From 729b921cff74f2c9edd8c9ff46a701aeb0f5ca72 Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Sun, 5 Apr 2020 20:17:06 +0530 Subject: [PATCH 1/9] Add files via upload --- edit_assignment.py | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) create mode 100644 edit_assignment.py diff --git a/edit_assignment.py b/edit_assignment.py new file mode 100644 index 000000000..0b2b5e2d6 --- /dev/null +++ b/edit_assignment.py @@ -0,0 +1,33 @@ +import pandas as pd + +from matplotlib import pyplot as plt + +df=pd.read_csv('data.txt',delimiter='\t') + +plt.rcParams['figure.figsize']=(20,10) + +fig,ax=plt.subplots(nrows=5,ncols=9) + +r=c=0 + +list=[[0,0],[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7],[0,8],[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7],[1,8],[2,0],[2,1],[2,2],[2,3],[2,4],[2,5],[2,6],[2,7],[2,8],[3,0],[3,1],[3,2],[3,3],[3,4],[3,5],[3,6],[3,7],[3,8],[4,0],[4,1],[4,2],[4,3],[4,4],[4,5],[4,6],[4,7],[4,8]] + +flag=-1 + +for i in range(1,10): + for j in range(i+1,11): + flag=flag+1 + r=list[flag][0] + c=list[flag][1] + for k in range(999): + if df['Label'][k]==1: + ax[r][c].scatter(df[str(i)][k],df[str(j)][k],color='r') + elif df['Label'][k]==2: + ax[r][c].scatter(df[str(i)][k],df[str(j)][k],color='b') + + ax[r][c].set_xlabel('feature '+str(i)) + ax[r][c].set_ylabel('feature '+str(j)) + ax[0][4].set_title('My Plot') + +# print(plt.rcParams['figure.figsize']) +plt.show() \ No newline at end of file From 070a8e61951c3935045dd7d3788b858e695235e0 Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Wed, 8 Apr 2020 16:36:12 +0530 Subject: [PATCH 2/9] Add files via upload --- ex1data1.txt | 97 ++++++++ ex1data2.txt | 47 ++++ gradientdescentMulti.ipynb | 456 +++++++++++++++++++++++++++++++++++ gradientdescentSingle.ipynb | 388 +++++++++++++++++++++++++++++ introduction_to_matrix.ipynb | 102 ++++++++ plotData.ipynb | 136 +++++++++++ 6 files changed, 1226 insertions(+) create mode 100644 ex1data1.txt create mode 100644 ex1data2.txt create mode 100644 gradientdescentMulti.ipynb create mode 100644 gradientdescentSingle.ipynb create mode 100644 introduction_to_matrix.ipynb create mode 100644 plotData.ipynb diff --git a/ex1data1.txt b/ex1data1.txt new file mode 100644 index 000000000..0f88ccb61 --- /dev/null +++ b/ex1data1.txt @@ -0,0 +1,97 @@ +6.1101,17.592 +5.5277,9.1302 +8.5186,13.662 +7.0032,11.854 +5.8598,6.8233 +8.3829,11.886 +7.4764,4.3483 +8.5781,12 +6.4862,6.5987 +5.0546,3.8166 +5.7107,3.2522 +14.164,15.505 +5.734,3.1551 +8.4084,7.2258 +5.6407,0.71618 +5.3794,3.5129 +6.3654,5.3048 +5.1301,0.56077 +6.4296,3.6518 +7.0708,5.3893 +6.1891,3.1386 +20.27,21.767 +5.4901,4.263 +6.3261,5.1875 +5.5649,3.0825 +18.945,22.638 +12.828,13.501 +10.957,7.0467 +13.176,14.692 +22.203,24.147 +5.2524,-1.22 +6.5894,5.9966 +9.2482,12.134 +5.8918,1.8495 +8.2111,6.5426 +7.9334,4.5623 +8.0959,4.1164 +5.6063,3.3928 +12.836,10.117 +6.3534,5.4974 +5.4069,0.55657 +6.8825,3.9115 +11.708,5.3854 +5.7737,2.4406 +7.8247,6.7318 +7.0931,1.0463 +5.0702,5.1337 +5.8014,1.844 +11.7,8.0043 +5.5416,1.0179 +7.5402,6.7504 +5.3077,1.8396 +7.4239,4.2885 +7.6031,4.9981 +6.3328,1.4233 +6.3589,-1.4211 +6.2742,2.4756 +5.6397,4.6042 +9.3102,3.9624 +9.4536,5.4141 +8.8254,5.1694 +5.1793,-0.74279 +21.279,17.929 +14.908,12.054 +18.959,17.054 +7.2182,4.8852 +8.2951,5.7442 +10.236,7.7754 +5.4994,1.0173 +20.341,20.992 +10.136,6.6799 +7.3345,4.0259 +6.0062,1.2784 +7.2259,3.3411 +5.0269,-2.6807 +6.5479,0.29678 +7.5386,3.8845 +5.0365,5.7014 +10.274,6.7526 +5.1077,2.0576 +5.7292,0.47953 +5.1884,0.20421 +6.3557,0.67861 +9.7687,7.5435 +6.5159,5.3436 +8.5172,4.2415 +9.1802,6.7981 +6.002,0.92695 +5.5204,0.152 +5.0594,2.8214 +5.7077,1.8451 +7.6366,4.2959 +5.8707,7.2029 +5.3054,1.9869 +8.2934,0.14454 +13.394,9.0551 +5.4369,0.61705 diff --git a/ex1data2.txt b/ex1data2.txt new file mode 100644 index 000000000..79e9a807e --- /dev/null +++ b/ex1data2.txt @@ -0,0 +1,47 @@ +2104,3,399900 +1600,3,329900 +2400,3,369000 +1416,2,232000 +3000,4,539900 +1985,4,299900 +1534,3,314900 +1427,3,198999 +1380,3,212000 +1494,3,242500 +1940,4,239999 +2000,3,347000 +1890,3,329999 +4478,5,699900 +1268,3,259900 +2300,4,449900 +1320,2,299900 +1236,3,199900 +2609,4,499998 +3031,4,599000 +1767,3,252900 +1888,2,255000 +1604,3,242900 +1962,4,259900 +3890,3,573900 +1100,3,249900 +1458,3,464500 +2526,3,469000 +2200,3,475000 +2637,3,299900 +1839,2,349900 +1000,1,169900 +2040,4,314900 +3137,3,579900 +1811,4,285900 +1437,3,249900 +1239,3,229900 +2132,4,345000 +4215,4,549000 +2162,4,287000 +1664,2,368500 +2238,3,329900 +2567,4,314000 +1200,3,299000 +852,2,179900 +1852,4,299900 +1203,3,239500 diff --git a/gradientdescentMulti.ipynb b/gradientdescentMulti.ipynb new file mode 100644 index 000000000..755bcf1fc --- /dev/null +++ b/gradientdescentMulti.ipynb @@ -0,0 +1,456 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "from mpl_toolkits.mplot3d import Axes3D # needed to plot 3-D surfaces\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils \n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " X[:,0] X[:, 1] y\n", + "--------------------------\n", + " 2104 3 399900\n", + " 1600 3 329900\n", + " 2400 3 369000\n", + " 1416 2 232000\n", + " 3000 4 539900\n", + " 1985 4 299900\n", + " 1534 3 314900\n", + " 1427 3 198999\n", + " 1380 3 212000\n", + " 1494 3 242500\n" + ] + } + ], + "source": [ + "# Load data\n", + "data = np.loadtxt('ex1data2.txt', delimiter=',')\n", + "X = data[:, :2]\n", + "y = data[:, 2]\n", + "m = y.size\n", + "\n", + "# print out some data points\n", + "print('{:>8s}{:>8s}{:>10s}'.format('X[:,0]', 'X[:, 1]', 'y'))\n", + "print('-'*26)\n", + "for i in range(10):\n", + " print('{:8.0f}{:8.0f}{:10.0f}'.format(X[i, 0], X[i, 1], y[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [], + "source": [ + "def featureNormalize(X):\n", + " \"\"\"\n", + " Normalizes the features in X. returns a normalized version of X where\n", + " the mean value of each feature is 0 and the standard deviation\n", + " is 1. This is often a good preprocessing step to do when working with\n", + " learning algorithms.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The dataset of shape (m x n).\n", + " \n", + " Returns\n", + " -------\n", + " X_norm : array_like\n", + " The normalized dataset of shape (m x n).\n", + " \n", + " Instructions\n", + " ------------\n", + " First, for each feature dimension, compute the mean of the feature\n", + " and subtract it from the dataset, storing the mean value in mu. \n", + " Next, compute the standard deviation of each feature and divide\n", + " each feature by it's standard deviation, storing the standard deviation \n", + " in sigma. \n", + " \n", + " Note that X is a matrix where each column is a feature and each row is\n", + " an example. You needto perform the normalization separately for each feature. \n", + " \n", + " Hint\n", + " ----\n", + " You might find the 'np.mean' and 'np.std' functions useful.\n", + " \"\"\"\n", + " # You need to set these values correctly\n", + " X_norm = X.copy()\n", + " mu = np.zeros(X.shape[1])\n", + " sigma = np.zeros(X.shape[1])\n", + "\n", + " # =========================== YOUR CODE HERE =====================\n", + " for i in range(X.shape[1]):\n", + " sigma[i]=np.std(X[:,i])\n", + " mu[i]=np.sum(X[:,i])/X.shape[0]\n", + " \n", + " for j in range(X.shape[0]):\n", + " for k in range(X.shape[1]):\n", + " X_norm[j][k]=(X[j][k]-mu[k])/sigma[k]\n", + "\n", + " # ================================================================\n", + " return X_norm, mu, sigma" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Computed mean: [2000.68085106 3.17021277]\n", + "Computed standard deviation: [7.86202619e+02 7.52842809e-01]\n" + ] + } + ], + "source": [ + "# call featureNormalize on the loaded data\n", + "X_norm, mu, sigma = featureNormalize(X)\n", + "\n", + "print('Computed mean:', mu)\n", + "print('Computed standard deviation:', sigma)" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [], + "source": [ + "# Add intercept term to X\n", + "X = np.concatenate([np.ones((m, 1)), X_norm], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "def computeCostMulti(X, y, theta):\n", + " \"\"\"\n", + " Compute cost for linear regression with multiple variables.\n", + " Computes the cost of using theta as the parameter for linear regression to fit the data points in X and y.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The dataset of shape (m x n+1).\n", + " \n", + " y : array_like\n", + " A vector of shape (m, ) for the values at a given data point.\n", + " \n", + " theta : array_like\n", + " The linear regression parameters. A vector of shape (n+1, )\n", + " \n", + " Returns\n", + " -------\n", + " J : float\n", + " The value of the cost function. \n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the cost of a particular choice of theta. You should set J to the cost.\n", + " \"\"\"\n", + " # Initialize some useful values\n", + " m = y.shape[0] # number of training examples\n", + " \n", + " # You need to return the following variable correctly\n", + " J = 0\n", + " \n", + " # ======================= YOUR CODE HERE ===========================\n", + " H=theta.dot(X.transpose())\n", + " sum=0\n", + " for element in range(len(H.transpose()-y)):\n", + " sum=sum+((H.transpose()-y)[element]*(H.transpose()-y)[element])\n", + " \n", + " J=sum/(2*m) \n", + " \n", + " \n", + " # ==================================================================\n", + " return J" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [], + "source": [ + "def gradientDescentMulti(X, y, theta, alpha, num_iters):\n", + " \"\"\"\n", + " Performs gradient descent to learn theta.\n", + " Updates theta by taking num_iters gradient steps with learning rate alpha.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The dataset of shape (m x n+1).\n", + " \n", + " y : array_like\n", + " A vector of shape (m, ) for the values at a given data point.\n", + " \n", + " theta : array_like\n", + " The linear regression parameters. A vector of shape (n+1, )\n", + " \n", + " alpha : float\n", + " The learning rate for gradient descent. \n", + " \n", + " num_iters : int\n", + " The number of iterations to run gradient descent. \n", + " \n", + " Returns\n", + " -------\n", + " theta : array_like\n", + " The learned linear regression parameters. A vector of shape (n+1, ).\n", + " \n", + " J_history : list\n", + " A python list for the values of the cost function after each iteration.\n", + " \n", + " Instructions\n", + " ------------\n", + " Peform a single gradient step on the parameter vector theta.\n", + "\n", + " While debugging, it can be useful to print out the values of \n", + " the cost function (computeCost) and gradient here.\n", + " \"\"\"\n", + " # Initialize some useful values\n", + " m = y.shape[0] # number of training examples\n", + " \n", + " # make a copy of theta, which will be updated by gradient descent\n", + " theta = theta.copy()\n", + " \n", + " J_history = []\n", + " \n", + " for i in range(num_iters):\n", + " # ======================= YOUR CODE HERE ==========================\n", + " H=theta.dot(X.transpose())\n", + " \n", + " for j in range(theta.size):\n", + " theta[j]-=(alpha/m)*((H.transpose()-y).transpose()).dot(X[:,j])\n", + " \n", + " # =================================================================\n", + " \n", + " # save the cost J in every iteration\n", + " J_history.append(computeCostMulti(X, y, theta))\n", + " \n", + " return theta, J_history" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[340412.56301439 109370.05670466 -6500.61509507]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAERCAYAAABxZrw0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAeZklEQVR4nO3de5gddZ3n8fen77l3QjrkRghBuYkQtEFQBpFRcBhWRhcUHkZxZJZ1dFgdd3YGlmfHGX1mRocdF/Vx1Kx3RUZF8MI8gIhc1OWWAIZbYiAECElI5965drr7u39Une6TTnenO93V53TV5/U8/fQ5VXXq9011zqd//auq31FEYGZm+VNT6QLMzCwbDngzs5xywJuZ5ZQD3swspxzwZmY55YA3M8upqgt4Sd+QtFHSU0PY9hxJj0nqlHRJn3VXSlqVfl2ZXcVmZtWp6gIe+BbwziFu+xLwQeD75QslzQA+CbwJOAP4pKTpo1eimVn1q7qAj4gHgC3lyyQdK+lOScsk/VrSCem2ayJiOdDdZzcXAHdHxJaI2ArczdB/aZiZ5UJdpQsYoiXAhyNilaQ3Af8GnDfI9vOAl8uer02XmZkVRtUHvKTJwJuBH0kqLW481Mv6WeY5GcysUKo+4EmGkbZFxOJhvGYtcG7Z8/nAfaNYk5lZ1au6Mfi+ImIH8IKkSwGUOPUQL7sLOF/S9PTk6vnpMjOzwqi6gJd0M/AgcLyktZKuAq4ArpL0O+Bp4OJ029MlrQUuBb4q6WmAiNgCfBp4NP36VLrMzKww5OmCzczyqep68GZmNjqq6iTrzJkzY+HChZUuw8xs3Fi2bNmmiGjpb11VBfzChQtZunRppcswMxs3JL040DoP0ZiZ5ZQD3swspxzwZmY55YA3M8spB7yZWU454M3McsoBb2aWU+M+4FduaOeyJQ9y3a3LK12KmVlVqaobnQ7H/q5uHlq9hR17OitdiplZVRn3PfjJjcnvqF0dDngzs3LjPuAnpQG/c68D3sys3LgP+ClNScC373PAm5mVG/cB31hXQ12N6OjspqOzu9LlmJlVjXEf8JKYnPbid7kXb2bWY9wHPMCkhnQc3gFvZtYjFwHfMw7vE61mZj1yEfC+VNLM7GC5CHhfKmlmdrBcBPxkXyppZnaQTANeUrOkWyStkPSspLOyaGeKe/BmZgfJei6azwN3RsQlkhqAiVk00jMG7x68mVmPzAJe0lTgHOCDABHRAXRk0VZpDN5DNGZmvbIcolkEtAHflPS4pK9JmtR3I0lXS1oqaWlbW9thNVS6TNJDNGZmvbIM+DrgDcCXI+I0YBdwbd+NImJJRLRGRGtLS8thNVQaotm5b//hV2tmljNZBvxaYG1EPJw+v4Uk8Edd71QFXVns3sxsXMos4CNiA/CypOPTRX8IPJNFWx6DNzM7WNZX0VwD3JReQbMa+LMsGum9TNJDNGZmJZkGfEQ8AbRm2Qb0DtF4sjEzs165uJO1NJukx+DNzHrlIuB7Z5P0EI2ZWUkuAr5nsrF9nUREhasxM6sOuQj4+toamupr6A7Yu98f22dmBjkJeOi92andNzuZmQE5DHhPV2BmlshPwPtj+8zMDpCbgJ/SWA/4Wngzs5LcBPzUCUkPfscej8GbmUGeAr4p6cHv8LXwZmZAngJ+QhrwezxEY2YGeQp49+DNzA6Qn4D3GLyZ2QHyE/A9PXgP0ZiZQZ4CvmcM3j14MzPIU8CnNzp5DN7MLJGfgPdVNGZmB8hfwLsHb2YG5Cngm3wVjZlZudwE/KSGOmoEuzq66OzynPBmZrkJ+Joa9c4J70slzczyE/DQOw7vgDczg7osdy5pDdAOdAGdEdGaZXvJzU57fKLVzIyMAz71tojYNAbteLoCM7My+Rqi8YRjZmY9sg74AH4haZmkqzNuyzc7mZmVyXqI5i0RsU7SLOBuSSsi4oHyDdLgvxpgwYIFI2rMPXgzs16Z9uAjYl36fSNwG3BGP9ssiYjWiGhtaWkZUXsegzcz65VZwEuaJGlK6TFwPvBUVu2Bpww2MyuX5RDNkcBtkkrtfD8i7sywvZ4x+O3uwZuZZRfwEbEaODWr/fenOQ34bbs7xrJZM7OqlKvLJJsnpgHvHryZWd4CvgGAbbsd8GZmOQt4D9GYmZXkK+DLTrJ2d0eFqzEzq6xcBXxdbQ1TGuvoDs8oaWaWq4AHaJ6U9OK3epjGzAoufwE/IT3R6itpzKzg8hfwE92DNzODXAZ80oPf7kslzazg8hfwvpvVzAzIYcBP7xmicQ/ezIotdwE/rTRE45OsZlZwuQv46T7JamYG5DDge6crcA/ezIothwFfmnDMPXgzK7b8BfwETxlsZgZ5DPi0B791l3vwZlZsuQv4aRN6P5e1yzNKmlmB5S7ga2vUE/IehzezIstdwAMcMSkZptniYRozK7B8BvzkJOA3O+DNrMByGfAz0h785p0OeDMrrpwGfCMAW3btq3AlZmaVk3nAS6qV9Lik27Nuq2Smh2jMzMakB/8x4NkxaKeHh2jMzDIOeEnzgT8GvpZlO33N8FU0ZmaZ9+BvBP4G6B5oA0lXS1oqaWlbW9uoNDpzcjIGv9lj8GZWYJkFvKSLgI0RsWyw7SJiSUS0RkRrS0vLqLTtHryZWbY9+LcA75K0Bvh34DxJ38uwvR4918F7DN7MCiyzgI+I6yJifkQsBC4DfhURf5pVe+WmlyYc291Bt+ejMbOCyuV18PW1NUybUE93eNpgMyuuMQn4iLgvIi4ai7ZKeodpfKLVzIoplz146J1wzDc7mVlR5TjgS9MVOODNrJhyG/AzPERjZgWX24CfmQ7RbPKlkmZWUHUDrZA0Y5DX7YuIXRnUM2papiRDNBvb3YM3s2IaMOCBZUAA6u91kgCujYibsihspFqmNAHQ5oA3s4IaMOAj4pjBXiipBbgfqMqAnzU16cG3te+tcCVmZpVx2GPwEdEG/O0o1jKqWiZ7iMbMim1EJ1kj4uejVchoK43Bt7Xv83QFZlZIub2Kpqm+lmkT6unsDk9XYGaFdMiAl/TdoSyrRr1X0ngc3syKZyg9+NeVP5FUC7wxm3JG16xSwO/wOLyZFc+AAS/pOkntwCmSdqRf7cBG4KdjVuEIzCobhzczK5oBAz4i/jkipgA3RMTU9GtKRBwREdeNYY2HzTc7mVmRDWWI5nZJkwAk/amkz0k6OuO6RsWs9GYnj8GbWRENJeC/DOyWdCrJB2i/CHwn06pGSelmJ/fgzayIhhLwnRERwMXA5yPi88CUbMsaHaWbnTwGb2ZFNNhcNCXtkq4D3g/8QXoVTX22ZY2O3ukKHPBmVjxD6cG/D9gHfCgiNgDzgBsyrWqUzJqajMFv2L6X5I8QM7PiOGTAp6F+EzBN0kXA3ogYF2PwU5vqmdxYx579XWz33axmVjBDuZP1vcAjwKXAe4GHJV2SdWGjZc60pBe/bpuvpDGzYhnKGPz1wOkRsRF6pgn+JXBLloWNljnNE1i1cScbduzhpLlTK12OmdmYGcoYfE0p3FObh/i6qjBnqnvwZlZMQ+nB3ynpLuDm9Pn7gDsO9SJJTcADQGPazi0R8cnDLfRwzWlOAn799j1j3bSZWUUdMuAj4n9Ieg9wNsnH9y2JiNuGsO99wHkRsVNSPfAbSXdExEMjK3l45k6bAMB69+DNrGAG+9Dt1wBHRsRvI+JW4NZ0+TmSjo2I5wfbcXpz1M70aX36NebXKpZ68OvcgzezghlsLP1GoL2f5bvTdYckqVbSEyQzUN4dEQ/3s83VkpZKWtrW1jaU3Q7LnLQHv2G7e/BmViyDBfzCiFjed2FELAUWDmXnEdEVEYuB+cAZkk7uZ5slEdEaEa0tLS1DLHvoSpdJrvfNTmZWMIMFfNMg6yYMp5GI2AbcB7xzOK8bDZMa65jaVMe+zm627OoY6+bNzCpmsIB/VNJ/6btQ0lXAskPtWFKLpOb08QTg7cCKwy10JOY2pydaPUxjZgUy2FU0Hwduk3QFvYHeCjQA7x7CvucA304nJ6sBfhgRt4+k2MM1Z1oTKza0s27bHk6eN60SJZiZjbkBAz4iXgXeLOltQGns/D8i4ldD2XE6fn/ayEscuTlpD37DDvfgzaw4hnId/L3AvWNQS2bmpidaX9nqSyXNrDjGzZQDI3HUjIkAvLx1d4UrMTMbO4UK+Je2OODNrDgKEfBHlwJ+swPezIqjEAE/Y1IDkxpq2bG3k+27/cEfZlYMhQh4SR6mMbPCKUTAAyxwwJtZwTjgzcxyqjgBf4QD3syKpTAB33MtvAPezAqiMAHvIRozK5rCBPy85glI8Mq2PXR2dVe6HDOzzBUm4Jvqa5k9tYmu7mCdP5/VzAqgMAEPcMzMSQCs3rTzEFuamY1/hQr4Y1smA/B8264KV2Jmlr2CBXzSg3++zT14M8u/YgX8rLQHv9EBb2b5V6yA7xmiccCbWf4VKuBnT21iYkMtm3Z2sG13R6XLMTPLVKECvqZGLOoZh/eJVjPLt0IFPHiYxsyKwwFvZpZTxQ14X0ljZjmXWcBLOkrSvZKelfS0pI9l1dZwvCa9VHLlq+0VrsTMLFtZ9uA7gf8eEScCZwIflXRShu0NyaKWSTTU1vDylj207/Xns5pZfmUW8BGxPiIeSx+3A88C87Jqb6jqa2s4bnbSi1+xwb14M8uvMRmDl7QQOA14uJ91V0taKmlpW1vbWJTDibOnAvDs+h1j0p6ZWSVkHvCSJgM/Bj4eEQclakQsiYjWiGhtaWnJuhwATpyTBPwz6xzwZpZfmQa8pHqScL8pIm7Nsq3hKAW8e/BmlmdZXkUj4OvAsxHxuazaORwnpQG/8tV2urqjwtWYmWUjyx78W4D3A+dJeiL9ujDD9oZs2sR65jVPYO/+bl7Y5CkLzCyf6rLacUT8BlBW+x+pE+dM4ZVte3hm/Y6ea+PNzPKkcHeylpw8bxoAy1/eVuFKzMyyUdiAX3xUMwCPO+DNLKcKH/BPvrKdjs7uCldjZjb6ChvwzRMbWDRzEh2d3azY4MslzSx/ChvwAIsXpMM0L3mYxszyp9ABf1o6TPOEx+HNLIeKHfALpgPw+EtbK1yJmdnoK3TAHz97Ck31NazZvJu29n2VLsfMbFQVOuDra2s4feEMAB5avbnC1ZiZja5CBzzAmYuOAOBBB7yZ5UzhA/7Nx6YB/7wD3szypfAB//p505jcWMcLm3axYfveSpdjZjZqCh/wdbU1nHFMMg7/4OpNFa7GzGz0FD7gAc5Kx+F/s8rDNGaWHw544Jzjko8KvP/3G+n2B4CYWU444IHjjpzM/OkT2LSzgyfW+q5WM8sHBzwgibefeCQA9zz7aoWrMTMbHQ741HknzALgnmc3VrgSM7PR4YBPvWnRDCY11LJiQzsvb9ld6XLMzEbMAZ9qrKvl3OOTXvwdT62vcDVmZiPngC/zn06dC8BPn1hX4UrMzEbOAV/m3ONbmNJUx9PrdvDcxvZKl2NmNiKZBbykb0jaKOmprNoYbU31tVx48hzAvXgzG/+y7MF/C3hnhvvPxMWLk2Ga2x5/xTc9mdm4llnAR8QDwJas9p+VNy06gnnNE1i7dQ8PrGqrdDlmZofNY/B91NaIK85cAMD3HnqxwtWYmR2+ige8pKslLZW0tK2tOnrM7209iobaGu5ZsdHXxJvZuFXxgI+IJRHRGhGtLS0tlS4HgJmTG7nw9bOJgO88uKbS5ZiZHZaKB3y1uursRQDc9PBLbNnVUeFqzMyGL8vLJG8GHgSOl7RW0lVZtZWF18+fxrnHt7C7o4tv/OaFSpdjZjZsWV5Fc3lEzImI+oiYHxFfz6qtrFxz3msB+Pb/W8NW9+LNbJzxEM0g3nj0dP7gtTNp39fJ5+9ZVelyzMyGxQF/CNf/8YnUCL770IuevsDMxhUH/CGcMHsql5+xgK7u4JM/e5oI391qZuODA34IPvGO45g+sZ7fPreZmx95udLlmJkNiQN+CI6Y3MinLj4ZgH/8j2d885OZjQsO+CG66JQ5XPj62ezq6OLD31vG3v1dlS7JzGxQDvghksQ/v/sUFsyYyNPrdvA/b3vS4/FmVtUc8MMwbWI9X33/G5lQX8utj73C/7n795UuycxsQA74YTpxzlRuvGwxtTXiC796jq/c/3ylSzIz65cD/jBc8LrZ3HDJKQB85o4VfPbOFR6uMbOq44A/TO95w3xuuOQUamvEl+97nmtufpyd+zorXZaZWQ8H/Ahc2noUX7+ylYkNtdy+fD0XfeHXLF+7rdJlmZkBDvgRO/f4WfzsL8/mhNlTWLN5N3/ypd/yyZ8+xfY9+ytdmpkVnAN+FLxm1mR+8tG38OdnH4Mkvv3gi7z1hnv54j2r2LHXQW9mlaFqOjnY2toaS5curXQZI/LMuh38/c+f5pEXks8bn9JYx8WnzeWy0xdw8rxpFa7OzPJG0rKIaO13nQN+9EUED67ezBfuWcVDq7f0LF/UMol3nHQk5590JKfMb6a+1n9AmdnIOOAraOWGdm5+5CV+8sQrbNvdO1wzob6WU4+axukLZ/C6udM47sjJHH3EJGprVMFqzWy8ccBXgf1d3Ty6Zgt3P/Mq969sY/WmXQdt01hXw6KWycyfPoF5zROY29zE3OYJzJzcyIxJDTRPrGf6xAb3/M2shwO+Cm3auY9lL27lsRe3smJDO79/tZ312/cO6bVTGuuYNrGeSQ11TGysZWJDLRPq65jYkD5uqKWpvpb6GlFXW0N9bQ31taK+toa6WlFfU0N9nairSdbV1ogaQY2E0u/JVzIHT42gpqb8+WDbl1fa+6S0vHy1yjZWn+2SZQe//oC9l2+bPtFA69M1By7rt9RcUU7/Yf39fxjvmifUU3cYnbfBAr5uxFXZYZk5uZELXjebC143u2fZjr37Wd22i/Xb9vBK+rVu2x427+xg6+4Otu3ez9bdHbTv66TdN1WZ5covP/FWXjNr8qju0wFfRaY21bP4qGYWH9U84Dbd3UH73k627elg174u9uzvZHdHF7s7utiTft/d0cm+zm72d3XT2RXs7+pmf1fQ2d3d87i0rqOrm+7uoDuCALojOUncHUF3N8nySL4nX6X19HkedHX3/jV4wN+FcfCy8r8co2dZ+UvK1sfB6w/YfbriwP0fvK8Dl/W/bb7k8x+W159XFuffHPDjTE2NmDaxnmkT6ytdiplVOZ+tMzPLqUwDXtI7Ja2U9Jyka7Nsy8zMDpRZwEuqBb4E/BFwEnC5pJOyas/MzA6UZQ/+DOC5iFgdER3AvwMXZ9iemZmVyTLg5wEvlz1fmy47gKSrJS2VtLStrS3DcszMiiXLgO/vmp+DLnCKiCUR0RoRrS0tLRmWY2ZWLFkG/FrgqLLn84F1GbZnZmZlsgz4R4HXSjpGUgNwGfCzDNszM7Mymc5FI+lC4EagFvhGRPzjIbZvA148zOZmApsO87VjodrrA9c4Gqq9Pqj+Gqu9PqiuGo+OiH7Ht6tqsrGRkLR0oAl3qkG11weucTRUe31Q/TVWe30wPmoE38lqZpZbDngzs5zKU8AvqXQBh1Dt9YFrHA3VXh9Uf43VXh+MjxrzMwZvZmYHylMP3szMyjjgzcxyatwHfLVMSSzpKEn3SnpW0tOSPpYunyHpbkmr0u/T0+WS9IW07uWS3jBGddZKelzS7enzYyQ9nNb3g/SmNCQ1ps+fS9cvHKP6miXdImlFeizPqqZjKOmv0p/vU5JultRU6WMo6RuSNkp6qmzZsI+ZpCvT7VdJunIMarwh/Tkvl3SbpOayddelNa6UdEHZ8sze7/3VWLburyWFpJnp84ocx2GLiHH7RXID1fPAIqAB+B1wUoVqmQO8IX08Bfg9yTTJ/wJcmy6/Fvhs+vhC4A6SOXvOBB4eozo/AXwfuD19/kPgsvTxV4C/SB9/BPhK+vgy4AdjVN+3gT9PHzcAzdVyDEkmy3sBmFB27D5Y6WMInAO8AXiqbNmwjhkwA1idfp+ePp6ecY3nA3Xp48+W1XhS+l5uBI5J3+O1Wb/f+6sxXX4UcBfJTZgzK3kch/1vqlTDo/QDOQu4q+z5dcB1la4rreWnwDuAlcCcdNkcYGX6+KvA5WXb92yXYU3zgXuA84Db0/+cm8reZD3HM/0PfVb6uC7dThnXNzUNUPVZXhXHkN4ZUmekx+R24IJqOIbAwj7hOaxjBlwOfLVs+QHbZVFjn3XvBm5KHx/wPi4dx7F4v/dXI3ALcCqwht6Ar9hxHM7XeB+iGdKUxGMt/VP8NOBh4MiIWA+Qfp+VblaJ2m8E/gboTp8fAWyLiM5+auipL12/Pd0+S4uANuCb6TDS1yRNokqOYUS8Avxv4CVgPckxWUZ1HcOS4R6zSr+XPkTSI2aQWsa8RknvAl6JiN/1WVU1NQ5mvAf8kKYkHkuSJgM/Bj4eETsG27SfZZnVLukiYGNELBtiDZU4tnUkfyJ/OSJOA3aRDC8MZKyP4XSSD605BpgLTCL5xLKBaqi6/58MXFPFapV0PdAJ3FRaNEAtY/3znghcD/xdf6sHqKWqfubjPeCrakpiSfUk4X5TRNyaLn5V0px0/RxgY7p8rGt/C/AuSWtIPl3rPJIefbOkun5q6KkvXT8N2JJhfaU210bEw+nzW0gCv1qO4duBFyKiLSL2A7cCb6a6jmHJcI9ZRd5L6UnIi4ArIh3TqKIajyX5Zf679H0zH3hM0uwqqnFQ4z3gq2ZKYkkCvg48GxGfK1v1M6B0Jv1KkrH50vIPpGfjzwS2l/6kzkJEXBcR8yNiIclx+lVEXAHcC1wyQH2lui9Jt8+0JxIRG4CXJR2fLvpD4Bmq5BiSDM2cKWli+vMu1Vc1x7DMcI/ZXcD5kqanf6mcny7LjKR3An8LvCsidvep/bL0KqRjgNcCjzDG7/eIeDIiZkXEwvR9s5bkQooNVNFxHFSlBv9H8aTIhSRXrDwPXF/BOs4m+VNsOfBE+nUhyZjrPcCq9PuMdHuRfCj588CTQOsY1nouvVfRLCJ58zwH/AhoTJc3pc+fS9cvGqPaFgNL0+P4E5IrEarmGAL/AKwAngK+S3KlR0WPIXAzyTmB/SQhdNXhHDOScfDn0q8/G4ManyMZry69X75Stv31aY0rgT8qW57Z+72/GvusX0PvSdaKHMfhfnmqAjOznBrvQzRmZjYAB7yZWU454M3McsoBb2aWUw54M7OccsBbZtLZ9/617PlfS/r7Udr3tyRdcugtR9zOpUpmtby3z/K5km5JHy+WdOEottks6SP9tWU2HA54y9I+4D2lKVarhaTaYWx+FfCRiHhb+cKIWBcRpV8wi0muzx5ODXWDrG4mmYmyv7bMhswBb1nqJPnsyr/qu6JvD1zSzvT7uZLul/RDSb+X9BlJV0h6RNKTko4t283bJf063e6i9PW1SuYZfzSdp/u/lu33XknfJ7kxpW89l6f7f0rSZ9Nlf0dyA9tXJN3QZ/uF6bYNwKeA90l6QtL7JE1SMrf4o+mkaRenr/mgpB9J+jnwC0mTJd0j6bG07YvT3X8GODbd3w2lttJ9NEn6Zrr945LeVrbvWyXdqWQe8n8pOx7fSmt9UtJBPwvLr8F6EWaj4UvA8lLgDNGpwIkk87asBr4WEWco+RCVa4CPp9stBN5KMmfIvZJeA3yA5Lbx0yU1Ar+V9It0+zOAkyPihfLGJM0lmY/8jcBWkvD9k4j4lKTzgL+OiKX9FRoRHekvgtaI+Mt0f/9EMi3Bh5R8iMUjkn6ZvuQs4JSI2JL24t8dETvSv3IekvQzkgnWTo6Ixen+FpY1+dG03ddLOiGt9bh03WKSWUz3ASslfZFkFsl5EXFyuq9mrDDcg7dMRTKj5neA/zaMlz0aEesjYh/JreClgH6SJNRLfhgR3RGxiuQXwQkkc398QNITJNM1H0EylwnAI33DPXU6cF8kk4iVZjU8Zxj19nU+cG1aw30kUxYsSNfdHRGlCccE/JOk5cAvSaaVPfIQ+z6bZIoEImIFyYdQlAL+nojYHhF7SebIOZrkuCyS9MV07pfBZji1nHEP3sbCjcBjwDfLlnWSdjAkieQTekr2lT3uLnvezYH/Z/vOs1GarvWaiDhggidJ55JMP9yf/qZ4HQkB/zkiVvap4U19argCaAHeGBH7lcxY2DSEfQ+k/Lh1kXwIyVZJp5J8MMlHgfeSzJViBeAevGUu7bH+kOSEZckakiERSOZYrz+MXV8qqSYdl19EMjHVXcBfKJm6GUnHKfnQkME8DLxV0sz0BOzlwP3DqKOd5GMaS+4Crkl/cSHptAFeN41kjv796Vj60QPsr9wDJL8YSIdmFpD8u/uVDv3URMSPgf9FMv2yFYQD3sbKvwLlV9P8X5JQfQTo27MdqpUkQXwH8OF0aOJrJMMTj6UnJr/KIf5SjWSa1+tIpv39HfBYRPx0sNf0cS9wUukkK/Bpkl9Yy9MaPj3A624CWiUtJQntFWk9m0nOHTzV9+Qu8G9AraQngR8AH0yHsgYyD7gvHS76VvrvtILwbJJmZjnlHryZWU454M3McsoBb2aWUw54M7OccsCbmeWUA97MLKcc8GZmOfX/AaPrhvpfop3KAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "theta=np.zeros(X.shape[1])\n", + "alpha=0.01\n", + "num_iters=1500\n", + "theta,J_history=gradientDescentMulti(X, y, theta, alpha, num_iters)\n", + "print(theta)\n", + "pyplot.plot(np.arange(len(J_history)), J_history, lw=2) \n", + "pyplot.xlabel('Number of iterations')\n", + "pyplot.ylabel('Cost J')\n", + "pyplot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predicted price of a 1650 sq-ft, 3 br house (using gradient descent): $293098\n" + ] + } + ], + "source": [ + "# Estimate the price of a 1650 sq-ft, 3 br house\n", + "# ======================= YOUR CODE HERE ===========================\n", + "# Recall that the first column of X is all-ones. \n", + "# Thus, it does not need to be normalized.