forked from b04901014/MQTTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
171 lines (159 loc) · 8.42 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from data.QuantizeDataset import QuantizeDataset, QuantizeDatasetVal
from data.sampler import RandomBucketSampler
from modules.wildttstransformer import TTSDecoder
from modules.transformers import TransformerEncoderLayer, TransformerEncoder, TransformerDecoder, TransformerDecoderLayer
from modules.vocoder import Vocoder
from torch.utils import data
import pytorch_lightning.core.lightning as pl
import soundfile as sf
import librosa
import matplotlib.pyplot as plt
plt.switch_backend('agg')
class Wav2TTS(pl.LightningModule):
def __init__(self, hp):
super().__init__()
self.hp = hp
self.data = QuantizeDataset(hp, hp.metapath)
self.val_data = QuantizeDatasetVal(hp, hp.val_metapath)
self.TTSdecoder = TTSDecoder(hp, len(self.data.phoneset))
self.n_decode_codes = self.TTSdecoder.transducer.n_decoder_codes
self.cross_entropy = nn.CrossEntropyLoss(label_smoothing=self.hp.label_smoothing)
self.phone_embedding = nn.Embedding(len(self.data.phoneset), hp.hidden_size, padding_idx=self.data.phoneset.index('<pad>'))
self.spkr_linear = nn.Linear(512, hp.hidden_size)
if self.hp.pretrained_path:
self.load()
else:
self.apply(self.init_weights)
self.vocoder = Vocoder(hp.vocoder_config_path, hp.vocoder_ckpt_path)
self.vocoder.eval()
self.vocoder.generator.remove_weight_norm()
for param in self.vocoder.parameters():
param.requires_grad = False
def load(self):
state_dict = torch.load(self.hp.pretrained_path)['state_dict']
self.load_state_dict(state_dict, strict=False)
def init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
module._fill_padding_idx_with_zero()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
def train_dataloader(self):
length = self.data.lengths
sampler = RandomBucketSampler(self.hp.train_bucket_size, length, self.hp.batch_size, drop_last=True, distributed=self.hp.distributed,
world_size=self.trainer.world_size, rank=self.trainer.local_rank)
dataset = data.DataLoader(self.data,
num_workers=self.hp.nworkers,
batch_sampler=sampler,
collate_fn=self.data.seqCollate)
return dataset
def val_dataloader(self):
dataset = data.DataLoader(self.val_data,
num_workers=self.hp.nworkers,
shuffle=False)
return dataset
def configure_optimizers(self):
optimizer_adam = optim.Adam(self.parameters(), lr=self.hp.lr, betas=(self.hp.adam_beta1, self.hp.adam_beta2))
#Learning rate scheduler
num_training_steps = self.hp.training_step
num_warmup_steps = self.hp.warmup_step
num_flat_steps = int(self.hp.optim_flat_percent * num_training_steps)
def lambda_lr(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
elif current_step < (num_warmup_steps + num_flat_steps):
return 1.0
return max(
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - (num_warmup_steps + num_flat_steps)))
)
scheduler_adam = {
'scheduler': optim.lr_scheduler.LambdaLR(optimizer_adam, lambda_lr),
'interval': 'step'
}
return [optimizer_adam], [scheduler_adam]
def training_step(self, batch, batch_idx):
#Deal with speaker embedding
speaker_embedding = F.normalize(batch['speaker'], dim=-1)
speaker_embedding = self.spkr_linear(F.dropout(speaker_embedding, self.hp.speaker_embed_dropout))
#Deal with phone segments
phone_features = self.phone_embedding(batch['phone'])
#Run decoder
recons_segments = self.TTSdecoder(batch['tts_quantize_input'], phone_features, speaker_embedding,
batch['quantize_mask'], batch['phone_mask'])
target = recons_segments['logits'][~batch['quantize_mask']].view(-1, self.n_decode_codes)
labels = batch['tts_quantize_output'][~batch['quantize_mask']].view(-1)
loss = self.cross_entropy(target, labels)
acc = (target.argmax(-1) == labels).float().mean()
self.log("train/loss", loss, on_step=True, prog_bar=True)
self.log("train/acc", acc, on_step=True, prog_bar=True)
return loss
def on_validation_epoch_start(self):
#For the first half samples, and random choose the rest half
start_point, half = 4, self.hp.sample_num // 2
if self.hp.sample_num > 0:
self.sample_idxs = list(range(start_point, start_point + half)) + \
np.random.randint(low=start_point + half, high=len(self.val_data), size=self.hp.sample_num//2).tolist()
else:
self.sample_idxs = []
def validation_step(self, batch, batch_idx):
#Batch size = 1
spkr, q_s, q_e, phone, ground_truth = batch
norm_spkr = F.normalize(spkr, dim=-1)
spkr = self.spkr_linear(norm_spkr)
phone_features = self.phone_embedding(phone)
recons_segments = self.TTSdecoder(q_s, phone_features, spkr, None, None)
target = recons_segments['logits'].view(-1, self.n_decode_codes)
labels = q_e.view(-1)
loss = self.cross_entropy(target, labels)
acc = (target.argmax(-1) == labels).float().mean()
self.log("val/loss", loss, on_epoch=True, logger=True)
self.log("val/acc", acc, on_epoch=True, logger=True)
#Run inference with bs = 1
if batch_idx in self.sample_idxs:
batch_idx = self.sample_idxs.index(batch_idx)
phone_mask = torch.full((phone_features.size(0), phone_features.size(1)), False, dtype=torch.bool, device=phone_features.device)
synthetic, infer_attn = self.TTSdecoder.inference_topkp_sampling_batch(phone_features, spkr, phone_mask, prior=None, output_alignment=True)
synthetic = synthetic[0].unsqueeze(0)
synthetic = self.vocoder(synthetic, norm_spkr).float()
#Reconstructed Audio with vocoder
reconstructed_gt = self.vocoder(q_s[:, 1:], norm_spkr).float()
#Write files
sw = self.logger.experiment
sw.add_audio(f'generated/{batch_idx}', synthetic, self.global_step, self.hp.sample_rate)
sw.add_audio(f'vocoder-reconstructed/{batch_idx}', reconstructed_gt, self.global_step, self.hp.sample_rate)
sw.add_audio(f'groundtruth/{batch_idx}', ground_truth[0], self.global_step, self.hp.sample_rate)
#Plot attentions
self.plot_attn(recons_segments['encoder_attention'], f'enc-attn/{batch_idx}', (10, 10))
self.plot_attn(recons_segments['decoder_attention'], f'dec-attn/{batch_idx}', (10, 10))
self.plot_attn([recons_segments['alignment']], f'train-alignment/{batch_idx}', (10, 10))
self.plot_attn([infer_attn.unsqueeze(0)], f'infer-alignment/{batch_idx}', (10, 10))
def plot_attn(self, attns, prefix, figsize):
nheads = attns[0].size(1)
fig, axs = plt.subplots(len(attns), nheads, constrained_layout=True, figsize=figsize)
if len(attns) == 1 and nheads == 1:
axs = [[axs]]
elif len(attns) == 1 or nheads == 1:
axs = [axs]
for i, attn in enumerate(attns): #Each layers
attn = attn.float().cpu().numpy()
for j, head_attn in enumerate(attn[0]):
axs[i][j].matshow(head_attn, aspect="auto", origin="lower", interpolation='none')
if i != 0 or j != 0:
axs[i][j].axis('off')
self.logger.experiment.add_figure(prefix, fig, self.global_step)
plt.close()