -1 -1 2 2
probe all rgba 0.0 1.0 0.0 1.0