\n", + "sqft=1650\n", + "numhouse=3\n", + "\n", + "price = 0 # You should change this\n", + "\n", + "norm_sqft=(sqft-mu[0])/sigma[0]\n", + "norm_numhouse=(numhouse-mu[1])/sigma[1]\n", + "\n", + "price = theta[0] + (theta[1]*norm_sqft) + (theta[2]*norm_numhouse)\n", + "\n", + "# ===================================================================\n", + "\n", + "print('Predicted price of a 1650 sq-ft, 3 br house (using gradient descent): ${:.0f}'.format(price))" + ] + }, + { + "cell_type": "code", + "execution_count": 186, + "metadata": {}, + "outputs": [], + "source": [ + "# Load data\n", + "data = np.loadtxt('ex1data2.txt', delimiter=',')\n", + "X = data[:, :2]\n", + "y = data[:, 2]\n", + "m = y.size\n", + "X = np.concatenate([np.ones((m, 1)), X], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 187, + "metadata": {}, + "outputs": [], + "source": [ + "def normalEqn(X, y):\n", + " \"\"\"\n", + " Computes the closed-form solution to linear regression using the normal equations.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The dataset of shape (m x n+1).\n", + " \n", + " y : array_like\n", + " The value at each data point. A vector of shape (m, ).\n", + " \n", + " Returns\n", + " -------\n", + " theta : array_like\n", + " Estimated linear regression parameters. A vector of shape (n+1, ).\n", + " \n", + " Instructions\n", + " ------------\n", + " Complete the code to compute the closed form solution to linear\n", + " regression and put the result in theta.\n", + " \n", + " Hint\n", + " ----\n", + " Look up the function `np.linalg.pinv` for computing matrix inverse.\n", + " \"\"\"\n", + " theta = np.zeros(X.shape[1])\n", + " \n", + " # ===================== YOUR CODE HERE ============================\n", + " \n", + " theta=((np.linalg.inv(((X.transpose()).dot(X)))).dot(X.transpose())).dot(y)\n", + "\n", + " \n", + " # =================================================================\n", + " return theta" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta computed from the normal equations: [89597.9095428 139.21067402 -8738.01911233]\n", + "Predicted price of a 1650 sq-ft, 3 br house (using normal equations): $293081\n" + ] + } + ], + "source": [ + "# Calculate the parameters from the normal equation\n", + "theta = normalEqn(X, y);\n", + "\n", + "# Display normal equation's result\n", + "print('Theta computed from the normal equations: {:s}'.format(str(theta)));\n", + "\n", + "# Estimate the price of a 1650 sq-ft, 3 br house\n", + "# ====================== YOUR CODE HERE ======================\n", + "\n", + "price = 0 # You should change this\n", + "\n", + "sqft=1650\n", + "numhouse=3\n", + "\n", + "price = theta[0] + (theta[1]*sqft) + (theta[2]*numhouse)\n", + "\n", + "# ============================================================\n", + "\n", + "print('Predicted price of a 1650 sq-ft, 3 br house (using normal equations): ${:.0f}'.format(price))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/gradientdescentSingle.ipynb b/gradientdescentSingle.ipynb new file mode 100644 index 000000000..6530ab445 --- /dev/null +++ b/gradientdescentSingle.ipynb @@ -0,0 +1,388 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "from mpl_toolkits.mplot3d import Axes3D # needed to plot 3-D surfaces\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils \n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Read comma separated data\n", + "data = np.loadtxt('ex1data1.txt', delimiter=',')\n", + "X, y = data[:, 0], data[:, 1]\n", + "m = y.size # number of training examples" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Add a column of ones to X. The numpy function stack joins arrays along a given axis. \n", + "# The first axis (axis=0) refers to rows (training examples) \n", + "# and second axis (axis=1) refers to columns (features).\n", + "X = np.stack([np.ones(m), X], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def computeCost(X, y, theta):\n", + " \"\"\"\n", + " Compute cost for linear regression. Computes the cost of using theta as the\n", + " parameter for linear regression to fit the data points in X and y.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The input dataset of shape (m x n+1), where m is the number of examples,\n", + " and n is the number of features. We assume a vector of one's already \n", + " appended to the features so we have n+1 columns.\n", + " \n", + " y : array_like\n", + " The values of the function at each data point. This is a vector of\n", + " shape (m, ).\n", + " \n", + " theta : array_like\n", + " The parameters for the regression function. This is a vector of \n", + " shape (n+1, ).\n", + " \n", + " Returns\n", + " -------\n", + " J : float\n", + " The value of the regression cost function.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the cost of a particular choice of theta. \n", + " You should set J to the cost.\n", + " \"\"\"\n", + " \n", + " # initialize some useful values\n", + " m = y.size # number of training examples\n", + "\n", + " # You need to return the following variables correctly\n", + " J = 0\n", + "\n", + " # ====================== YOUR CODE HERE =====================\n", + " H=theta.dot(X.transpose())\n", + " sum=0\n", + " for element in range(len(H.transpose()-y)):\n", + " sum=sum+((H.transpose()-y)[element]*(H.transpose()-y)[element])\n", + " \n", + " J=sum/(2*m) \n", + "\n", + " # ===========================================================\n", + " return J\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# J = computeCost(X, y, theta=np.array([0.0, 0.0]))\n", + "# print('With theta = [0, 0] \\nCost computed = %.2f' % J)\n", + "# print('Expected cost value (approximately) 32.07\\n')\n", + "\n", + "# # further testing of the cost function\n", + "# J = computeCost(X, y, theta=np.array([-1, 2]))\n", + "# print('With theta = [-1, 2]\\nCost computed = %.2f' % J)\n", + "# print('Expected cost value (approximately) 54.24')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def gradientDescent(X, y, theta, alpha, num_iters):\n", + " \"\"\"\n", + " Performs gradient descent to learn `theta`. Updates theta by taking `num_iters`\n", + " gradient steps with learning rate `alpha`.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The input dataset of shape (m x n+1).\n", + " \n", + " y : arra_like\n", + " Value at given features. A vector of shape (m, ).\n", + " \n", + " theta : array_like\n", + " Initial values for the linear regression parameters. \n", + " A vector of shape (n+1, ).\n", + " \n", + " alpha : float\n", + " The learning rate.\n", + " \n", + " num_iters : int\n", + " The number of iterations for gradient descent. \n", + " \n", + " Returns\n", + " -------\n", + " theta : array_like\n", + " The learned linear regression parameters. A vector of shape (n+1, ).\n", + " \n", + " J_history : list\n", + " A python list for the values of the cost function after each iteration.\n", + " \n", + " Instructions\n", + " ------------\n", + " Peform a single gradient step on the parameter vector theta.\n", + "\n", + " While debugging, it can be useful to print out the values of \n", + " the cost function (computeCost) and gradient here.\n", + " \"\"\"\n", + " # Initialize some useful values\n", + " m = y.shape[0] # number of training examples\n", + " \n", + " # make a copy of theta, to avoid changing the original array, since numpy arrays\n", + " # are passed by reference to functions\n", + " theta = theta.copy()\n", + " \n", + " J_history = [] # Use a python list to save cost in every iteration\n", + " \n", + " for i in range(num_iters):\n", + " # ==================== YOUR CODE HERE =================================\n", + " H=theta.dot(X.transpose())\n", + " temp1=(alpha/m)*((H.transpose()-y).transpose()).dot(X[:,0])\n", + " temp2=(alpha/m)*((H.transpose()-y).transpose()).dot(X[:,1])\n", + " theta[0]-=temp1\n", + " theta[1]-=temp2\n", + " # =====================================================================\n", + " \n", + " # save the cost J in every iteration\n", + " J_history.append(computeCost(X, y, theta))\n", + " \n", + " return theta, J_history" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta found by gradient descent: -3.6303, 1.1664\n", + "Expected theta values (approximately): [-3.6303, 1.1664]\n" + ] + } + ], + "source": [ + "# initialize fitting parameters\n", + "theta = np.zeros(2)\n", + "\n", + "# some gradient descent settings\n", + "iterations = 1500\n", + "alpha = 0.01\n", + "\n", + "theta, J_history = gradientDescent(X ,y, theta, alpha, iterations)\n", + "print('Theta found by gradient descent: {:.4f}, {:.4f}'.format(*theta))\n", + "print('Expected theta values (approximately): [-3.6303, 1.1664]')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def plotData(x, y):\n", + " \"\"\"\n", + " Plots the data points x and y into a new figure. Plots the data \n", + " points and gives the figure axes labels of population and profit.\n", + " \n", + " Parameters\n", + " ----------\n", + " x : array_like\n", + " Data point values for x-axis.\n", + "\n", + " y : array_like\n", + " Data point values for y-axis. Note x and y should have the same size.\n", + " \n", + " Instructions\n", + " ------------\n", + " Plot the training data into a figure using the \"figure\" and \"plot\"\n", + " functions. Set the axes labels using the \"xlabel\" and \"ylabel\" functions.\n", + " Assume the population and revenue data have been passed in as the x\n", + " and y arguments of this function. \n", + " \n", + " Hint\n", + " ----\n", + " You can use the 'ro' option with plot to have the markers\n", + " appear as red circles. Furthermore, you can make the markers larger by\n", + " using plot(..., 'ro', ms=10), where `ms` refers to marker size. You \n", + " can also set the marker edge color using the `mec` property.\n", + " \"\"\"\n", + " fig = pyplot.figure() # open a new figure\n", + " \n", + " # ====================== YOUR CODE HERE ======================= \n", + " pyplot.plot(x, y, 'ro',ms=10, mec='k')\n", + " pyplot.ylabel('Profit in $10,000')\n", + " pyplot.xlabel('Population of City in 10,000s')\n", + "\n", + " # =============================================================" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEHCAYAAACncpHfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2deXxU1fXAvzfJCBnDiBKgVoRoqlbEgIAWBFstVUEWrcYFBFzAKAGqEZWgtrXaClSRtoKiBJTVDTeUpPYn7gW0gAIKKBkNiuICKotgnJDz++O9CZPMmmS2TM7383mfzNx337tnZl7Oucs55xoRQVEURWl+pCVaAEVRFCUxqAFQFEVppqgBUBRFaaaoAVAURWmmqAFQFEVppqgBUBRFaaZkxOrGxpijgfnAz4Bq4GER+acx5g7gGuAbu+qtIlIa6l7Z2dmSk5MTK1EVRVFSkjVr1uwQkbbBzsfMAABVwAQRWWuMaQWsMcb8n31uuojcG+mNcnJyWL16dUyEVBRFSVWMMVtDnY+ZARCR7cB2+/UeY8wm4KhYtacoiqLUj7isARhjcoBTgLftonHGmPXGmLnGmMPjIYOiKIpSm5gbAGNMFvA0cIOI7AYeBHKBblgjhGlBriswxqw2xqz+5ptvAlVRFEVRGkEs1wAwxjiwlP8iEXkGQES+8jk/G3gx0LUi8jDwMEDPnj39EhZ5PB62bdvGjz/+GAvRlSShZcuWdOjQAYfDkWhRFCVuuN1uZkybxuKFC9mxdy/ZWVkMGz6ccRMmkJubG7V2YukFZIA5wCYRuc+n/Eh7fQDg98D7Dbn/tm3baNWqFTk5OVhNKamGiLBz5062bdvGMccck2hxFCUulJWVMTI/n2s8HlZ4PHQCtu7Zw5ySEnrNm8f8JUsYMGBAVNqK5QigDzAC2GCMec8uuxUYaozpBghQAVzbkJv/+OOPqvxTHGMMbdq0QacAleaC2+1mZH4+S/fto7dPeS5wt8fDYI+HIfn5rFq/PiojgVh6Ab0FBNLOIX3+64Mq/9RHf2OlOTFj2jSu8XhqKX9fegOjPR5mTp/OfTNmNLq9ZhEJ7Ha7KSospL3LRXpaGu1dLooKC3G73YkWTVEUpYbFCxcyyuMJWWe0x8PiBQui0l7KG4CysjJ65eWRWVLCij17qBRhxZ49ZJaU0Csvj7Kysgbdd+fOnXTr1o1u3brxs5/9jKOOOqrm/U8//RTRPa666io+/PDDkHVmzpzJokWLGiRjKF5++WUuuOCCkHXWrl3Lv//976i3rShKYHbs3UunMHU62vWiQUy9gBJNLOfT2rRpw3vvWUsbd9xxB1lZWdx000216ogIIkJaWmA7+8gjj4RtZ+zYsfWSK5qsXbuW999/n/79+ydMBkVpTmRnZbF1zx5CaaNP7XrRIKVHAPWZT4sW5eXldOnSheuuu47u3buzfft2CgoK6NmzJyeddBJ33nlnTd2+ffvy3nvvUVVVRevWrSkuLqZr16707t2br7/+GoDbb7+df/zjHzX1i4uLOe200zjhhBNYsWIFAD/88AMXXXQRXbt2ZejQofTs2bPGOPmybNkyTjjhBPr27cvzzz9fU75q1Sp69+7NKaecQp8+fdiyZQv79+/nzjvvZNGiRXTr1o0lS5YErKcoSvQYNnw4c8K4PJc4HAwbMSI6DXp7qcl89OjRQ+qyceNGv7K6tGvVSspBJMRRDtLe5Qp7r1D8+c9/lnvuuUdERLZs2SLGGHnnnXdqzu/cuVNERDwej/Tt21c++OADERHp06ePvPvuu+LxeASQ0tJSEREpKiqSyZMni4jIbbfdJtOnT6+pf8stt4iIyPPPPy/nnnuuiIhMnjxZCgsLRUTkvffek7S0NHn33XdryfjDDz/IUUcdJeXl5VJdXS0XXnihnH/++SIi8v3330tVVZWIiJSVlckll1wiIiKzZ8+W66+/vuYewerFmkh+a0VJBcrLyyXb6ZQVQfTVCpBsp1PKy8sjuh+wWkLo1pSeAor3fJqX3NxcTj311Jr3jz32GHPmzKGqqoovvviCjRs30rlz51rXZGZm1vj29ujRgzfffDPgvS+88MKaOhUVFQC89dZbTJw4EYCuXbty0kkn+V23ceNGjj/++Jqprssvv5z58+cD8P333zNy5Miwi+KR1lMUpWHk5uYyf8kShuTnM9rjYbTHQ0esaZ8Sh4MSh4P5S5ZELRgspaeAsrOyCJkKj+jOp3k59NBDa15v2bKFf/7zn7zyyiusX7+e/v37B4xePuSQQ2pep6enU1VVFfDeLVq08KtjGfrwBHOpvO222zj33HN5//33ee6554JGV0daT1GUhjNgwABWrV9PZUEBfVwuMtPS6ONyUVlQwKr166MWBAYpbgDiPp8WgN27d9OqVStcLhfbt2/npZdeinobffv25cknnwRgw4YNbNy40a9O586d+eijj/jkk08QER577LGac7t27eKoo6xErY8++mhNeatWrdizZ0/YeooSL5qLS3dubi73zZjBl7t2UXXgAF/u2sV9M2ZENQ0EpLgBGDdhArMdDlYGOb8SywCMLSqKmQzdu3enc+fOdOnShWuuuYY+ffpEvY3x48fz+eefk5eXx7Rp0+jSpQuHHXZYrTpOp5NZs2YxYMAAzjjjDI499tiacxMnTuTmm2/2k+23v/0t69at45RTTmHJkiVB6ylKPIiVS3ezJtQCQbIcDV0EFhEpLS2VbKdTih0OKQf5yV74LXY4JNvprFl4bcp4PB7Zv3+/iIh89NFHkpOTIx6PJ8FSRQ9dBFaivTjaXCDMInBKjwAgvvNpiWLv3r306dOHrl27ctFFF/HQQw+RkZHS6/tKMyMRLt3NASMRLiAmkp49e0rdLSE3bdrEiSeemCCJlHiiv7XS3uViRZgAKTfQx+Xiy1274iVW0mOMWSMiPYOdT/kRgKIoTZ9EuXSnOmoAFEVJehLl0p3qqAFQFCXpiYdLd7K5mM58tZwRc97mh8rAMUHRQA2AoihJT6xdupPFxVREmFK2mZziZdzz0oe8uWWHGoBkJSvAcHPWrFk1KRaaM0uXLmXKlCmJFkNJEWpSJDidTHI4cAMerIXfSQ4HQ5zOBqdI8M0afLfHQy5WmmRv1uCl+/YxMj8/piOB6mrh1mc3cMykUma9brXTqY2Td/94Nu1cLWPWrvoKRpnrrrsupvev8d8NkmL6wIEDpKenN/j+jb3ey5AhQxgyZEij76MoXrwu3TOnT6fPggUHN0sfMYJVRUUNjpKN9y5cvlQdqObGJ9exdN0XNWUnH3UYi6/5Fa1ahp7yigY6Aogyd9xxB/feey8AZ555JhMnTuS0007j+OOPr0nwduDAAW6++WZOPfVU8vLyeOihhwDLn79fv350796dk08+uSZlc0VFBSeeeCKFhYV0796dzz77rFabOTk53HnnnfTt25ennnoKt9tN//796dGjB2eccQabN28GrJ5Or169OPXUU/nTn/5UM4J57bXXOOussxg2bBgnn3wyAAsXLuS0006jW7duXHvttRw4cIADBw5w5ZVX0qVLF04++WSm2z7X//rXv+jcuTN5eXlcdtllgJUqYty4cQBs3bqVfv36kZeXR79+/fj0008BuPLKK/nDH/7A6aefzrHHHsuSJUti86MoKUMsUiTEexcugMqqA1z5yDv84rayGuV/em4bNt/VnxfG942L8ocUGQH85YUP2PjF7qjes/PPXfx5sH9WzfpSVVXFO++8Q2lpKX/5y194+eWXmTNnDocddhj/+9//qKyspE+fPpxzzjkcffTRPPvss7hcLnbs2EGvXr1qetEffvghjzzyCA888EDAdlq2bMlbb70FQL9+/Zg1axbHHXccb7/9NoWFhbzyyitcf/31XH/99QwdOpRZs2bVuv6dd97h/fff55hjjmHTpk088cQT/Pe//8XhcFBYWMiiRYs46aST+Pzzz3n//fcBKzsowJQpU/jkk09o0aJFTZkv48aNY+TIkVxxxRXMnTuXP/zhDzz33HMAbN++nbfeeovNmzczZMgQ8vPzG/2dK0p9qOti6gZmAIuBHUA2cBnwjU9erIay76cqhpe8zdpPD/6fnHtSe+4f2p1DMuLfH08JA5DMBErf/J///If169fX9Hh37drFli1b6NChA7feeitvvPEGaWlpfP7553z11VcAdOrUiV69egVt59JLLwWsUcSKFSu4+OKLa85VVlYCsHLlyhrFO2zYsFo7mJ122mkcc8wxACxfvpw1a9bUpLTev38/7dq1Y/DgwXz88ceMHz+egQMHcs455wCQl5fH5ZdfzgUXXBBwm8mVK1fyzDPPADBixAhuueWWmnMXXHABaWlpdO7cueazKko88d2FqwwYCVwDrAA6AVuBEqClCGVlZQ3KHrBrv4eLHlxB+dcH4xTye3Rg6kV5pKcFztIbD1LCAESjpx4rgqVvvv/++zn33HNr1X300Uf55ptvWLNmDQ6Hg5ycnJqUy74ppgPhPV9dXU3r1q0D7ggWyfVe+a644gomT57sV2/dunW89NJLzJw5kyeffJK5c+eybNky3njjDZYuXcpdd93FBx98ELIt37TU3u/H266ixJthw4czp6SEUR4PI4Gl4LeF7GRgCNR7C9kdeysZ9K+3+HL3wdTpV/XJ4U+DOgdNzx5PdA0gAZx77rk8+OCDeOx5x48++ogffviBXbt20a5dOxwOB6+++ipbt4YLffHH5XJxzDHH8NRTTwGWUl23bh0AvXr14umnnwbg8ccfD3qPfv36sWTJkpptKb/99lu2bt3Kjh07qK6u5qKLLuKuu+5i7dq1VFdX89lnn3HWWWfx97//ne+//569daIxTz/99Jr2Fi1aRN++fev9uRQlVnhdTG/H6vlHI9/Qmq3fkVO8jJ5/fblG+V/f7zg+mXwefx58UlIof0iREUCi2LdvHx06dKh5f+ONN0Z03ejRo6moqKB79+6ICG3btuW5557j8ssvZ/DgwfTs2ZNu3brxy1/+skFyLVq0iDFjxvDXv/4Vj8fDZZddRteuXfnHP/7B8OHDmTZtGgMHDvRLGe2lc+fO/PWvf+Wcc86huroah8PBzJkzyczM5KqrrqK6uhqAyZMnc+DAAYYPH86uXbsQEYqKimjdunWt+/3rX//i6quv5p577qFt27Y88sgjDfpcihILvC6mF513HhvC1B3t8dBnwYKg3kCvffg1Vz7yv1pltw88kdFnHBuwfqLRZHDNiH379pGZmYkxhscff5zHHnus1ubwyYr+1ko8SE9LozLMPrkeIDMtjaoDB2qVP//e51z/eO1p11M6tubZwsTunREuGZyOAJoRa9asYdy4cYgIrVu3Zu7cuYkWSVGSBt/F4GDUzTf0yH8/4S8v1N6Bb0CXn/Hg8B6xETLKqAFoRpxxxhk16wGKotTGuxh8d4iYAG++oXtf+pAZr5bXOndF70785fwusRYzqjRpAyAiSbOYosSGpjBFqaQG4yZMoNe8eQwOEhW8Eph/7jgcWf3AR/nfePbx/KHfcXGTM5rEzAAYY44G5gM/A6qBh0Xkn8aYI4AngBygArhERL6r7/1btmzJzp07adOmjRqBFEVE2LlzJy1bxi4XiqJ4qck3lJ/PaI+H0R4PHbGmfUZcfAdfHNsT3/jcv17QheG9wu1SkNzEbBHYGHMkcKSIrDXGtALWABcAVwLfisgUY0wxcLiITAx1r0CLwB6Ph23bttX4ySupScuWLenQoQOOMKmAFSVauN1uZk6fzuIFC0i78K8c0r62B8/MYd0ZmHdkgqSrHwlbBBaR7cB2+/UeY8wm4CjgfOBMu9o84DUgpAEIhMPhqIlcVRRFiRa5ubk8kzWAlmNqR/wuGv0r+vwiO0FSxYa4rAEYY3KAU4C3gfa2cUBEthtj2sVDBkVRlFCICMdMKvUrf35sH7oe3TrAFU2fmBsAY0wW8DRwg4jsjnS+3hhTABQAdOzYMXYCKorSrPEcqOa42/w3fFlyXW965hyRAIniR0wNgDHGgaX8F4nIM3bxV8aYI+3e/5HA14GuFZGHgYfBWgOIpZyKojQ/9lZW0eXPL/mVPz3mdHp0OjwBEsWfWHoBGWAOsElE7vM5tRS4Aphi/03+UFRFUVKGr3f/yGl3L/crf2XCbzi2bfPaVD6WI4A+wAhggzHGGyN9K5bif9IYMwrLw+riINcriqJEjfKv9/K7+173K//fbb+jbasWAa5IfWLpBfQWEGzCv1+s2lUURfHlfxXfcvEs/+3kP/jLuRzaoknHwjaa5v3pFUVJWco2bGfMorV+5eV/G0BGumbCBzUAiqKkGIEStAF8Mvk8zRpQBzUAiqKkBH9btpHZb37iV14xZWACpGkaqAFQFKVJUzB/Nf/Z6L+ftCr+8KgBUBSlSXL2fa+z5eu9fuWq+CNHV0IURWlS5BQvI6d4mZ/yr5gyMCmUv9vtpqiwkPYuF+lpabR3uSgqLMTtdidaND90BKAoSpMgp3hZwPJkUPpeysrKGJmfzzUeDys8HjoBW/fsYU5JCb3mzWP+kiUMGDAg7H3iRZPdE1hRlOZBU1D8YPX8e+XlsXTfvqAbygxxOlm1fj25uaE2nowe4dJB6xRQGJrScE5RUgnvVE9dkmWqpy4zpk3jmiC7iQH0BkZ7PMycPj2eYoVERwAh8B3OjfIO54A5DgezHY6kG84pSioQSOmf0L4VLxX9OgHSRE57l4sVYTaVdwN9XC6+3LUrLjKFGwGoAQhCMg7nFCVVCZaL//xuP+efl52SAInqT3paGpUiIRdWPUBmWhpVBw7ERaaE7QjW1KnPcO6+GTPiKZqipAw/VVVz/O3+ufgnnH0845vYRuvZWVlsDTMC+NSulyzoGkAQFi9cyCiPJ2Sd0R4PixcsiJNEipI67NrnIad4mZ/y/+dl3aiYMjCo8k/mNblhw4czJ8ze1SUOB8NGjIiTROHRKaAgJONwTlGaOp/u3Mev73nVr/yp63pzapjdt5J9TS4Zp411CqiBNMXhnKIkK2s//Y4LH1jhV/7qTWdyTPahYa93u92MzM/3U665wN0eD4M9Hobk5yd0TS43N5f5S5YwJD+f0R4Poz0eOmLpiRKHgxLbSCXTmqFOAQWhKQ7nFCXZWLZ+OznFy/yU/7t/PJuKKQMjUv7QdFwsBwwYwKr166ksKKCPy0VmWhp9XC4qCwpYtX590nkN6hRQEJJxOKcoTYVZr7uZUrbZr3zzXf1p6Uiv9/2S0cWyKaBTQA2kKQ7nFCXR3PzUOp5as82vvLG5+Hfs3UunMHU62vWUyFEDEALvcG7m9On0WbCAHXv3kp2VxbARI1hVVKTKX1Fshsx4i/Xb/Hve0YrY1TW52KBTQIqiNJh45ekpKiwks6SEu0O4Zk9yOKgsKNC4HB90CkhRlKgT7wRt4yZMoNe8eQwOshC8EmtqdlVRUUzaT1XUACiKEjGJysypa3KxQQ2AoihhSYaUzLomF33CrgEYa+n+NOAoQIAvgHckjosHugagNEXcbjczpk1j8cKFB5XV8OGMmzChySirZFD8SsNp1BqAMeYc4AFgC/C5XdwB+IUxplBE/hM1SRUlhWhqO0PVRRV/8yDkCMAYswkYICIVdcqPAUpF5MTYimehIwClKdGUgwgDKf6cNk5eu/msBEijNJbGegFlAP5RHdZoIHSeBEVppjS1VOLBcvGfd/LPeODyHgmQSIkX4UYAk4BLgMeBz+zio4HLgCdFZHLMJURHAErToqmkLfAcqOa42/xz8f+h33HcePbxCZBIiTaNGgGIyGRjzPPAEKyOi8EaEVwuIhvDNDwXGAR8LSJd7LI7gGuAb+xqt4qIf9dDUZowyZ62YPePHvLu8F++u/firuT36JAAiZREEdYN1Fb0G40xR1hv5bsI7/0oMAOYX6d8uojcWy8pFSXONMaDJ1nTFmz7bh99p/rn4n/sml70zm0TV1mU5CBkOmhjTEdjzOPGmK+Bt4F3jDFf22U5oa4VkTeAb6MmqaLEibKyMnrl5ZFZUsKKPXuoFGHFnj1klpTQKy+PsjL/aRNfki2V+LrPvieneJmf8n/5xl9TMWWgKv9mTLg1gJXAP4AlInLALksHLgZuEJFeIW9uGYkX60wBXQnsBlYDEyIZUegagBIvouHBkyxeQC998CXXLljjV7769t+RndUiZu0qyUO4NYBwG8Jki8gTXuUPICIHRORxoCHdhgexNvHpBmwHpgWraIwpMMasNsas/uabb4JVU5SoEo2NR2rSFjidTHI4cGNtH+rGSlg2xOmMadqCkjc/Jqd4mZ/y33xXfyqmDFTlr9QQbgTwONY0zjxqewFdgWUcLgl58zojgEjP1UVHAEq8iKYHj9vtZub06Syuk7ZgbIzSFtz67AYWv/2pX/nHd59HWlrDc/ErTZdwI4BwBuAQYBRwPlYqCK8X0FJgjohUhmk8h9pTQEeKyHb7dRHwKxG5LNyHUAOgxIv0tDQqRUJ6R3iAzLQ0qg4cCFErfuQ/uILVW/1nUjVqV2msG+hPWNM2Dzag4ceAM4FsY8w24M/AmcaYblg5hSqAa+t7X0WJJcnqwROIX/6xjB891X7lqviVSAmXCygDawRwAbWTwT2PNQIIujuDiAwNUDyn4aIq4UiF5GOJZtjw4cwJs/FIPD14AqF5epRoEW4K6DHge6w1AG9KiA5YawBHiMilMZcQnQKKBN/kY6O8yceAOQ4Hs+1c6cmcfCxZSBYPnkCo4lfqS2PXAD4UkROCnPtIROISL64GIDTJrLSSmWAjppN79mTi+PEhNx6JpzFVxa80lMa6gX5njLnYGFNTzxiTZoy5FIg0IliJMdFwXWxuhAr2mjh+PFPvv5/KggL6uFxkpqXRx+WisqCAVevXx0355xQvC6j8K6YMVOWvRIVwI4AcYCrwWw4q/NbAq0CxiHwSY/kAHQGEo6kkH0sWkn3EpD1+JVo01guoArjUvlEbLIOxI6oSKo0m2ZOPJRvJmq45kOL/+WEtWTGpX9xkUJoXYbeEDHiRMT2B7SLyedjKUUBHAKHREUD9SKbvK1gu/hG9OnHXBWFjJBUlJI3dECYY44E8eyE4Lp5ASnCagutiMpEMI6aqA9X8IkAu/tsHnsjoM46NWbuK4kuDDICIXAFgjGkVXXGUhjBuwgR6zZvH4CDTGiuxDMCqoqJ4i5aUJDLYa99PVXT+00t+5Q9e3p0BJx8Z9fYUJRRhDYAx5jCgP7UDwV4Ske9FZE+M5VMioCb5WH5+SNdFdQG1SMSI6es9P3La35b7lT895nR6dDo8au0oSn0Itx/ASGAtVkoHJ3AocBawxj6nJAkDBgxg1fr1CXddbAqMmzCB2Q4HK4Oc946YxkZhxPT+57vIKV7mp/xfvelMKqYMVOWvJJSwgWBYCdu+r1N+OPC2BoIpTRVv5HSsgr2Wb/qKUfP8n9m1fzybIw49pOGCK0o9aGwgmMGa9qlLtX1OaeK43W6KCgtp73KRnpZGe5eLosJC3G53okWLKbEaMc1bUUFO8TI/5b/xznOpmDIwrPJvrr+HkhjCjQCuAP4E/IeD+wF0BM4G7hKRR2MtIOgIoD7UJyGc5g+KHncs/YBHV1T4lbvvPo/0CHPx6++hRJtG5QKyb3A4cC619wN4qR6bwzeapmwA4pGh09vGI48+imf/fgqB6yCkAkn2aNimwtCHV7Hy451+5fWN2tXfQ4kF4QwAIpL0R48ePaQpUlpaKtlOp0xyOKQcxANSDjLJ4ZBsp1NKS0uj1sZ1GRnSBmQFiAQ4VoBkO51SXl4uIiI3jBkjkxyOgHW9R7HDIUVjxzZaxlTk5D//WzpNfNHvaCj6eyixAFgtIXRrgyKBbcuyQURObqBhqhdNcQQQjx6dbxtPApnA3SHqT3I4qCwo4L4ZM5IqGrYpEas8Pfp7KLGgsemgLwx2CpglIm0bKV9ENEUDUFRYSGYYX3NfhdzYNtoDKyBiBdIUtz5MJLFO0Ka/hxILGmsAPMAiAnsC5YtIXCKBm6IBiEePzreNdKCS0JF9vgpEe5yREa/MnPp7KLGgsbmA1gP3isj7AW78u8YKl8rEI9+MbxvZWAu+kaY30PxBoYl3Smb9PZREEC4O4AZgd5Bzv4+yLClFdlYWW8PUaWy+Gd82hhF+w2VfBRLPaNimRKI2YdHfQ0kEIQ2AiLwpIp8GOde05mTizLDhw5njcISs09genW8b44DZELECqckf5HQyyeHAjTVF5MZamxjidDar/EGJ3n1Lfw8lIYRyEbLXB9oBh9qvM4HbgCnAkeGujdbRFN1Ay8vLJdvpjNgtMxptlIJkgxTb7qY/2X8nZmQEdTstLy+XorFjpb3LJelpadLe5ZKisWMbJVdTIpAr51n3vJoweZr776FEFxrrBmqMeQW4UkQ+Ncb8HWgLbAb6i8hZsTNNB2mKi8AQ+3wzgdrwAPcATwN7gMOdTkZedRVji4q092gTLBf/oLwjmTGsewIkUpTY0KhFYDsVRC5wpjHGYG0P+XdgL9DJzgj6noisj6LMKYM338zM6dPps2DBwUjgESNYFSWFHKyNq0eMUKVfh137PXT9y3/8ykf3PYbbB3VOgESKkljCuYF2Al4CRgCHYcUZ5WPFASwBLgJ2iUhM/dKa6ghASQ4+3bmPX9/zql/53y/K45JTj06ARIoSHxq7KfxWY8w/gRcBBzDSngrqCOyQIAvEipIMvPPJt1zykP+y+OMFveh1bJsESKQoyUU4N1BE5EGsaaAOIvKiXbwTGBpLwRSloSxZs42c4mV+yv81exMWX+Wv6ZeV5kxEewKLyN4673+IjTiK0nAml27ioTc+9itf96dzOMzp75Lrm355hTf98p49zCkpode8eZp+WUl5GpwMLuyNjZkLDAK+FpEudtkRwBNADlABXCIRpJXWNQAlFMNL3uat8h1+5Vv+NgBHeuBBrqZfVpoDjd0RrDE8irWZvC/FwHIROQ5Ybr9XlAZx4h//TU7xMj/l/8nk86iYMjCo8geYMW0a13g8AZU/QG9gtMfDzOnToyewoiQZMRsBABhjcoAXfUYAHwJnish2Y8yRwGsickK4++gIQPElGnl6NPma0hxobDI4700uBKZiRQUb+xARcdVTngEOfPEAACAASURBVPYish3r4u3GmHYh2iwACgA6duxYz2aUVCSaCdrikaxPUZKdiAwAVvDXYBHZFEthfBGRh4GHwRoBxKtdJfmIRWbO7KwstoYZATQ2WZ+iJDuRrgF8FSXl/5U99YP99+so3LNBqPtf8hPLBG31Sdanz4qSqkRqAFYbY54wxgw1xlzoPRrQ3lLgCvv1FcDzDbhHoykrK6NXXh6ZJSWs2LOHShFW7NlDZkkJvfLyKCvzzxOjxI94ZOaMNP1yl+7d9VlRUpaIFoGNMY8EKBYRuTrENY8BZ2LtVfIV8GfgOeBJqMmLdrGIfBuu/WguAqv7X/IS701YwiXrm3r//UwcP16fFaXJEhU3UBG5KsARVPnb1wwVkSNFxCEiHURkjojsFJF+InKc/Tes8o826v6XfCQqF783kV5lQQF9XC4y09Lo43JRWVDAqvXr2bB6tT4rSkoTLhncLSLyd2PM/QTYF1hE/hBL4bxEcwSg7n/JQ7x7/PVFnxWlqdNYN1Dvwm/KOOGr+19iCZaL/5CMND76a3KlXdBnRUl1wmUDfcH+Oy8+4sQedf9LDLt/9JB3h38u/sFdf879Q09JgETh0WdFSXVimQoiKYnHXr3KQbbu/IGc4mV+yn/SgF9SMWVg0ip/0GdFSX2anQGI1P3Pu3m60jBWuneSU7yM39zzWq3yOVf0pGLKQK79Tf29ZuLtj6/PipLqRGQAjDF9IilrCuTm5jJ/yRKGOJ1McjhwAx6sxbxJDgdDnE7mL1mibn0NZMGqreQUL2Po7FW1yv99wxlUTBlIvxPbN+i+iYjd0GdFSXUijQNYKyLdw5XFilgkg3O73cycPp3Fdfbq1X1064/b7WbYA6/zlcNfua+5/Xe0yWrR6PsnMnZDnxWlqRLOCyicG2hv4HTgBsDX2dkF/F5EukZL0FBoNtDk5bhbl+Gp9i+/9J8XMzfNRGVTlaLCQjJLSrjb4wlaZ5LDQWVBAffNmNGothQllWisAfgNVjTvdcAsn1N7gBdEZEuU5AyJGoDE4na7mTFtGosXLqzpAWcWPhaw7idTB2Hs19Hqmas/vqI0jMZuCv868Lox5lER2Rp16ZSkp+62if0mvhiwXsXUQX5lvpGyjemZqz++osSGkIvAxph/2C9nGGOW1j3iIF/caYqZH2Mls9vtZmR+Pkv37WPxjc8GVP57pw5ieQDl72W0x8PiBQsaJUd2Vhbheh/qj68o9SecF9B8+++9wLQAR0rRFLOExlLmGdOmcej4JxkaQPFXTB1ExdRBjAZmhrhHsJ55fYyW+uMrSowQkaAH1v69AFND1Yv10aNHD4k15eXlku10ygoQCXCsAMl2OqW8vDzmskRKLGXuNPHFgEfdNspB2gdpv+a8y1Xr3qWlpZLtdMokh0PKQTx2vUkOh2Q7nVJaWhq3z6koqQywWkLo1nAjgCPtheAhxphTjDHdfY8Y26a4kugsoQ2ZxmmszIHaDJqZ0+7x16UjsANrEbYIaA+k23+LgHsyMmr1zH2nle72eMjFWojKBe72eFi6bx8j8/NrfW71x1eUGBHKOgD5QBmW18+rdY5XQl0bzSMeI4B2rVpJeYiebLDebDQI1iMuzsgQV0aGHJaZKWnGSLtWreSGMWNqerqNkblum8F6/JHcPwvECTLBfu+Vf6JdPmfOnJp2bxgzRiY5HCHvWexwSNHYsX4yl5eXS9HYsdLe5ZL0tDRp73JJ0dix2vNXlCAQZgQQkQIG/hhJvVgd8TAAacaIJ4yy+wkk3Ziaa8rLy+WGMWOkXatWARV0JEQyvdEGZHOdaZI5c+ZIC5B2IGn23xvsOn4yp6UFbTOY4s92OuXKYcPCKusbQQ615YxkeiaRhlZRmhvhDECkG8LcZYwZYoy51z6Cu300UbIyMiLyNMmyFyOjtfgayTTONcBD1J4mGT9qFCOAFUCl/TcT6IU1ZPOVua53TESLux4PacaEzYUzGxhhyxlMft9pKHXpVJTkIdJUEJOB04BFdtFQLMsyKYay1RCPQLDWhxzCGI+HySHqFAOzHA7WbNoUtdQEEQc5AV/6lE3Emge/L1DbwCosg+EbIRssFz/4+/F7A6seefzxgNsmzjKG2fazs8ZuK6T8dpCWBnUpSvyIypaQwEDgbBGZKyJzgf52Wcqw2+OhBEL2ducAe6qqorpgHHGPuE5ZAbA4WNtYrpnebJWXXzeenOJlAZV/yMXdvXuDbps4OyODZ7AWh+rTo1eXTkVJHiIdAawHzhR7D19jzBHAayKSF2P5gPiMANq7XEzes4eJWAp0NAd3ri+xj6nArS4XYk/3eHuxbmAGlkLeAWRjWcelWVns2LMnbLsNGQF4sKZ8qoLU7wG0yOlC5qVT/M5Xf/MJr84d36heeHpaGpUiHIU1/RTpvRKd2E1RmhPRGgFMBt41xjxqjJmHNeq/OxoCJgvDhg+n3OFgFdaceh8sBdvHfr8K2GL3TH177WVY8+6Z1J6Pbw/s37s37FpARD1iYFidsk+xDE0g3uw2gNYTX/RT/tf9JpeKKQO5qMXGRvfCvdG5w7BGRpHeS106FSWJCLVCbI8ODHA0cCTW9PL5wM/CXRfNo75eQA3xzqlPsJHXk6UcJLseHjANbjeAd08xyFW254/XE6jDRX8K6NFTtuGLBn/WYHjdORv6HahLp6LEHqLkBromknqxOupjAOobZRro2mL72p/sa4vrXOtVfjeATArj0hjMpz2Sdm+xlWtpAKXqst1DJ4Vw5fzwy92N/qzB8DUipbacxfY9vPeaANImMzPsvRRFiQ3RMgAzgVMjqRuLI1IDEI2ebSQ90+XLl4srPV0yCe2D7/Vpb5uVFXZEUrfdNk6nuNLT5dqMjFpKdWJGhrQEOSyE4n/5EKe0ycwM25sO9FmvvvxyuXLYsIhGT75GZDnI9SBt7e/ECXLhoEFR79FHI/ZCUZoL0TIAG4EDWFO164ENwPpIro3GEakBaEyUaaSUlpZKm8xMuckYKccK0LrKVsgG5Ig6xuAnWyE2ZEQSzBgFU/wHMI36nA0ZPcVzKqcxoztFaY5EywB0CnREcm00jkgNQKyjTMvLy6X1IYfUjDC8Ux+TqJ0Codhn6sY7R97QEYkvkSZo8/2ckfaYkz3hWrLLpyjJSDgDEG4/gJbGmBuAm7F8/z8Xka3eIzrL0NEjYp/6MK6ZwRg7ejSjfvqJ3lhDoZHAUix3KN+kZpPt8pHAFKxI2UDUjRcIlhCuvgnafD9npNHKiU6GF45kl09RmiLhtoR8AstL701gALBVRK6Pk2w1RBoHEKlPfR6wvry8Xq6Gbrebk3/xCzZgKfkiLNfPUL6wE4EHgXchaMzAEYDH4eC+WbOYOH4813g8jPJ46AT8IsjuW/sfGBrx53yZwGka6vrbJ3uEbrLLpyjJSGPjADqLyHAReQgrM+gZURKqwhizwRjznjEmahFew4YP5yFjQtYpAfKMqXdPcca0aVRyMOp1MTAqzDUFwCEcVP6BYgZWYfVcx48axSQ7RXK/iS8GVP7Lr/klFVMGRhQ7MMsY8oxJmRw9yS6fojRJQs0PAWtDvW/oAVQA2ZHWr48XkJMwPukgy33WASKdI2/XqlUtf/w0e84/1HrDTyDpPnPy4fzlQ83x+y7qRjIf7rQ/Z6TrIcmepTPZ5VOUZIRGZgPtaozZbR97gDzva2PM7hjapQaRm5vLfqxotUlQO8rULp+PNYzZYUfpRjpHvmPv3lpRr9kQUfbQVvbrGVhZPQP1yHMmvhgyMydYvfWHZs4kPS2N0085hT5nnsngzMyg0bT7gV+Hka8p5ehJdvkUpUkSyjrE6gA+AdZipZQoCFKnAFgNrO7YsWPEFq9dq1ayHKQIa6vCdPtvkU/vvRykTVZWvbxKvPf19uIjCQKbmJEhrvR0WYEVK1C3B1sfrx7vaMLX9fHwli3lwkGDArpg1rfHnOxeNskun6IkI0TDDTTaB/Bz+287YB3w61D16xMJHEkswMSMDDnq8MPlpjAK0nfa5YYxY6Q4I6PG9fNarEjccAppzpw5ku101poyCqb4N0HQTV4C7b1bV+nVms7Cik0IFqBW9/OJND46ONYku3yKkmwkpQGoJQDcAdwUqk59DECk8+OuEIoxXA+5HGtE0ZraWyEGU0jl5eVy2CEtQvb4S22DchO1Ywom2QbnYg6OYnzz/xwGcmqXLjWGpm6Q1ESCp5Noijl6kl0+RUkmks4AAIcCrXxerwD6h7qmvsnggvUUJ2ZkiBNkGvVYxPXZTtF734k+6RmWg5wGkom1XaRXIS1fvlxuGDNG2h/ZKaji9ypyYxuScEZrMoEDz0ZHcH0bkE0hDJSmV1CU1COcAYg0HXQ0aQ+8ZYxZB7wDLBORf0ezgQEDBvDECy/w8vHHkwe0wPKJX9iqFSPS07mRyBdxfbdT9G6O8tO119ZsjjLM5aLP2LFsKC+nqrqaL3ft4uyBAxk2/g6edQ2k5ciZfvd9cOogfpg6qMYddLx9hHLZHMvBALO6gWdZEVx/JdANy0++sqCAVevXM2DAgKhtbakoStMjog1hEk19N4QpKytjZH5+raCqrVibpHi3L4wkkMt3O8W6uN1uZkybxuKFC9mxdy/ZWVkMGz6c7zsP4dVtB/zqt6r8gb//41KGAgL8m4MKuw2WJQwX5NQT+C7AufbUb1MW38+gm7MoSuoSLhAsI57CxAO3283I/Hw/pZZL7e0Lx2EFZQ0meKRsicPBqqIiv3O+BmaFbWC6jH6EZw9pCXWU/8g1L3Lny7Nq3l+IpfC9bbqxlHonQtPRlj8QOyK8vm6QVH3SKwQygoqiNG1SzgAEU2plWFNBW7GMQS7WFo/9sfzzx3BwC8gHgPlBdqaqa2BygqRrmPvUHfz2Y/9RyzKs3nqNvIDLR65ghNoBzDudFfZ6n+ksgMULF7LC4wlxlWUA+ixYoAZAUVKQlDMAgZSaN3Hb+ViBXHdjGYSJWFsafoe19eMOrPl0D3D6qady/PHH+93fa2ACBW4BfPHAFezbszPoF/sN8C/gcbu9lsClPnIF4wGsfYYD4Q1QC3V9oCApTa+gKM2blDMAgZSaNwp3FNa0zylAIdaCarDpn9+9/jrdjj+ef86ezdVXX10z5/+sayDc6K+K3X8fQrpU057gvfEyrHUHJ9YooBPWqGQi0JfQ01Gz8N8X2EtDp7Oys7LYGibBWqCRg6IoqUEivIBiinezcl+8idtysVJBjAauIrzXzUnV1YwfNYqioiL6zd5sKf86/DB1EA9OHUS6VAOWki4JcE/vKORlLG8erxdPtv13PsFTWAwGMlq25Dmnk5UB7p1r1/sdUJyREfFG65peQVGaNylnALxKzY3l6dMea9rldPv98YADuDbMfa4FPgbaTnyRZ1v8zu+8N0+PN++/2y4fB8wGP0UdLBeQd/pmAFZm0Eqs6ahM+28lkJ+RwahRo5i/ZAlDnM6A+X8mO53cP2dOLRfVui6fdRk3YQKzHY6ARgUOjhzGBlgIVxSl6ZNybqBut5vuJ51ERmUl12L1/L1uoHOwlPNO4CdCz38FW9wNtAHLJCxFfZ/9/pL0dF4yhkJjGO3x0BH4OZaCrzvd4saavgk1HeXriul2u5k5fTqLFyw46H46YgRji4oa5Krp9Wga7fHUyPopluIvcTiYv2RJQOOhKEryE84NNCUNwKknncSyysrg8/vAC8BvA5yvj+KvaROrt/4lBxX2Ey+8wIvPPFOjqKurq4ManTKsUcQorFFCvJVwtI2KoijJQbMzAEWFhWSWlHB3CPfGCViLsL5TH8EU/6dTB9Uo7rq7eWVjTeFcC3QBbg6hsMPtaOXG8uJ5HKhMS1MlrChKo2nsjmBNjsULFzIqjG97IbAeywDkTHwxoPJfPnUQ+Xa6hvkE3s1rhf2+L5aBCDXfHm7BNRdo53Bw7dixVB04wJe7dnHfjBmq/BVFiRkpNwJIT0ujUiTk/L4HOC7CqZ6VwDlY7povEHyevn9GBms3bw6qsDXtgqIo8abZjQACuYH6kjPxxYDK33f3LV96AycCVxPabXQMhNxnODc3N6QXTzBXTUVRlFiRcgYg0FSLEHyqZ+fUQSwPscAL1vZl4dxGr6mqYvGCBSHreLOJVhYUROyqqSiKEitSbgrI7Xbzq5NP5oX9+/kVhmMnvuBX5/hvKnhw7jhmGcMDIvwD2AgsBL7FSs9wAGuzgpFYqRsqCe026gEy09KoOuCfCVRRFCURNLspoNzcXPqedRYDgL75f6p17vZXSqiYOoj/zB1HLnCPCC8DNwD7OBiItR4raMwAX3AwiVwoNGWCoihNjZTLBQSw8s03eQZ47JUSvsg9lXNKruPhndsC1u2NFb3r4WCQVi5WuoYh9vFb4EHg3hBtasoERVGaGik3BQS1PYEi3iwFK5CrLpOAr4GnsVxBg3nwDM7M5O0NG3QRV1GUpKHZTQFBbU+giDdLCXJuNFZw1h6gH3Aa8AoHPXiKsfL4eKqr+eijjxopuaIoSvxISQPg6wkU8d6/Qc51xFoXqAQ2AGdiZedsiTVq+Alrm8l/V1YyMj8ft9sd8D5ut5uiwkLau1ykp6XR3uWiqLAwaH1FUZRYk5IGwDfLpTfbZihKCJ5r/1PgEOAorDQQ12KldD4C+C9WArhcam+fWBfdeF1RlGQkJQ2Ab9DVXuBh/NMze1mJZQDGBjk/GyjgYNqHXsD3WFNDM+vUHe3x+MUC+G4hebfHU7MPQC5wt8fD0n37Qo4cFEVRYkVKGgA4GHRVffnl7MXKAHoTtTdbKbbLJxF4kXgl1uhhvH3+bqy0zSOALcBDQDrWQnORfd/GbLyuKIoST1LWAHhxuVy0zMykGngT6Aa0AvKAe7B8/P8CXIf/TlxDsBLB+RqH3sCVwOdY8QJ1k8K1atGiVvuRJKcLNHJQFEWJNSlrAHzn3dfs3897QBVQjdVb9yrv/2FlB30Myyi0wFLylViBYYGSM4zBSg9RazoHK1lctcdTazpHN15XFCVZSUkDEGje/XNgM/578nqDvv6NtVUkWNG/3sXdQARzG+2NlRPosvPPrzEC4ZLTgUYRK4qSGFLSAPjOu3v3Bj4fq+ceai7+GiCLxrmNjgHKP/igxrsnlhuvq2upoiiNISUNgHfe3XcTl5ZYyjkU12FNE90apl4ot9GOWEFjXu+ewfn5Mdl4XV1LFUVpNCIS9wPoD3wIlAPF4er36NFD6kOaMbIZJBtkBYiApIF47NfBjp9A0kGcIE8GqbPCvm95kPPlIO3t18UOhxSNHSulpaWS7XRKscMh5XY75fb5bKdTSktL6/X5ysvLJdvprPlsAWV0OqW8vLxe91UUJbUAVksI3Rr3EYAxJh3LhX4A0BkYaozpHM02srOymIo1peOd8qlPRPA4LD//SdT2DLrZGAbg7xnki+/owOvdE+19ANS1VFGUqBDKOsTiwNJPL/m8nwRMCnVNfUcAN4wZI4fV6aXfADIpzAigGKTIvq6t/bq9z6jg6ssvl8Nbtgzd8/Zp9yeQ9LS0eskeCe1atQo6Aqk1EnG5ot62oihNB5JtBICVVeEzn/fb7LKoMW7CBHZTOwncOKyo3kgigjtibQxzH1aG0JvtzdrnLFzIomeeYYjT6RdUFihuIFbePepaqihKNEiEATAByvxyUhtjCowxq40xq7/55pt6NZCbm8vhmZm1pnxysZTz77AigEMpb18vn7qLtN7pnNdPOomeWAvMfQgcNxCrPQLUtVRRlGiQCAOwDTja530HLNf7WojIwyLSU0R6tm3btt6NjLzySkoyau93MwC4BHgdS2kHU96zgYEE36w9NzeXx59/ngynkzexRgl14wYa6t0TCbF0LVUUpRkRan4oFgdW/NXHwDFYiTbXASeFuqa+awAilqfM4S1a+M3Xl9fxDgo0j+8EaZOVJUVjx4b0pIm2d099Ppt6ASmKEg6SbQ1ARKqwpuRfAjYBT4rIB7Fo6wAwiNrePABnYU0FTaDOVJDd419SWsqOPXu4b8aMkDt8Rdu7J1J8s51OcjgCfoa6oxZFUZS6pOSWkABFhYVklpQwyuNhJrAYK31DNpab5iDgVmPY7HCwt6qK7Kwsho0YwdiioiajON1uNzOnT2fxggXs2Lu3SX4GRVFiR7gtIVPWALR3uVixZ0/YvYB/5XSy44cfGiWfoihKMtIs9wSGyF0lv9u3r965czQHj6IoqUDKGoBIXSVbQb0iZjUHj6IoqULKGoBhw4czK0ydEuAiiHgzFt3eUVGUVCJlDcC4CRN4gPCRvzcTecSs5uBRFCWVSFkDkJubiyMzk8H4J3Xzjfx1EHnErG7vqChKKpGyBgDgqiuv5OKMDCoJHvlbn4hZzcGjKEoqkdIGYNyECSw55BAuxkrXUEXttA31TdegOXgURUklUtoARDtiVnPwKIqSSqS0AYDopmsYN2FCTLZ3VBRFSQQpaQDqBmqdfsopSHU1/127lqoDB/hy166weX4CoTl4FEVJJVLOAMQ6UCtRCeAURVGiTUrlAnK73fTKy2Ppvn0BffVXAkOcTlatX6+9dEVRUp5mlQtIA7UURVEiJ6UMgAZqKYqiRE5KGQAN1FIURYmclDIAGqilKIoSOSllADRQS1EUJXJSygBooJaiKErkpJQB0EAtRVGUyEkpAwAaqKUoihIpKRUIpiiKohykWQWCKYqiKJGjBkBRFKWZogZAURSlmdIk1gCMMd9A2BivYGQDO6IoTqxReWNPU5NZ5Y0tTU1eiFzmTiLSNtjJJmEAGoMxZnWoRZBkQ+WNPU1NZpU3tjQ1eSF6MusUkKIoSjNFDYCiKEozpTkYgIcTLUA9UXljT1OTWeWNLU1NXoiSzCm/BqAoiqIEpjmMABRFUZQApIwBMMZUGGM2GGPeM8b45Y0wFv8yxpQbY9YbY7onQk5blhNsOb3HbmPMDXXqnGmM2eVT509xlnGuMeZrY8z7PmVHGGP+zxizxf57eJBrr7DrbDHGXJFgme8xxmy2f/NnjTGtg1wb8vmJo7x3GGM+9/ndzwtybX9jzIf281ycQHmf8JG1whjzXpBrE/H9Hm2MedUYs8kY84Ex5nq7PCmf4xDyxu4ZFpGUOIAKIDvE+fOAMsAAvYC3Ey2zLVc68CWWv65v+ZnAiwmU69dAd+B9n7K/A8X262JgaoDrjgA+tv8ebr8+PIEynwNk2K+nBpI5kucnjvLeAdwUwTPjBo4FDgHWAZ0TIW+d89OAPyXR93sk0N1+3Qr4COicrM9xCHlj9gynzAggAs4H5ovFKqC1MebIRAsF9APcItLQQLeYICJvAN/WKT4fmGe/ngdcEODSc4H/E5FvReQ74P+A/jET1IdAMovIf0Skyn67CugQD1kiIch3HAmnAeUi8rGI/AQ8jvXbxJRQ8hpjDHAJ8Fis5YgUEdkuImvt13uATcBRJOlzHEzeWD7DqWQABPiPMWaNMaYgwPmjgM983m+zyxLNZQT/p+ltjFlnjCkzxpwUT6GC0F5EtoP1sALtAtRJ1u8Z4GqsUWAgwj0/8WScPdyfG2R6Ihm/4zOAr0RkS5DzCf1+jTE5wCnA2zSB57iOvL5E9RnOaKiASUgfEfnCGNMO+D9jzGa7x+LFBLgmoS5QxphDgCHApACn12JNC+2154GfA46Lp3wNJOm+ZwBjzG1AFbAoSJVwz0+8eBC4C+s7uwtrWuXqOnWS8TseSujef8K+X2NMFvA0cIOI7LYGK+EvC1AWl++4rrw+5VF/hlNmBCAiX9h/vwaexRom+7INONrnfQfgi/hIF5QBwFoR+aruCRHZLSJ77delgMMYkx1vAevwlXfazP77dYA6Sfc92wt4g4DLxZ4srUsEz09cEJGvROSAiFQDs4PIkVTfsTEmA7gQeCJYnUR9v8YYB5YyXSQiz9jFSfscB5E3Zs9wShgAY8yhxphW3tdYiybv16m2FBhpLHoBu7zDwAQStNdkjPmZPa+KMeY0rN9qZxxlC8RSwOsNcQXwfIA6LwHnGGMOt6cvzrHLEoIxpj8wERgiIvuC1Ink+YkLddalfh9Ejv8BxxljjrFHkZdh/TaJ4nfAZhHZFuhkor5f+/9nDrBJRO7zOZWUz3EweWP6DMdyVTteB5Y3xDr7+AC4zS6/DrjOfm2AmVjeExuAngmW2Yml0A/zKfOVd5z9WdZhLfycHmf5HgO2Y22rvA0YBbQBlgNb7L9H2HV7AiU+114NlNvHVQmWuRxrLvc9+5hl1/05UBrq+UmQvAvs53M9lqI6sq689vvzsLxE3ImU1y5/1Pvc+tRNhu+3L9a0zXqf3/+8ZH2OQ8gbs2dYI4EVRVGaKSkxBaQoiqLUHzUAiqIozRQ1AIqiKM0UNQCKoijNFDUAiqIozRQ1AEpEGGMO2FkG3zfGPGWMcUb5/lcaY2aEqXOmMeZ0n/fXGWNGRlOOAG3eY2dmvCfAuQHGmNV29sbNxph768plf66f17PNEmNM53rU/6UxZqUxptIYc1Odc2Gzhpog2THtmJmAGXRNgjK+KlEmHv64ejT9A9jr83oRcGOU738lMCNMnTsIkykzBp97N9AiQHkXLB/8X9rvM4DCAPVeI8YxJ1i5bE4F/ub7/RBh1lCCZMckSAZdEpjxVY/oHjoCUBrCm8AvAIwxN9qjgveNvaeBMSbH7hHPs3uOS7wjBmPlLM+2X/c0xrxW9+bGmMHGmLeNMe8aY142xrQ3VnKs64AieyRyhrFy599kX9PNGLPKHMyZ7u3FvmaMmWqMeccY85Ex5owA7Rm7p/++sfKpX2qXLwUOBd72lvlwC/A3EdkMICJVIvKAfd0dxpibjDH5WMFFi2yZBxpjnvVp92xjzDN17uuVuaf9eq8x5m/GSgq4yhjTvm59EflaRP6HFaDlS6RZQ4NlxwyWQTdgpkxjTLox5lGf77EoQFtKEqEGQKkXxsr7MgDYYIzpAVwF/Aqrh3iNMeYUu+oJwMMiE66FeAAAA0pJREFUkofViy6sRzNvAb1E5BQspXWLiFQAs4DpItJNRN6sc818YKLd3gbgzz7nMkTkNOCGOuVeLgS6AV2x0hrcY4w5UkSGAPvt9urmuekCrAn1IURkCbAaK39LN6AUONEY09auchXwSKh7YBmgVSLSFXgDuCZMfV8izWgZLDtmsOuDlXfDSl/cRUROJvxnUxKMGgAlUjKNtdvTauBTrJwlfYFnReQHsRLXPYOVFhjgMxH5r/16oV03UjoALxljNgA3AyFTYRtjDgNai8jrdtE8rM1LvHh72WuAnAC36As8JlYStq+A17GmVKKKiAhWqofhxtrVqTfBU/t6+Ql40X4dTP5gNDajZbDrg5V/DBxrjLnfWPlrdgeopyQRagCUSPH2hLuJyHh7SiFUXt26isb7voqDz13LINfej7UecDJwbYh6kVJp/z1A4BToEeUHrsMHQI8GXPcIMBwrEeBTcnCjj2B4bMMBweUPRqQZLYNlxwx2fcByezqoK9a6x1igpB6yKglADYDSGN4ALjDGOI2VgfD3WOsDAB2NMb3t10OxpnXA2rbOqzgvCnLfw4DP7de+HiZ7sLbKq4WI7AK+85nfH4HVi6/P57jUnsNuizV6eCfMNfcAtxpjjgcwxqQZY24MUK+WzGKl7P0CuB0riVosCZo11Bgz2Rjze7tesOyYwTLoBsyUaa/tpInI08AfsbaPVJKYVNoQRokzIrLWGPMoB5VliYi8ay/YbgKuMMY8hJV18UG7zl+AOcaYW/Hf7cjLHcBTxpjPsTKhHmOXvwAsMcacD4yvc80VwCx7sfljrPn1SHkWazpmHdZI5RYR+TLUBSKy3l70fsxuU4BlAao+asu1H+gtIvuxvKjaisjGesgYFGPMz7Cm5lxAtS1XZ7E2PxmHpbDTgbki8oF92ckcTCE9BXjSGDMKa3rvYru8lIPZKPdhf6ci8q0x5i4sAwNwp13WFXjEGOPtWAba6EhJIjQbqBJ1bAPwooh0SbAoSYmx4h3eFZE5CZThJRE5N1HtK8mBjgAUJY4YY9YAPwATEimHKn8FdASgKIrSbNFFYEVRlGaKGgBFUZRmihoARVGUZooaAEVRlGaKGgBFUZRmihoARVGUZsr/A+9RFpi0o+YoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the linear fit\n", + "plotData(X[:, 1], y)\n", + "pyplot.plot(X[:, 1], np.dot(X, theta), '-')\n", + "pyplot.legend(['Training data', 'Linear regression']);" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For population = 35,000, we predict a profit of 4519.77\n", + "\n", + "For population = 70,000, we predict a profit of 45342.45\n", + "\n" + ] + } + ], + "source": [ + "# Predict values for population sizes of 35,000 and 70,000\n", + "predict1 = np.dot([1, 3.5], theta)\n", + "print('For population = 35,000, we predict a profit of {:.2f}\\n'.format(predict1*10000))\n", + "\n", + "predict2 = np.dot([1, 7], theta)\n", + "print('For population = 70,000, we predict a profit of {:.2f}\\n'.format(predict2*10000))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAFNCAYAAAAafEeVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9d1ic6Xnv/3lmht6LKAIESIgOEuoVobpqq13b271Z2yf2Oo6TrOM4jk/i3zmO4xOXk92zOcfOusSxHZet8e5qJdRWWgkVhISEhIahN9FBovcZ5vn9McxoQHSQQPB8rmuvhbfe884r5jv3e9/fW0gpUSgUCoVCoVAo5gOa2Q5AoVAoFAqFQqGYKZS4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoViHiKEkEKIqAd4/K1CiMIHdfzJIIToFEIsneltFY8mStwqFAqFYt4jhHhBCJE9KGzqhBDHhBBbZuC4vxZCfG8mYnzUkFKel1LGzHYcAFJKdyll2Uxvq3g0UeJWoVAoFPMaIcTXgdeBfwYCgSXAvwFPzGZc4yGE0M12DArFo4gStwqFQqGYtwghvIDvAl+VUv5RStklpTRKKT+SUv7t4DZOQojXhRC1g/+9LoRwGlyXJoSoFkL8jRCicTDr+4XBdS8DnwW+OZgR/mhweZwQ4qwQolUIkSeEOGQXz1khxBftfv+8EOKC3e9SCPFVIUQxUDyB1xclhDgnhGgTQtwRQrw9bJNdQohiIUSLEOInQggxuJ9GCPFtIUTl4Ov6z8FrhRDiN0KIvxn8OWQwpj+3O1+zsJAmhKi2i6VCCPENIUTuYDxvCyGc7dZ/c/D61QohvjhW2cTgdfqeEOKS9doKIfyEEL8XQrQLIa4KISKGXbeowZ9/PfhajwohOoQQWUKIZWNs+2+DmfxOIcRFIUTQ4D3QIoQoEEKkjLSv3f7fG/zZeq980+5eeVIIsV8IUTR43f5+vPdUMX2UuFUoFArFfGYj4Ay8P8Y2/wBsAFYCK4B1wLft1gcBXkAI8KfAT4QQPlLKnwO/B340+Kj7cSGEA/ARcBIIAP4S+L0QYjKP758E1gPxE9j2nwbP5QOEAv9v2PqDwNrB1/UM8Njg8s8P/rcdWAq4Az8eXHcOSBv8eRtQNvh/gFTgvJRSjhLPM8BeIBJIHjwHQoi9wNeBXUCU3fHG4jngT7Bc92VAJvArwBfIB/7nGPs+D/wjlutSAvyvMbZ9Bsv77Q/0DZ7n+uDv7wGvTSBWK0FY7rcQ4H8AvwBeBFYDW4H/IVS97wNHiVuFQqFQzGf8gDtSStMY23wW+K6UslFK2YRFFP2J3Xrj4HqjlDId6ARGE6sbsAjFH0gp+6WUZ4AjWMTWRPm+lLJZStkzgW2NQDiwWErZK6W8MGz9D6SUrVLK28AnWAQ8WF7za1LKMillJ/DfgecGSyHOAVuFEBosYvZHwObB/bYNrh+N/yulrJVSNmMR+dbzPQP8SkqZJ6XsxnKNx+NXUspSKWUbcAwolVJ+PPhevgukjLHvH6WUVwa3/b1dHCPxvpTympSyF8uXoF4p5X9KKQeAt8c5z3CMwP+SUhqBt7AI5H+VUnZIKfOAPCyiX/EAUeJWoVAoFPOZu4D/OPWri4FKu98rB5fZjjFMHHdjEbCjHatKSmkedryQiYdM1SS2/SYggCuDJRD/bdj6eruf7eMe6TXrgEApZSkWAb8SS7bxCFA7mH0eT9yOdT771zWR19hg93PPCL+P9h6MFcdMn2c4dwdFsXXfkY4/meMppoAStwqFQqGYz2QCvVge9Y9GLZbsp5Ulg8smwvDH87VA2GDW0/54NYM/dwGuduuCJnDM0U8uZb2U8ktSysXAl4F/G62OdYQ4h79mE/eE2DngKcBRSlkz+PtLWB7z35hofHbUYSmbsBI2hWPMBboZ//1TzDJK3CoUCoVi3jL4SPt/YKmTfVII4SqEcBBC7BNC/GhwszeBbwshFgkh/Ae3/90ET9GApWbVShYWAfvNwfOkAY9jeUQNFmH46cE4orDU8I7JYHPVd0ZZ97QQwioaW7AI44GRth3Gm8BfCyEihRDuWJwk3rbLUJ8D/gLIGPz9LJb64Qt2mcnJ8A7wBWFptnPFco0fRW4ALwghtIN1xBOpHVY8ZJS4VSgUCsW8Rkr5GpZmpm8DTVgeif8F8MHgJt8DsoFc4BaWZqKJetf+EogXFmeED6SU/cAhYB9wB4vl2EtSyoLB7f8P0I9FFP8GSz3oeIQBF0dZtxbIEkJ0AoeBV6SU5RM45n8Av8UiXsuxZLf/0m79OcCDe+L2ApaMZQZTQEp5DPi/WOp+S7Bk1MHSwPUo8QqWLyutWOqWPxh7c8VsIEZveFQoFAqFQjGbDGZl35VSbpztWGYSIUQcoAecxmn2UygmjRK3CoVCoVAoHjhCiE8BRwE3LFlrs5RyrFpohWJKqLIEhUKhmOMM1vflCCGOzHYsCsU0+DKWspBSLHXBX5ndcBTzFTXaT6FQKOY+r2Axrfec7UAUiqkipdw72zEoFgYqc6tQKBRzmMGaywPAv892LAqFQvEooMStQqFQzG1ex2LUbx5vQ4VCoVCMX5agus0UCsWjjJjtAKaDEOIg0CilvDbolzrSNi8DLwO4ubmtjo2NfYgRPprUNLXR3tULgEYI3F2d8HJzxs3FCfFI3zGKB01tZzt3e7sB0AgN3k7O+Di54OrgMMuRzQ+uXbt2R0q5aLrHGc8tQYlbhULxKPNISxUhxPeBP8EyOcoZS83tH6WUL460/Zo1a2R2dvZDjPDRpLWzh9NXijiemc/N4nuDyLw9XNi5Npq9G2NJjlqMUEpXMYy2vl4+Kivg3SI9N5rqbMuXevnw1PJEPr08gWA3j1mM8NFGCHFNSrlm2sdR4lahUMxj5o06GczcfkNKeXC0bZS4nTw1TW2cvFzA8cwCymvv2pYvXuTFYxti2bsxlsjFfrMYoWKuUtRyh/eK9PyxxEBTTxdg+YOzNSSCp6MT2RO+HGed6tufDErcKhQKxfgocauYEFJKiqvucDwzn5OXC2hs6bStiw0P4LGNcexZH8MiH/dZjFIxFzGZzZyvqeDdIj2nKkvoN1umE3s6OnFoWRzPRCeS7B+kngRMACVuFQqFYnwW1KeJErczg9ksuV5YxfHMAk5fLaKrpx8AIWB1bBj7NsWxfc1y3F2cZjlSxVyjtbeHD0rzebdIj/5ug235cm8/nopO5NNR8QS4qi9Io6HErUKhUIyPEreKadHXb+LizTKOXy7g4s1yjCZLVs7JQcvWlGXs2xjHhqQIHHTaWY5UMdfIv9vIe8V5vF9isDWhaYUgLXQpz8QksiNsGY5add/Yo8St4pGloaGBp59+mpycHF5++WVeffXV2Q5JMX9R4lYxY7R39XImu5gTmflcK6i2Lfdyd2bXuhj2bYwjKSpYPX5WDMFoHuCTqjLeLdJz5nYZJmlx9fN1duFTUfE8tTyReL+AWY5ybqDEreKhcuHCBb75zW+Sl5eHVqslLi6O119/nbVr1076WP/0T/9ETk4O//Vf/6U+BBQPmgV1gylx+/Cov9vOicwCjmXmU1YztBFt74ZY9m2KIzzYdxYjVMxFmrq7+KDUwLtFegpb7tiWJ/gF8HR0Ek8ui8PH2WUWI5xdlLhVPDTa29tZsmQJb7zxBs888wz9/f2cP3+eoKAgkpOTJ3wcKSVSSl5++WWCgoL43ve+9wCjVigAJW4VDxhbI9olAyezCoc0osVHBrJvUxy718fi6+k6i1Eq5hpSSm7daeCdolt8WJpPe38fAI4aLbvDo3gmOomtIeFoNQtr1pYSt4qHRnZ2Nrt27aK1tfW+dd/5zncoKSnhd7/7HQAVFRVERkZiNBrR6XSkpaWxefNmzp49y/Xr1/nMZz7D22+/jRACR0dHPvjgAzw9PXnllVfIz8/HxcWFz3zmM7z22ms4OjoCkJeXx9e+9jWuXbuGg4MDr7zyCn//93+P2WzmRz/6Eb/4xS9obW1l586d/PSnP8XXV2VLFDaUuFU8NAbMZq4XVHM8M58zV4vp6rU0omk1gvWJ4ezdGMe2VVG4OCnDf8U9ek0mTlWW8G7xLTKqK2zCK8jVnc8sT+Cp6ESWei2MzzUlbhUPjfb2diIjIzl48CDPPfccGzZswMfHB5iYuC0rK+PYsWPExMQgpeRLX/oSoaGhtszttWvXMBqNrFmzhurqavbt28eXv/xlvva1r9HR0UF0dDTf+MY3+OpXv4rRaMRgMLB+/Xpef/113nrrLd577z0WLVrEX/3VX9He3s6bb745a9dKMedQ4lYxK/T2Gzl/o4xjF/PJ1FcwMGCps3RxciBtdRT7N8WzJj5swWXmFGNT29nOfxXn8V6xnor2ewmlNYEhPBOdxIHIGNwHEz/zESVuFQ+V/Px8fvjDH/Lxxx9TX1/P/v37+cUvfsEbb7wxrrhNTU3lu9/9ru1Yn//854eI2+G8/vrrnDt3jvfff58333yTH/3oR+Tk5Ny3XVxcHD/+8Y/ZuXMnAHV1dSxZsoSenh50yjhbYUGJW8Ws09rRw8dXCjmWmc+tkntTrfy93XhsQyz7NsaxfMki1YOgsCGl5GpDDe8U3eJoWSHdJiMArjoHDkTG8ExMEmsDQ+bdPTNT4lYpAMWEiIuL49e//jUABQUFvPjii3zta18jJiZm3H3DwsLGXF9UVMTXv/51srOz6e7uxmQysXr1agCqqqpYtmzZiPtVVlbyqU99Co1d5kOr1dLQ0EBISMgEX5lCMX/o6zNx5VIxKWuX4uCgLIbmCt4eLjy1cyVP7VxJdWMrxy7lczwzn6qGVn5//Bq/P36NZaF+7N0Yx94NcQT6qfGtCx0hBOuCQlkXFMo/btzJ0fJC3im8xdWGGt4t1vNusZ4IT2+eWp7IU9GJauTvMNTzEMWkiY2N5fOf/zx6vR43Nze6u7tt6+rr6+/bfrxvll/5yleIjY2luLiY9vZ2/vmf/xnrE4WwsDBKS0tH3C8sLIxjx47R2tpq+6+3t1cJW8WCpa2li2//zVs8e+A1Xv3eYa5mlmAa9GVVzA1CA7z50pMbee8HX+CX336Op3aswNPNmdLqu/zk3Qsc+sYv+MoP3+Wj83o6e/pmO1zFHMDNwZFnopN47/EX+OTpP+WrK9YT5OpORXsr/3LtApve+hkvHX+Po2WF9A2YZjvcOYESt4pxKSgo4NVXX6W62uLrWFVVxZtvvsmGDRtYuXIlGRkZ3L59m7a2Nr7//e9P+vgdHR14enri7u5OQUEBb7zxhm3dwYMHqa+v5/XXX6evr4+Ojg6ysrIA+LM/+zP+4R/+gcrKSgCampr48MMPZ+AVKxSPJo5OOiKWLqKzo5cTR2/yD19/k2f3v8ar/+sjJXTnGEIIkqIW882XdnLsX7/Mq688wc610ThotVzLr+KffnmSfa/8jG+/cZQLN8rUe6cAYKmXL99cm8ql577Mbx57igORMeiEhnPV5fz5mcOs+8MbfCfzNIa7jbMd6qyiyhIU4+Lh4UFWVhavvfYara2teHt7c/DgQf73//7feHp68uyzz5KcnIy/vz9/93d/x+HDhyd1/H/5l3/h5Zdf5kc/+hEpKSk8++yznDlzxnbuU6dO8corr/CP//iPODk58bWvfY3169fzyiuvIKVkz5491NbWEhAQwLPPPssTTzzxIC6DQjHn8fZx4+e//zNuVzRx7rSBjDP5VJY1ceLIDU4cuYGHhzObUmNI3RlPytpIdGqq1pzAQWeZdrY1ZRkdXb2czi7m2CUDOYU1nMwq5GRWIT4eLuwZ9M+Niwicd7WWismh1WhIC4skLSySlt4ePigx8E7RLQzNTfwq7zq/yru+oL1zVUOZQqGYzywoBTBSQ1lluUXonj9joLL8nmm8p5cLm9NiSduZQHJKOFqdepA316htauPE5QKOXcqnoq7ZtjxysS/7NsWzd2MsQX6esxihYq6hH/TO/aA0n7a+XsDinbsnPIpnYpLYsnhue+cqtwTFjCOlZGBggL6+PnQ6HTqdDo1GozIEikeZBXXzjueWUFneRMYZA+c+NnC74p7Q9fJxZWtaHKk740lauQStdu5++C1EpJTkVzRw7FI+Jy8X0NLRA4AQsComlH2b4tmxdjnuLk6zHKlirtBrMvHx7RLeKRrqnbvYzYOnohN5enkiSzy9ZzXGkVDiVjGjSCkxGo02cWuPVqvFwcEBrVaLVqsd4k6gUMxxlLgdASklFaWNnD1tIOO0gZqqe1lBbx83tm6PY9uueBJXLEGjWVCXcM5jMg1wWV9J+iUDGddL6R+sxXVy0JKaEsX+zXGsT4xAp76gKAap7Wy3OCwU6anqaLMt3xi8hGeiE9kfGY2zbm4MFlHiVjEjWLO1RqPFQ08IQX9/vy1bax2ZO/w+MZlMeHp62sSuyu4q5igL6sacis+tlJKykgbOfWyp0a2tvid0/fw9SN1hyejGJYYqoTvH6Ozu4/TVIo5dyud6YbVtua+nK49tjOXApnjln6uwYZaSy3VVvFt0i/TyInoHnRU8HZ04tDSWZ2KSSPYPmtX7RYlbxbQxm80YjUbMZjNCCIQQSCmHiNvhSCnp6emhpKSEhIQE23JrGYO1lEFldxVzhAX1qT7dIQ5SSkqL6jn7cR7nTufTUHdvQtKiQE+27YgndWc8MfGLlWCaY9Tdaed4Zj5HLxq4Xd9iW74s1M9Wnxvgo7xQFRba+/v4qDSfd4r03Gi6N1gk1sefZ2KSeHJZPH4urg89LiVuFVPGmq0tKSkhICAAV1fXIZnascQtQG9vL8XFxSQlJdn2kVLaRDKARqOxiV2V3VXMIgvqppvJCWVSSgoNtZw7beDcaQN3Gttt6wKDvUnbFU/argSWLled+3MJKSWG8nrSLxo4mVVIW6elqUgIWBu/hAOb40lbvRwXp7nxGFox+xQ0N/FO0S3eLzHQ3Gup53bQaNi1JIpnY5JIDYl4aE1oStwqpoR9tjYvL4/w8HA8Pe91205U3BYVFZGcnDzievtSBimlLSus1WqHCF71gah4CCyom+xBjd81myX5+upB14V87t7psK0LXeJH2q54tu1KIDxy0YyfWzF1jKYBLuWWc+xSPudvlGEcrM91dXZg++rl7N8cz+rYMFVuogCgf2BgsAlNz7nqcsyD+jDI1Z2nohN5NjrpgTehKXGrmBRSSkwmEyaTpcZGCEFeXh5hYWF4eXkN2W48cdvX10dhYeGo4na081uzu3fu3MHJyQlvb290Op2tWc0qghWKGWRB3VAPStzaYzZL9Ddvc/ZUHuc/yaet9d6Ewoili9i2K4G0XfGEhPk90DgUk6O9q5dTWYWkXzJwq+TeY+gAX3f2bYxj/+Z4Iher90xhob6rg/eK83in6BaV7ffKkx50E5oSt4oJM1JtLUBeXh4hISF4e9/7JjZRcVtQUMCKFSumFE9FRQWurq74+/vbGtWklPeVMqjsrmIGWFA30MMQt/YMmMzcuF7B2VN5XDxXQGdHr23d8thg0nYlsG1XPAGBXmMcRfGwqaxv4fglA+mX8qm7c6/cJD4ykP2b49mzIRZv94Vl+q8YGbOUXKmv5u3C3BGb0J6LTSbRb+ZKk5S4VYzLSNla+xvQYDAQHByMj4/PkH3GE7f9/f3k5+dPW9wGBATcF+9wZ4aRShmU4FVMggV1szxscWuP0TjA9StlnPs4j0sZhXR399vWJSSHkbYrga074vD1c5+V+BT3YzZLbhTXkH7RwOmrRXT1WN4znVbD5hWR7N8cz5YVS3FQk+wUWJrQjpQV8FZhLjeb6m3L430X8UxM8oxMQlPiVjEmZrOZ/v7+ITWvw8nPzycwMBBfX1/bMiklfX19Y7od9Pf3YzAYWLly5ZRiG03cDmcksSuEwGw24+zsjKOjo2pUU4zHgro5ZlPc2tPfZ+JKZjFnT+Vx+UIx/f2WL9gajSApJdwidLfH4un18LuxFSPT22/k3PVS0i8ayNJX2uotPd2ceWxDDPs3xxMfObs2UYq5Q0FzE28XWprQWvosTWiOGi2PRSzn2egkNoeEo5nCvaLErWJE7LO142U5CwoKWLRoEX5+ljqrgYEBioqKaGxsxMnJCS8vL7y8vPD09MTR0dG2n9FoRK/Xk5KSMqUYJypuR3ptALm5uURFReHs7AyoIROKMVlQn8RzRdza093Vx+ULRZw7beBqZgkmkxkArVbDmvXLSNuTwKatMbi4Oo5zJMXD4k5rJ8czC0i/aKCk+t4ku4hgXw5sjmfvpjgCfZWtmAL6Bkx8XFnK20W3yKgut4nGUHdPno5O5OnoJELcJz4iWolbxX1MJFtrT2FhIX5+fvj7+9Pc3Ex+fj5hYWEEBAQwMDBAW1ub7T+TyYSHhwdeXl64ublRWlrKqlWrphTnVMWtldzcXKKjo3F2dh4xu6tsyBR2LKg3fi6KW3s6O3q5eK6Asx/nkXO1HLPZ8u/WyUnH+s3LSdudwNoNUTg5K5uquYCUkuLbTRy5aODk5QKa2y3Ng8pWTDES1klo7xTqqe60TEITQGpoBM9GJ7MrfBlOWt2Yx1DiVmFjMtlae4qKivD09KS5uZnu7m4SEhJwdnYesebWbDbT2dlJW1sbLS0tNDc34+PjMyS7q9VOrC5rJsXtcKz3s9lsHrJcDZlYsChxO0dpae7i/BkDn5zKIy+3yrbc1dWRTakxpO1JZNXaSHSq3nNOYDINkKmv5OiFvPtsxXasiebglnhWRqspdgpLE9ql2kreKrzFiYpi+s2We8XHyYVPL4/nuZhkon38R9xXiVuFbRiDyWSacLbWnps3b9La2sqyZcsICQmZ0IQysIzevXnzJvHx8bS1tdHe3k57u6Xj1tPT0yZ4RxKfYBG3Li4uBAYGTu4FDzKWuB2J4UMm6urqCAoKwsnJSWV35z8L6k19lMStPY31bWScMXD24zyK8u/ZVHl5u7J1RxzbdyeSkKz8WOcKVluxoxcN6EvvvV/B/p4c2BzP/s3xhAY8WD9UxaNBa28P75fm83ZhLvnNTbblKYuCeTYmmceXxuJuV/aoxO0CR0qJ0WgkJyeHFStWTEqYGY1GCgsLaW5uJjIykrCwsCHHHU/cDgwMcOPGDVavXj1kuclkor293VbK0N/fj6urK15eXnh7e+Pm5oZGo6GyshJnZ+cpi9ubN28SGxuLk5PTlPbPyckhPj4enU6nhkzMfxbUm/ioilt7aqqa+eSUnk9O6qmqvGtbvijQk207E0jbncDyGNXYNFeorG8h/aKB9IsGGprvDfdYER3Cgc3x7Fobjbvr1P5WK+YPUkpu3Wng7cJcPizNp8NoceZw1TlwYGkMz0YnsSYwBI1Go8TtQmR4tvby5cts3Lhxwn/om5qaKCoqIiIigp6eHtzd3QkKChpy/KmK25Fi7erqsondzs5OHBwstVkeHh6Eh4fbfp8M0xW3169fJzk5GZ3uXu3PSCOElQ3ZvGBBvWHzQdxakVJSVtzAJ6f0nP3YQGN9m21dSJgv2/cksmNPIqFL1OCBuYDZLMkuqOLohTw+yS6md9Ahw8lBy7bVURzcksDa+CUPbYyrYu7SYzKSXl7I24W3yKqvti1f7u3H6af/VInbhYZVeNoPY8jMzGT9+vXj1pAajUYKCgowGo3Ex8fj7OxMWVkZLi4uBAcH33eOsUSc2Wzm+vXrrFkz+fuvv7+fkpISjEYjJpMJs9lsa1Tz8vLCxcVlXAH5IMTtcIY3qqkhE48sC+oNmk/i1h6zWZJ/q5qzH+dx7rSB1pYu27rlscFs353Atl0JLAqYeFe24sHR1dPPmewi0i8auFZwT7wE+Lizb1McBzYnELHYd4wjKBYKZW3NvFN4i/eK9UR5+/P2weeUuF0oWLO1RqMRGDqMISsri9WrV48p1BobGykuLmbp0qUEBd17nFdeXo6TkxOLFy8ecq4HKW6BIWUJZrOZjo4OW3a3u7sbFxcXm9j18PC4r1FtuuL22rVrrFy5csINcFasYre4uJjg4GDc3NzusyFT2d05x4J6M+aruLVnwGQm51o5Z0/lceFsAd1dfYClgz9xxRK2705k6444vLyVh+5coLapjfRLBo5eMFDTdC/7nrA0iANbEtizPgZPt4n1TyjmL0bzAHd7ugl291TidiEw2uhcK1euXCElJWXEx/vWSWJSSuLj44d41YKlscvBwYGQkBDbsomIWykl2dnZrF27dkqvaayaWyklPT09NrHb0dGBRqMZ0qiWn58/4uuZKNnZ2axatWrKjgl5eXlERETg6uo64pCJ4c4MSuzOKgvq4i8EcWtPf5+JrEvFfHJKT9bFYoz9lq5srVbDmg3L2PFYIhu2ROPiojx0ZxspJTeKajhyIY8zV4vp6rXUXDrqtKSuWsbjWxJYlxiuyhYWODPVUDa24Zhi1hhvdK4VjUZzn+0VQH19PaWlpSxbtmxITa09VneEkZaPxUyItdG+VAkhcHV1xdXV1VYuYTKZbGK3pqaG9vZ2CgsL8fX1tfnuPkwBad+EZn9e62syGo22LDuoIRMKxYPC0UnH1u1xbN0eR1dXH5fOFfDJyTyuZ5eRdbGYrIvFOLs4sCk1hu27E1m9fqmyFpslhBCkxISSEhPK3764g7PXSjhyMY+rhtt8fKWIj68U4e/tZitbWBqiaqkVU0eJ2znIeNlae4YL1L6+PgwGAxqNhrVr146Z3RxN3D5oJitEdTodfn5+tklqOTk5hISE0N3dTWVlJV1dXTg6Og7x3B2vnnY6Yni0/e0b0ey3NZvN9Pb22paZTCY0Gg3u7u7KhkyhmCHc3JzYvX8Fu/evoKW5k3OnDZw9mYdBX82ZE3rOnNDj6eXC1u1x7HgsSVmLzSLOTg7s3RTH3k1xNNztIP2SgSMX8qhqaOW36dn8Nj2b+MhADm5JYPf6GLzcXWY7ZMUjhhK3c4iJZmvtsWZupZTU1dVRXl7O8uXLJzwgYTbE7Uzg7u6Or68voaGhgEXUt7W1cffuXcrKypBS3ue5a38tH4S4HYmRsrvNzc309/fbYoehQyZUo5pCMT18fN158ul1PPn0OupqWmzWYlfcjuIAACAASURBVJXldzj6wXWOfnCdgCAvtu9OYMdjSUQum9pAGcX0CfTz4AuPr+fzB9dxq6SOIxfyOHWlEEN5A4byBv7Pm+fYtmoZB7cksC4hHJ1WPflSjI8St3OEyWRr7RFC0NfXR0FBAQ4ODqxbt27C9lqjlTQ8ijg5OREQEGAT9QMDAzbP3cbGRnp6emyeuwMDA5jN5imXB0wn82vNlltLFKzHszYM2q/X6XQ4ODjYJqopwatQTJ7gEB9e+PxWnv/cFspLG/nkpJ4zJ/U01rfx9m8v8fZvLxG5LIAdjyWStiuBwGA1fGA2EEKQvHwxycsX8/XPpnHueilHzudxxVBpK1tY5O3Gvk3xHNgST+RiVbagGB3VUDbLTHV0rnXfy5cvYzKZiI2NZdGiRZM6d3V1NSaTiYiIiCHHHK+hDODq1atTbii7ffs2jo6Oo9YCj0dOTg6JiYmT8siVUtLd3U1bWxulpaU4Ozuj1WqHZHcn2qB248aNaTW01dTUAAxp5Bseq/1/asjEtFhQF2mhNZRNFbNZor95mzMn9Jw/Y6Cj417ZUOKKMHbsSSJ1ZxyeXspxYbZpuNvB0YsGjl60lC1YSVgaxMFBtwUP5bYwb1ATyuYBZrOZuro6pJT4+/tPSqz09vaSl5dHV1cXiYmJ+PpO3jOwtraW/v7+BSFu7bHGbjQabY1qbW1tmEwm3N3d8fb2xsvLC1dX1xGvw3TPX1VVhU6nG+IvPB7Dh0xUV1cTHh6uhkyMz4K6IKtXrZZXrl5Fqx7dThijcYDsy6V8ckpPZkYhfX2WsjCdTsPajVHs2GNxXHByntq/d8XMIKXkZnEtRy/k8fGVoiFuC2mrozi4VQ2JmA8ot4RHGPtsbU9Pz6Qec0spqampobKyktjYWOrq6ibt1zr8eAsVBwcH/P398ff3ByxfNjo7O2lra6O8vJyuri6cnZ2HNKpptdoH1pA2Flbhai2laGhoICwsjL6+Pvr6+mzbqCETC5uWOx18dv132LgrgU17k1m5aTkOjurP/Fg4OGjZuDWajVuj6e7q41JGIadP3CLnajmZ54vIPF+Eq6sjm9Ni2b4nkZTVkWh1SkA9bIQQrIwOYWV0CH/z2e2cvVbCRxcsbgsnswo5mVVIgK87+zfFc2BLAuFBPrMdsmIWUX/1HiLWzJvRaLQJHI1GM8Q2aix6enrIy8vD1dWV9evXo9PpaGhomHLdrEajGVXcTlfAjcd0RPWDEuRWP11PT0/CwsIAS4a8ra2NpqYmSktLbcuamprw8fHB2Xnyj8OmU+9rxV7oWrF+aRrLhkxld+c3fT39tN3t5PjbWRx/Ows3D2c27Epky75kVqXG4Oikso9j4ermxK59yezal0zz3U7OnsrjzMlbFOXXcSo9l1Ppufj6uZO2O4Gde5OIig5S/55mAXu3hbo77Ry9mMeRCwZqm9r49ZEr/PrIFVYsX8zBLQnsWheDm/I5XnCosoSHhJQSo9HIwMDAEIFRV1dHT08PS5cuHXPfqqoqqquriY2NHVKCkJ+fT2Bg4JTKEurr6+nq6mLZsmW2Za2trRQVFeHi4mJ7PD+SgJtOWcJUHsvbM5HxuWMxndhNJhPZ2dkEBATQ3t5OX18fbm5utuyuu7v7uMK1vLwcd3f3SddIW5noEI3hI4RhQQ6ZmNcvbjhr1qyR7/7uMJdO3OLCsVwqCuts61zcnFi3I54t+5JZkxaHs/rAnzBVlXf45FQeZ07oqa1uti1fEuHPjscS2b4nkeDFKlM4m5jNkhvFNRw5n8fpq0X09Fm+5Ds76tixNprHtySQEhOq7N/mOKrm9hHB2glvMpmGNAdZaWhooKOjg6ioqBH37+7uJi8vD3d3d6Kjo+8rQSgoKGDRokU2D9jJ0NjYSHt7O1FRUZjNZkpKSmhtbSUqKmpIPaq9gPP29sbNzW1aE8oeZXFr3X/NmjU2Z4Ouri7bters7ESn09mulaen5321uaWlpXh7e0/pPQOLE8SNGzdYvXr1pPaz/ls3m802O7KgoKD5PmRiQX2SDW8oqy5r5OLxXM6n36Q0r8a23MnZgTVpsWzem8z6nQm4uquGnIkgpaTAUMuZE7c4+3EebS3dtnXxSaHs3JvEtp3xqhFtlunu7efM1WIOn9dzo+jefb94kRcHt8RzYHMCwf6esxihYjSUuH0EsDZnjWXv1dTUREtLC9HR0fftW1lZSW1tLXFxcfj4jJwVsE7qmkoWsLGxkba2NgICAjAYDAQHBxMeHj6kbMIai1XAtba20tXVRU9PD+Hh4UNqUSfKfBC3Y+3f398/pFHNbDbj4eFhy+7W1NTg5+c3pWw7WCag6fV6UlJSpvoSqK2txWw2ExIScl92V6PRDKndfcSzu49s4FNhLLeEutt3uXjsJheO5VJ487ZtuYOjjjXbYtmyL5n1uxJx81BCdyKYTANcyyrjzIlbXBreiLYpip2PJbFhczSOTqr6bzapamjhyAWL20JjcycAQsCauCU8vjWBtNVRODuqcp25ghK3cxh731IYexjD3bt3aWpqIjY21rasq6sLvV6Pt7c3UVFRYwrH4uJivLy8Jjy0wZ7GxkbKysoQQpCQkIC7uztgEWfj1dxmZWURERFBW1sb7e3tCCHw9PS0lTKMZZM1XXF77do1VqxYMWfF7XDMZjMdHR02sdva2oqrqyv+/v54eXnh4eExqS8HVl/jFStWTCV8wGIDp9FoWLx48ZDl9tldex7hIROPTKAzwUStwJpqW7h44hYXj+WSl11ue991jlpWb7UI3Q27E3H3VJOhJkJPdz8XzxVw5oSe61fLMJst19PN3YnUHfHsfCyJxJVL1CPxWWTAbCbbUMVHF/SczS6h3zQAgLuLE7vXx3AoNYH4SFVDPdsot4Q5ymSHMdiPwJVSUlFRQV1dHQkJCXh5eY17vqmO0O3o6KCwsBBHR0fWrl076UfRGo2GwMBAAgMDAUstqlW8VVVVYTKZbNlKb29vXFxcZvSPxqP0B0ij0diytmApJfH19cVsNtPQ0EBxcbGtmc26nZOT06jHs95b08FsNo/45WC0EcIjDZnQaDQ4OjrOh+zugmPRYh+e/EIqT34hlbsNbVw6cYvz6TfRXykj63QeWafz0DloWbl5OVv2rWDTnkQ8vN1mO+w5i4ur45BGtE9O6jl94hYlhfUcO5zDscM5LAr0ZMeeRHbuTSJiqZqI9rDRajSsTwxnfWI47V29nMwq5Mh5PYbyBt4/m8v7Z3OJXOzH41sT2LcpDj8vdb8/yqjM7QwxmWytPa2trdTU1BAeHk5eXh6+vr4sW7ZswmKzrKwMFxeXCWdBzWYz5eXlNDU1ERISQldX15CsMUwsczte9tJqq9Xa2kpbWxs9PT24uLjg5eVlq+EdnjWcKNeuXWPlypVTtkB72Jnb4eTn5xMaGoqHh4dtmf2Xg7a2NoxG432Natb3o7u7m7KyMhITE6ccQ0VFBa6urlPK+FvLGAoLCwkKCsLT09PWqGYdNDGHsrtzIoiHxXSHODQ3tZN5Us/59Jvculxiy0BqdRpSNkez9cBKNu5JxEPVlE6IyvImzpy4xZkTehrq22zLo6KD2Lk3ie17EvH1c5/FCBWl1Xf46HwexzPzaW631FBrtRo2J0dyKDWRTUkR6HRTt9tUTA5VljCHmOroXIC2tjby8vJspQGenpMrci8vL8fJyWlCQrGzs5O8vDz8/PxYunQpra2tNDQ0EBcXN2S7mRC3w5FS0tPTQ1tbGzU1NfT39+Ps7GwrY/Dy8ppwmcF0xe2VK1dYt27dlPaF6Ytbg8HAkiVLbGUgIyGltHnutrW10dXVhYODgy2r29LSMi1xO92mNoC8vDwiIiJwc3O7b8gEYBO6xcXFxMbGTnmi2zRR4naKtN7ttLgupN/k5uUSzAOWUhWr0N2yX2V0J4rZLMnLreL08VtknDHQOTgRTaMVrFq7lJ17k9iUGoOLcrCYNUymAS7mlvPR+Twu3ixjYPCLna+nK/s3xXFwayJLQ9TI3weNErdzAGuj1cDAAI6OjpMWth0dHeTm5iKlZNOmTVPqUq+oqECn0xEaGjpmnBUVFdTX1w8R0C0tLdTV1REfHz9k+wchbu2pqqpCq9Xi7+9/X+OV9dG8t7f3qB6y2dnZpKSkPLLiVq/XExkZiZvb5ERBX1+fzXO3ubkZZ2fnIaUMzs7OE77/iouL8ff3H7VRcSLk5uYSHR094vtkb0N26NAhPvzww2mdaxo80uJWCOEMZABOWMrI3pNS/s/Rtn9Q43etQvd8+g1yM4dmdFduWs7WAyvZ9FiSyuhOgP4+E5cvFnH6+C2uZpZgMlm+NDi7OLBlWyy79iWzYnWEmjI3i9xp7eLYJQMfnc+jou6e9Vvi0iAeT01k9/oY3F1GLx1TTB1VczvLWLO1NTU144rLkfYtKyvjzp07REdH25p7psJYgxjgXnOaj48P69evH3KeqdbrTherAHN0dGTRokU2p4eBgQHa29tpa2ujsLBwRAsy675z5JH3lJBSTun9dnJyIiAgAEdHRxwcHFi2bJmtUa24uJienh5cXV1tYtfDw2PU88zEIImxjmH/Ra+rq2vSQl5how/YIaXsFEI4ABeEEMeklJcfZhDefu7sf2Ej+1/YSOvdTjJPWmp0b2aWcC2jkGsZhfz42++xamsMW/evUM1oY+DopCN1RzypO+Jpb+vm3GkDp4/dwqCv5uPjt/j4+C38F3mwfU8iu/YmERkVONshLzj8vd34k/1reXHfGvSldRy5kMfJrEL0ZfXoy+p57Q9n2bk2mkNbLd65j/Ln0XxFidtJYj86VwiBVqud1ISw9vZ28vLyCAwMZN26dbYs6VQZTaBKKbl9+zY1NTXEx8fj7e094X1nC61Wi4+Pjy3DZ29BVllZSVdXF46OjvT19dHa2oqXl9e0Rg/PFlMVt1asolKr1eLt7W17b62lH62trdTW1tLZ2Tmkmc3exWJgYGDa126ixxgYGLjP61cxMaTlH2jn4K8Og//N6j9abz939j2/kX3Pb6St2ZLRzThqyeheOWPgyhkDOgetEroTwNPLlcc/vYbHP72GmqpmTp+4xenjt6iraeHd32fy7u8zWbo8kF2D9bl+/h7jH1QxYwghSIpaTFLUYv76+TTOZBfz0Xk91wqqSb9oIP2igdAALw5uSeTAlngCfdX7M1dQ4nYSmM3mIY/sreK2r69vQvuWlJTQ0tJCUlKSrd5SCDHl8bnAiON7rYMfPDw8WL9+/agCZK6J2+EIIXB3d8fd3Z2QkBDAMvo2JyeHpqYmm43ZRC3I7I87m0zX7WC0jKkQAldXV1xdXW012PbDOKwuFu7u7nR1ddHb2zskGz5TcShmFiGEFrgGRAE/kVJmDVv/MvAywJIlSx5qbF6+94Ru650OLp64RcaRHPRXyu4J3UF7sW2Pr2TDrkRc3NTj3JEICfPlpS9u40/+NBVDbjUfH8/l3GkDZcUN/Ly4gX//yWlWrV3Krn1JbNoWi7Oz+sL4MHF2cmD/5nj2b46nurGVI+fzOHIxj+rGNn76x4v8/P1LrE8M5/GtiaSmLMXRQcmr2URd/QkwPFtr/4Gu0WjGFafWprHg4GDWrVs3RExMZP+xGG4lVl1dTVVV1ZiDH0badyLL5wLOzs7odDqWL1+ORqMZ4jJQXV2N0Wh8oBZkM8FMiNuJ7u/g4IC/vz/+/v62fTs7O8nPz6empobS0lKcnZ1tmd3RBnIIcx1Sc78jx3hxWO+jufYePEpIKQeAlUIIb+B9IUSilFJvt/7nwM/BUnM7S2Hi7e/Bgc9u4sBnN9HS1MHFE7lcSL9J7uVSm72Yo5OOtdvj2XZwJWt3xKsRwCMghCBhRRgJK8L4yl8/xpVLJZw+nkvWxWKys0rJzirFxdWR1O1x7NyXTHJKuPLPfciEBnjzZ5/ZzJc+tZEr+koOn88jI6eUzFsVZN6qwMvdmX0b4ziUmkhU2NTGrCumhxK342C19xppdC6MLU4HBgYoKSmhra2NFStWjFh3OF1xa92/t7cXvV6Pq6sr69atm5DzwFwWseNhfR90Oh1+fn62rn97C7LS0tIhFmTWOtTZZibKEqZaUmD103V0dCQ+Ph4HBwd6e3ttjWqlpaUA9xrVPN3x0P4nGnMxfc6vTTlmxfSRUrYKIc4CewH9OJvPKj6LPDj44mYOvriZ5qZ2LqTf5NyRGxiyy7l4PJeLx3NxcnFk/c54Ug+sZE1aLE7OSugOx9FRx5a0WLakxdrqcz8+lku+voYTR29y4uhNm3/u7v3JLIlQQuphotVo2JgcycbkSFo7ezh+KZ/D5/WUVN3hrVM5vHUqh7jIQA5tTWTP+hg83NT0v4eFErejMFa21p7RxGlLSwv5+fmEhIQQHR09auZquuIWLJnh+vp6YmNjJ2Xt9CiL29GwijerI4S9BZm1DrW7u9tmhTUZC7KZYjwnivGYqSEO1nva2dkZZ2fnIQM5Ojo66Owoo7/lP3H0usDdzrU0NVXZPHcnKs5NJtMjWRc9VxBCLAKMg8LWBdgF/HCWw5oUvos8OfS5rRz63Faaals4n36TjKM3KLxxm4wjN8g4cgMXdyc27U4i9fGVrNoSg85B3TPDsa/Prb59l1PHcjlz/BYN9W28/dtLvP3bS8TELWb3/mTSdifgqZwrHire7i48t2cVz+5OoaCykcMZek5kFpBf3kB+eQOvv3mWHWuiOZSayKpY1YT2oFHidhjWYQwmk2nUbK09Wq2WgYEB2+8DAwMUFRXR2dnJypUrcXUd+w/MdG7w3t5eysstozPXr18/aZE2m+L2YZ3Xvg41ODgYKSVXrlzB09OTlpYWKioqJmxBNlNxT1ecTjfza41htGPodDp8PW7h7/D/odEuAzO4uC1GY9JQXV1NZ2cnOp2Ovr4+7ty5g5eX16gNY8opYdoEA78ZrLvVAO9IKY/MckxTZtFiHz79xTQ+/cU0GqqbOX/0BhlHb1B8q5rT72dz+v1sPLxd2fxYEqkHU0jesAytMtC/j9Alfnzhy9v53JfS0N+8zcfHcsk4k09hfi2F+bX89F9Psm7TcnbtS2b95uU4qC8LDw0hBHERgcRFBPLKc6mcu17Kh+dukZ1fxbHMfI5l5hMa4MXjWy1NaAE+s/80cT6ixK0dUkqMRiMDAwNjZmvtsc+8Njc3U1BQQGhoKLGxsQ/sm5mUkrq6OsrLywkKCsJkMk0p+zjbVmCzdQyNRnOfBVlHRwetra3jWpBNN+tqjX26mduZyDaPGIM0oul/HWH8HQIJaOjRrKQfCAkJua+xr7W1lcrKSsxmM+7u7vfVOk9U3BYWFvLss8/afi8rK+O73/0uL730Es8++ywVFRVERETwzjvv4OPjg5SSV155hfT0dFxdXfn1r3/NqlWrpn1N5hpSylwgZbbjeBAEhvry1Jd38NSXd1BT3kTG0RtkHMmhorCe429ncfztLLz83NmyL5ltB1NIWBupGhiHodEIklPCSU4J56tf38ul84WcSs/l+pUyLmUUcimjEA9PF9J2JbB7fzIx8YtVxvAh4uzowGMbYnlsQyw1ja18dD6PIxcsTWhv/NdFfvbHS2xMiuBQaiJbVy5Vk9BmECVumfroXMDW1GQwGOju7iYlJQUXlwdne9PX14fBYECn07Fu3Tra29tpamqa0rHmY1nCeIwkTkey1BrJgszb23tO1Ow+KJcCs7kSTd//QzNwEgApAugxaxgwZ6B1iB6yrU6nw8nJiaioKFtMVs/d0tJSuru7KSws5ObNm5jNZlvt82jExMRw48YNwPJlIyQkhE996lP84Ac/YOfOnXzrW9/iBz/4AT/4wQ/44Q9/yLFjxyguLqa4uJisrCy+8pWvkJWVNerxFXObkMhFPP8Xu3n+L3ZTWVTPuSM5ZBy5QU15E0d/d4mjv7uEf7A3qQdWknYohahE9Vh3OE7ODmzfncj23YncvdPBJyf1nErPpby0kY/+mM1Hf8wmLNyP3ftXsHNvEosCJjcNUzE9Quya0LL0lRzO0JORU8rF3HIu5pbbJqEdSk0iYrHvbIf7yLPgxa2Ukv7+/imNzgWLb+2dO3eIjY0lLi7ugf7Bra+vp7S0lOXLlxMQEABMT6COtG9PTw8Gg2GI4BvNcWAmspgPm4nEPJoFmbXpqquri2vXrk3agmymeBDi1mQ8TF/Pd3DTWUb6mjSJtJiKcNZ2W0Z8iaHCdLjHrb2fLliuc1BQEFVVVVy8eJFt27bh4ODA4cOHx60LP336NMuWLSM8PJwPP/yQs2fPAvC5z32OtLQ0fvjDH/Lhhx/y0ksvIYRgw4YNtLa2UldXR3Dw/Y4OikeL8OggXvr6Pv7kr/dSaqgh48gNzn2UQ2NNC3/897P88d/PsjjCn20HU0g9uJKIGPWeD8fP34OnXtjIUy9spLSo3lKfe0JPVeVd/uONM/zqp2dYuSaS3fuT2bwtVo39fYhoNRo2JUeyKTmSlvZujmXmczhDT1nNXX53/Bq/O36N5KjFHEpNZNe6aFxVo+WUWLDi1pqtLS8vJzQ0dNLC1mQyUVBQQE9PD56enpOaUDZZ+vv7yc/PB2Dt2rVDhNR0GtKG24jV1tZSUVFBVFQUWq12SBbO1dXVJnatHr0LCWvTla+vLz09PSQlJc2aBdlMilspu+jv/S4m4weDSwTdYgUdRmsWdNDKi6F1yOMNcBBCEB4eTmpqKh0dHfzkJz+hvb19Qpnvt956i+effx6AhoYGm2ANDg6msbERgJqaGsLCwmz7hIaGUlNTo8TtPEIIQVRCKFEJoXz+b/eTf72SjCM5nD96k9qKO7z541O8+eNThEcHse3xFNIOrSJ4ycQbahcKy6KDWBYdxBe/upPsy6WcSs/l8oUicq6Wk3O1HGeXdFJ3xLNn/woSVy5RtmIPER9PV154bDXP71mFvrSOwxl6Tl0pJLekltySWl77wyfsXhfDodREEpcFP3LJpNlkQYpb6+hcs9lMdXX1pI3Pm5qaKCoqIiIiguXLl5Obm/uAIoXGxkaKi4tZtmwZQUFB962ficxtf38/eXl5ODg4sH79eqSUtiarsLAwpJR0d3fT2tpKVVUVnZ2d9PT0UFFRgbe396jeqHOR6WabrfuPZkFm/ULQ09ODs7OzLbM71ijcyTJT4tY4oMfU+8+YB65ZFohw2sxGTAPZtm1sV0oMFbcTjaGrq8v2ZcjqYDEW/f39HD58mO9///tjbjeaP7NifqLRaEhYE0nCmkhe/vYT5GaVknHkBheP51JZVM9/vnqM/3z1GDErl5B2aBWpB1biqx67D0Gn07JhSzQbtkTT0d5jsxUz3Krm5NGbnDx6k6DF3uzal8zufckEh4ztk66YOYZMQnshjdNXizicoedmcS0fZuj5MEPP0hA/nkhNYt+mOLw91MS/8VhQ4tbe3gsm/2FoNBopKCjAaDSyevVqnJ2dMZlM07byGu1c+fn5DAwM3JettWe6mdu+vj6uXr06pNRh+MQzIQRubm64ubnZHtNfuXIFZ2dnGhsbKSkpQaPR2DK7s2GvNVGmW2M8mji2tyCzfiEYbkGm1Wrx8vKy3YNTvUbTFbdmsxkPn6Pc7XwPz8HBDGbNGppNejy1w909LE4gUgwVChMdvdvd3T2pTP+xY8dYtWqVzZYsMDDQVm5QV1dnu0dDQ0Opqqqy7VddXW2byraQ6Wzr5sff/AMb9q4geXM0jk7zb4qVVqclZXM0KZuj+fN//DQ5F4o4e/g6maf0FN64TeGN2/ziex+StCGKbQdXsmVfMh7eyrHDHg9PFw5+ajUHP7Wamqq7nEzP5eNjudTXtvK7X2bwu19mkLgijN37V5C6Iw43d+XP+rBwdXbk8a2JPL41kYraZg6f13P0Qh5lNXf5P2+e5cfvnic1ZRlPbEtkXbwa4DEac1OBPADss7XDSxAmks2zZlCXLl1KUFCQbfuZ8KkdHoM1Mzz8XCMx1cytyWQiPz+f/v5+tm7dOumaUa1WS0BAgO0xsHXMq9VeS0o5pCbVyWnoyM3ZbGSbicztRM5hb0EGlqykVexaG60makFmz3SsxAbMTbR2/x3eiy4OBupED8l0mq4PbmEatoeWDlbhJB2xl0kTFbeTtQJ78803bSUJAIcOHeI3v/kN3/rWt/jNb37DE088YVv+4x//mOeee46srCy8vLxUSQLQ0dLFkf84y5H/OIuruzNrdyWy6UAKa3cl4eox/wSKg6OOdTviWbcjnt7uPi6fNpDxUQ5Xz+Vz81IxNy8V82//84+sTo1l+5OrWL8zQU1FG0ZI2D1bsZvXKjiVfpPzZwvQ36xCf7OKf3vtOJvTYtmzfwUrVkeg1SrHiodFxGJf/urZVL7ymc1cuFHG4Qw9mbcqOH21iNNXiwj28+Tx1AQe35JIoN/sNzvPJea9uB0pWzvS+NvRPqit9a5SStasWXOfSNNoNNMWalaBOjAwQEFBAf39/bbM8ET3nQzNzc3k5+ezZMkSOjo67hO2UxFOw8e8DgwM0N7eTmtrKzU1NUNqUo1G46yVMcxUWcJUcHR0ZNGiRVRUVLB69eoxLciswxJGa+SbSua2y5hBV89/xyzvAKDVxNMy0IlRltptdS9rLzSxNA5IugduEeI09bKEiZQjgCXLe+rUKX72s5/Zln3rW9/imWee4Ze//CVLlizh3XffBWD//v2kp6cTFRWFq6srv/rVryZ0jvmOb6AXz794gMxjN6gw1HDug2zOfZCNg6OOlamxbNy3kg17V+Ab6DXboc44zq5OpD2eQtrjKXS293DxeC7nPsrh5qVi2/hfFzcnNu5OJO2JVaRsjlbDIuzQaAQpayNJWRvJX3yjj/Of5HMqPZfcnErOnNBz5oSeRYGe7NqbxO79KwhV9c0PDQedlu1rlrN9zXIamjs4ciGPwxl66u608/P3M/nFB5lsTIrgidQktqxcioOyFEOMI4weaZ+osbK1Vq5eC+dzIQAAIABJREFUvcqKFStGzFxa3QlGq3e1cunSJTZt2jTlOLOysoiMjKS4uJiIiAgWL564F2FPTw/5+fkT8vg0m80UFxfT3t5OYmIizs7OZGZm3he7yWSyef2OxvXr10lOTp7wo3X7sbj19fX09/fbsrrWJrWJvuarV6+ydu3aCW07nL6+PgoKClixYsWU9u/u7qasrIzExMQp7S+lJDs7e8T47S3IWltbbRZk1mtkrW3W6/UsXbp03AEhVsyyjzs9/0J737u4a3oAHZ09sfQ4luCpcULSYdvWSxOMWdZj0qylpt+Aty6MfnMxYe4/w83h3n3S0NBAb28v4eHhY5771VdfJTo6mhdeeGFiF2jmWVDP7NasWSOzsy0103UVTVxKv8Gl9BwMWaW2L8FCCGLXRLJx30o27U8hNCpwNkN+4DQ3tZNx5AZnD1+n8MZt23JPHze27Esm7dAq5aE7BnW1LZxKz+VUei4Nda225fGJoezan8z23QmqbGEWMJsl2fm3+fCcnrPXSzCaLCVkPh4uHNgc/8haigkhrkkp10z3OPMyczvR0bkwcllBf38/BoMBIcSY9a4zgclkoqenh8rKyglna+2ZaOa2vb2dvLw8goODWbNmzUP3uLWvSdXpdAwMDODr60trayu3b9+mq6sLJyenIUJuLn7YPMjM70gWZH19fbS2ttLU1ERpaamtTrqlpQWdTjfuvdk3UEx959/Sby5GI9zRCD/aBlzodSyxxEPfsCA8aZU+tPXrB9dbn3iMbQU2Gt3d3WpC2SwRHLGIz/z5bj7z57tpbWrn8olcMtNvcP2cgfyrZeRfLeM/vvtHwmMXs/lACpsOpLAsKWzeNeb5LvLkyS+k8uQXUqmtvMO5wzmc/eg6t4sbSP9DJul/yCRgsQ/bDqWw48nVylpsGMGLfXjpi9t48b+lor9xm5PpN8k4Y8Cgr8agr+anr5+0lC0cWMFKVbbw0NBoBOsSwlmXEE5rRw/plwz3WYqtjA7hiW1J7FyzHOd5WH8/FvNO3JrNZvr7+yc0OheGjs+VUlJfX09ZWdmQBqsHRUtLC/n5+eh0OlsmdbKMV/MrpaS8vJyGhgYSExOHWDFN50NsuuJ4pCa13t5eW2a3uLjY1oA1k01qs1mWAJNvBnNyciIwMNDWYGUymcjJyaG7u5u8vLxRLciklDT3fUBLzz/ZBKxOJNBo0iO5Y3eGfttPGs0aqo0NGOVdu/WWMgXNCFZgE3k/7N0SFLOH9yJP9r64hb0vbqGns5drZw1kpt8g60QulQW1VBbU8odXjxK4xI9N+1PYfCCFuHXL5p1QWRzuz/N/uZvn/mIXFQV1fHL4OucO59BY28K7Pz3Duz89Q0RMMNufWMW2x1MIDH30Ml8PCo1GkLwqnORVlmloF87mczI9l5vXKvjkpJ5PTg6WLexLZs/+ZELCVNnCw+L/Z++9o+LM8yvvz1OZKoqMyBkEIgcBQhFltVqx46R31h6P3Q7zujfY3tn1Wc++uz7eCV6vx9P2zoxD90R7OirngBKInHPOQUAVoaCo9Lx/lKoARUAJJO45OkfUk371VLq/7+9+7/XQujgtxWrbBjh+rZqLRY1UNPVS0dTL//7lVfblxHF4WxKxYc+W1ywXvDTkdjHV2rlwkNt7k7/k8mc3y7FarTQ3NzMxMUFqaioNDQ1LPtejSObU1BTV1dV4eXmRnZ29KFL1IgIaVCoV/v7+TgmIowFrdHR0XpOa2WzGZDItqaL+osntkx4vk8mQSqVEREQgk8nusyCbmppCpTEh8f0ZUtkIcskMEsEDsxDFsHUIxZxKrYASMCGgZVqIZ2CmGY973iI2cQaJ4AbMr74uRnO7WrldXnBxVbH5QDqbD6RjMVuoutXErVPl5J8pZ7BrhC9+fIkvfnwJD18tG/amsOlAGqlb1yFXvDQ/FwiCQMS6QCLWBfJbf7qf2uJ2rh4v5caZSjoa+/nw+6f58PuniV8fwfbDdmsxN8/V97EDLmoFu/ensHt/CgP9ei6eqeTCabts4V8/usm/fnST+KRg9ryewrZdCWg0ysefdBVPDEEQSIwKIDEqgH//5VwuFjVy/Fo1tW0DfHqlkk+vVBIXtoZD25LYtyEOV/XL+7qseM2tw5PVbDYvuFo7Fw5/1zt37rB27Vp8fX0XPYbFaG71ej11dXUEBQURGhqKIAhUVFQQExOzJBJgsVgoLS0lOzvb+ZgoivT09NDd3U18fLwzVnahY3dMEh5FXioqKoiPj18Swezr68Nmsy06+MJqtTI2NkZdXR0ajcZZtXRYkKlUqse+9tPT07S0tJCUlLTocQOMjY0xMDBAbGzsko5/Us0vQElJCenp6Q98ffQzeXRO/k+s6JFZgpHarEwI09hkkyhZg0IyqzmUCm5opWvoM88wbdMB4CaZYe7H3l2eRI9JT5bnT3GRzs7429racHNzczYQPgzf+MY3+M53vrNkjfJTwMu1xv4YzNXcLhZWq42GkjanTre/fTbWW+PmwoZ9KWw+kE769niUL6njgGnGQtn1BvJOlnP7Yg0zRvvKhUwuJWNrHDuOZJC9Kx7lamrUfbDZxHmyBeO0/d4plTK2bF/HngOpJKetWle9CDR33+HE9RrO5tcxbrAXOFQKGbuyYjmyLYmk6OUTELGqucVO4sxms7P5abEaTaPRyPDwMK6urmRnZz/RsvfjKnI2m42Wlhb0ej0pKSnziOyT2Inde+zMzAw1NTW4uLiQlZX1zPxmX8QHQSqV4uXlhVKpJC0tDZvN5nQbaG5uZnp6Go1G4yS7Go3mvnG+6Mrr06iIP+gcVtFI39TPuGP8KQACCpTKSEYs+c59bFYJSBznkGGyrKPVUsdsCpkcMDqPFyRptBpbsTGDVJg/w39WPrereHGQSiUkZEeTkB3NN//7m7TX9XLrVBm3TpXRUd/H5Y9vc/nj26g0StbvTGDT6+lk7UlC8xIZyiuUMjbsTmTD7kSmJo3cvljD1eNllN1onHVccFWyaW8y2w+nk5ITjXS1Mx24X7Zw42o9F05XUlXeyaVz1Vw6V41fgAe79yeze38yAYGrIRHPCzEhvvynr27nW29vIa+shWPXqimt7+bUzVpO3awlItCbw9sS2b8x/qUJiFiR5NZhm9XZ2el0FlgMYRBFkd7eXjo7O/Hw8CAgIOCJSKBUKn2knZijmcvf35/MzMz7xvq0InQd7g5LrUAvFk+iuX0azWwSicRpm+U4p8FgQK/X09nZyeTkpDMlzMPDA61W+8xCHBaKp5UuNncM4+Z66if+PzQS+31QSMIYsymwioZ5x6gULiCCRAxiYMYVq6BHIZu9H4Iocx4/bFWjn2lGJbE3lEkfkFC2UJ/bVXK78iAIApEJwUQmBPP//OdD9LQMcut0GTdPltFc0cnNE2XcPFGGXCEjbds6Nh/KIOe1lJcqLEHtqmLH0fXsOLoe3Z0Jrp8q58qxUpqqurn0WTGXPivG01fLtoNp7Dy6nqiEoGVT/XrRcFEr2PN6CnteT6GvZ5QLpyu5eNYuW3CERKSkh7H3QCqbt69DpXq1mp1eFJQKGXs3xLF3QxxdAzpOXK/h1M1a2vtG+Nt/vcYHH98gNyOaI7nJrI8LWdFV9hUnS3DExdpsNm7fvr1oC67p6Wlqa2tRq9WsXbuWrq4uXFxcnsgA/mF2Yjabjba2NkZGRkhISHjoj3xdXR0BAQF4ei5tJnvr1i20Wi02m23RUoGlyhKqqqqIjY29z/d3Iejv78disRASErLoY2HhVmCiKDqb1MbGxpiYmEAQBKxWKzExMU7nhsVgdHSU0dFRoqOjlzR2g8FAR0cHCQkJSzoeZp+/KFrpnPo5nVMfImLFV26XWvSYWhCx4CuPY8Za7jzOTRaDVFDTOt2FKFjQSgNhjsetTHRDbl5Dv2QABBuCKEMpnQYE9q25Om8MdXV1hIaGPpa47ty5k+vXry+pWfIpYeV+Oy8BTyJLWCgGu0coOFPBzZNl1Ba2OCeMUpnETnQP2omu+0tqKt/TNkTeiTKuHi+jr2O2OTMk2o+dRzPIPZS+2oj2ANhsIhUl7Zw/XcmtvAZMJvvEWa1WsG1XAnteTyE+KXh1gvCcYbFYuVHRxvHr1RRUd+CghEG+7hzelsSBzQn4PMdJ6ysnS3BUax3RsI5q7UIrYaIo0t3dTU9PD3FxcXh52b98JBKJ0y1hqXhQ5XViYoLa2lrWrFlDZmbmI8f4JM4DIyMjGAwGIiMjn3tC04tMGVsIBEHAxcVl3uRFp9PR3t7OyMgIbW1tAPMcGR43MVgulVuDpZeOqX/izswFABQSX4w2d+5YCp37CMxeRy74MGULYtBc6qR7EkGK7e5LqJD4YiGaflul8xipoACmwSajpKRk3n1aqCzBZDItaQK0iuULvxBvjry3kyPv7UQ3NE7+6XJunCil6lYjJZdrKblcy9/9JwnJm9ay6UA6G/en4u3/cN3/SkNw5Bq+9u/38dX399JU2cXlL0q5dqqc7pZBPvrBGT76wRkSMyPZfiSdLftfrmr2k0AiEUjPiiQ9KxLDpJG8S3WcP1VBQ20vZ0+Uc/ZEOcGh3ux5PYXdryXj7ftyTo6WG2RzAyJGJjhxo4YT12vovTPGP3x6k598fovNqZEc2ZbEhqRwpMvQovNBWBGV24eFMTwqgGEuHLZJrq6urF27dt6Pcnd3N6IoEhoauuTxlZeXExsbi1qtxmaz0d7eztDQ0H3WWw9DY2Mj3t7ej23OmQur1UpTUxMGgwGj0cjmzZuXNPalVm6rq6uJjo7GxWXx+pznVbl9ECYnJ+nq6iI+Ph6wP1dHkpper8dqtc6z1rq3SW14eJjx8XEiIyOXdP3x8XH6+vqIi4tb0vEA1+v+nmmfM/jIw5mwVOAqS6F7ph8/RQTjzhhd8FPEM20pxUWaSqtxBE95MFPWGud2T1k4Fls9alka7cYhXCTu2MQO53aVxAsYwl2+gUzt/3Tep7GxMcbHx/H29sbLywt3d3fUavUDSf+WLVsoLy9/kdWYV6oM9Dwqtw+DfniCgjMV3DhZSuWNBqwW+4RfEAQSN0Sz5ch6Nh9IfynT0SxmK6XXG7h6vGx+I5pCStb2eHYczSAzNx6FcsXUk54bOtvvcOF0JZfOVqEbtUupJBKBzA3R7D2YQvamtchXk+SeK6w2G4U1nRy7Vs2N8lasd6sgfl5aDm1N5NCWZxf3+8pUbh0yhAc5Icz1qH3YsV1dXfT29rJu3boHLvtLpVJmZmYecPTC4RjH5OQktbW1eHt7L8p6a7Ga27GxMWprawkODiYuLo6CgoKlDv2hWO5V2aXi3sqrTCbDy8vLWcmf26TW1NQ0LxLXw8PDOcFaKp6kcjtjHaV6/H8z6V0AIghIkUnSaDc6pAX3vGaiDJuQRf10OwAS5l9XQAGSDBqnOwBwFbydlVwAuaDFKPrRaRwlx3P+fSotLSUoKIjJyUna2tqYnp526pvd3d3RarWLuk96vZ5vfvOb1NTUIAgC//Iv/0JsbCzvvvsuHR0dhIeH8/HHH+Pp6Ykoirz//vucOXMGtVrNRx99tKCEvlU8W3j4aHnt61t47etbmNAZuH2+kpsnyyi7Wkd1QTPVBc3832//m53oHs5g04H0l6aiK5NLyd6ZQPbOBKYmjeSfr+bq8TIqbjWRf76a/PPVuLq7sPWAPSgiPiN8dfn9LsIifPndb+3iG7+/g+LbLVw4Xcntm00U5jdTmN+Mu6eanXuT2HsglYioV8Oj9UVDKpGwMTmCjckRDOsNnL5Zy/Hr1fQMjfGPxwr45+O3yUkO58i2JDalRCJbhn7YK6Jy6yC396KyspKoqKgH6v4MBgO1tbW4u7sTHR390CXUwcFBJiYmlqyhBHsVUyaTodfriY+PdzY4LRStra1oNJpHRvzCfA1vYmKi03HhSeJ/7z12cnKS6upqLBYLrq6uzmaseytzi42AnYsXWbldbOV0bpOao2oplUoJCAhwNqkthqzqdDqGh4eJiYlZ1Lh7jPl0GH7JuMXuiayVxWG2uTBiqXPuE6yMZcxSAYCrNI4Z0ZdB06zmNlAZx8Td7S5iDCapNyPmKud2H1kYMzb7+d1kyQxbJIxb2nCXBfG2/9/NG09xcbEz6Q7s92l6epqxsTHGxsaoqanhhz/8IdPT0/zt3/4tOTk5j7Sk+3f/7t+xZcsWvvnNb2IymZiamuKv/uqv8PLy4tvf/jbf/e530el0fO973+PMmTP86Ec/4syZMxQWFvL+++9TWFj4sFO/UgziRVZuHwbDxDSF56q4fryE0iu1mE2O1DuB+OwothzMYNPBdHxfwu75kcEx8k6Uc+WLEtrq+5yP+4d4sf1IBjuOZBAcuUrY7oVeZ+DyuWrOnaqgs23Wkm7tugD2vJ7K9t0JaN1ejq7+lQKbTaS0oZtjedVcLW3GYrUX5Hw8NBzYnMDhbUkE+T75qszTqtyuCHLrkCTci5qaGkJCQuaRSVEU6ejoYGBgYEFE886dO+h0OtauXbuksRkMBoqKivD29iYxMXFJVbn29naUSiWBgYEP3WdycpKamhp8fX2JiJifg/40yK2jyt3X18e6detQKpVMT087SZ3BYECtVjvJbkdHB1FRUS89ub0XAwMDTE5OotFo0Ov1TExMIJfL5+lRH6VFHRkZQa/XExUVtaDrmW1TlI3/mI7pS/jL/TDahjAaQhhRDBKiCENvaXTuG6yMYdLShEySRKuxjRBl7DzyGqSMw2BtxDITSS/9BCuj0VtmZQpr5JFYbT3YhAg6ZrrwkQUzae3AWx7JUb8fzBvXQl6D3t5ejh49yqFDh8jPz+d73/veA9+n4+PjpKSk0NbWNm8CFRsbS15eHgEBAfT395Obm0tjYyPvvfceubm5fPnLX75vvwdgldwuIxjGpyg8X82NEyWUXKnFPGNxbkvYEM3Ww+vZfPDlqejORXtDH1e+KOXq8VJGBsedj8elhbHzjfVsO5C6qs+9B6Io0lTfz/nTFVy9UINh0r7KqlDI2JQbx76DqaSkh6/orv6VCN34FKdv1XHsWjVdA3aPdEGA7IQwjuYmsyU1EtkSLfJeGVnCo3CvLMEhC1hMItfjpA0Pw1zJg5eXF0FBQUtebnY0xj3uOgkJCYuuCi8ERqORmpoaNBoNWVlZgH1C4erqiqurK8HBwYiiyNTUFHq9nq6uLnQ6HQ0NDfj4+ODh4YGrq+uiE9BeBJ6Gz6xCoSAgIMBJpkwmE3q9nuHh4fua1Dw8POal3S3m+oMzlRSN/Q1TVnvlQibxZtwiMKEYtJ+Le98zWvS2YMZM9jHcfxU1OksA4/Tf3T5/D6ngTq9lnClb192/7V9OMmFpDWFubm54e3vzve9975H7tbW14evry2//9m9TWVlJRkYGP/zhDxkcHHTe44CAAIaGhgA7aZ47MQoODqa3t/e5N1SuYvHQuKnZ8XY2O97OZmrCSNHFKm6cKKX4Ug21t1uovd3Cj//rb0jMiWHL4YyXSqMbERfI7/yXQH7rz16nurCVK1+UcPNsFQ3lnTSUd/KT/3GMzO3r2Hl0PZnbV/W5YP9tjI0PJDY+kPf+393kX2/k3KkKyovbnZG//oEedtux/Sms8X853ivLHZ5uar722nq+ui+D8qZejudVc7m4ids1ndyu6cTLTc3BLfZqbvCaFzNRXRGfnoeRAZlMhsViwWaz0dHRweDgIAkJCbi5uS343Esht44GNa1WS3Z2Nm1tbU/kuCCRSB5I9uaSzuzs7AV1py8WZrOZ0tJSYmNjnQ1tD3ougiCg0WjQaDQEBQVRU1NDQEAAJpOJ3t5eJiYmUCgUTkLn5ub2ULL7IrVmzyKEQaFQsGbNGtassS8vWiwWxsbG0Ov1dHd3O5vUPDw8nIEjj4JFnKF47Jf0Gc9gEaeRIMdVlkjPzDCGu0liACL210mCHLUsiUGTjTHL3O128itFgVqawLBZyrhV79zuGIdc0CAXorljEZiyzXrjSrC/3xSSpVWTHBXux8FisVBWVsaPfvQjsrOzef/99/nud7/70P0f9FlZ1S/aYbXYmNQbcF0BFUC1VkXuG1nkvpHF1ISRwvOVXDtmly5U5zdRnd9k1+jmxLDtyHo2H8rAw2fld9BLpRJSN8aQujGGP/wfb1JwoZpLn5VQcauJggs1FFyowdXNha0HUtn5xnrWpa/qcwGUKjnb9ySyfU8iA/16Lpyq4PzpSgb69Pz8H6/xi3+6RlpmJPsOprJxayyKlyguerlCEATSY4NJjw3mP341l7P59XyRV0173wg/O13Mz04XkxkfypHcJHLTo5E/x8CTFf3qS6VSZ0OLj4/Popq45p5jocR0bqzt3Aa1JwlhcBw/dwyiKNLf3097eztxcXF4e3sv+dwPg8VioaGhAbPZTE5OzqJjdCUSCUqlEm9vb2fFbGZmBr1ez+DgIM3NzUilUifZfdxy/fPC8whxkMlkeHt7O183m83mdBoYGhpyakofpGceMjVzbfTvGLP04SY14yoNQWdV0D/dxhr5fMIiYsVVGsKIxYWuqQ4iVPfKPES0sjCGTHI6TZ1Eu8yXQgiAhyyGbuMM49YuIlzmO0BIBAne8gQM1qW9/6amphZEboODgwkODnZGSL/11lt897vfxc/Pj/7+fqcswTF5CA4Opru723l8T0/PIyU9rxL0d8Z4O/SPSMiJIWtvKll7UwiLX/7hAmqtiu1vZbP9rWwM41PcvqvRLbta5yS6//Bf/o3ULbFsPZLJptfT0HoufwL/OKhcFGw/nMH2wxn36XPP/LqAM78uIDDch51H17PzjfWr/rl34R/gwdd/N5evfmMrFaUdnDtZTv71RsqK2igrakPr5sLOfUnsO5hKZLTfix7uKwF3Vxe+tCedd3enUd3Szxd5VVwqaqS4roviui48tS4c2JLAkW1JhPg9e339iiW3NpuN0dFRDAYD6enpC7LcehAWSkwdVVS1Wn1frO3TILcO/16TyURdXR0SiYSsrKx5S9pPC3q93mnCPzY29tSuoVQq8fPzw8/P/mVy73K9IAi4u7sjiuIziwVeCJ53fK5EInESWaVSiclkwsvLC71eT3t7OwaDAaWLghHP23QIVxCxIUGKmyyOlukObHcrsDZm9YkCUgQCaZxuxoa92jpXpiBBhlX0pGFqAPEB0nkZKiw2D+qmuuecc/Z5qSUemG0+1E/XkuQ6nzQvdIIwOTm5oHQyf39/QkJCaGxsJDY2lsuXLxMfH098fDw/+9nP+Pa3v83PfvYzDh8+DMChQ4f44IMP+NKXvkRhYSHu7u6rkoS7sFrsk+Tqm41U32zkn//bb/AN9iJzbwqZe5JJ3RaPepnHa2rc1Ox8ZwM739mAYXyKgnOVXP+ihNKrtZTl1VOWV8+P/uSXpOfGs/XIenJeS8XVffHa/+UGbz933vzdXN783VynPvfKsVL6Oob5xf85xy/+zzkSsyLZ9cZ6Nr+Wgma1oQqpVEJGViQZWZFMjE9z9UIN505W0NI0wLGPizj2cRFr1wWw90Aq23cn4qp9YWEyrwwEQSA5JpDkmED+41dyOVtQzxd5VbT2jPCLMyX84kwJ69eFcDQ3mW3pUSjkz4YLrIiGMqvVisUy+8PuiLNVqVR4enoSHh6+5HPPzMxQXV3N+vUP1i+LokhfXx8dHR0PraJ2dXUhkUgIDg5e0hgGBgYwGAy4ubnR1NREdHS0kyAuBPn5+eTk5DyWdM11W0hKSkKtVlNQUHBfxdsRlvGoKnh9fT3BwcGLmlSYzWbGxsbo7e3FYDCgUCgeqk19FJ6koexJE8Z6enqQSCRLrhT29fVhs9nmvVcGZzq4MfIL9Da7k4Hc7MmU1RXzXW2tA14yKSbRgMLqjVHijYCJceuQc3uo0h+dpQM3WRAjFhc0EjUDptkEsmiXCAZN9biY/RkW5PgpfemdqXduj3KJYtBci698HU0GHYHKIHpMTaRrt3LQ9+vO/axWKxUVFWRkZDzyuebn5/PFF1/w4x//+LH3paKiwumUEBkZyYcffojNZuOdd96hq6uL0NBQPvnkE7y8vBBFkW9961ucO3cOtVrNhx9++NDPL69gQ1nepWuUXaml6FwFJRer0Q2NObfL5FISN8WyYX8aG/anERCxcjr1J3QGbp0u5/qxYiquN2C761snV8jI2JFA7huZbNibgkrz8oSGWK02Km42cemLEgrOVzv9cxVKGTl7ktj15nrSNsciXYZWTC8SzY39nDtRwZUL1fOa0DZvj+O1Q2kkp4Ut+9WMlwmiKFLd2s+xvGouFjUyc9cxxUPrwoFN8RzJTSbU317NfaXcEhzk1maz0drayujoKAkJCUxMTDA9Pb1kQ32wL8+XlpY6l0TnYmZmhtraWhQKBXFxcQ+tNvb09GC1WgkLC1vSGBwSBJVKRUJCwqITnW7fvk1mZuYjl/2npqaorq7G29ubyMhIJ3F90LHPitw6MDAwgMlkIjAw8L4ABTc3t3lVzgfhRZLb7u5uZDLZkiuFvb29AAQFBWETrRSNnaBw7AvcpB7Y6MdbnkDzVBdSQYZMMjHvWHeJiMoWTot5GJtgw1/hyqR1xLk9VOkHggd1hh5s2AhXBTFoanduj3aJwmiTUjfZCYLAWnUEfTMNc7bHMWYx0zpttyyKVkfRPdNIttsu9vl8ybmfY3UhNTX1kc/14sWL5Ofn89d//ddLuldPCa/UL9i9bgk2m43Wyk6KzldSfKGKxuJWJykECF0XxIbXUsnal0p8djTS56iJexLo74zfJbolVOc3OZ+TUq0gZ18q246uJ2NHAgrl01/5elEwTBi5da6KK1+UUFnQ4nzca40bO45ksOvNTMLWPtpO8lXDjNHMrWsNnD9VSXnJ7HdhYJAnew+msmd/ymoS2nPGhMHI2YJ6juVV09IzG1+9fl0IR7cnsyc77tVySxgbG6Ourg5/f3+ysrIQBIHp6el5Fd2l4EGSgrma17XjxPDyAAAgAElEQVRr1+Lr6/vYczhkBYuFTqejqakJjUZDWlrakmaTj4rvdVSeOzs7iY+Pv89rdKnRv08SGezAvQEKVqvVSXb7+vowm83ORiwPD48lpaHdi2fRULYY2Gw2ZDIZI6Zezo38X4bukk+FRItZdKFh6u7fwvzlM63UlxmLii7rkJOumSxG5/89ZAGMWbR0m7pmxzpHpuAjD2PEpKJzptXu2XJ3Dwf8FbGMmlV0GDvvG7NcMl+PvdDoXYPBsCDN7SqeHSQSCTFpEcSkRfDVbx9hfGSC4gtV3D5bTsnFarrqe+mq7+XjvzmNq6eG9buSyH4tlfW7k3Hzeryk5EXBw9eN139rG6//1jZGB8e4caKUvM+LqC9uI+/zIvI+L0Lj5kLO/lRyj2aSujUO2TNa/nxe0GhV7Hk7iz1vZzHYM8qVL0q59HkxfR3DfPrTq3z606tEJwaz84315B5Meyma754USpWcHXuT2LE3if4+HRdOVXL+VAV9vTo+/PFVfvbTPDJzotl7IJUNm2OWbF+1ioVDq1Hxzq403t6ZSk1rP8euVXOhsJGS+u55ZPdJsSIqt0NDQzQ2NpKQkDDvx3J0dJTBwUHWrVv3ROef6xNrMpmora1FJpMRFxe3oKVyh6xgod6lYCc5LS0t6PV6goKCmJiYWLL3alFREampqfc1hTkqbI7n8qDKc1FREWlpafOep81mw2QyPbJy29jYSEBAwKKcKRxwVG4fF3k8Ny1Mr9czMzODq6srOp2OtLQ0XFxcFk00nzQ+t6OjA7Va7WxuWvTxnR00SAoYlrVwx9SAgMAaRTx60wzjtg7nfq5SN2wMIyDgI0+g0TCAVGKYdy4vqRSzOIPKFEKbqMdXqmRKMuufGaJcw5jlDu6yaOomu4lUB9I3M3uNGHUo4+YhBCGQpqk+4jVhdBmb52yPYso2SZJrLls9tzsfvzfC+GH41a9+xcTEBH/6p3+6pHv1lPBKV24fBYvZQs2tJgrPVVB0roKe5gHnNolUQuLGteS8nk7OgfQVI18Y6Bzm+vESrn1RTGv1rJ7c3duVLYcyyH0zi/isqCXbNi43iKJIfVkHlz4r5vqpCgwTRgCkMglZ2+PZ9VYmmbnrkK86BzhhtdooLWzl3MkKCm40Yb0bRuDhqWHP68nsO5hGcOjTb+JexcMxYTByrqABm2jjS3syXh1ZgsViwWKx3EdkxsbG6O7uJjEx8YnO7yC3AwMDtLa2EhMTsyjycufOHfR6/YJTpyYmJqipqcHf35/w8HD0ej39/f2PJQsPQ0lJCUlJSfOW8YeHh2lsbHysfre4uJiUlJR5xHih5Nbf339JvrsDAwPMzMwsWsYhiiKTk5NUVVXh5ubm7MZ3VHY1Gs1jye6Tktv29nZcXV0fW81/EO6Yevms9x8YoY9QZQQm2ygzNjf6TAMEKAKYsHY493WTeuIiFZmyutM7M4RckCO7h9yGqfwYMcvom7FLE/wULhhss/rKAGsQA6KRMdF+XISLPwNzKrvr1ElUT3YxZZu5+3co3TP25U6ZICdcFU/ZeDNH/Q6x0zvXedxCgzB++tOf4uLiwh/+4R8u+l49RayS2wWit2WAwnMVFJ6toPpmo7M5DSA8Ppjs/WnkvJ5G7PrIFUEOu5v7uX7MXtHtnkPcfYM82XY0k9w3sohKCnlptJemGTOFl2q59HkJJdcasN0lbW5eGrYfSmfXm5lEJSx/54znCd2ogcvnqjh/qoLO9tmqYVJqKK8dSmPz9nWoVC+PtGUl4JUKcZBIJA/8QC41gOFeiKJIZWUlAJmZmUuyxVrIOOampyUmJjr1qk/qtjBXImC1WmlubmZycpKMjAxUqkd3hz6JLGGpWOqxgiCg1WpRKBQkJSU5gyV0Oh0dHR0YDAZcXFycZFer1d53rRchS7CJNkrGr3JF929YsSAgIBPcaZ0ZwCLaf3Qlc84pIMFNGkrTdBsW0d4wJhNml8skogQ/ZRz1hk4s4hwLubsyBIWgxF0axaBNx9gc39qp6UmQgtLqgkoeTO+M0Uls5x6/Rh7EkEnCiNmCDRG5MP/LfaGyhKmpqSVXuFfx/BEU7c8b39rHG9/ax6TeQPGFKgpOl1F8oYqOuh466nr4zV+fxMPXjezXUtnwehrpOxJRqZdnA1dITABf/dMDfOVPXqetpscpV7jTq+PTDy7w6QcXCI72cxLdkJiVrVdVKOVseT2VLa+nMnpnnKvHyrj4aRGdTQMc/+gGxz+6QXisPzvfyGTH0Qy8fBe/6vaywdNLw1tfyeHNL2+gvqaXs8fLyLtcR3VFF9UVXfz935xj+55EXjuURkzsqiPLSsKKILcPw9Mgt0NDQ05Jgb//0r7cFkJOp6amqKmpwd3d/T53gqdhJeZYwneEK8TGxi6IhD2JdvZFpYw5MDdYwpGi5ogM7unpYXJyEqVSibu7O56enmi12uficzsXAzO9fDb4czQyKVbRgkb0xCxq0ZvNWMRZvbgjDcxdtoZJixtdM5P3bJdhBdyFNejMcqpMvSil89/7FtGMnzyMLqOFzukeApXz7ZHkSjlrrBE0mnSYLQMEoIU5HFVAwF+xjsrxXkTAQ27XXCqeQHO7lHjmVbx4uHpo2P5ODtvfycFsslB9s4HbZ8q5faacwc5hzv/8Oud/fh2li4KMXUlsPJhB9mupy1KnKwgCUUkhRCWF8Nv/7Sh1ha3kfVHMjROl9LQM8qsfnOJXPzhFTEoYO97OZuuR9Ss+/tfL1403fzeXN765jZaaHi59VkzeiXI6Ggf45/91kg+/f5r12+LY83YWWTviX3nZgiAIxCcFE58UzO//h71cu1TL2RPlNNb1cerzUk59Xkp0rD/7D6WzfU8CGtdVS7HljhXxjn5cQtlSYDabaWhowGKxoFarl0xs4dHkVBRFent7nQ1djuCHuXhU/O5C0dPTw8jIyLyK8ELwIiq3zwqCIKBWq1Gr1U6rLqPR6JR9NDY2IooiCoUCnU6Hm5vbooMlFkpuraKVa6PnuKo7i1W0sFYWRaBiHfWTPVgZIUYx/zUSRAE/RQLVk/1YxDsEKuZLSWTI8FXEUz3Riw0jCkEOzFZdVRIVbtJgKiZ65o3BAXeZJyI+1Bi74O68SqFSwN0+SA+rN92jZgakd+Y9VwCFZH7l1mazLWhZ2mAwLNl/ehXLB3KFjPQdiaTvSOQPfvA1Omp7uH22nPyTZTSVtpF/spT8k6VIpBKSNsWy8WAGOQfS8Qv1edFDvw8SiYTEnBgSc2L4g796l4obDeR9Xsytk2U0V3bSXNnJP/7FJyRvjmX7m1lsOpC+oj10BUEgJimEmKQQvvlfD1GcV8+lT4spulpH0RX7PzdPDbmH0tj9VtaqbAHQaJTsP5zO/sPptLcOce5EOZfOVtHSOMDf/eAMP/m7C2zdGc9rh9JISH55ZC0vG1aE5lYURUwm032P22w2CgsLycnJWdT5HHrUiIgIAgICuH379pLSzRxwpKQlJyfPe3yhVmJTU1M0NjaSlpa26GsbjUYKCgrw8fEhISFh0c+hvLyc2NjYeRW2hWhum5ub8fHxeSBZfxwGBwcxGo1Ltk57Eiuwnp4exsbGkMlkjI+PI5VKnV677u7ujw2XWMjz7jX2cHX0NHWGcgC85X5oJb40Ts/absWoI+iZaXRuVwkB1E/Nbg9W+qO32PWxvvJATDZ3umdmrWxcpCrA3jwWpAync8rItDgbrWs/r5QZm5EQZQxVE8N4K2ToLbOa3BCVBxPWCbxlYVSO9xKp9qZvZtZbNxBXrBIbezV7yVqT4mzg6+/vx2KxEBJybyLafLz//vt885vfdDZrviC8Ur88T6K5XQru9I5ScKqMWydKqLoxq/MEiEwKZePBdDYfziQ8IXhZk4CZaROFF6q4+mkhJZdrMd/14ZQrZKzfmcCOtzeQvScZxUuiv9QPT3D1eBkXPimio7Hf+Xh4rD+73sxix5EMPFctspwwzVi4mVfP2ZMVVJZ2OB8PDvVm38FU9ryegsdLkJi3HPBKaW4fBolEsqiqo8ViobGxkZmZmXl6VKlUuuBq1MPGca88YnBwkJaWlgU1py1VluBogNNqtYSFhS1p/C+qcvuiJA0ymQytVut0ajCbzej1ekZHR2lvt5PHuZHB97plPKpya7GZuTBynsujF4lyCUKKjABlNLWTPcRp5sdmCoAUGf7KGKom+oh0mT95kwoS5IICH3kUFeO9+N3j+StHhlyiwVUaTMV4HzJBiuyel18rdUMiBlA8Zv/xstxzy91k3gwaJfRM2b13beLse1AmyPBUB1Gk78SmktDa2srU1JRzEqTRaB5bxV5o/O4qVi58g7w49N4uDr23iwmdgeLzleSfKqXkYjVt1V20VXfxy786RlC0H5sOrWfT4fXEZkQuO6KrdFGw9fB6th5ez4TewK1T5eR9VkTlzUYKzlZScLYStVbF5kMZ7Hwrm6RNa1dEU93D4OGj5ejvbOPIN7bSWtvLpc+KuXqijI7GAf7pr07w4fdPkbU9nj1vZ7E+dx0y+attkaVQypyWYr3do5w7Wc7FM1X0dI3wT39/mY9+cpWNW2N57XA6aesjkEiW1/v7VcSKILdP44twZGSEhoYGwsPDCQwMnHdOBzldaiTsXHJqsVior6/HYrEsuDltseTWcQ2r1UpmZiZNTU1LJosPIreTk5OMjo7i6en5SG/ZJ7nmcoFcLsfX19fpfmCxWBgbG0Ov19PZ2YnNZpuXovYwQtcx3c6/DfyaQZO9QUwpqJEK/lRN3nUnuOcQCUogkPJxu4zg3nMqBQ1Gqy/l03biKWP+D6mPPID26Tt0Wu2BCzJh9r0rRUqoKoqGyR7M4pTzcYeGVykq8VSE0DihR28x3Lc9SBnAnRnonJ7EikiofxDRmmBnA19bWxs6nY7h4WEUCsW8Br65Mo9VWcKrBa2nhh1f2siOL23EZDRRkVfPrZMlFJwqo7dlkI//5jQf/81pfAI9yTmYwaaDGSRtjl12/rNaDw37vraZfV/bzEi/nmvHirnySSEtVV1c+NUtLvzqFj4BHvZGtDeziE4OXVbfaYuBIAhEJwYTnRjM7/yXgxRdrePiJ8UU59VTcLGGgos1eHi72kMi3sokIm5pyYwvE4JCvPidP9zJb/3edgrzmzl7vJzi2y1cv1LP9Sv1+Ad62Ku5+1PwWbPatPeisLy+VZ4BLBYLTU1NTE1NPdQ94Ekb0xzkdHR0lPr6eqfcYaFfeIsht3q9nrq6OsLCwpwk/Uka0uaSW1EU6erqore3F29vb5qampzesh4eHnh6eqJSqRAEYcV+mT+u2iiTyfD29nbGLDuCJXQ6HT09PRgMBkwmE76+vnZpglzg2OBZWqeruGO2W3YFKCIZNJkZMI3OvbD9/KIMb1kEoyYp/TM652bhLvtVSVzwkoUwbBK4Y5pNKJMIdnKrQYNM9KZjepoJ67Rzu1yQYgb8FH6Mm2RUjA0gldzbcGYhTBlOjV5Pt3EAX+X8j79EkBCmiqZM34uIQJCLnZgq72puHQ18rq6uTjs0h6Z5cHCQ5uZmp8yjvr6e6enpBVVuw8PDncRYJpNRUlLC6Ogo7777Lh0dHYSHh/Pxxx/j6emJKIq8//77nDlzBrVazUcffUR6evpjr7GK5wuFSkHWvhSy9qXwxz/8LWoLmrl1vISbJ0oY7h3l5E8ucfInl3D11JDzejpbj2aRtiNh2TU2eQd48MYf7OaNP9hNd3M/Vz4t4sontxnsGuGzf7jIZ/9wkZAYf3a+s4Htb2XjF7Jy/VHlChmb9iazaW8yo3fGufJ5CRc+Laa7ZZDP//kan//zNaITg9n7TjbbDqWhXcFa5KcBqUzCxq2xbNway52hcc6frODcqQoG+vR89JM8fv6P18jaGM3+w+lkbohGeu/S2iqeKVaE5hbsgQQPGuvcAIZ7odPpqK+vJyQkhODgh2u+qqqqiIiIWHKVyWQycevWLVxdXUlMTFx0ktZCtMNzo4eTkpLmaWTr6+vx8/NzJn0tBtXV1YSFhaFSqaipqUGlUhETE4PVanXKPuYGKRiNRlxdXTGbzfj6+i6KxDswNDTE1NQU4eHhix4vPJnmtq+vD6vV+li96MNQV1eHh4cHJpOJmrF6rkoKmJAYCJJrUMlcGDbbuGMaZ63Gjy7jbHNXvCYEk81Ex4QRvWgkWRtKy/RshOY6TTgW0Uy7YQq9ZYpYTTCdxg7n9giXAFRSOVX6YWawEKTyRmeZ9e70lrnjo/CifKwPGyJqqRIbs1VZL7k7GomW+skh52MecjCJ5rvnD2HYaKTfNKvJ9VOp0Zkn+PuE/4ifclZj3NLSMi9Zbi7MZjOjo6P85V/+JRcuXCAoKIicnBy+/vWvs379g2VU4eHhlJSU4OMz24D0Z3/2Z3h5efHtb3+b7373u+h0Or73ve9x5swZfvSjH3HmzBkKCwt5//33KSwsfNRLtjJnYUtESnKqePI3pwmODViWy+aiKNJc3s6tE/YmtK6GPuc2jbuaDa+lsvloJhk7k1C6LM6S8XlBFEXqS9rI+6yIa8dKGBuenYQmbVzLjrez2XIoY0U3ojkgiiJNVd1c/LSIayfKmRy3T6jlChmb9iWx+60sUjbGIJUuv/fai4DVaqO8uJ1zJ8vJv96IxWIvOvmscWPfgRT2HkjFL2BlO3E8azwtze1LQW5zcnLmESyH1+vExAQJCQmPtSOqqakhJCRkSYEE4+Pj1NTUMDMzQ25u7pIqmqIoUlBQ8FCSbjAYqKmpwcfHh4iIiPt+tBoaGvD19XVWGxeDmpoatFotPT09Tn2wzWbDbDY/8Lk4ghRaWlqwWq3YbDY0Gg2enp7OiNzH3YMXTW5tNhvBwcFLOr6urg6fIF/OTl7hlr4IAJWgJECyhkbzbGNGmNyTQZudSLpIXAhXRlA83urcPpfcaqWuBCnDKRmbTQdbpwmh3WjXAPvIvXCX+lM5OUuGw1S+3LHYiUGIKohps5KOOWTaXapmhnEkSIh0iaBhXI+R2R9hAI3MgqtUjYfMj8qxAbRygRnbbIy0p0LOGoU3fx71NTwUsxZPCw3w2LJlC9evX6ekpARvb29SUlIeuN+DyG1sbCx5eXkEBATQ399Pbm4ujY2NvPfee+Tm5vLlL3/5vv0egleK3IYHRIprRzag9XIlIWctiZtiSdgUy9qMyGVXFQXoaujl5vESrn9eRHvNbKKYSqMkc28Kmw+tJ2tfCmrtk0dvPwtYzBbK8uq5/PFtCs5WYDLaPz9yhYysPUlsfyubrN1JKJQrvxHNNGMm/0INF35TSEV+s/P32DfQg11vZLLrrUwCw5afQ8aLgm7UwMUzlZw5Xk5fj30VTxAgIzuK1w6lkbNl7Wrc7wOw2lB2Fw5JgUMv61i2DwoKWrDX61JkCTabjfb2du7cuUNycjJVVVVPFE7wIDhsxLq6ukhISHgomViqLMFmszE2NsbExMSCAh8cY9Vqtbi7u+Pm5oa3tzeTk5Po9XpaWlowGo3O1DCHZnc5SRieNMSh3tbB1Z7PsWCvcIarwuiYmuSOZHrefuLdeaG32YceqxWVxXDfdgGBcFUkNeM6tPdICARBQCpICVNFUK4fIEozv+FMIghopC54SoMo0/UTrJrv3iCXSPGU+TBlUVKo60crnf/aKgQpUepg6sZ0dFrtFWCzbdZWTytT4yvzpWx0AEXM0kIcALRaLTt27HjkPoIgsGfPHgRB4L333uP3fu/3GBwcdBLWgIAAhobsE4Xe3t55Vffg4GB6e3sfRW5fKQiCgHegJyN9Om6fLuP26TIAlGolSZtjSc1NIHV7AlGp4cui2hYaF8RX4oL4yn8+TG/LADePFXPjWDHN5R3c+LyIG58XIVfKydyTzNY3stiwPw2XZeQxKpPLyNqdRNbuJAwT09w6Vc6VT25TeaORW6fKuXWqHFcPNduOZLLz3Q2sW7/8mukWCoVSTu7BNHIPpjHYM8qlz4u59GkxA92j/OsHF/nXDy6SvCGKve9ks3FfMqplWnl/XvD00vDO1zby9ldzqCzr5OzxMm7mNVByu5WS2614emnY83oK+w+nExC0eNehVTwaK4bcPqyr30FMJRIJLS0t6HQ6UlJSFtWlvVhy66ikenl5kZWV9UyW/0wmE7W1tcjlcrKysh7Z7LYUxwODwUB1dTVSqZS1a9cuiNg+6JoOsqvVagkJCXFWdvV6Pa2trU7d5Vyy+yKxVHI7ah7j573HKbPVAbBGqUEj8aVi3F6tVcvmPy+N0hVfsxv1Rod0YP7rYzbacCWEQt0gD4JMUCAX11Cks1dnJfeMWSt1p3vKSIfFfn2pMPseVAgy/OUBlIx3Yr3bUCaXyDDdnf94Chq0ijUUjc5WeuWCBBt2churCaNBr2dg6m5znHTxPreLeT/eunWLwMBAhoaG2L179yNjfR903pVKFp4FvAM9+XXxBwx2DlNzs4Ga/EaqbzTQ3dhHyYUqSi5UAXYJQPKWdaTkxpOyLZ6IpJAXLmMIivbn3T85yLt/cpDBrmHyT5Zy83gJtflNTi9dhUrO+t3JbDmaSfZraWjclk9FV6N1Yc+XN7LnyxsZ7tdx7fNiLn9ym7aaHk5/dI3TH10jMGINO97OZsfb2QRGrNz0Pr9gL776x3v58rd2U1PUxoVPirh5toqq261U3W5F853P2XYonT1vZ7H2FfeCFQSB1IxwUjPCGR+b4tLZas6eKKOzfZjf/CKf3/win/SsSPYfSiNnayzyV9yZ4mlhxZDbh0EqlTI2NkZrayv+/v5kZWUt+oO0UHIriiLd3d309PQQHx+Ph8ez0c44fHgXYiMGiwuBuLca3NfX9/iDFoEHkV2DwYBOp3PaSclkMuRyuTPB6nl/8S3meqIocnWklN8MnGT6blRtpDKMjplhuqyzMgTb3ehaAYFIl0j6p6bpmZnVt8oVcpgGiSgQpgxDZ7LRap4NTDAajQCoJEoCFMHoZiT0GGf1r5K7q+tuqFFJvBgyWhmzGJ3bZXfJbbhLIH1TFjqnDFjnEEGFRMKMKCVMHkjl+AhulvF5z1MhkeOlUCOIrhSNDKGU2L8a5IJ0HnGGxVVuF3KvHYEba9as4ejRoxQVFeHn50d/f79TluD4HAQHB9PdPbt83dPT4zx+FXYIgoB/uC/+4b7s+toWAEYH9FTm1VGRV0v51RoG2u9QcKqUglOlAGi9XEneso7U7fFk7EomKMb/hRISv1Afjv7RXo7+0V6G+0a5eayEa58VUne72Ul05Uo5GbsS2XIki5wD6cuK6PoEePLmH+3hzT/aQ3tdD5c/vs2VTwrpax/il98/yS+/f5J1mZHseHsDuUcz0a5Qj1SJRELyhmiSN0TzB//9Da6dLOfCx4U0VnZx5lf5nPlVPmFr/dn9VhY7j2bg4fNqu6e4uat540vZHH03i7qqHk4fK+X6lXrKitooK2rD3VPNnv0p7D+cRtAKbk5cDlgxmluz2XwfgbPZbBQUFACQkpKCq+vSoh/b29tRKpWP/JE0Go3U1tbi4uJCbGzsfT/uj2psWwjy8/PJzs52OjskJiaiVC4ss72trQ0XF5fHLs2azWZqa2uRSqWsW7cOmUxGfX09a9asmafXfZTm1oGOjg7UavWCyPdcOCYIOp0OiUTi9EJ1VHYXQnafRHPb3d2NTCZb0DJ29/QQP+46js6sZ9I2gq/CiymDhEFxCpl0vkzAVylHI1UzY3ahbWqEcI07/TMjzu1xrn6YbVYGxk0MiUaS3QJpNHQ5tye4+GE0z9BtNDGOmViFD+3W2YaxZG0ICALlI0OYsJHgFkDz1CzJi9UEIEFGud5+TITah17T7PHrXIMZmp6mx2gntf5KN/RWuw5MLkhZpwmnXN+D6a7XrZtUxZQ4hVam4lj2f5j3XMvKykhOTn7kaoLNZiM3N5fy8vJH3mODwYDNZkOr1WIwGNi9ezd/8Rd/weXLl/H29nY2lI2OjvL973+f06dP88EHHzgbyv74j/+YoqKiR13ilSoZLTTEYbDzDpXX6qi4WkvFtTqGe0bnbfcL9yVjVxIZu5JJ3R6P1nN5xOo6iO71L4qoK5jVfTqkC9veymbDa2moNAv77nyesFptVFyv58onhdw6XY7RYJ8syxUysvcms+vdHNbvTFh21mhLQUdjPxc+KeLKsVLGRiYBkMmlZO9MYN+XsknbHLssZDHLARPj01w+X83Z4+W0t84WRFIzwnn9SDobt8W9UtXcV66hzGKxzKuuTkxMUFtbiyiKxMbGLskpwIGuri4EQXhoB31/fz9tbW3ExsbOa3qZiycltzdu3EAmkxEYGEho6OJ8ExdCznU6HXV1dURGRs4jdo2Njfj4+Mwjt45EuGdBbgHu3LnD5OQkERERTu9UnU6HXq/HYDA8luw+a3Jrtln4dCCP44M3sYhW/BUerFG6UTHWj0W0oRRkCNLZqqlCkBGrCaFM34vl7ucpVK1l0GS3+nKRKIlRh3Fb1454l2sluQXQZLCTU0+5K6GqIAp1bc5zJrj40Wyye9z6iFq0gjt15tkvviS3QBqnuhCAWE0oZouc2slZshzj6kunsR9XqYoAhT+jRhM9ptlKcYjKgzuWYSJc/BieFrGKIiOW2YQzb4UGk81IkjaC/5X45rz7U1JSQnp6+iOXsQ0GA2+88Qb5+fkP3QfsE7OjR48C9s/4V77yFf78z/+ckZER3nnnHbq6uggNDeWTTz7By8sLURT51re+xblz51Cr1Xz44YcPdWG4i1Vy+xiIoshA+xAV1+qouFJL2eXqeQ4AEonA2vVRpO9MJH1XEuuyY5ZFc9pIv55bJ0q48UUR1TcbnURX6aIg67VUth7NImtvyrIkukbDDPlnKrj8yW3K8+qw2exjd/fRkvtGJjvf3kBMatiKX843mywU59Vz/jeFlOTVO5+nT4AHu9/MZPfbWQSErlYowf45bKjt5cyxMvIu1TIzY5eJvWrV3FeW3FdTYMQAACAASURBVDoauYaGhkhMTKSvrw9vb++Hks6FoLe3F7PZfF/3vtlspq7OrrGMj4+/L61qLpZKbkVRpKOjg5aWFnJycpZUfe7o6EAmkz3QAcBms9HW1sbIyAjJycn3aV4bGxvx8vJyhhg4xvQ4ctvZ2YlKpcLPz2/R451Lbu/Fg8iuWq12ujFoNBpKSkqWTG67urpQKBT4+/s/cHvVeDunBgsom6gHIEwVgCCqaJqaJY4uEgWixK5lDVcF0j9tZdo2Mc9pIFjtyh2Tnmh1KK3jBnxULnRMz5LTRK0/rVO9rFWHUzk2wjqtL3VzyGmqezDtU/2EKIMo1fWToPGj0TgrIVmr8MIgMSIRXWk2jJLk5k+jode5PU7rh0IioXFsgjGzkbWuvrQbZyu5UWpf1FIFpaN2zW+IizsD5tnqXYpbKG0TelQSJZ9u/Ma8e7SQycXg4CC///u/z6VLlx6533PAymYHi8TTiN+12Wy0lHdQerGK0kvV1OY3YbXMFhZUGiUp2+LJ3JtC1mtp+If7PuJszwcj/Tquf17Etc8KqS+cdRVRqhVkv5ZK7lsbyNyTjEK1/Jqchvt1XP2kkIu/KaBrThRu6NoAdr67gZ3vbMAnYOU3HA0P6Ln0WQnnPy5koGt2VSslJ5q972azaV/yS+Eq8TQwOWHkyvlqTh8rm1fNTblbzd30EldzX0lyOzY2Rm1tLV5eXkRFRTmbyLRa7ZJIlgMDAwMYDAaioqKcjzl0r1FRUQ8lQnNRUFBAdnb2opoyjEYj1dXVuLm5MTw8zKZNm5Y0/odVnqenp6mursbLy4vIyMgHjq25uRkPD49lQ27vhYPs6vV6dDodBoOBmZkZIiIi8PT0RKPRLKq68bBxj5un+Jfui1weriDWNYBh8zB+Cn8qx/oIVnkyNEcf6ypV4iIT8Zb5O2UArnIbFnGWAMS6+mKyKqgdtx8X7epJl3H2HJke4XRPTdFusFd30zwCqJ+clRlke0RTPTbEiMnuwpDhEUT1hJ38KgQZCepgisZ6cFxxrcKTDuswAP5KDwLlPuTrOpzni9OuoXW6HwGIVqzBJqion5wly5EaL7pn7uCj0OImcWPcZKHHOEKMqy+/zP76vHu1EHLb1tbGd77zHY4dO/bI/Z4DVsntE2JqYprqGw2UXa6m7FI1nfW987aHxgWR9VoqmXtTSNgU+8IJylD3MDe+KObaZ4U0lsyuhmjc1Ww8mEHuW9mkbU9AusxsmERRpKWyi0sfF5D3ebGzei6RCKRuW8fuL21k4/7UZev/u1DYbDZqito4/5tCbp6txHS3Qunq7sKOIxnse3cDEetWdfQwW809fayMa/dUc/fedVoIDF76qvVyxCtHbru7u2ltbSU+Pn6eJdZCluQfh6GhIcbGxpzhBY2NjUxPT5OQkLBgF4HCwkIyMjIWHOE7MDBAa2srcXFxeHt7P9Cvd6Ho7u5GFEVCQ0OdjzmkFPHx8fYkrYegubkZd3f3efKChZDbx1VAH4XFkNt7IYoiRUVFBAcHo9frmZycRK1WO2UMjyO7HR0duLi4zCO310dq+UnnGcYt9mpshls0dZP9jN9t2Ap18WbANOtqkKAOo9EwwoRlVnerllmwISIVJMSow+gyjDFsnnRuj3R1p8c4ggIpkeoQJs0Wmqdmz5nq7k+DoQcfhRtq3FFK5VSNz5LdDI9gqic6CcQdvSgjWO1O1cRspTdRs4Z24yCBeNIwPUmk0p1262wlNtHNj0nbNGajhPbpSeLd1tA8NVslWqv1xVWmoGLkDkablWhXb9qn7pDkHsA/rf/KvHu4EHJbXV3NBx98wK9//etH7vccsKLJrSAIIcDPAX/ABvxUFMUfPmz/Z0Fu78Vw7yill6ooOltB6aVqpsZnbfBUGiVp2xNZvzeZzL2pL7yqO9g1zPXPCrn6cQGtVbOfF3cfLZsOr2fbm9kkbY5bdvpPi9lC6ZU6Lv5bPoXnqzCb7KRGrVWx5dB6dn8ph/jsqBfucPGkMIxPk3eynPO/uU1z9ax7S0xyCHvfySb34PJyxHiRMEwauXzu/mpuWmbE/8/ee0fHdd5n/p87HdMHZdDZSZAEQBCFDWyiGiVSsopFiZIs2Ul2EzvJbpzdPWfjeLOr/JLN2fUmjp3joo3tTWwVipJVLLGITSTFApDoHSBBFKJjgOmYPnN/fwwwMyBBEKQkkIz0nMOjI9w7d965c+fe533e5/t82f1Eyb+ZpIUvXc7tlPXg2h+zTCYjFArd4FVzw1RawpQynJOTw6pVq26JaM41azYUCtHa2kokEmH9+vUxq8PU6+dahX7teweDwdjx29raCIfD044/22tvNUbsTmKq3XB2djbZ2dmIoojX68Vms9Hb28vExAQqlSpmY9Bqtdd9j1P/3+cd55+6DiMIYZwhD+kKIzI0jAeCMWIL8RiuTGUybje0u9y4I3FiKwEiiCxQmbEHJFSOD5OqnK6uhMUIK9Q5XLLauegdZqV+undKEARWaxZRZ7Xgj1goMU2frMkECUtUC6ifjA7L1UzPPNYqNCh9Rpq9UUKtUihhknMokCJ4RK54PTGlVyqJn5NlmjTUaKm0xB/+U+kLauntqUQej+e2Czy/wjSEgP8simKtIAg6oEYQhGOiKLbeqQGlZiez85v3sfOb9xEKhmituMzFw/VUHamnu7lvWgpDbl4WG3eXsOnxElZtXDHvJDJ9QSp7/nw3e/58N1c7BqNE951K+i8NcehXJzn0q5OYzAa2P7OBHc9tIq/07sihlcmjRWYbdq7BZZvg1PtVHH/rPB21PRx54yxH3jhLxsJUHnxuEw/u3UTGgnuzeYJGn8TuF8vZ/WI5nS39HN1/gU8+qOFyYx+XG/v4xd/+ji27inhk70byyxbfFd/NnYJGq+Jrz6zj8a+X0dY8wMEPajh9vJW6qm7qqroxmjTsfKyIXU+WkJl179tYPivuGeU2HA7PSGIHBwdjy9S3C6vVSnt7O1KplIKCglvKyJ1CbW0tq1evnlXpnSrqWrx48XVK860qv4mYOgfJycm0tLSwYMECsrOz53QjuHLlChqNZpoCOxfl9lZSB67FZ1FuYXblcIrsJtoYVCpVTNm1WCwoNUkc83fwzmAlQTFMsSEXUYQG+xBBMUKBPotLCUkES9RpaKRJ1NqGCYkiqQoNznA8SssgSyI3KYUa21CsYMykkDERjlZDmxV6UuUGau1xpTRPn0yXJ2pTWKpOR4mKekd8ubfYlEmzqx8JAvm6XMJhKbX2+JjWpWTR4OwjWa4hVWZCJsios8eVjxJTFk2uPlbrsrjq8pCp0NIyEffcrlDoGcNDliKFOtsYa0zptCbYFAoM6cgECWaZkb8rfmTa+Z2L5/nEiROcPn2af/zHf5x1v3nAv6mnoSAIvwN+IorisZm2z4dyOxvGBqxUHW2g+kgDtSeamXB4Ytv0KVrWP7KWjbtLKH1oDZo71J5WFEW6mvr49L0LnH73AkNdcRUsa2k69+3ZyI49G1mwMvuOjG82XL00xIm3KznxdiVjg7bY39duXcmDz29iy+6Su7KA7lbg9wU493ETR9++QENF3D+duyydR57bwP1PlWFM+WriDNGkhU+ONHPwgxp6uqLPE0GA0vVL2fVkCZu2rEAqu7fU/S+dLeFG5HZkZASXy8WyZctu67hut5uGhgYANm3adNvLPPX19SxfvnxGYhyJRLhy5Qo2m43CwsIZGxlUVVVRVFSEQnHrStnQ0BADAwOEQiEKCwtviZx3d3ejUqmmkdS5kNv+/n6kUultk1uXy8WSJUtu+bVwa2kJoiji8/liBWqV453UyYbpYNILq85AI1FT4+iJvabQkEXHZJLBck02YlhBkytOHDOUOqyTyQKrtLn0OCewRabnxurlkqhaq8mhbtxCSpISiz9egb5MZ8QR9JKuSKV2fIQCYyod7rhNociUgTccwO0X6HY7KE3OoCGB/K5LziYCNI2P4QmHKEvJmkZuNyTn4ggEaLZHfbglyVk0OKLbJQisN+RSYxvBE47+plaodHSFo58pN8lItsLEmdE+dmYt5wclcXIbDoepr6+ntLR01vP+0Ucf0dbWxt/8zd/Mut884N8MuRUEYRHwKVAgiqJzpn3uNLlNRCgYouX8JSoO1FB5sJbBzvj1LZVJKdiSx4ZHi9m4u4ScFXemw5woilyu6+aTtyo4/dtKrCPxbOmlaxZw355NbH9mA+l3mTIaiUSoP9POsTfPc+5gXaztb5JGydYnSnnwuU0UbFp+z9sWBnvHOPr2BY6+cxGbJXr/lMmlbHywgEee28DaLfO/GnA3QhTFWG7u6U9aCQaia3TJqVoeeWwtu54owZwxe7v0uwVfOnI7lb16LcbGxhgfHycvL++WjieKIr29vQwNDbFkyRKGhoZYu3btbY+vsbGRxYsXo9NND6me6gRmNptZvPjGyyo1NTW35PGdgs/no6amBqlUelvd0mbyLM+V3EokktvyOo+NjeF0OueF3Mbe0+/ip90nODnWTn5SKiMhJ7qImssBJ3lyI92RePXuGkMWloAdrcRIk91yXdJAlkqPQgpiWEWH04pWpiAgTG+/W6A3MzwRZMAbvSFnqFWMB6IteCUIbEhZSPXYKBOTvt3VxhQuu6MKkl6mYpU2izOW3pgSXJKcQeMkuV2mScMg1XDBGldyp8itQiJltTYLRIFqW5wMlyVnUefoJ1umJRxRkJakpdaeoBQbzXR6LeQIetpdLpaqdFwOOtmVvpT/WfpI7LoKBoM0NzdTXFw86/net28fVquVv/iLv5jL1/NF4t8EuRUEQQucBv6nKIrvXbPtD4E/BFiwYEFpb2/vHRjh7BBFkb6OQSoP1nLxcD3N5zqIhOM2rty8LMq/VsbmJ8tYUTpz8esXjXAoTMOnbZx6p5Kzv6uepjoXbM7j/uc2sfWp9eiT7y7V0O3wcPr9Ko7vr6CtKl5Al7kolYee38xDezeRln1vFx2FgmEunmzl47cqqTndHosUM2eZ2PncBh5+dj2pGV9MU6V7DU6Hh6OHGjn0QQ39V6N1FxKJwLpNy3jsqVLKNi69qycEX5HbSdhsNgYHB8nPz5/zsbxeL83Nzeh0OpYvXx5rbnAzNWo2NDc3k5ubGyt2E0WR/v5++vr6yM/Pn1YENxPq6urIy8tDrZ77Ut3o6CiXL18mPT0dURRZvnz5LY+7p6cHuVxOdnZ8CS4SieDz+Wa1SAwMDCAIwryT27kui08hLEb4cKieX/SewhMOIEGgVJNDw8QonnD0eirWZ9IyEVU1pQiskJhpDdjxTzY0mEoagKh/dY1+ERXjV2MdwAxyFV6ixDVZriFNlkyTY2jajyctSYE96CVdUCORagkSZtAbV4nyDCZ6JsbJ12fTZnWwQKenzRlXuopN6fR5bRiCSi75PJSmZlCfQE5Lk7PwR0KMuH0MeSdYl5pFbYKSuzElB18oQo1lGBGBstTMaeR2W9oiGsdHsfqjXuPi5HTqHcPsNOSyR5WNTCbDaDSiVqsZHh6mqKho1vP+y1/+Erlczp/+6Z/O6Xv6AnHPk1tBEOTAAeCIKIo/nG3fu0m5nQ0um5vqo9GitIuH63DZJmLbUrJMbHqshI2PlbJ2R/4dSV8I+INUH2vk1DuVVB6sw++NTkJlcinrdhZx/3PlbHj07ksu6O8c4fj+8xzfH7ctCIJA8X2rePj5csp3FaNQ3dtxW5YhO8d/W8WRty8w0h8nb+vvX83O5zay7r6Vd10Sxp2AKIo01vVy8INazp5sIxSKPs/SMwzseqKEnY+vJfkutHd86QrKbgSZTDan1rkQ/bIHBwfp6elh1apVscYPkUhkzse4EaRSaaygLBAI0NzcjFKpZMOGDXMqEptrQRoQS3Tw+XysW7cOp9PJ+Pj4zV84AwRBmFZQFgqFaGlpwel0IpFIMBqNsX/XFqfd7YVoTY4B/v7SMWTSCJ5wgMXqNOzuILZgKEZsgdgsdqk6nXFvhIBMhd8f/y583qgqu0KVzhW7mx6Je1prWykCUkFCvjaHxvFxhiIj0SqzBKgkcvK1adSMDSFiJ+sa64hRpiZDJuHCSFS9TTy3UkFAJ1Xj9joYmUx0EBOoc7pKhxIlFywjCUeMbpcgUGTIIhCUUD02xBTXmxLlF6iNyCMKXL5wjNgCSCVSNDIFeem5rFtRit/vx+FwYLFYcDgc1NbWYjAYMBqNGAyG6yZCHo9n2oTpK9wehOjyya+AtpsR23sJOpOWHc+Vs+O5ckLBEE1nOzj/YTXnP6zG0jfOgX8+wYF/PkGSVkXpQ2sof7yUjY+VoDXOT5tahVJO+WOllD9Wisfl5dyHNZzcf566ky1UHKil4kAtSVoV5Y+Xcv9zm+6aaLGcZel86/tP8dJfPEHd6TaOvnGOisP11J5spfZkKxp9EtufWsfDL5STV3JvFmilZRp5/j88xHN/8gD15y5zeF8lFceaqDzeQuXxFlLS9Tz0zHp2PreBjC9B04MbQRAEikoWUVSyCJt1gqMH6zn4QS3Dg3b+5f+e5De/PE35tjx2P1nC2rLFSCT33rUwG+4Z5XZqqfxaeDweOjo6brpMGggEaGlpQSaTxVrPTiESiXDx4kU2btx42+Pr6OggJSUFURS5dOkSy5cvv6XuXU1NTSxatOg6W8O1cLlcNDc3k52dTW5uLoIgMD4+jsViYeXKlbc87sSM3Km0iIULF5KamkokEsHhcMT8qqIoxoiu1+uNpRbcKr5o5dYW8PDzrtMcGm5GBIqMGYgRKbXWaMFXoT6FDm+cCG5IXoA7EKbWGiWWJcmZNDnjqmehLgOnP8CliajNMUuaxCjxmK/VugzsAT9XJ7crJBLCQtTLKkGgQJ9Fr9sRy6wFSFcnMeafQCdTsjgpjVGvh74EJXelMZnL7jGWaVLx+kV0CgUtjoTWjClmLrksrNZlUDdqoSAljXpbvGCtLDUTV8iHzy/Q7XRQlpZBjTVeMLbRnE0wJFJnGSYswjpzJtXjUSVXALaZF9E4buG5xQX8cX78XLtcLvr7+1m2bBl2ux273Y7DER331LWhVqv5p3/6J9auXcuePXtu+D1NIRwOU1ZWRnZ2NgcOHKC7u5u9e/ditVopKSnhtddeQ6FQ4Pf7efnll6mpqSElJYX9+/df13hlBtzTd2xBELYAZ4AmolFgAH8piuKhmfa/V5TbG0EURTrre6j4qIbKA7V01vfEtsnkUtbeX8CWJ9dR/rUyjGn6eR/f+JCd07+t5OQ7lVyqiVsAktMN7HiunAee38ySwty7ijS6bBOcfO8ix948z+WGuGVl4cosHn5hMw88uxFj6uzPnbsdNouLE+9V8fH+Cwx0TxVWCZRsXcGjz29iwwP5yP4NxGR9VkQiIrUXuzj4QQ0VZy8RCUcpXnZuMrufKuXhXUXoDXc2eu1LZ0u4Ebn1+/00NTXN2oJzavl+2bJlMzYdEEWRioqKz9Q+t6OjA7c7SngKCgpQKm+tYvVaW8NMY+zr62NgYICCgoJpJNhqtTI8PMzq1atvedx9fX1EIpFoC87hYQoLC1Gr1TN6bqcaadhsNiwWC6Iokp6eHiM1c40x+yzkNhKJUFNTMyO5jYgi7w00sr//AoM+xySxzMblD3JpYiy23xp9Cu3ekZjaGolIqbHFyWxpchaNzj5UEhkrNFn4gtDkSmx4YOKqbwy9RIExrMYaCmFP8NyqpXL8+FmkTiYclNHptKFUQEiMq8HmJBU5SSYuWe3YAwFydVoGvPEaoaJkM0JESu2kGrs6OZV2Z7wJxLb0hbSNjzPsjSq5xanpNEymMZgUSRTo0/l06GrMs1ualkGtdRABWGPIQCHIuDgW/0xT5Hex1oQQkmJUqqgZG+LPCzfy+3nxiaPdbmd0dJQVK1ZMO/dT14bdbuev/uqvaG5uZs2aNbz88sts27ZtWpOQa/HDH/6Q6upqnE4nBw4c4Nlnn+Xpp59m7969fPvb36aoqIjvfOc7/OxnP6OxsZFXX32Vt956i/fff5/9+/ff8LiTuHtYxjzgXie312L06hgVB2o497tqGk/H29RKJAIFW1ay+YkyNj1edkfydAeujHDqnQpO7DvHQEKx3KLVOdy/t5wdz27EnHt3FaJ1t/ZzbF8FJ96pjDWJkMmlbNi5hof2lrPuwYK7QoG+XYiiSNOFKxzZf4Ezhxpi+cCmVB0P7VnHzuc2krXw7vpO7hTGLS4Of1THod/VMTYaffbIFVK2P5DPY0+VsqpgbolLnze+IreTCIVC1NTUsGHDhhm3tbe3EwgEyM/Pn5Vw3m77XACn00lNTQ1paWnk5+ff1gXR2tpKZmbmjA0XpmwOKpWKvLy860ik3W5nYGDglnzHU+jp6aG/v5+UlBTy8vJiubc3KygbGhoiEAig0Wiw2Ww4HA4EQYjlyxoMhhuS3c9Kbmtra6+bzDQ7hvhB+ye0u0YwJykxytX4ggLdbjsr9CauTMRtG4X6ZMISsHtFrk44r0saKE3OIiSG6HN6GfF5WGNKp8WV2PAgBZ1MSbN1HE8oRFaSlpFgXHU1SRSky3W0uuwxqU0qjxPbJZpkJBEZ7Y74mLK0aoZ9bqSChCJDJlaPj66JeNRPnimFy64xUiVKUlTRwolWR5zsFqWk0ea0UGTMpGXUyorkZOqt8SK4ktR0XCE/E04/A34fpeYMaq3xz7TRnE0gFKZudJSICGXmDGrGh/je2i28sKwwtt/4+Dh2u31aN7+Z8Gd/9mesWbMGm82GSqXie9/73oz79ff3881vfpPvf//7/PCHP+Sjjz4iLS2N4eFhZDIZFRUVvPLKKxw5coSdO3fyyiuvsGnTJkKhEBkZGVgslpv93r4it/9GYLc4qThQw9n3L1J3oplQMG4lW7Z2EVueWs/2ZzaQvXx+kxdEUaS96grH3zzL6Xcv4LLG/cNrtq7kgec3s/Wp9XdVM4JgIMTFY00cef0s1SeaY5MGk1nPA89uZOeLW8hdfusNeu4muOwTHH+vmsP7KulLmHwUlS9n1/Ob2PRwAXLFPe/M/MwIhyJUnrvEwfdrqb5wJfb3JcvMPPZUGffvLEA9j/FyXzrP7Y0eYFMNGK7FVKbswoUL55z5eqsQRZGenh5GRkbIyspCp9Pd9vvcyHM7Pj5Oe3v7rDaHa32zc4XVaqWnp4eUlBRWrVp1W2NOTU0lNTU6Ew4Gg9jtdsbGxrhy5QpSqTSWL2swGL6QCmhbwMNPO8/y0WDUgmCQq8hVplI1PhBTLRPPjEGiRCWqqRgbmvF42UkGFBEVlZb48p2QwI9yJRq0aLg4Gi/Gkk42PJAKAoX6LAYcEzS77PHtU+8tU5ISTuLSmBP1NTfVkBhhpS4NpzdE1fAIubrpRn+ZIFBsyKZuZJgRzxgrTdO9ZAaZCrPEwMXB6E080ROcrExCLSiptYzEzklk8qzIBAlFpgz8PpHa8bjtITL5eo1sus86HA7PSaH3+Xxs27aNkpKSWff77ne/yw9+8ANcrqiKND4+jtFojNmGcnJyGBiInuuBgYFYi2mZTIbBYGB8fDx2/X2F6Ri4PERr5WXaL3bSWdeNy+bG4/TicXmRSCXIlXIUKjk6owZDmh5Dmp6UTBNpOSmk5aaQvjCNrKXp8+ZzvRmMaXoe/b0dPPp7O3DbJ6j6uIHzH1Zz8eN6Out76Kzv4V//x9ssLVrI1qc3sO3rG+YlYkwQBFatX8aq9cv49g++Qc3xJo7vO8eFQ3U0nmmn8Uw7P/1Pv6H88VIefGELJfffeX+uXCFj8+5iNu8uZnzIzol3Kjn65jn6O0f47U+O8tufHKVg43IeeWkLWx4vQaW+97JzdUYNT/3+dp78vW201vTw8VuVnDlYT8P5yzScv4wxRctDe9bzyN4vt5orlUnYvH0lm7evZGjAxsEPajhysIGuzlH+6f8c4hc/Pc4DjxTy+FOlLF52/cr33Yp7htzeCNeSyUgkwuXLl3E4HBQXF99S+sCtYCpxwWAwsH79evr7+z9TUdq15HbqczidTkpLS2eNCLuVYjSY9LV1dmKz2Vi0aNFtEeOZSLxcLictLS22BB0IBGLL2J2dnbGK+8Tiu9tFWIzwbl8T/9JVxXjIOUkss2m12rgUtsZIHESLr+SClHxdFvWWUezya/OSRdRSOcs1GdSOjpCcOn27RIA0pYY0mYGGsVGU8ukrCFKJwHJtKhM+kYvDo6Sqpl9zCqmM5WojHTYHY5EJQCAYiV8r6SotWQpdzIIQ/XzR70QAikyZuH1Bmp1xJTY8qQlnJGlJlWkZcfvpc8dzdCNiBLlEQpEhg9bRcewK/7RzEhFFVhnScHuC1AyMsOaaiZNKKiNfa0bJ9eR2LpMUj8dzU//4gQMHMJvNlJaWcurUKWDmIsWpa222bV8hjvaLnfzLf99P3Ymmm+wZtdJY+mYvRtUla8lelkHO8kxy8rJYsDKbBauyyVqajkx+Zx4hWqOGHXvL2bG3nIAvQM3xJs68e4HzH9VwpaGXKw29/Ov/eJvFBblsfnIdW59az6KCL94LK1fI2LirmI27iplwejn7QRXH3zxL45l2Tr1Tyal3KklON3Dfno088PxmlhYtvOPXcEqmkWf/4yPs+Q87aavu4sjr5zj9QRXNlZdprrzMz/7rPrY/vY6dL26+J4vQBEEgv2wx+WWL+aP//iSfvF/N4X0V9HQM886rn/DOq59QvHkFj+zd+KVXczOzTfy7P3mQl//9fZw71c5H79fQXH+VA+/VcOC9GvLX5LL7qRK27ViNQnl3n6e7e3TX4GYK5VSxVUZGBuvWrfvCfoRDQ0N0dXVNS1yQSCSfG7mdysZNT0+nrKzspp/jVpRbn89HY2MjycnJrFu3juHhYbxe781fOANu9p4KhQKz2RxTnP1+P3a7naGhIdxuN263O6bs6nS6OZEmURTpDDr4h4o3ueQaI0kqY7k2jQlfhIujUXKouCbVIU2hw+UVuTA6RQ7j4xYA/a5YRgAAIABJREFUtUSFEFRxcWQ49rcpKCVS9NIkml3jDIajyqYk4ftIVarJlBs5OxrPnJUmbF+pTyMQEKkfj1sMIKrUKgUJC6VaOh0TOD3TCXMwEmapNhlCUmqHLOQapiu5EiSUmbJpGBllOOJl2TV2FpM8iTRBR/WUkhuJf+YstRaNqKBiOO65DU/6gbVyBSt1qTjdQVqsY6jypytMc20R7Xa7b9pM5Ny5c3z44YccOnQIn8+H0+nku9/9Lna7nVAohEwmo7+/PxY3l5OTQ19fHzk5OTGP79Tv7ytEYR228x83/zcA1Lok1t5fwKoNy8hbt4zkDCMafRIqrQoxIhLwBQn4ArisEzjGnNgtTsYHrVj6xhntG2e4e5Sh7lFcVjftFztpv9g57b3kChkL83NZuX5Z7F/Oisx5z6hVqBRseqyUTY+Vxonuexep+KiG7uY+upv7eP1v3yNneSb3PbuJ+57bNC/dxzT6JHa+vI2dL29juNfCJ2+d5/ibZxnoHOG9nxzhvZ8cYcGqbB5+cQsPPL+Z5Duc0yoIAqvXLWX1uqX80d8+y+n3qzjy5jnaq7s4/JszHP7NGRbkZfLoS1t54NmNd13e71yg1SfxtW9u5fGXt9BW28PhfZV8eqCOunOXqDt3CUOKlof3rOfR5zeRueDLm7SgUMjY8XABOx4uoPvKKAffr+H44UZaGvtoaezj1R8dZedja3nsqVIys+/OVr/3jOcWokrgTOM9d+4cWVlZDA8PX1dsNVecP3+eTZs2zUokg8EgbW1tAKxatWpaNNZnbQN85coV1Go1kUiE3t7eOWXjTmFiYoLLly/ftAnFVGFdIikfHh5mYmJimodyLp7bkZER/H4/CxYsmNMYEzHl28zJycFms2Gz2XC5XCiVyphndyaLx6jPzb92VrN/oB6AVIWGHJWJGut0i4FJJcMZ8pOh0mEQtEyEA/RMxG0C+YZk2ifGWKxJRgxK0StU1CYkCaxLy6LG1k+hIYMhp4dsjY66hCSCApOZzokxCvUZNFos5Gj0dE5YY9uz1TpEIUyKTEfjmAWDXIlTTIjZEgQKk9Pod0xgmSwIUykk+CfVXL1ExgKVjmaHPaa2ZurUDHvdk0puBm5/gE5H/DMtNhrpctnI1ejRC0oCkQidjjihXp5iYmDCSY6gomvCy7JkE+22uGK3Ki0VlURGz7gDu89HXkoy7bZxfvHgbjZm5sT2u3r1KgqFYlq75pmwc+dOjhw5Muff4qlTp/j7v/97Dhw4wJ49e/j6178eKyhbs2YNf/zHf8xPf/pTmpqaYgVl7733Hm+//fbNDn1vyUyfEWZtprjWv53Hv/0w3/zrZz8zARFFEduIg/7LQ/R3DNJ/aZCr7YP0tvYx0jt23f5ao4a8dUtZuX4ZqzYsZ+X6ZehT7kwlfjAQou6TZs59UMX5D6tjBVQAS9YsZPuejWz7+gayl82ft1QURTpquvjkrfOcSijqkkgllD1UyEMvbmXjrrUoVHdPfm5vxyBH3zjH8bfj45UrZZTvKuaRl7ZQtCXvnu6E5nJ4+OT9Gj5+K6rmTqF4ywp2v1j+VdLCJLyeACePNXPgvRo6L00KQQKUbYw2h1hfvuxzaQ7xpSsog5nJrcfj4dy5cyxcuJBly5bd9o/swoULlJWV3VCVslqttLW1sWTJkhlbzn7WNsCdnZ1YLBa0Wu11UWU3g9frpa2t7Yb+xkgkQkdHBx6Ph8LCwmktfmca91zJrc/nY+HChXMe5xRuVJTk9Xqx2+3YbDbcbjcqlQqj0YjGoOcDSye/6qzGrFIz5LdRaMimcXwMGQIepque6WoVuUkm6kYtBCIRFhv09CaQ22KTGQEptaMjRIDS1AxqE8jrZnMu414fbZPkL7o9Tn7L0xbQabcx4o0WjqwwpHDJHX3Qq6Vyik2ZXBgZJDipxKcok7CGoyQ2S67GqNDSYo8XgwFIZSCTSFhjzKB1ZAykIhPhuD3CpJJhkCsJeyP0e31k6jUMeeJxZCuSk9FKlDQMjxAWRRabjHQ7o59ZIgiUZ2bTPDqG3ecHYFmyMUZ+VxpTUAkyGixxz+2yZBOX7VZee+QJ1qbFH/7d3d1otdpZ0w8Atm3bRlVV1Zyv40Ry29XVFYsCKy4u5vXXX0epVOLz+XjppZeoq6sjOTmZt956ay5FiV8qcpualC6WhHbwy6Z/+MLVSY/LS2ddd0zVbbtwmfFB23X7ZS3LYOW6ZazaECW8S9cumnfPaTgUpv5UK6f2n+fsB1XTuo8tK17Etq9HiW7W0vnzFAYDIaqONnD0tTNc/LiBcCg6udUa1Wz7+gYefGELqzcsu2tsAMFAiAtHG/n4tTPUfNIaexZnLEzloefLefj58nu6E5ooirTX9XLwjfOcOVhPwD+ZtJCm4+E9G3hk75c7N3cKoijS3jrIgfeqOXW8Jdbq15xhYNcTxTzyePFnag7xpSS3wWAwtnQviiIDAwNcvXqVcDhMeXn5nKOoZkJVVRVFRUXTiB9EiWFnZycOh4OCggKSkmaueLVYLNhstusikuYCm81GfX09ZrP5thIPfD7fDTusTVkcMjIyWLjwen/X6OgoDodjWnezuZDb0dFRPB7PXHJGr8NcKu5FUcTn83Gsp42fXq1lJBS1ThSqU+jzuLBONmHQyhR4xChhE4BCYyaj7gkGvHHit0iv56rHjkyQsExuICJIaXfHldaS1AzqbEPo5EqWa1KQRCRUJSi5U+R2gcZAZCKMSaun0R6f4a80ptLhsrDWlMlVmxOdTEm3N06mzUkaQkKIBQoDDRYLWpkCF/7YdokAhSlmRp1ehieihFmRoOSmqpLIUqhpGh9niquZkuTYggGkgsDa5AxG3R763PEosRy9jv4JFyuNKfh9YSIC9LriiQ6LjHoCkTCpMjXNo2MsMOnpdca3r0pNIUmQ872Nm8lLjt/Qr1y5gtFoJCVl9pv81q1bqauruxsezHd8APOJZEWaWCY+wKs1/5sla2594vlZYekfp+3C5RjhvVzTFevuNQWNQU3RffmU3F/A2h0F5K7MmtfrJOAPUnOskU9/e4GKj2rwuOK2rJXrl7Fjbznbn9k4rzYB+6iTk+9UcPzNc9OyfXOWZ/DwN7by4ItbSMm8e5Z/R/vHOfrmeY6+eY7RhC5hZQ8U8OhLW1n/cOEdL5r7LHDZJzjxfg2H3qyIJS0IgkDp9jx2v7iZdTtW3dUtbOcLToeHIwcaOPh+DYMD0YmtTCZhy45VPP50GQVFt+5z/1KTW7/fT0tLC0qlkry8POrq6mYkpreC2tpaVq1aNY28ut1umpubMZvNLF48u5H+dhopRCIRurq6YhXfcrn8tpb5A4EADQ0N12W/TnVjm83iMBMpvxvIbZfLyg+azuAOB2h2DpOrNqAS5bj9AQaC8eVFjVSGlyBLNMkQknDZYUOtlOEJxTuQLdTr0MmU2DwBBtxu8oxGOlxxcluamgEIXBq34wz4WZeeSfV4nNyuN2cRCkViMVlrU800JJDbdalZWD0+rtijhHaJwciVyRgvhURKWUomDaOjeEJRJcCoVGGbVHIXaY1oUdBim77EK8ijry00mmketiCREXs9gF4lJ02uxOkJMuYPYFDJsQfjJCI/NRVpRELzaFQhztBrGZyIEn6dXEFhShpVg0MxL26WQcuA24VCImVNiplR1wR9Lhcf7nmWhQnXzqVLlzCbzRiNN37wi6LItm3bviK3dwA5qQvE1Y5y1u7I5399/P07vlwcCoboae6LKbst5zsYvDIybZ/kTBNr78un6L7VFG1fTeaS9Hm7bgK+ANVHG/n03SjR9bqj9iGJRKBoRz73PbuJzU+sm1d/aU9LP8f3nePEm2exjjhi4yl9sJCHvrGVTbuL7xrbQjgcof7TNo68fo7zh+pi8WzJ6QYefnEzO1/YTOYdyCD+vCCKIi1V3Rx68zxnDjcQmlQp07KM7HxuAzuf3UDqHfZK3w2IRERqq7o48F4NlWcvxaLlFi8189jTpTyws3DOcWJfWnI7ODjIlStXWLFiRWxpdCZieqtoaGhg6dKlaLXaWMOE/v5+CgoK0Otv3gnHZrMxNDQ050YKXq+XpqYmkpOTWbJkCUNDQwSDwdsii8FgkLq6OtavXw9E833b2tqIRCLk5+fPujQ8NjbG+Pg4eXl5sb/NhdxaLBbcbvdteYxnI7fOoJ+ftV/g7e5mQmKEtcnpSCXSWCetxVoDPd740qdZnoRJkNMx4Yr5U5MUUryTS/o5aj0ZSi3VljgZXWE0cmmS3K4ypKGTKLkwmtDQID2TmvHBWEyWLCKl0hKP/ipOS6feNkSaSk2WwkAoGKElIXN2mdHEZbeVNaZ0LA4PcomUvoQGDalJSYQlERarTdQPjaCRynElWCukEoGC1DQGrG7GJ4v9pAqB0OSqxQKtHr1cSYslToi1KhmuYBC1RMoCuZphvw9nAhlO1iZh9/tZqlAz6g2iUMqweOJLs2m6JDLVWkbsE4y6PaRokxjzejn6/AukJxSGtbW1kZOTM6uXdorc1tfX33CfecQdI7eCIBwWRfHR+XzP4rXF4rKRMhxjLv70n36fr33n4fl8+zlhuGeUuk+aqfukmfqTLdhHHdO2p+WmULQ9n+L7CyjbWYTJPLfag88Kn8dP5YFaTu4/T9XH9TGiJpVJKX2okPueLWfzk2UkaW6cXPN5IhwKU3WskWOvn6XyYG1sPFO2hZ0vbSOvbMndMIEEwD7m4sT+Cg795gwDCROYtdtW8sg3tlC+uxiFUj7LEe5uOKxujv22isP7Khjsid57JVIJGx5Yza4XNlGy9d72Hn9eGB12cPB3tRz+XR12W3QlMkmtiMaJPV3G4qWzd279UpLb1tZWXC4Xq1evnqbSJhLT20VzczMLFixAqVTS3NxMUlLSjA0TbgSn00lvby+FhYU33Xd4eJgrV66wevXqWNOGoaEhfD7fbZHFxEYWTqcz9lnmku87k+IsiiLBYHCWV312cmuz2ab5fMNihHe6Wvl0pJuzlt5JYpkJYahO8MMu1hrp8VqjqqYhg16bC0vQPe34CpmADIEFch2XXC7StWqGvPFg9eUGI55IEJNEQ7NljCJzGvXW+M24LD0TfziEzR1gwOWiNCOD6oRc3FJzBhIEmoYt+MNhClPTaLLF/arFaelM+MNcGo8S6EV6Az2eqKorFySUmTNpHBnFE4yST4NSiT0cVYxWGJKRhAU6bHFlWRAgIhUxyBVky9VcsjkR5HGyC6BNkrNCn8IViw2XP0CSSjpN6V1lNGLzBBiZiJJlvUaJwx+1Riw3mpAhod0SLzDTJSlwBgKceell9AnNT5qbm1m8ePGsSQiRSITt27d/KcitIAg3CvIVgAOiKM5rR4GysjLxh3/xE/72+R8hkUr4L7/8Ng9+Y9t8DuGWIIoiva391J9sofHTVho/bcM57pq2z4rSJax/tJh1j6xlRdnSeVkOdtncnH2/ilPvVNBwsiWmRKk0SrY8uY77X9hC8Y75y6t1jrs4+XYFR18/O822sHBVNo98czv37y2/I+2IZ4IoijRXXObwa2c4+1EtAV/0WWJI0fLg3nJ2vbyV7Hn0Nn/eiEQiNJzv5NCbFVQcayIcit6HMxemsOv5TTy0Zz2GezBJ4vNGIBCaFic2hTXFC/na18so356HbIbfz5eS3Hq93hlnRjdrXTsXtLa2olKpGBoamqYKzxVut5srV65QVFR0w32mFNVwOEx+fv60tIWZUgvmikgkQmVlJdnZ2QwODlJYWDhnom+1WhkZGZnWxGEu5PazdBmzWq1YrdYYuT0/0sf/aTpHp9NKWVom3nAAhzdIn9tFUYqZRkeceC7WGpGGgjhDAiMeD0aFEkck7pmTCRKKUzNoH7Pimuxol6pSMBaKEjm1IKXQmEa1xRJbkk8ktwu1BnKTjJwbjEd7TZFbAViu1JKqMVIxEldy16SZabSOkKJKYkGSAX8gTKs9ThSXGIx0T9hYbUhh2O4mSaFkwBN/gKcmJSGTSzArNDQNW9DKFbgicU+uRiZnVVoKrUNjeENhQERMEOPXpJgZn/Aw5IoTeIVSgj8cZonBiDwsodfpxJ8QVadQSDAolWQotbQMjaFQSfElkOFMg5Z0pYZffO0x5AlkorGxkRUrVsyau+z1enn88ce5cOHCDfeZR3zR5DYMnL7B+2wURXFe21JNdSj71/+xnzf/7n0EQeA//fMfsfNb983nMG4bkUiEnuY+6k+2UH2sgcbTrTFyBKBP0VHyYCFlD62h9OGiefGh2kYdnHnvIp/sO0drxaXY303pBrbv2ciOvZtZuW7pvCmoPS39HH39DMffPDu9he6uYh7+xlbKHiq8Y/nD18Lt8HDy3Ysc/s2ndDXHu0Cu2byCR1/ayubHSlCo7l0112pxcvTtixx+s4LRyWJKmULK1keL2PViOfll914u8BeB7s4RDrxfy/GPG/FOxl4mp2rZ9UQJu75WTKo5PjH7UpLbUCg0Y5ZsW1sbZrP5pkUuN0I4HKayshKpVEpJSclteXc9Hg8dHR0UFxfPuN3hcNDS0nJDRXWmwq65wu/3c+bMGbKysm5JbYaZ7RTzRW6l5hR+09nAb3tagaiFYLHWxKdD8VleIrldojWRKlVzwRJXUU1KFfZJ/2qB0YzNHWDE5yYkxlXNDJ0Gi2+CQn0al0atJCuV9AfihLggNYUBr4vFahMNQ6OszcigJuE9SjMycAcD+L1heh1OSjIyqElQcovN6UgRaBkdwxcKszoldZqHttScgcPnp8saVW8X6PX0TkSXYnUKBYUmM1VDg4QmyXaySsV40BuN/UpLx+7y0ZtQLKaQSvALYZYaTMjCErrGbISliT9VEbNeQ6ZKS+PAKCAgyONdx/RKBYu0OlpHrEzF34oyERHQyOWsSk6hZdhCKCxS9Sd/MO27q6uro6CgYNrE7FqMjY3xB3/wB3zyySc33Gce8UWT22bgKVEUL8+wrU8Uxdwv8v2vRWL73bd+8Dv+3/f3AfCdf3iZJ//Do/fcg9bn8dN4upWLh+u4+HE9w92j07YvLljA+l3FlH+tjLx1S7/wZeGBzmE+2XeOT/adY6AzbnXKXGLm/r2befDFLfPW/jcYCHHx43o+/vVpqo82JrTQNfDgC5vZ+c3t5M5Dh7a5QBRFOmq7OfSbM5x+7yJ+b/T5ojNpePDZjez61jZy57lt8ueJcDhC9ak2Dr5xnupT7bEkiUV5Gex6oZz7nypDo5sfO8vdjIkJPycON/Lhu9VcjVk7BMq35fG1r6+jqGQhEonkK3I7hcuXL2MwGG7YnnY2TJFOpVJJTk4O6em3t1zi9/tpbm6+LrEgsUVvYWHhDZdzZ/K+zgVTbYZDoRDbt2+/5XHb7XYGBgampTTMhdzOpSjsRugZGeLV1lo+Hu9nTWoaXW4byzQp1I+MsNacMa2YqyjFzJDfRY7SQN3wCEv0Rq4kxHolK1XoVHI0KGkbi6qlMjmEEq7r9RmZDNgnGJhs8brUZOTKZEyWQpCQr9bR5nThn3w4rE03UzceJdTZGh1L9SbOXE1QcjMzqLYMIREEilLSUSLlQkJDhILUNJqsFjI1WswKNcFgmHZ73Gaw2GCgz+NkTUo6ly1WDAol/QlKrlmtxqRWEfSH6bE6MKlUjIfiObm5Oh0mVRLNg1HiqpJJ8RJVXbUKBauMKTQMjxIMRwm+TCIQlERQSKUsTdIw4vZPKz5TSCWEpCIrtHr6rC6CEZGAIJIkk3H6331jmme7urqakpKSWUlET08Pf/mXf8lHH310w33mEV80uX0GaBJFsWOGbU+KovjBF/n+1yKR3AK888OP+MV/fQOAbc9s5D//4tskae/Nh6woigx2DlN1pIGaYw3Un2rF74mvcCRnmqLNHL5Wytr78r/QoitRFLlc282Jfec4/U4F1qH4PWn1xuU8+NI2tj+zAZ1pfpanx4dsnNh3nqOvf0pfR3ziXbglj50vb2frU+vumha6E04Pp96t4vBrZ+hsjAsZheUr2PXNbWx+7N725o70Wzm8r5Kjb1/ANqmsJ2mU7HiylMdeLGfxqqw7PMI7D1EUaazr5aN3qzl3uoPw5LNq4ZI0fvnmd7585DYcDhMKXds6Fbq6ukhKSpoxf/ZGEEWR7u5uRkdHKSwsZGRk5JaPkYhri7ogGtHV3NyMTqdj+fLlsxKCmewBNxt/V1cXY2NjrFmzhrq6OsrLy2953A6Hg76+PgoKCmJ/GxwcpLOzk6SkJEwmEyaTCa1WO031uR1yG4yEeberjR83XsAVCiCXSNiSsYDq4UHck2S6NCGpQC2Tsz4lmwtDA/gmJzVRchtd/klWJpGnTebCyCCJl7FUHm1fu1hnRBmRMe73xpolACwxGuh2OShKSWfI7sKs0dI8Hi8IW67VMBDwslCp45LdSVG6eVpr3NLMDCZCQXzeEL12J8UZ6dSOxVWctWlmpIKUxqERwhGRVakptCY0TNiYmUWvzcGwO2ojWGDQx5TZXJ2eLJWGqsH4AypVo2bU70Erl7NYrcXi9jPqiyvPeqUCLyEKU81cGbEiRkSc4fjkRCuXsyzNxMCYk3GPD41cjjsS3S4AazPSGXK6GXFOxI7nCAUwKOT8fWkBoihiMBgwmUx0dXXdtPtfa2srP/rRj9i3b98N95lH3FtS5WfEteQW4PQ7FfzjH/0zHpeXxQULeOXd/0zmknvX8ziFgD9I89l2Kj6q4fyHVdPaCCvVSkoeLGTjrhLW7yr+Qu0L4XCExk/bOP76Gc68dwHfRJRwyxUy1j2ylgde2MKGeWrMIIoi7VVX+PhfT3Pqt5Wxsaj1Sdy3ZyM7X95GXundU4R2uaGXQ7/+lJPvXoyNVZ+s4aG95Tzy0lZyl89fg43PG8FAiIqjzRx84xyNlVdif19duohdL5SzdXfRPU3iPy+MW1wc+rCWgx/UkpObwj/8/Jtfkdsp9Pb2IpVKycnJmeFV12MqqcBkMrF0aXQp61aPMdPYqqqq2LhxIxDvBpaXl0dqaupNXz+Tgnoj+Hw+mpqaMBgMscYV58+fvy1ym1gIFw6HaWtrIxQKsXz5ckKhUKyDmNvtRq1Wx8iuz+e7rihsNpzo6+YfGypRyqV0OMbJUxtwBiNkarXUJRDD0vRMaseHWJucQa/VQa5OT4M1vhS5RG+kz+OgKDmD1uEx1HI5Y0HPtPdK0yaRrdLTODKKKEKyRsV4AhnckJ7J2ISXbnvUGrA6LY2WSXKrlErZlJlD9cAQE5OEe4VOQ8dkw4R0hZLlpjTODSSkJ2SmU2sZjsVoScIC1SNxcro6LZUW6xiLtXoigQgqhYJLiUquyYAjEGCh1kDTwAjZeh1XE2wIWTodGXotHYMWPMEwZo2aEV/0MwtASWYGA3Yno67o30xJKsYDvth7ExRpH4s/+E1JKqwBHytTUwj6wrh8Piy+uDKcplGTrE3CIFPw82d2x1rd2u12+vv70Wg0MbJrMBiusyhUVVXxxhtv8Ktf/eoGV8O8Yt6e4oIg7AbygZg0Kori/zdf7w8zk1uAq+0DvPLMP9DfMYjOpOE7//gtHnhhy11Dcj4rRFHkSn0P535XxYWDtdOKriCaX7vtmY1seWo9GYtufYVvrvBO+Dj3fhXH3jgzrRBNY1Bz37Ob2Pmt7eSVzY8/1+PycvrdCxz59WnaLsbJ1cJV2ez6/R088PxmdKbZW2TPFyZcXj5558KM3tzHfu8+Nu1ai1xxd/iIbwe9l4Y5+MZ5TrxfjccVvdfqTRoefnY9u18s/6o5BBAKhbFZJzCnG74it1Po7+8nFArNKUZrcHCQ7u7uaUkFU8cIh8O31XELojfXiooKNmzYQEdHB16v97puYLPB6XRy9erVaQrqTLBYLFy6dImVK1dO8xjfLrl1uVx0d3ezdOlSGhsbyc7OJicnh2AwOO0GLIoiHo9nWrtciUTCwoULMZlMNywwah4f5e/rKmIe1k2ZOQw7XHS7ouStJH266rk1cwG9didXndHtRWYzDZPFXhJBYH1aJm0jFpyTSQOpSUlYJsmtWiYn35hKk2UUfzjuuZ0itzlaPUp/hIhMSq8rTh5XpabSZh2jKC2dIZubLL2O+tG4UluSmU6v00GGPIk2i5Xlel2M7AKUZKQTRmTYNoHF7aEoM536hOix0swMfIEwrcNRj9HKtBTaJj25armcUnMG1f1D+Cc7FC0yGeh22pEIAmvMZkL+CC1jcQ9vll7LwISbVakp+Lwh/MEwwwnjMWvVqFUKFBEJl0etpGs1DCekRaxMS0EQoWM4SngTM3AXm4ykKlXU9A+zJMXE/m99fdr3WVVVRXFxcYzs2u32mLJrNBoxGAycP3+e48eP8+Mf/3jGa2IKPp+Pbdu24ff7CYVCPPPMM/z1X/813d3dsQ5lJSUlvPbaaygUCvx+Py+//DI1NTWkpKSwf//+ufzm54W9CYLwKqAGdgC/BJ4BLoqi+AezvvBzxo3ILcCEw8MPfu+nVHxUA8DmJ9fxH3/67+Ytams+Yekf58KhOi4cqqXuRNO0orQVpUvY8vQGNj+xjty8L26JeHzQxsm3z/PJvnN01vXE/r5wVTYPfmMrD7ywhdR56ujV09rPkd98yol95xJa6MrZ+uQ6Hv29+yjckndXTHREUeRSXQ+Hfn2G0x9UxdRcY5qOnS9u4dGXtpKx8OZi0d0K74SfUx/WcvCN81xpiQokgiCwbscqdn+jnNJtK7/0zSG+lAVlkUhkRi/oXJIGgsEgra2tCILA6tWrr8t+HRwcxO/331a01RTOnDmDTCYjKyuLBQsW3NLNYopkrlmzZsbtkUiEy5cv43K5KCwsRKmc7p+6XXI71agiEonEMn3nknNrtVoZGhpCp9Nhs9nw+/3o9fqYsjsW8POjuotUjw1g8XnIVGtJU2gIhMO0JyQJFKenUzc2zCKdATUK1DIF1aNx1XOK3K42peLxhJALEjqd8ZzbNHUS1qDt0r/GAAAgAElEQVSXopQMusccOPw+ItLpl+1Ck54UuZrGwREiIuSadFxNILebs3MZsLvonVRy12Sm0zBJbjVyOevSM7nQ149/MvKlJDuD6pEoeV2i0aIJC7S44uSyKNNMvWWE5KQkFmkMiGGR+tG4+rzanMol+zhr0sx0j9hJ12qmRX8tSzGikMlwT/jpt7lYlGykyxn39BWkpxEORegYiZ7HHKOevsnPk6XXkavVcfFq3AOcbdDR73ZhVidhksrxhkT6XXGPb65RT0gQSVEm0dI/ysIUAz12B6sz0vj1i09MO5dVVVXXNQsJh8M4HA5sNhu//vWvOXDgAMnJyXzve99j27ZtJCfP/AAXRZGJiQm0Wi3BYJAtW7bw4x//mB/+8Ic8/fTT7N27l29/+9sUFRXxne98h5/97Gc0Njby6quv8tZbb/H++++zf//+GY+dgPkit42iKK5J+K8WeE8UxXkNmp2N3EL0nH/8Lyf5v//lNTwuL4ZUHd999Q/Z/MS6G77mXod3wkfV4XrOvFdJ5cG6aT7dBauyKf9aGZufWM+KLzAztru5j2Ovfcqx18/gsER/q4IgUPxAAQ++sIXNT62bl/zcYCBE5aE6Dv3qJHUnW2KFT1lL09n50jYe+sZWUjLvjqYEE04Pn/z2Igf/5RQ9bdH7mSAIlOxYza5vbmPjzjX3bBc0URTpqL/KgdfOcfpgXaw5REZuMo++sImH92zA+Bla2N7L+IrcJuBmrW+tVittbW0sWbLkhp7akZERXC7XnJfZEzHV9KG9vZ1NmzbNGnB/I0xMTHD58mXWrl173TaPx0NjYyPp6eksWrRoxhvw7ZDbcDhMU1MTdrudLVu2xAj/FLkFbnizt9lsjI2NxdIdIpEILpeLq6MjvNbZxrHxEUKiSK5eQ5pSS9OohVBEJC8tmfYE/+mmzGx8wRCNw1ELQUlm5jRyuz4jC7c/EMtgXWo0TiO3ZeYMhlwTDE6SS6kAoUlyq5bJWG1K46rVzljCsnuOUUuf28VCvQENciJAx3h8TIUZZtrGx1iTaqZr1M6SFCN1w3EltiQ7gzGfFw1y2kfGKcnJoGYooUmEXgMiXHV4CIRFCjPTaLBEbQ8CUJ6bQ9eYLeZxXZWeSut4VJldajJhViVxIYGcLk01cdluIy1JRZoiiUA4Qpc9Hny/MNmAKxhggU5PU98IuSYDPY749uVpyWjlcpr7RwhHYFGKIWbJSNOoWZFiorJ7IJacsNRsonPcxubFufzo6Z3TvveZyO21eO2116ipqSErK4tLly7NhYDi8XjYsmULP//5z9m9ezfDw8PIZDIqKip45ZVXOHLkCDt37uSVV15h06ZNhEIhMjIysFgsNyMk80VuL4iiuEEQhErgaWAcaBZF8dbjTz4DbkZupzDSa+Ef/v2r1J9sAaLFZn/4v7+BecG9q4rNBT6Pn+ojDZz74CIXDtXhtsdXNLKWpnPfc+Vs31PO4oIvJuQiFAxRdaSBY6+d4cLBWoKB6AqUWpfE9mc38si37mPl+mXzoqIO91g48pvTHPnNGcaHovdUiVTCpt3F7Pr9HZQ8UHBXNCUQRZHWi1c49OtP+fR31QT9k6t2mUYeeWkrj7509xDy24F93M2xdy5y8I3zjEy2MpYppGzfXcxjL20mb+2tCWX3Oj4vcnvvmlgSIJVKZ0xRmFI7nU4npaWls2Zz3ugYN0MgEKC5uRmVSoVGo7ktYgsgkUiIJITyT2FoaIiuri7y8/NnbXl6q3C73TQ1NWE2m4lEItOUbEEQEASB2SY+124PiyIHBq7y86YaHAE/SqmUAn0ywy4XdQkNDsKTS+9qqZR8k5mgL0LD6Oh1xzcnqclO0hHyhaf5Rad+4suNyRAS6be6Yv7TqXHJBChKzaDX4qDu6gg69XRPqF6hpDhZQ8PACCCw3GyadnyTUkmaVE391eltQgFSlEq0EgV1I8Ncy5sUUimFaWnIRYGL/XGC7pmIPkAXqtWEQyLuCX+M2AJIBMjR60iWq2gZtKAyT1cjlFIpJenpNPWNYBV9LE+LK6F6lZJcrZ6qqwM02KLjlU0+kHRKBStSkvF6gzQMxT+LTCrFoFKy1GSipW+UMbk3RmwhOilYm56O9Jp5ZCQSmdNNNhQKsWbNGv7sz/7spvuGw2FKS0vp7OzkT/7kT1i6dClGozF2Pebk5DAw6W8eGBggNzdKOmQyGQaDIda6+i7AAUEQjMD/AWqJCgO/vLNDujHSF6bxvz7+Pr/7ycf8v7/az6e/reTCoTq+8d+e5pk/f+yeVcRuBpVayZan1rPlqfWEgiEaP23j/O+qOPtBFYNXRnjz797nzb97n4Wrc/j/2Xvz8LbqO+37o9VaLFn74n1LvMXOvpE9IQkhGzuFlqZAgWlLS7eZaTvP9Hn7vLOUzsw7nSlPVyhhKS2UsgSSQEhCyELI5tjOYjuxHe+2bMuyJNtaLOm8f0iW5OwEO4Sh93XlKj2Szu+cY+mc+/f93d/7XnzXPBbfOY+c0mvrw7gYpDJp1NFh3Uw8/YPsffUj3nthL7WHGtj+zPtsf+Z9ckoyWLVpCcvvWzChjXC2XDObfnwXX/rR7RzbeZJ3ntvDwa3HObDlGAe2HMOaY2LNg0tZ9aVF18VP+FIQiUSUzS2kbG4hj/3TPex8+SDbnttLe4ODF3/2Fi/9x1bmr5nK2geXMG1R8Q1ByD8OdMZU7v6b5dzxyFKO7a1j64sfcuT9Wna9fpRdrx9lUnkma7+0gCXrp6NQ3hixy58FfKa+BZd6sF6MmA4ODnLo0CHkcjmzZs26LLG91D6uBKfTyZEjR8jMzKS0tPQTza7OJ7fhcJiTJ0/icDiYM2fOuBLbzs5OampqKCsrIz09/ZqOe/QzgiCwtamB9a+/wr8f/QjvSJDpJhs6kYIahxNBMnb+JETCTE5RI/aLONbuYOQ8DbVUJGKWyY7HE6AmZnWVDIVESoFcTaPDRaMzqkuNHxNQZjRjk6ZS1erA5YtWa0evqjYlhSJVKm53gOqOxL5HSXqp0USuUofLE8CRFIggCAI6hYKpRjMeT5Ah/8iY4xIhYprVikGcQlVLd9yvdhRmvZ4irZ521zBdXl+c7AKYVAr0ciXdfV5OdUaru6P3Zk2KnJl2G9KwiOpWR5yAisUilDIpM9PtCL4wfe5hgqHEd0cmETMz3YYoIFB1LlFRBlBKJdjUakK+MFXN3YyEI0hiA+qVCmak2xCPiDjR4kB+HsEJh8NX5aE8NDR01ZM8iURCVVUV7e3tHD58mNra2gvek/xdu9RrNwB+JgjCgCAIfwFygGLgnz7lY7osxGIxt3/rVp45+R8suXsegeEAz/zoj3zzpv/FmWNNn/bhTTikMikzVpTz+H8/xB/O/V+e3PG/WPPQcjSGVFpOt/PC/3mVR6Z+n4fLv8vm//0yrbUdV97px4DWkMq6R2/mv/b9H35X9TPu+u5adBYtLbUd/O4HL/HFvMf5hw1PsvfVj+IV3omARCphzi1T+fEfn+DF+p+z6X/fhTXbhKOlj83/z6t8qeg7/O+7/5OPth+PWzZ9WtAaUrnjayv53cH/w09f+y4LN8xAJIIDbx/nR3f+nK/O/TF//sW7ePoHr7yzGwwSiZg5y0r5yTNf5fcf/Ii7HluGVq/m7Il2fv73L/PA/J/wu396k87m3ivv7K/4n1O5HW00EwSB1tZWOjs7KSsrQ6u9ukjCS1VOL4aPUxG+WojF4vjD2+v1cvLkSTIzM8nMzBy3B/ioG0I4HGbOnDlIpVL8fv9Vn/f5OOly8Y9vv05tbEm9zGBiMDhCdWeiEitK+t+pJitCRKAmyXZrVGYiF4mZrEkj7AtzPKmSO0pnTEol2Sotw8NBznmT3RGiIxQbjIQCEc52OvEz9nxSJBKKrXbOdDlpCA5hSRvbIWxQKCnWiqlvj1aIS+2JSqBaJkMnSyE0FObkQN+YcwKYYjGTEhFzvDVRqR19PTNNg16qYMQfpqE3IaXQaDToQmGy1GrOdPfTHXGOsTITi0TMTLdxttNJVXM3pemJtDyZWIxZqaTHOUhVU3RMiSQ6olwiYYrVjCgscDyJ1IpFIhRSKQVpGlr7vLg9fnxJD0t5jAzXtvdSPdDNlMxoN7nivJSjSCRyVVWRoaGhy8bzXgw6nY6lS5fy0UcfMTAwQCgUQiqV0t7eTnp6tOknMzOTtrY2MjMz4w4Ol9Lzfgo4CMwAEAQhAAREIlHl6LYbGZYsE//w0rdZ/WA1//W139Fw/ByPz/sRK+5fyMP/cv91a3r6NCGRiJm+bArTl03hm089xPHdJ9n754/48K2jtNV1xiu6k2fmc/OXFrPknvnj2oiXU5rJoz/9Ig/9v/dyeHsVO57fy6FtxznyTjVH3qkmzaRh5QOLueXBpWQXZ4zbuOfDaNdx/99t4N7vraNy10m2b97DR1uP89G26D9LlpE1Dy3jli8vxmD79KQAIpGIaYuLmba4GGf3AO+8uJ/tz++j81wPz/zkLzz/0zdZcvts1j+0jKIZuZ/acV4rbFlGHv7Ber707dXs3VrN28/v50xNG6898wGvPfMBs5YWs/7LC5m15LNXqb5e+B9BbqVSKeFwOB6koFKpmDNnzsdK6rrayu3Q0BAnTpzAarUya9asC4inIAjXXAkNh8O0tbXR1tZGeXn5NUscLoZRGcL5hPlajrW2r49/P/ghrZ4BHCN+CtL0yAQxdQ4nkfN+ZyIRlBpM+IdDnGjvocg61vJEpVQyXaGkrc/D6R43xbrzzjkSYZbZxqmOXqr7eyg0jl0eMygU6OUK6jujxFQhlcQZsVQspsJiocPl4XhLguyNEskMrQajTEH/gC+eHgbRSq9cIqHcYqap24V7MIBvJEEGBQSKTEbCwTC1bb1Mzx7rxSiTSJhmsXKy3UGX4GVa0usqmRSdPIXQcJjT7qi+SqvVwNAwMrGYAm0qI+4hTrsTBF4sAolYRKFWg9MbxOMN4vYlmmIkIhHT0q109XqobuqmLDNBhuUSCUalEkdkkLqOmK5OHP2bq1NkFJuMEIbjbWPJsEWjJl079m9xtZXb4eHhq4p/7u3tRSaTodPp8Pl87Ny5k7//+79n2bJlvPrqq3zhC1/gueeeY+PGaFPbhg0beO6555g/fz6vvvoqy5cv/9QrtyKRyAZkAEqRSDSdxNxGS9Q94TODWSun8pvj/8aL//QX3nzqHXa9tJ8Dbx7h/h/dwR1P3Pq58eSUyqTMXj2N2aun8URMurDn5Q/Z+5ePOHOsiTPHmvj1959n+vIpLL3nJhbcNptU3fhYakllUm7aMIubNszC3edh958+5N1n99B0opVX/3Mrr/7nVspumszqryxl8Z1zUWkmJt1ZIhEze1UFs1dV4HK4ee8P+9n2+/fpOtfDcz95lRf/+XXmr5vBrQ8uZfrysk+VYBltOr74/XV84dtrOLLzJG8/u4eju06x808H2fmng0yalsO6B5ew5AYKsrhapCjkrLxzNivvnM2ZmjbefvEAe96s5OieOo7uqcOeY2TtFxew6u7ZaMbpO/g/BZ+phjKIJoGdj5GREQ4dOoRIJGLy5MmYzeaLfPLy8Pl81NbWMmPGxQstgiDQ2dlJS0sLZWVlpKVdOGsftQK7lh96IBBg//79WK1WSkpKPhYxh2hD2fz58y/6sO/s7KS5uTnuhpCMYDBIdXX1BU1CwWDwAqLe7vHw30ePsONcEwKQq1ahUao56UhUYoWkwy7Q6dBI5dR0JSqxRVYjtbHmrQqTBZVYyuGORNVzRoaNY91dKCQSJmnSiARC1HoSnf0FhjTOegZIT03FnKLC6RmmczixzK+SSvERpsJipsc1hMM7hDxFErfZAig0G1BLow1WEYGoO4Ar2mAlEYu4KSeTuq4+nENRb9wp6RZOdEfPIUOtIseo5+C5JJ/bLBuVnd0YVEpytFokgpjKJM3ttGwbp3v6yNeoae8fYpLVxPGOpNCHbCuCAF19Hvq8PqZmW6nqiGpkRUCJQUO3N4DLF23yK8+0UNPVg1gkYordgkoi4dC5RANaeZaF044+yu1mOno8pOs1sRjeKKbm2BCJoKHdyZB/hKm5Nqrao8djSlVRajNx8Gwbd88p45u3zIt/zuv10t7efsWgke9///vcd999LF269LLvq6mpYdOmTYTDYSKRCPfccw8//vGPaWpqiluBTZ8+nRdffJGUlBT8fj8PPPAAx48fx2Aw8Kc//elq4p8nOqFsE/AVYBaQ3MnlAZ4TBOG1iRz/fFxtQ9mV0HWuh9/+3QsceOMIAOmFNr76L/ez4LbLB3j8T0bAF+TgW0fZ9Yd9HN1RE+8fkMmlzLplGqu+vIQ5a6aPux+rIAjUH21k29O72fPKwbg9lkKdwuI757L2kRXXpQktEolQueskbz+9m0Pbq4jEJAq2XDO3PriU1ZuWoDNf3UrpRKPzXA9bN+9lx0sH8Lqizwe1VsnNX5jPugeXfqbDITyuId59+RBvv3iAnljBQp4iZcmGGWzYtJDCsvHTiH8a+Fy6JcCF5DYUClFXV0d3dzeLFy++al/Z83EpkgcJGzGxWExJSckFNmKjOHToEDNnzrzk65fCwMAAp06duuYIXYCPPvqI2bNnjyHFyTKEsrKyix7X1ZDbvuFhfnOsknqnk2pnDyalinSFCseAl57Q2L+HIIFMjQaDVMGprj5saWq6BhP6p2KriZFQiMDQCJ3eYaZmWjnenZT+lWEjIgi09rpxDfuZmm6hypEgZnmpKohEaPX6iQhg16rpTNKwVljNuIcDtLkSVl8yuYRgOIxeqcAkljAwEqZvOOGekG1Io3XATbnNgnNgCI1KwZneRBNbmd2M2x8gVSzhTLeL8mwr1Z2JY56dk04oFKG2vYdgKML0HBuVMbIol0iYl5vBibYeBmJjjr4eJ6diCYebkyKHs61Udzgos1sYcPswaVSx5rfYNdApQSzG54/Q4/FRkUSGJWIR8wsyOdvhpNcTrf5OzYmS1xSJmMkWPQqpnKPnksh3no1Wl5vstDROtzgoy7ZS1drNpsXTeHRF4h7jdrtxOByXdCUZxde//nWeeOIJZs36xPen8cD1cku4M6a3/VQxXuR2FMd21vCr7z4X15tOmpHPg/90L7NWTh23MT6L8PQPsv+1Q7z/8ofUfHA6LilLM2lY9oUFrHxgCYXTL+5s80ngG/Sz77VDvLP5A07ur4tvz6/I4daHl7H8vgXjVkW+HPo6+9nxwj7e2fwBjtaoXEsml7L4jjms/epySudNuiEmQQFfkH1bjvH2sx9QdzShI5+xrJT1Dy1lzqqKz6yvbDgc4cju07z94gGO7U2kf5fOzGX9pkUsWF3+mQy++NyS21HSBdGH7alTp8jOzqalpYUFCxZc835DoRDHjh1j7ty5Y7a7XC5Onz59WRuxURw9evSiHrSXgiAINDc343A4qKiooKqq6pq8auFCYn0pGcL5CIVCVFZWjokNhuh19vj9bK4+wUsnT+IPhaL6UomUk109BMMRDClynOEEubWoVGSkajjR2RNvfrLr1HGbrny9DlOKiqNtScQq00pltyMeWKAUSTnUlqiKjpLbNEUKhTo9Pl+QWmfCE9aokNM3EiQ3VY0oIqZ/yI83PLbNP02toECvo7ajF/9IGL1GQX8SuZ2bk0FXv5f2/ighLrQZONsXHcOuSSVPr+NQU3tczlCebaG6swe1PLqsL4pAZdKy/vQcGzWdPUyxWejodZNt0lGZdM7Tc2yMhCMMuH10urxMy7WNkQXcVJBFu9NNW1/0eKbl2Dje3o0IKLYa0SkUHGpMXKM8g4pznmEmm3QMDAax6zVUJzk9TM+1IQBN7X0MBkJMzbPFZRqGVCVl6WYOn21nJNaUNi3fzvGWLr6xag73L0j4Lvf399Pf339Fu7xNmzbxz//8z1cdJT3BuF7k1gb8M5AuCMIakUhUCswXBOG6xrSNN7mFqDfq9qd38dK/vk5/d1S+M2v1VB772QPj6iTwWYWzy8XuP+5nx3Mf0HI6ka6VU5rJ8vsWsPTeBdjzxj8VreNsF9ueeZ8dz38QD2ZIUcpZdOdcbnlwKeULiyecYIbDESp3nohXc0efzbmlmdz68DJuvm8B6rQbQ53TUNPK27/fw/t/OUTAF31GWDIN3LppMau/uBC95caoOl8LOs718vaLB9jx58PxBDS9WcOt989nzX3zMVo/O0Etn2tyG4lEaGpqoq+vjylTpqBWq685xGAUowljo/sQBIHGxkacTifl5eWoVFf+gVZWVlJSUoJSeWUdVCAQ4MSJE2g0GiZNmvSJInQh6j86depU5HJ5XIZwNbrdi5F638gIm48e51hXFx92tEf9Yk1mQsFw3K8VwJAiwxkOolcoyNfqONneQ0QctQUbhV2XikQkQi9N4VRnH8U2I7VJVdFpmTZGImHc3gAdA56oZ2xn0pJ9hhUJYuq7ehkOhphk1lPfn2jOKreaGQmFOeOIklGVRMxQrKFMIZVQajJxtrefwUCC8OpSFbh8forNRkL+MIFImI6BJOmDVY8nECBdreFUm4PJdhO13YmEsKk5NsQCNHT2M+gPjpERSEQibirI4kynk56Y3df0XFuc/BZbDOiVyjHkdJTclthM+H0h9GoFx1u7x7weDIXp7/fS4/VH3x97XSISMa8wk8bufhwxz858o4pG1zApUjFFViMKiYyjSbKFaXl2WpwDZOvTqG3poSzHwvHmxHjzi7Jwuoe5dfok7lqQSMzr7e1lcHDwikEnd911F88888w1R1mPM64Xud0OPAv8gyAIU0UikRQ4LghC+fUYfxQTQW5H4R8OsOWX7/LSv77OsMeHWCJm5ZcWc/+Pbseeb52QMT9LEASBs5XneO+Fvbz/pwN4nIl7ypSFxdz68HIW3TmPlHG2cwoGRjjwxhHeefZ9ju8+Fd+eOcnOusduZuUDi9DoJz4QoLull+3P7uGdzR8wEAuqSFHJWX7vTWx47Gbyy7Mn/BiuBl7XEO/+4QBbN++hqzl6X5fKJCzaOIuNjyyjeOYVpU43LHxDAXa/cYwtz+2j9WzsmSQVs+CWCjZsWkTpzPFfTRhvfG7J7cDAADU1NRgMBgoKCuL61k9KbpP34fP5OHHiBAaDgfz8/KvW0FZVVTFp0qQrdoo7nU7q6uou0Ad/knM4evQopaWlNDU1XVaGcD4ikQiHDx9m3rx5BMNh/nziFL89XEnf8DAz020IIjjX48LtD1BkSehlASyKFLIMemq7ohVRAIlMTCjmvmBLTSVbq+FYa1e86llsM1HbG72hlJhNpMlTONSaIHqj5FYplVJqNiEWRBxL0q+OktscXRoaiQyvL0ibJyFB0KTICRCmSK+j2eFmKBgict5lKM+w4PeFaIwRYrtBQ6c7+iAyqpVMNhs5dq6DUDh60EXpJuocfcglYgp0WmRSOSeSNKzl2VZOdvYwxW7G6RrCotNQlVzJzbURGAnjcnlxePxMy7ONIa83Tcqiy+mluSdaFUt+vdRuQqdQ8FFDoiI0LddGTZuD0gwz/a5hLPpUqpIa5mbk2RkJhWjpGmDQP0K+KUp2IRpFXJJh4ciZRKV2aoGNquZuJtkMiEKgVsiobnbwt3csZP2c4vh+u7u7CQaDZGdf/iG1Zs0a3n777XG1r/sEuF7k9oggCLNFItFxQRCmx7ZVCYJwYSrLBKJkUqnwzfV/zz3fWz9hLgeuHjcv/OTPbHtmN5FwBIlUwsoHoiTXljv+FcrPIkaCISp31rD7jwf4cMvReCpaqk7N8vuisoWJSETrbHTw7uY97HhhL87OmB5TIWPJ3fNZ+8hySuZOvFxgJBji4NuVbH16N1UfnI5vL7tpMuu+upyFt82+IZoTI5EIlXtq2frsHg69W0Mkttw4eXou6x9eypLbZiNXfPrHeS0QBIEThxp56/kDfLjjRFwfXTglkw2bFrJk/fQb4m9wMXxuye2xY8fIyMhArx/bNT9e5DY/P5/GxkZKS0svGONKqKmpIS8v75LV0kgkQkNDA263m/Ly8gssxD7JORw6dIhQKER2dvbHsg+LRCIc/OgjejR6djY1sedcS9xlIEUk5lB7ouI32Wygrr8fpUxKsU5Pt9ONI5ZkNgqpTIxOoSArVcOJDgc2rYaOpIawYpuJ4MgIIf8Ibe5hpmVZOZ4UMDAzy04kItDicDHgC1CRaR0TQDDFZmZ4aJhzsSaBTL02Tm7lEglT7dFUMVesGQyIk9tMjQr8IVzBML6kBjOrPpVAKESeTsfpth7SDVqanQn3hJIMEykSKc1d/bh9QUqzzAlPWpGImwozOdftossVlV9U5Fqpaosec6ndhFYu53BjUuU0VqkttpkY8YdIU42t1E7Ps+MfCTE8HKStx820goSMQCwScdPkTBo7XXTHxhuVEShkUkrsJmQiMUeTxpuab6Pd6UYrEdHWN0yOSU2jM6FTvqkkix7nEE2dUbI/Jd/KiRYH/+vepayanpAgdHR0IAjCFSuyS5Ys4dChQ8hkN8TN83qR2z3AncB7giDMEIlE84AnBUG4NhH9NcKSmi5MCy5FJpeyatMS7v3bDdhyP36D7dWgo6Gbl/7lNXb9YR+RiIBUJmHdYyu574e3j6tN1mcdw14fe17+kO3P7Kb+aGN8e3ZJBisfWMzNX1yEMX18JyLhUJiDb1fy9m93UrnzRHx73pQsbnloGTd/ceF1qea21nfy9u928d6L++LL5WkmDau/vJi1Dy+fsO/mx4WjzcnWZz9g+wv74g1oWoOa1V9cyNqvLMGWc0MExVwTejtdbP3DQbb/8SCe0XPTq1l971zWfvEmrJk3ltXf55bcjoyMXNSX9XJuAVeDUCjEBx98gNFopKys7JoezKdOnSIjI+OiFSufz0dNTQ0mk4n8/IvP2K+V3HZ0dFBbW0tFRQUWy9VXTiKCwPa6s/zn7n04/AFmZtsJRwS6+wdxeAeZmmGlKqnZa7LZgFoup2dxQCwAACAASURBVMnhwuMPoJVLcYcTFlkGpYJ8g54T7Q5GYjPFDL2G9lhVtMCgx6RSjmmempZt43hnNzKxmHKrBblIzOGWxOsVGVaqux2ka1MxK1QEAiPUOxOyhCy9hq6hIaZYLXT0uAlHBFyBhJ5WJIIciw4FUuo7ohVjlVLGUDAqU1DLJGRrVTT1DTISq9Rmm9No6Xcjl0oos5kJBEPUdiZkCcWZJuq7nZTZzQy4fehTlZxMruTmWhkJhQkMh2jpGaAiz0ZVcqV2chbdTi/NjiiBnpofJa8ioDTDjEYm43BD0jUqiFZqc7RKfEExdkPqGBnBjILohOBchwvvcCBeiQWwpqVSaDNwuK6NcOz8puRbqWlxkG/S4h8OopCJaXYmrMemFtogAl9YPIWbynLj29va2pBKpVfUni9cuJCqqqobZfnrepHbGcAvgCnAScAM3CUIQs31GH8U5WUVwr0VD7PvtcMIgoBYImbJXfO4+7vrKJyeOyFjdpzt4sV/+gu7/3gAQRBIUcpZ8/By7v7eesyZxivv4HOExuoWdjy/h91/PIA7tnQvloiZv34max+9mRkrysfdVquz0cH2Z3bzznMfxMdMUcpZfv8CNjy2koJpueM63sXgG/Tz/isH2fKbnZw72QZEbSjnrpnGhr9ZyYzlZTfE/SLgC/LB60d465k9nK1uAaLHOe+WCjY+soKpi4puiOO8FgQDI3zw1nG2PLefhpPRlUCxWMT8VVPY+JXFTJkz/isJ14K/ktvzcK1OBZBoTAsGgyxZsuSa/8C1tbVYrdYLjOUdDgcNDQ1XrAZ/XHIbDoc5fTraqRsKhSgqKroq83xBENh1tonXT9ax91wLIqDCbkUtkXGwJbH8PUpu5RIJUyxmIsEI1UnOBRqZFE8khE6RQoFOz+n2HpCKxthuZei1yMRiVGIpdZ19FKebOO1IEMUZ2TbCgkBXn5c+7/AYpwGAmdk2QiMRTrVFm9QmWQ3UxxrKpGIxMzNtnOsdoC/mDKBXK+n3R6u2eUYdaoksXmUdhUIhJUUqJd+go661l1S1nL7BRKXXlqZEr1TgcPkYGPKTZ9fT2BMl1CIRzC/MotUxQGd/lLSXZps51REdoyTdRKpUzrGmJGuuPCvVrQ5ydGrEghRdqoLqlsSkoSLfRigUYdDrp73XQ0W+LS4zkEnEzJmcSUO7k96YprYiRl5TFXImWQ2IBRHHmxLSjYoCG72eIUwqFafPOZiSZ6WmOTqeWCRibkkW7Q437Y6o/VlpnplTrb1olTIs6hQCgRE6XH5+eM88ls4sijuQNDc3o1KpLjuBEgSBRYsWfe7ILUBMZ1sUG7NeEISRK3xk3DGquW2t7eCPT77J+y9/GF+SnLmynPv+/jbKF01Mo1FTTQvP/vhlDm2tBKLd86sfXMYX/m4jluzPbuVrIhAaCXHk3Wree/4DDr51LG4rZs01c8uDy1j15SXjPjEYCYY4uOUoW5/ZzfFdJ+PbS+dNYt2jN7Pozrnjrgc+H4IgcPpQA1t/t4u9rx2OJ69lTraz/pEVrPziwhuiAU0QBOorz/HWM3vY+8bR+HFmF9nZ8PAyVtwzD2XqJw9v+jQgCAJ1VS1seW4/+7ZWEY7J0/JL0tmwaSFLN84gRfHpxfz+ldyeh2PHjlFWVvax0sKS3QrKy8uprq7+RNXf+vp6jEZjPOs+HA5TX19PIBCgrKzsijZlH4fcjrohZGVlkZGRQU1NDfn5+VdsINvT0MyvDhyh1tHLlAwLIsDRN0DvcJCZOekcTZIhTE23IBKJaHd6cA76KDDpaXAlqqbGFDk5JgN1HQnNrUIpjQce5OjTMCuVVCbpQUfJrUQkotxuQY6Yo61jnQQq27uxatTY1amIIoyxwZpk1dPQP0C53UJ3nxeFTEbrgDv+ukGtQKNWoBZLqWvvQyYRE0hKLFPLJBSnmznd0ksgdswGnRLnoA+5VEKpzYRnyE9zb2Kfdr2SLq+fSUYtbm+QNI2Ks90J7XFJlhkRMDQUlRGU5Vg42R6dBIhEMH9yFu29Htp6ovssz7NS0xp1iCjNNKOQSKhsSFyD8nwbtR29lGaY6ex2k2HRUt2cuAYzJqUTDkdoaOljOBCivMBGTaxSm21OI0On4VBde/zXW5Zvobatl2ydkmBQhF6r4lRrgvDPmGwnFIpQ39zDyEiEwkwjZzud/ODOmVjUIkKhEFqtlkAggNVqxWq9dPPQKLmtrq6+5HuuM64nub0JyCUpHEcQhOev1/hwYUNZT2sfrz/1Dtue3o1vMLqiUTp/Mvd+fz1z106fEPP9ppoW/vjT19n76iEEISpXuPWrK7j7e+ux5twYy9A3EpxdLrb/fjfvPvs+jpboxF8sFjFjZQVrHlrOTRtmIZF+PN/zK6GtvpO3f7uTHc/vZSgWGKPRq7n5gcVseOxmMiZdfnVmPDDQ42Hbs++z9end9MX0wSkqOSu+sIANj91M3pSsCT+Gq4Grx8O25/ey9dkP6I8VBFQaBSvvu4kNDy8jo+Cz20zpdLjZ+ocP2fbSQdzOqMxNo1Ox+t65rH9gIZaMjyfNHA98bsltKBS6aJLY1TZzjeJibgWfJIQB4OzZs6SlpWGxWOLkMyMjg6ysrKsizAcPHmTevHlXfG9HRwctLS1j3BBOnDhBTk7OJeOGDzS28sKxaj5sji4JldssKCSSMcRylNxKxWKmWM3IEXMkycIqz6SjyTWAJkVOoU5Hm8NF/8jY4pRCKcWSqkYrkXO6vZdMk3aM52xphhkiEbr7vLiGg0zNtVLVniBuc/LSCQRDnGrtIRKBipjnK0QrtTOyrDR0OuOBBjmmRABDnkmHISWF40lVUblEjJ8IepWCPIOO2uZuBImEYFJ12WJQk56mobVrgIEhPzZjKl0D0R+6RCxieo6Vlu4B+mKasUyjmraBoSg5zTAjRRwnlwAlOWbqOvoozTDj8fhJUys42ZYkW8izggDO/iG6+wfjGlcApVzK9IJ0as/1MBAjI1MKoq9rUqQU2EwQFsaQ3bJ8K77ACHJEnGnpozTPyqnW6HhyqYRZRRmcbenFORB9iE3OMVPX3keGSYtBpSAQGKGhM2GvVphpRJki4/Hb5zMpy0Q4HMbj8dDY2EgkEkEkEpGWloZer0en042R8Hxeya1IJHoBKACqgNEvlyAIwreux/ijuJRbgqd/kC2/3MHrT72Dtz/63c6cZOf2b93CygcWT0hyU8vpdl7619fY8/LBhETi7nnc8/2NFEzNGffxPuuIhiScYPszuzm45Sih2OTblGng1q+uYM1DyzHax5ds+Ib8vP+nD9n6u12crTwX3z77lqls/PpqZq2qmPD0sXAozMGtlWz59U6q99bGt1csLuG2r61k3q3Tx53cXwtGgiE+3HqcLc+8z6mPGoCoZGH2zVPY+OhyZiwtvVFWqz42goER9m2tZstz+zhTE+UIYomYm1aVs/HBRZTNyrtu5/ZXcnserkTuktHT08PZs2cpKiqKV1kBDh8+zPTp06+5EaapqQmFQkEkEqG1tfWiiWCXw8WCGJKRLEMoLS0dI8E4efIkWVlZFySnfdjUyq/3H6G6w0GWMQ2tIoXh4SDNfQOUZ1mpSQojmJWTTigcocvpodc7TEWmlaqkZq4Ckw5tSgpnOp34giFUUjFDQqIqmq1PQ6dM4WRrgshlmbS0ujxIxNFKLWGB6iSiN0pubdpUbCo1UpGIyiR9anm2ldruXsrsFjp7PRjUKdT3JKrHOSYdYokIhUhMfbsTk0ZF73BCP2rVqrDrtNS29sTdAcTSqKODUi6l2GbC4fLSPZBosLIYUukfHKY03UxP3yAyuZQ2Z6KSm2tLQwa4Bnz0DwbJMqtp7Y9+XiIWMWdSJi1dLrpjJKIk18yptl6kYhGlmRbEAtScS1zX0jwLLT0DTLIZaGp1kmPXc6IlcY1mFWcQDIxwuqmHSESgNM8av8ZFGSY0KXIqzyQcJ4pzzbT2uplkN9LS7sJmTKW+PSEFmVmcweBQkDMtvSBAboaec90uUpVyCu0G3F4/LZ0DPPOPd5GT9DCtq6sjPT0dtVqN2+3G5XIxMDCAIAikpaWhVCqRSCTcf//9XMmOqq2tjS9/+ct0d3cjFot59NFHeeKJJ+jv7+fee++lubmZ3NxcXnnlFfR6PYIg8MQTT7Bt2zZUKhWbN2++ZJrgebhe5LYWKBWucEOdaFzJCsw36Gfr07t446l36YmZ76eZNNz2+C1s+NrKCWkyOneyjZd/9iZ7XklIJOauncH9P7idknmTxn28/wnwOL3semk/b/3mPdrro6tpEqmEmzbO4tavrmD68injTjrPVDbx1q938v6fDhD0R4sW6YVW1n51Bas3LUFrHL84+Euhta6Dt363ix0v7IsnsVmyjKx7ZAW3bFpCmmnij+Fq0HiijTef3s37rx5iJBCTVhRa2fDVZdx8702oNJ9NyQJA7fFmtmzex75t1XHJQuGUTDZ8ZRFL1k2bcJeFv5Lb83D69GnsdvtlNa2jMgGfz0d5efkFMoFrkTYko7Gxkd7eXtRq9WWTzC6Fy5Hr82UI58+izj//Dxtb+e2Hxzges9GaYrMggTExrBXZNqo7upGIRFTYrSjEYg4lNXuVZ1qo7upBq0hhstHA4HCAMz2JCp9SKmZYiJCt16KRyqlr70OlkjGU5Cmba4kS4h7nID3uIYozTZzuShCtuQUZ+AIjnG6JamqTbbDkEgmz8zM409FLnyeqiZ1sN1AfO4ZCiwGDUjHGGcCsVdEzNIxZoyIjTUtLZz/u8xwd1Co5hRYD5zr68fqCqNVyBv3R98ilEqbm2mju7McZGzPdoqXd6UEqFlFo0SEiSqTj52hLo83pIUenwuUOkpaaQoszkcpWlmdFIhJxrrWXQX+Y4lwztW1RWYA+VUFJlpnqM534YjfJ4lwLp9t6yTKnkaaQQ0TgdJKMoCTPAogY8vpp73YzOddMXWx/utj+TpzpYji2v4IsI41dTjL0SlKkCgQBznUnJgjF+WbkIjENzX34AyEsplQc/UP84f/9AtakB9qpU6fIzc29YHUkFArhdrs5fPgwP/nJT+jt7eXBBx9k2bJlLFu27KKhJl1dXXR1dTFjxgy8Xi8zZ87kjTfeYPPmzRgMBn7wgx/w05/+FJfLxZNPPsm2bdv4xS9+wbZt2zh06BBPPPEEhw4dumC/F8H1Ird/Br4lCELXFd88gbhan9twKMz+14/w5//vbc4ciyY3KVMV3PLQMm77+qoJ8a3tae3jLz/fyrandxGIrbxMX1HOXd9Zy8yVE18h/CxCEASq3j/JW79+jw+3HI1PDqy5ZtY9ejNrHl6B1jC+ExKP08v237/Pll+/R29b9D4nS5Gx9J753P74LRPWmJiMIfcwO17cx5u/fo+upp7EMdw1l9u+vorC69AEdzUY6POyPSZZ6OuKNgirUhWs+uICNnx1GekTEN5xvdDXPcDWFz9k2x8P4okVb9KMqaz5wjzWPbBgwoIhPrfkNhwOEwqFLtheX1+PwWAY4xubDK/Xy8mTJ0lPTyc7O/uiJfaqqiomT558VYEN58PtdnP8+HGMRiPl5dfm236phLOLyRDOx2gzW51rkN/sO0p1ezcpKVIKTQaGfUGaewfIteg5l+Q0MD3HDoJAc0cf7kCI6bn2MUlaUzOtiMVi6tt68QVD5Bh1NA8kLLImmQ3IxGLqOhJkVa2SMxgIIpOIKbWZ8ftHONudIMTFWWZOd/ZiUSuwabVIRKIxaVrT8myc7uyl1G6mzTFApjGN6rYkxwa7AV/Aj0KqoLGzn1yLjnNJtl0FVj2pKXJOt/QQDguoU2QMhqJkW6tMwaKQ0u0JjiHgKpWMiCBQbDfR2jmASCKiP6nBLMuWhl6ppLWzH/dQkCxbGq0xTa5SLmVavp36lj4GvNHP5Nq0nOv1oJRJyEhTEg5Bc1+C7BblmOj3+rDrUqlv7iE/3UBdW+IazinJYsDr42xMf1eUa6KurS9a+c22IEQETjUlJimF2UY8vgBWTSr1TT1k2XU0xmQGUomYGUXpdDg8dPVE5SEZ9jTaetxkmKOyBOfAEN1JZNxuTcOsVfGPj96MTpMIJDlx4gSFhYWXDSlpa2vjiSee4Nvf/jZ79uzhhz/84QUNlhfDxo0befzxx3n88cfZs2cPdrudrq4uli5dSn19PY899hhLly7lvvvui16ToqL4+66ACSW3IpHoLaL3SQ0wDTgMxGP7BEHYMJHjn4+PG+IgCAJVe07zyr9v4dh7UcsokUjE/PUzueOJNROScuXqcfPaf23jrV/tYDj2m8kqTufOJ9Zy8wOLb1j/zU8bfR39vLP5/THa3KjrwUJu+8Yt5I1zSEI4FObw9ire+u1Oju2oiaePVSwu4bbHb2H+uhkTLheIRCIc3XGCt367kyNJx1C+sIjbv7GaeWtn3BDxuaGREB9uq+LN3+0eI1mYu7qC2x79n+Gy8ObmfTSeiq4QSmUSFt06lY0PLqZo6vh+7/5Kbs9DY2MjarUam802ZrsgCLS1tdHR0cGUKVMu23B1JZ/ai0EQBFpaWuju7sZisSAWi8nNzb3qzyfj/ISzUChEbW3tRWUI5+Pl9w/wRkM7tQ4nImBKugV/IERDUqU132agsbc/6n5gj1ZyjzUnyGyBQU2De4g0hZwCgwEhLIzRw2boNLR7veTqtaikclp7BhgOj/1bGNOUZKZp6ehx0z/oJ8uspdWZ0NzOLszA4/VxJka+KnJtVMcqtSq5jBl5dk41O3DHTM/Lc61x8luSbiJVIuFY0pJ+rlXHub4BMg1aDAoFzoFhujwJopaqkCNPkZBtSONMSy+BYJhw0v1Yo5QzKd1IQ6uTwVg1SadV4hrykaqQU2g14HQP096XOIcMiwb3cJBCq56mVidGvTpu6wVRqy0JcLYlWgnNsadxLkYszZoUbDoVp1tdCDHT8EnZJs529FGUaSboCyGTSTiTJCMozbcgFYs519zLkD9MYbaRsx3RikqOTYdJo6aqriMelJGToafbNcjkTCOdnQMoVSm09yRkFVOL7PiGRmg4F6seG1U43cOY9Wrseg1tHS7cgwHe/OWDKJKIRlVVFaWlpZdtjKyrq+Pf/u3feOWVVy75nvPR3NzM4sWLOXnyJNnZ2QwkTaD0ej0ul4t169bxgx/8gIULFwKwYsUKnnzySWbNuuI9cKLJ7ZLYGE8Cf3feuE8KgjD3oh+cIHyShLKG4828/tQ7vP+nA3G9Z9HsAu753npu2jhr3EmEp3+Q7c/s4s1fvktfe/R+YLDpuP1ba1j32ErU2k+/a/6q0dgI//Ef8OKLMDgIqanwpS/B974HBQXjOlSU8FXzxi/e4eiOhLa9fFEJax9ZwcI75o77BKGz0cGbv9rBu8/uiU9IzKNygYeWXRdf484mB2/+6j12vLA37plrzTbFJAuLr4ts4mrQeKKNN367iz1/SbhB5Jaks/GRFSy7a86E6NuvBwRB4NTRc7zx+70c3HEiHnpRMiOXjQ8uYsHqCqSyTz7Z+Su5PQ/Nzc3IZDIyMjLi24LBICdPnkShUFBUVHRJLesoLudTezEEg0FOnDiBSqWiqKgIh8OBz+cjP//a4vuSm+IGBwepqakhOzv7ojIEiH7ZPjjTzG8/OEqnawBPaIQp6VbcHh9tTg+pajlef2JJvjjDjEoqpc0xgNPrY2qujaok263Zeen4/UHOdDgZCQtk61U0exL61QK9GolETkNsSTtFKsEvRB+CSrmUEpsZR/8gXUlRttmWNFr63OSadChEEsQiEbVJsoSKXBtNPf1MshhoaO+n0G4Y4wlbnmMlLAgMeqI2WZPTDdQ5EoS9IifqKVvf2gcC2PSpcXJrTUslU6fhRHN3PG1MLIKQGAypSrKNaZxt6SNMhGAooR3OtGgxpqpobOllOBDCZEilxx1dltGrUyhMN3KysZtAMHruWTYdrb1u7AYN5lQlg8MBmrsTBC03w4BIJCI4NExnn49sm4aW3ug1kohFlOUY6e334YgFK+RnGWjo7MeoVZFl0jI8HKShPXHOeVkGZFIJ4WCYc61OstMNtMT+JnqtkoIMA7UNDoZjujmrRUuva5AMoxLCUvyBEfoGEn/XSQVmJIKIM409CBEBiUxCKBzhnacfGfO9O3bsGNOmTbvs76iyspLNmzfz7LPPXvI9yRgcHGTJkiX8wz/8A3fccQc6ne6i5Hbt2rX88Ic/HENuf/aznzFz5swrDXG9ZAmVgiDMOG9bjSAIFddj/FGMR/xuf/cAb/36Pd76zXt4YhV9e76FDV9bxepNS0jVXV3T7tUiNBJi76sf8cq/baHpRCsAKq2S1ZuWsuFrq65L5/4nwvbtcNddMDIS/TcKmSz679VXYc2aCRm6rb6TLb98lx3PfxB3w0gza1n/NytZ/zerxp10DnmGeXfzB2z59Q46G6JFBplcyvL7FnDHt9aMe/X44sfg470X9/HGr3bEJQtyhYwV9y3g9m+sJqck4wp7uD5w9XjY9txe3n52D65YcSNVp2LtV5aw/uGlmMa5OfB6wtHez5bn9vPuyx8xFJtoGG1pbPjyQtbcNw/NJ7hHfG7JbSQSYWTkQvvItrY2BEGIR4OORtxOmjTpqoMN6urqMJvNGI1X9hfs7++ntrZ2zP4dDgder5fCwsIrfPriGLXzcrvdl5UhRCICe88088s9hznrcCIRiykyanH5gnS7E6QlTaNgYNiPSi6jxGrCHwhR25HQbk7LiyZlWbVqMjQaxIioTKrkjtp2ZWkUhIMRwhERvb74iityiRi5Qsoki5HGNieD/iDaVAVuXyJEYXZBBu5Bf7zSWJxppLYr+t86lYKydBPHm7rwx4ji1FjggVQspjTDjFIs5UhDollqlNxOthsRhSASitDYm5Ba2PSpSOUSdPIUalt60CoVDPgTx2NQy8kw66lr7iUUI7QSmYhQRMCqS8WmVdPS3Y9nODEp0KWpUMilpEpFNHd4MBlUdLsSDWhTJ9kJ+kPUN0cbtLLsOlp7BhCLRBRlmZCIRGNkBLkZehyuQSZlGGlrd5GqktGeJFsozjWAIKaxuY9wWCA7U09z1wBSiYjiHAvhkXB0rBjSrWmIRCJ0KgVnGhwYjGocsWY2lUJGSb6V5hYnLne04qLRKBj0BZicYyYwPEJnr5tgrFInFonIzjKgSZHxbz/aOOZ7d+TIEWbNmnXZ5bW9e/eyfft2nnrqqUu+ZxQjIyOsW7eO1atX893vfhcYKzf4jMgSvgZ8HcgHGpNe0gAHBEH40kSOfz7Gg9yOwjfk573n9/KX/9oWJxEKdQorH1jMHd+8ZdxJpyAIHHm3ipd/toUT+xJd83PWTOfO76xl2tIbw+h/DBoboaICkppYL4BKBTU1417BTcaw18fuPx5g62930ljdDEQ1qisfWMzt31xDTunlUwU/LiKRCJU7T7DlV+9xaNvxuFxg5spybn/8FmatnjrhGupRycKbv36Po+8lslJmrazg9m+sYubN5TfE92UkGGLfm8d483e7qK9sBkAiFbN44yxue+xmimbkfqrH90ngGwqw67WjbHluH22N0XtEilLOijtmsfEri8gu/Pja/b+S2/PQ2dlJIBAgJyeHs2fP4vF4Lhpx+/SBY+QYdMzJzSBNOfa1s2fPotPpLqnbhegNuKGhAZfLRUVFxZj99/b24nK5mDx58jWdW3V1NaFQCJlMdlEZQigc4Z0TZ3l2XyUSsZhml4vydCvdTi+eIR9DkbGNdlnmNCxqNQ1tfXj9QSZnmqhPqprOm5SJLzDCqZZoF/60vGiMK0RJzowcK609Lnq9UUJr16XSGauKpsolZGpUtPYPxz1uAXQaJQM+HyXpZgLDISIINPcmKnHZBhWD4QhZeh11zT3RZqrzNLeCINDp8OD0+KjIS8gSRCKYkWejo3cAhytKWPOTAhYKbHr0SgWVZxMEXZeqwOXzk2NJI1Ump6m1F/953+psexoamZy65l6EiIBSJY03Y+Xb9KgVMk419sR/DSajml73EEWZJkKBCL7ACF3ORLU6J0OPVpVCX+8gDudgXOMKYNCqKMwwcOpMV7yBLCtdR6vDTWGmEUYi+PwBupLicbPT00hVptDa2s+QL4TdpqWzz4NIBIVZJlIkEk6fSVxDg0mNSAR2g4bGxl7kChnuWFVHpZAxKc9ER6cbZ6xJADFIJGIm50ZlEU2tfWhTFfzpV18Zc52OHDnC7NmzuRy2b99OZWUlP/3pTy/7PkEQ2LRpEwaDgZ///Ofx7X/7t3+L0WiMN5T19/fzs5/9jK1bt/LUU0/FG8q+9a1vcfjw4cuOEcNEk9s0QA/8K/CDpJe8giD0X/xTE4fxJLejCIcjHN52nDf+7zsc330KiKU2rZvBnd++dUJ0uWcrz7HlV++O6dwvmJrLnd9Zy5K75yOTf/ywngnB178OTz89tmJ7PmQyePRRuIoJ3yeFIAic2FfLq/+5lY/ePhbfPnVJKRu+vnpCPHM7Grp5/Rfbefe5vQRicrL0Qisbv7aKVZuWXBd5SWt9J2/8cgc7/7A/3qyYVWRn49dWsfL+hSjUN4YU4PSRRl7/9U4OvFWZWNafnc9tj65gwbrpSGU3yPf6YyISiVC5r543fr+XY3vr49tnLi7itocWM2NR0VVPdv5Kbs9DT08PfX19eDwerFYrubm5F73h3v/snznV1RuNOrVbWFmcT5nNwtQsG+0tLRfV7Y7C7/dTU1ODwWCgoKDggv339/fjcDgoKSn52Ofl9Xo5fPgwWVlZF5DjYCjMeycb+PX7R+hweVDIpMzMsXOmsw9nTP806ucKYFAryTPqcDi9dA4kNTJlmqjr6iPXpEMjlSOXiOPOBADTcm2caO+hLMOCo8+DXCTQ5k00Vtl1GkJEyEjTUNvcgxCBEVFiOV8iElGaZcLlCdAZ06jm2PWci5FPs1pOnsVIZWMXozkcU2NpXBpl1MFAIoiobEyQ4RLhKQAAIABJREFU0ym5lmiyWYaJ/v5htEo5dV0JzlBgNyCTSwj6QzR39JNu0tLhShDNshwLI8EQDbGuX7lUjD/2nZ+cYUQUhrNJ+laIevXmWvXRfba7SNWk4I3dtKUSMeWFNrp7vXTHpAVmQyo9A4NoVCnk2/W4vX5auxKE3m7VIhKLkIZG6HIMY7Fo6IjFYEolYqYVp+NweOnojhLgdJuWjl4PVkMqRo2CPucgvQOJ6rPVosaYpmag30d3jweDQR33sM3LNKBSSqmt74lXUxRqGWplClqFiB6HD18oROy+ik6rJMuuo6PdxYDbF628D/tJt6bx9L/fN+a6XA25ffXVV2lvb+cf//EfL/u+/fv3s2jRIsrLE3Gj//Iv/8LcuXO55557aG1tJTs7mz//+c8YDAYEQeDxxx/nnXfeQaVS8eyzz16N3hauY4jDjYCJILfJaD7Vzmv/vY1df9gf1xPml2ez/msrWX7fApTq8bVAcvd5eOs377HllzsYiE0QdZY0bnlwKWsfufnTD4XQasHrvbr3ud1Xft84oq2+k9d/sZ2dL+6N22rZ8y3c/d31rPzyknFPI/P0D/LOs++z5VfvxW3m1Gkq1n51Bbd/8xaM6RO/DO9xetn2+z289dud8WCIVL2atQ8vZ+Pf3DzuPsHXip52J289s4ftz+9jMLbaas7Qs/GRFdzywEJSb4CUtmtFy9lutmzex67XjhKITUyzCq3c/tBilt8+84rpZ59bcisIAsHzrJ0EQeDMmTN0dHQwc+bMC7xek/HQC29wrC1hHTUzM1qtTJFKKDLpmJttZ3FZEcV2M9KkBopRb9ySkpJLdn8PDAzQ0dFBWVnZxzqn9vZ2WltbUavVZGVlxffvC47wl8On+MP+atINGs729VNsNdHY6USvVtKc5BIgFkerlNl6PXUtDoKhCFZDIowAYN7kLNxeX9zzdFp+olKbIpUwuyCT+rbeeJTt5HQj9Y4oKcwyaElP03CsoTM+45SIRYREAikyCSV2Mx3dA4xEIniSdL5ZZi0RIYwkLNDWO0xJroXTST63cyZnEAxFONPcgz8YZmqhnapYlKwyRcb0PCv1rX24Rq3AMg3UdbmQScQUZ5qRI+J4EhnOMGnpcg9SkmXG6/EzPDyCcyixZKiQicmPvdbR7UYsEhESR89HLpVQnGXCOTBEV2/iuqlToz/GdL2Svj4fSMW4vAmyWZhtQimTcrbJQXAkgtmUSo9rCJEIJmWZkEsknD6TmERYrBoGhwMUZBhobx9AniLFkeRWUFFsI+AL0dDUhyAIGE2p9LqGSFVKybbq6Ov30udKjJ+WpiTdrGXIG6C9w4UyVc6QL1btyjYilYg429gHgoBUIiaIQIYtDZ1aQXfHAK7BxL7yso2oFDL8wyP895N3j/meXg25ff755wkGg3znO9+57PuuI/5KbicALoebLb/awdandzEQ0xOq01SseXgZG7+2atxJZ9AfZNdL+3n9v7fTfCpmMi8WMX/DLG57/BYqFn9KBvpiMVz+GZp430UsLK8HhtzDvPfCXt54ajudjdEVHp0ljY3fWM3aR25GZ756L/arQTgU5uBbx3j9qXc4sa8OiHbXL71nPrd/aw2TpueN63gXQ2gkxIEtx3j9/75L7aGGxDHcPY/bv7H6hrES8w8F2PXKR7z+m520xzTMCnUKq+5fwG2PLv9MW4l5XEO886eP2PL8fpyxwo1Wr+bW++df1krsr+Q2hpGREU6fPk0oFEIul1/RhusbL7/N/sbW+P8fJbejyNZpaHN6SU2RMz3HzsycdEyMYE4RM7Wi4rKd4h6PJ66VvRqEQiFOnz4NQGlpKY2NjRiNRmSqVN6urOP3e47h9gXQq5WUZ1o41tjB8GgWtzGNtlgyV5YxDbVIREPPAMnJxHajhs4Bb1Qi4AuhlEs5nay5zbfT4HAyyWrkXHs/2eY0atoTxHNyupEQAgok1Lf2YtaqcQwmlss1yhQK7AaaO/rxxCoDBp0Sp9eHSAQFFh0hf4AWZ6L6W5RlpK7TSaZRi0GlRCoSUdWUIH5TC+209AyQa9bR2NJLfoaRmnOJ13MtqcjlMvqcfga8PvLTDTTEGsyUcinleTbOdfTHK5kmnYpe7zDKFBmTM4x0dbno8yZ0w1KJmBSVjAKbgdaOftxePyKJKF7ZNOvVZJi01Dc54g1kqRoFnuEA+RkGFCIxDqd3DNm1mrWYdSr6ncN093iiMoaYRtdq1JBuSeX0GQfB2P5MplRcXh9FOWa8bj8+fzB+/ACTCy2IwgIN53qJhAU0aUo8g360qQoyzKk4HG4GPInfhEItIy/TiLt/GIfDQzg2RxOLRRQXWBgeHqGlJTpp0ev+f/bePEyOut7+f1VV7/s+0zM9e2Ym+0YggWxAwhbCvougoogLF/Wq93qX7/XH9affH+rVe5UrKAIiiiKEYCAhCQFCwhYSQvZt9n2f7pnpfavfH1XT3YMEkJsZ4oX38+R5Mt1VXVWfrq46dT7nfY6JUDjOtCoP2WSWWCRB98AYNZUe/utDgNtf/OIXuFwubr/99vdcbgrrYwVu66unyzcv+QpXfeVCZi+dfPuhZCLFznW72HDf1hyIEEWBpVeeyRVfveiUSxZkWebI6yd45v7n2fHk6zlXh6rZ5Vx558Wce8M5GC1TaKB/GjO376xMJsur69/kj/c8TeO+VkDR5Z5/01Ku++ZllE8/9Y1Yx3Y38uRPNvLK+jdzpMic5dO5+q5LOPuyM6bE2/jIrgae+vlmXv3znvw+LKvn6jsvZskkRVD/tZXNZtn9/CHW37+NfeoDgSAILLl4Lld9aTVzzqk7LfTDH6bSqQyvPLefpx58mQY1/UyjlVhx6Xyu+vxKps2eqAf/BNwCwWCQI0eOUF1djcVioaWlhblz37s5+Z5NOzk+OMRwLErb8AjzA8XsK2ii8ltN9IYmNgcYENHrtCyo8LOwsoRFVSXUFnuQ3vGjCIfDNDU1MW/evPc9jrGxMQ4ePEh5eTmBgPLlvrHvIC809LLlUAszSn10hUbx26wcae+jvsTLwa68rrLEacVo0KIXJCUQQAZRIgfKNJLIwuoSuvpH6Fb1oLMqfbkYWLfVxKxSL3sauoir2s9Kt4nmUBRBgBmlXmwaHbsb8s1cHjUgwWMzUeZUrLViqfQE+OBzWyiymxkcHKNvOEKgyEb7YIFMIOBgZCxOtwp4Z1f7ONimAO4St41qn4M3j7aTTqueijXF7G/pxW0z4tBJ6DU6jhU4B1SXuhgKRyn32GnpGMZpNdExmL+JVBQ7cFgNNLUOEY2nMOolouoNsdhlochh4VirwrjmSoRKvwujRsOJpgE0eiHnpiBJAjNrihkJxejsUphzi93AaCSOw2qgvMjJwOAYfQUNYg6HEbfDRDwcpacvisNhZFhlou1WA9XlHlpbBxkZVQCyzW5kLBJXNbApBoMRxiJ5QF5d5cGg0dDY1E86lUXSiaTTWdxOE16HifaOYWJx5Rh1OgmdSUugyEZ3RxBREAmpn2W16Kmt8tLeMcyQqvENlDoZjSQ4c345X//q+bltyrLMnj173hfc/vjHP2b69Om5xq/ToP427wgfsoqsJfL87GoAqmaVcfmXVnP+DedMiebw2O5G1v98Mzue3EVGjbeumBngsjtWs/rTyzFZT+6P/GFquDfExge28ewvnyfYp/zmTVYj5924lLV3XDA1Eb+nmeb2g5Qsy7z94iHW//w5dm3cCyhAasW1i7npO1dRPffUj1tPSz8b7tvKcw+9RFS99pXVl3D9t9Zy/k3LpkRD3dPSz4b7n2fzIy/nrMRKpxVxzV2XsPpTy065TOPDVvOhDtb/cqKVWO28Cq7+ygUsv3zh36wuV5ZljrzVytMP7eC1LQdyDxpzl9Rw1efP5azzZyCK4scb3CYSCZqamhgaGmLOnDmYTCai0SjHjx9nwYIF77n+vz31As/uVwTPZr2WeeXFxNNphqIx2oZCeEwGBgtYOAC7Ts9ogUvArBIfbX0h5lcWs6CyhDOqS5le4iGdSnL06NH3jQUdlyGMuyG09A2zYc8x/vDafjJZmUqvg3KXg1ePteaY2JllPg539yvAs8SHHpF9bb0TPlejEdBqNEz3e+jsDWEy6mgvAHqzK3wEY3HcRiNHW/uZU1nM2wXAfnaFD0EUGR6O0DM4Rk0BKwpQW+JGr9VwtKU/d2IKGgVQWww6av1uhkJhOgfynrBVpW5a+4PMKPMSHUtgNuo4XBAtW11sJZZKoxck2nvDzJlWPIGpXTQ9QDgco6FtCFlWomrH1w/47JR5bOw52pkDwwGfnY7BEcp8dqx6HSMjUXoKnA1Meolinx0dIidaBjBoNUSzygVEEgXqK7xEoynaO/MODJJewKDX4ncYGRqKE09miCfzdnQ1VW70ksSJpn4yaRmL1cBYNIFOK1FX4SEcSdDekf88q92AzWrAbtRzorEPg0lPeBxwmvVUV7jp6ggyHFQesnQmDal0lrJiC0JGoqtvJOf0IAhQVelGI4g0Ng6g1YgkVGBRXurApJdoaB4iq1qhOewGzFYDNrOB5sY+PG4rXeq0clWFG5fDxIEDncyZVcrd383nD6TTaQ4cOPC+5/bdd9/NihUruPzyKc0ueK/6WIHb+fMWyN+45l/Y9NB2QgN5+6GLP7OSy+5YTfEUaFQHu4Z59lfb2PzwdoZVSzyT1cgFt67gii9fSKDu1LosJBMpdjzxOhsfeIHDr+WbWWYuqWXtly5kxbVLJi8Y4jRxS/iw1dXQw5M/3cjWR7bngNTiSxdy7TcunRSpR3QsxpbfbGfdfz2X0+W6/A6u+PKFXPrF1ac8be2k+/DbHay/dwt9BRHUa29fxWW3r8I5Sclbf20F+0d59uHtPPvQdkZU2ZqnxMkVt5/PJbcu/5vW5fZ1DrPhNzt57vE3iIWVe19ppZcrPrecyz+z/OMJbjOZDK+99hpOp5OamprclEIymWT//v3vyyz94JmXeXLP4dzfcwNFHGpVGFGjTiLgUDrNR1Mp+sJxMrKM12RicCx/8ZpTWsShtjyLurDSz9H2fmYEvPiNIpecvZDZ5UVYjBPZknEZgiAIzJgxg8OdAzy6/W12Hm1lTmUxo5EooizQ0jvCghr/RFuugBe9VmIoGKV7cBS3zcRAgZbUbtRR5rTQ3jdGRBVxFzZz1frdeC1G3jjWmftWx5u5jDqJ6SVetIjsacjrkcedCOpKPYhpmaFghMHoRODvc5spcVg50TpAPJHGYdMRjCTV8dQyf5qfpo4hBlWAObPax6G2fiRRYEa5D5NWy56jnfltFltoHghT4bMiZgV0osiJ7ry2eGaVj1Q2q0zTtw4yrdzDCdVmTBQE5tf5GRmL09KuvOZzWegbiaCRROrK3ISDY3QO5mUSJoMWtAI1pW56OkOMjMUo5GD8Xhtuh5HG5oGcjECjk8hkZeorvSSjSboHx3LsN0CJ347LbqKtdZBIJInJoicSTSKKUF/lI5nK0NySb2IzWnS4HCbsJgONDX2IGjEngXDYjZSVOmhvHWJ0VH3A0oDBqKOm3E1oKJprRAOw24yUlNgZG4nT1RnE6TQxPBJFp5MoLbagFUQam/MPLKUlNiw2oyJh6BmlpsZLY+sgS8+p4R++dXFuuUQiwbFjx953VuIf//Efufbaazn//PPfc7kprI8VuB3X3CYTKV5Zv5s/3/88x3YrDmWiKLDk0oVc9sVVLDhv8m210qk0rz69hw33b81pLwEWXTiXtV9czeI1C055537r4Q42PvACzz/6co4hdPjsXPTZc7noMysJ1JWc0u0BH6nP7amqgc4hnvzJsxOikWsXVvPpf72aJWvPOOXnSjqVZvvjr/On/3g2p6HWm/Rc/NmVXPuNS6ekUTCTzrDz6d08+Z+baHi7FVA9e288h2u/voby+kk4Vz5EJWJJXnxiF0/d9zwdDQrxM67LvfpLqymu8HzEe/jhKzIWZ8vjb/Dn3+ykvyuIw23hj2997+MJbkGRI7wzIjeTybB7926WLFnynuv+dMurPPpaPtVlVomPo+15JtGgEUkkFVZMr5Uo9zlxmQwMx+K0DgZJpDPMDxSzv7XAZaDCz4GWPBCt8Dro6AtRU+xibqWfuZXFVHssDHa2Ul5RQXMwyYa3jrHzSCuSKDIr4MOgkSZIAMbBrdmgo77YDSnYV6ANdpgNDMfjlLps+Cxmjjb1otWJRJP5poXqUpfCTEaStPWEmFNdxIECUF5bZEGr1dPaEyKeSDOrsohD6lhoJJGFNX56h8boVKf87BYDQZXBrixyYtVpaegcmDCl77LrQZQoc9tpbhukyGOjqXso9/5c1Ruzp3uEoZEoc+r87FcbwvQ6DYuml9LcPpib1i/3GWkbiqPViNSWujHrdLxVAIZrKzy0D4xSV+ahv3cMo05Da3+eJS33O3FYDXR0DDMyGsdq1jIaV4BoscdKscvCsca8/lWnlUjIWWorvMipDK2tQznNKoDFpKOq3E1PVyjHrEp6iVQ6S3WZG70o0tIxOGFMvF4rPpeFtpZ+IpE0OpOGRDKDRhKprVIiiltb82MkaUXKAy70Gommxn7S2fzPMFDiwG430NTQTyKRwWTSEUmkKPJZ8TrNBPvDdBfIQGqqPRj0Wloa+ojH0wQCTjp6QpQFnJj0GhLRBG2dyvcrilBf7yOZyFJW6uTr37oo9znRaJSmpqb31ZPfeeedfOUrX2Hx4ikN5nqv+psGt4IgPASsBfplWZ79fsu/W0PZ8bea+fN9z/Pyk2/kNKqBOj+X3b6KC25ehnkKGKCm/W38+RdbePEPeWsvT6mLNZ8/n0s+f94p72KPReK89IdX2fCLLblgCFBSvC657TyWXb341CZFNTXBT38Kjz6aTyi75Rb4xjdOS8b2ZBUaGOWZ+7ey4b6tjKjM/7QFVdzyf66ZFJAryzJ7XzjEuv/axJ4tyn1Z0kis+tRSrv/mZZRPQSCDLMscfOU4T927mTc25j17z167kOu+voZZZ384a89TXdlslrdePMy6XzzPvh3Kw6IoCiy77Ayu+eoF1C+c/Ea9yapMOsNrWw8RjyW58NqzPr7gNplM8s79lmWZ119/nXPOOec9133ghd28dKQZs1FHOJVCK4kcKZgm14gCmfTEz65wOWgfCCGKUO5zEnDbGQ5H6QqOEozEmVdRzMGCqfRSl43ugql5AEkGvVaDLAjEkinKixw4TAZ6B0YZHIkyr8Y/QSKwaFopmazMibZ+Yon0X0gEZpb5kLMyx9sGct+S2aQhnEij14hU+xwIMhztyK8zp6aYA629BFwWNJkMDouFAwXHPrOyiLaBELV+Nx3dQawmPW39edbUbjbg99lJx9M0q9ZaGr1EUp0GD3ht+BwWDhzvyckWqstcNHUP43Na8DutZFIZjrTktzmnzk/HwAjlXjstLYNUl3vY35hnjxdMLyWVVkBmNJairMhE+1C+Waw24OHgsR6iqjtARamTlr4gZcUOHEYDY6Mx2gvSwjxOM06nGTmdobl1CKspLzkxGrTUVnjo7R9lQAXXGkkkhUyg2I5WyNLTE56QZmbQa6iu8hIaitDTo4JEnajISwIujFoNTS39pFL5c8rts+D32OhqH2ZkJAaSQFbdfk2lh+Bw/rO0WglZFKgI2ImOJRgJxnNNhRpJpL6uiFg0QWuTwgR7PBaCkQTTqr3EwnHSiQzdKrOr12uYNctPX88o3Z3KmNTU+hgORRX7sbZhnC4jLa1B5i3wcuPN83E6nTidTpLJJO3t7cycOZP3qs997nPcfffdf7VjyCTW3zq4XQGEgd9+WHA7XsO9ITY/8jIbf/1izibJYNaz6qalXPGlC6Yk2Wl0aIytj+5g0wMv0qn6UUsaiaVXLOLyL1/InOWT0ID22gk2P/wSLz/5es4Sy2w3ceGtK7n0i6snpZHqb70SsSSbHtjG4z/akJOW1Myr5MZ/vIJlVy8+5VHMAC2HOvjTj5/hpcdfI5tRrrGL1yzgum+unRQv5XerrsZenvzZczz/u1dIJZR7yoyzarjmrksUj+BJOO4PU82HO3nqF8/z0rpdZNT70awl07jmKxew+KJ5p81+fpj62Gpu4d3BLcBrr732vuD2ke17uXfzG7m/q7x24rEENrMeNBo6h0eIJNITjrzG66S5N88GLqj0s6+pBxnwOcxMK3ETTaQIRmJ0DIXw2iz0D4eZUFmU26ys/NOLAqlMfiMVRQ5aBkOUOs24zRY0iBMa3aqKnbQNjTCrzMfYaJz+4TFi6YnWMlWlTmwGPU2tg0QTKUo8ZjpVdlEQYPH0AJ09Q3QPKq/Nq83bbhU7LdQUu9l7vDMfK1ukgHqjXkt9wMPoSJzWgnEA0BpEiu0GNIKOts4gPq+V3oJjP3NWgLFwgobmAWRZZua0Ig6r4LbS78TvsrL7YHtOEzqjxsvhtgHKiuzYjHq0gsiBAhutGdOKiCWTiJksrR0h/B4j3UOKVEISBebNKCU4EqVVdQPw+5TAA6NeQ62ayNXQlpcE2K0GjGYdbpuRpuZBJFEgol7UNJJIXZWXWCxFW7vykCCKAhlkfB6VjW0eJFxgfabXaaiZ5mV0OEqX2nCGqHwBfp8Zm9lEY/Ng7uItigJFJXacViPNJxQtc1JW3vN5LRT7bLQ0DxJWHR5sNgNaoxa/10pH6xBajciQ+h0XFdko9ds5fqKPiKpjKit3IYgCOgk6WoYpK3fT1DKIpBGpqfZisRjY91YbsvowMntuKTIwfYaftVfNYnh4mGAwSDKZRBAEqqurcTgcaLXvrmG8/vrruf/++6momIJmng9Wf9PgFkAQhErg2f8puB2vTDrDa8/u5ZlfbmP/jnwS2LwVM1h7+yrOuWzym1ZkWWbf9iM8c//zvLZhT+73UDGjlDVfOJ9VNy8/5frL6FiM7Y+/xnMPvsjxPfkwudlL67nglpWsuHbJlLDYf0v1biA3UOfns/9+A8uuOmtSnAZ6mvt44ifPsvW3O3Is/4zF07j5n6/izIvnTwnIDfaNsOGXz7PhVy8QViV1/iof1359DRd+ehm69/Fqnaoa6A6y4YEX2fTIDiKqDKekysc1X72A1Tecfdo0yf019Qm4/ZDg9vFXD/DjZ17J/e016xgssFGSgXKHDZfDBKLAUCSKUaOloTsPiMbB7XjNLPNxrHV8Oh9qy3ykU2m6giOEVaAoAuMBYgKgl/KMJzJYzTrGxpII6mEVOS30jqeBGXTMqSyisWOQIdXwWSuJJNUxqCxyYNXp6B8eY6Agfre23EP74Cg1RXZ6e0exGkTahvN607nTiokmU2iRONHST32FV3FeGF+/zINJr1XAcjylsN0JZazMBi1+p5HQaJzhkXyznc9nY2gkyvQKBeDp9BqaOvNT7rNqi5GB6FiC9s4gc+r9HBhncESBujIbkQR0qMBQeb8XvVairsKLQSvx1qECWUKVl57BUfxuM329o5gMGnoLPGBLfSZsVjOtLUMkkhl8Hgt9wQiiKFBX5UWDwOEC8Gwx69HoJAJFNrragyTiaWKZ8WhaqKn0kM3KNDcPgqwyu3KWYp8Nj9NMZ8sgI7H8+WSzGigvc9HfO8LgQBiNRiSVldHpJGqqFDeE5ub8uWWx6Ckpc5JOpGlpGsBqMTAaSSBJAmUBOxajgcNHunO/zGK/HYfTRCKcpK15kNIyRXZgseipKHcjAYcO5OUuM+eUgCDQ0TLI2Eic6bP8NJzop7rGC9ksOq3EkUPdXHXDIj79+WW59QYHB+nt7cVoNBIKhZBlGYfDgdPpxOFwIEmKdnLt2rU89dRT7xlhfdttt/Hss8/i8/k4dOgQoASg3HDDDbS2tlJZWcmf/vQnnE4nsizzta99jU2bNmEymfjNb37zvk1t76hPwO17VOuRTjb8chvbHnuFhBo57Sp2cPFnV7LmtvPwlr67p/eprIHOITb9+kU2PfhizvVAZ9Cy4prFXHr7KmaefeptkBrfbuGZXz7Pi394NZeqpTNoWXrlWVx823nMWznztLCIOl0qGU+y9bc7eOI/NuSimGvmVXLr/3MdSy5dOCmAM9g/wjP3P8+G+7YyqjZU1S6s4qbvXMk5l0+NjVg8kmDr73by1L2bc8ft9Nm58isXsvb287E4zJO+Dx+komNxtj72Kut/uY0+td/E7rFy+efPY+1tK7G7rR/xHn7w+liD21QqRbbQ0FWtDwJun3v7OA9s20Pn0AgyUGy30PcOltWuzydSAcwp95FIZzGZdMRSKcx6HW8V6GPrSz00tOcBiiQKZFQmUgY0gmK1ksrKuVutUavJd9zLYNHriBSAIqNeSzSVRMiAkAWTTkM0nZ6wjfpyH/FYktYuhU0t8lhyrKnPYaa6xM2h4z1EVSZyZrWXQ20DaCWRcq8FTTZDQ3feSaC+wsuxzgGmlSra0bHROJ0FsbJGvRa7zYDbYqCxZYBUSsZo1hJVn65ddhPVARcNTQOMqsxhTaWbxo4hHFYDFcUuyGQ5WAAm59T7ae8L4bFqGeiPUlnmyYFdgAUzS8lkZFpaBohEk8ysK+awakReXuKkxGNl78EO0qrGtbLMRVtviBKviWQsCRmBgQLwXV7qxG430t0ZZHg4istpZkhtFqyp8GDRazl8rCfHJJtNOiSDBr/XTHf7MOkUOcZcoxGprfaSiCVpbVET0HQa4pkMleVuTHoNna1DhOP5JpNAqQO73URb04DSbGbSEYmn8HotFHmtBAfG6O7Lj3l5uQur1aDodceSeH1W+gfDlJQ4cNqNxMKJ3LYFAWbNDZBMpmk+0Uc6laWm1kdXd4iSEivxcAqr1chxNaq32G+nrNzJicM9jIZUa7YFAVLpLEuX13LpNXkQOZ7+V11dDSjNkaFQiGAwSCgUQhRF1q1bx549e9i6dStW68kvpjt27MBisXDrrbfmwO0//MM/4HK5crG7wWCQe+65h02bNvHzn/88F7v7ta99jV27dp30s9+l/tcQKWBDAAAgAElEQVSDW0EQvgh8EaC8vPyMtra2v3obkZEo2/7wKs/++kXajyrXNlESWXr5GVz2xdXMPcVygXerVDLNG8/uZdODL/DW8wdzr1fNLuOyLykJaKfaTiw6FuOV9W/y/G9fZv/LR3Kvl9QUcfFt53PBLStOm1Sr06HSqTSbH3qJ3//gKYZUaUv9oho+9S9XTxrIjUXibPzVCzzxk2dzDz+BOj/XfXMtq29ePiU2YplMlp3r3+SJn2ykcb/y+zJaDFzy2ZVcdedF+MpOj6auTDrDK8/s5cl7t9Kg7qfeqOWCG8/hqi+tprSm6CPew/evT8DtScDt2Wef/Z4/sI27jvC9P27HoBMpL3IpcaOROJ1DI7npaJ/ZlEvpAphdVsTh1nwj1ryqYvqHw7hdFkRJQBThQGMv2cKxzAJ5LIsgwPgey7KMw6AnHEuSlWVkQQlECBeAW7NeSzSazK0vCgIZQVa+kSyIqryh8Nbt99owGbToRYnjzf3UVXo51pZnYs+YESCVztDeMcRoOMHsOj8HmhSgqZEEaooshMIpBlR21++10T08hiBAXbkXjQxHm/snnBVmiw6fy4JRo+VEUx8+70S98cLZpSTiaRoa+0in5QngtCrgwms3svdgV95ce0YJBxq6qa3wImaVpr6DxwtY8rpiEAUiI3E6OoPU1fg4rsocHHajcswnehgbU8YyUOKgo2+EEp8ZkSyJaIbBUB7s+ovtuD1mhnpH6esbw2E3EhyLKxZbFR4shr8EuwaLnmKPhc7WIdLpbO7hwWTSUVPlYXAgTK+qmTWZdKRkmcoKJ6PDYaJjacZUhkyrlair9RGNJmltVrTTTpeZsViSmmoviUiC6FiCfpW1MBg1TJ/uZ7AvTJcqkyircBGNpSguttHbGcTuMNLcPIQgQEWVB4/HzKG3Okiobg4z55YiCwLhYITO1iFmzgtw5FA3FWrjmVYjcOjtDm798kouvyHvPNLX10c8Hj+p3CAajfLkk0/y05/+FJvNhtfr5Xvf+x5nnXXWuy7f2trK2rVrc+C2vr6e7du34/f76enp4dxzz+X48ePccccdnHvuuTnf3MLlPmD9rwe3hfU/TSgbb67Z8Kttium9Khcoq/ez5rbzWP2pZVNi19TT3MemB19iyyPbcwloBrOeldcu4ZLPn8eMxbWnHEj1tvaz9bcvs/nhlxjszMuQ5p03m/NvXMryaxafcnD9t1rJeJKNv9rGH3/45xzgnLN8Bnf86BbqzqielG0mYkk2P/wST/50I32qtMxb5ubGf7iciz577uTZvRXUeAPcn36ykX3qw5CkkVh10zlc//drKTvFNncftmRZ5sCrJ1j331t5U31QFASBpWsXcN3fXUz9wsqPdgffoz4Bt+8Cbt944w3OPPPM3BTpO2tgYID123fz0GutudcsBh2RSBIZJbpVJ2XwuBz0BsN0DY2SlWXmVhRzsDBFq8rPgcY84NJrJeLpDJIAWknR0o6DNdQLsCQIpOUsggp6zTotsUSe0TMbdSRSaZBlUmkZs1FHNJbM3ZolUSSTyUL2HXfrCTpekVRBs5PPZaAvFKeqxIVJo0EviewrYEVn1/rpGhqlzGuntW2IIreVhs48A+2263HZjYwEEwwOR9Fq8lIIvVaitsJLLJagpS3ftFbstzMYjFBX4SU8GkOn1dBYoHGdM8NPVobRYJSu7hDlpRbaehT22GLWM6feT1PLQK6ha/aMEg4e78brtuB325Bk2H8s33BWV+Mjnc2iE0UaGvrxuQ30qAERJqOOmXXFdPeEcg1axUVWegbCFHlN6EWIR9IMjrwD7LrN9PeOMtA3hsWiYyyWQiMpGlUJOHasJ/fLsFoNOD1mTHotzQ396HUaxtSHlJISO16XhcaGfqIqoLXZjZgselwOE+3NA+h0GobV0JDSgBOvx0LDsV6iqp1asd+OwaJDyKbpbA1RVGxXInt1GqqneTHqNezb25bbn+mzSxBFkb7OIMP9Y9TNKqHxRD8lZTa0oojRZODIAUXW4fPbqKjy0HSsj2E1bnjOGeWkUxnOXzOb89bknRG6u7vJZrO5wJGT1bJly9i3bx/d3d3o9Xo8nndnNN4Jbh0OB6FQvvHP6XQSDAZZu3Yt3/nOd1i2TJFIrFq1invuuYdFiz7wte8TcPsha7B7mE0Pbee5Ar9anUHLymsWc9kdq6mfJBBTWMlEilfX7+aZX23j0Ct5O7GKmQHWfOF8Vt+8DKvz1ILtTCbLni372PzwS7y56e2c/6veqGPplWdxwa0rmH/e7L/ppp1TVfFogo2/2sYf/r+nGVVn+VZet4Rb/u26SWvUS6fSvPzEG/zxhxtoO6JcyzwBFzd+WwG5U6UzbXi7lSf/cxM7ntpFNisr4PGKRdzwzUupWzj5v40PWm3Hu1n3i+d58U95t5S5S+u47u8uYtGq2add8tnHGtym02ky75LTvXv3bubNm/cXEbnZbJaGhgbGxsZIGt38/a+fy72nlUTSyYlAucJjp6MvhE4rEShy4HdbCYbj9I9E6A+FqS1RptonfEYqM4GplQFZVP42GXQIskxE7ehHUMBtNJHKjbBFr8sBIFAsqeKZNFpRRBJFsumsImtQ1x8voYAh1kgC6fEmNVnGbNASDadyixd7rPQElQtQdamLIqeFXQc6cs1ENeVuGruGKPXZcVuMBINRuvrzHqqSKGCzG/B7bHR0BIlEkkpgQUTRuHpcZioCLk6c6MuFEtRUeWlsG6TIY6XIaUHOZDjckGfBZ9YXMxZNYjPoaWzso662KMfUiqLAonnlBIcjNDUpzObM6X4ON/ZiNumoLncjCQL7D+Q1uOVlDmRRxGbS03Sij+Jie062YTLpmF5bRF/PKD2qptfrtTAQilDkM6EBYuEUwyP576G42ILbY6OzdYjRkRgOh4nQaAybzUB5wEUskqS5Oc+Oe7wWvD4rY8EYXe3D2B1GQuEEBoOW4mITBo2e48fyD0olAScOl4nQQJieziBFfju9/WO4vRaKi2xkEukJy8+aGyCTydLe2E8smqK6TpEdVFZ7iI8pwRENx5XxDVS4KC5xcOxgF+ER5TuafUY52UyWsWCUzpZBZi4o48SRXiprvcgZRXN7dH8nX/2XNZxbAG47OzsRRZGSkpN7P8qyzPLly9m3b9/7XjA/KLi99NJL+ad/+qcJ4PaHP/whZ5xxxnt+fkGdXlfuv7IEQfgDcC7gAfqA78qy/ODJlj+V4Ha80qk0u57bx8Zfv8hbLxzKvV63sIq1t69i5TWLpyQBrfNED5sf3s7WR1/Osbl6o46V1y3hktvOmxRt7lgwzM51u3jhsVc4uDPffOctc3PBLSs4/8ZlU2JXdbpXOBThsf+7nj//9xZSiRSiKLDq5uV89t9vwBs4uf7+f1LZbJZXnnqT331/fc4r11lk55qvreGyL1+A0Tw1McxdTX08+Z+beP53O3MPQvNXzuSGb62dEj/pD1pDPSHW/3Ibmx7ZkUtoq5xRwjVfvZDzrjnrtEk++wTcvgu43bt3L9OnT5/ggRuNRjlw4ABFRUVUVlZyuKWPe/64HYtZTyqbpS80xmAoOtEdochJS3eejZxf42f/iTzgMui1RFMpDLoC3WzmXYZKlRAIKAA4lc3mNuO0GkgkM7kpbYtem7OzAjDqNcSiqQl3ZllU/hIAnSSRSmcUYKoupNUor+WswbRaYvFCdlhLOJZEyCqg2GLWM6Z2+ouiQF2Fl0Q8RZtqH+ZxmhkYiShT9KUOtIJEQ9vQhLGyWHUUe2xICDQ2DlDst9GlTlNJksjCOQGCw1EFAMowfXoxRxv70GlFait9GHQa9u7ryH3e7FkldPaNUFbsoLt9mBK/g0PH8mzzwnllxBMpGhv6SCWz1NUVcbyxD51OpKbSi1GrYV8B2K2ocJMVwGrU0XSiD6/XRqcaCmG3G5lW7aWjY5iBPuVm6XabCYUT+Lx6MsksyViG0Fh+jKZP95NJZ2g+0U8mncXpMhMcjVJZ6cGg1xAaGKNX1cwKAtRNLwYBmk/0k05m8HgtDAWjVNV4EWWIjsboVlllg0FL/Uw/oWCUdhXMl1e5CceS2B06QgNRHA4zLU2DiKJA5TQvDoeJg2+1kUoov4dZC8qQkRnqHaW/K8SMeQGaTvRTVGpFQMBiMXBkXyeiJFBZ48PpsXDk7TZikSSCAPOXVJOIprj0xkWctbI+N45tbW0YDAaKik6u2RoHt/v37z/pMuP1iSxhcmoywG1hdTX1senBF9ny6A7GhpUZF5PNyKobz+GSz51HzdzySdv2eI1rczf++gX2bstrcwO1fi78zEou+PRy3CWnXifb09zHtt/v5PlHd9BbYGdYPaec825ayrnXnzMl4QOncw10DvHYD9az+eGXyKQz6E16bv6Xq7n6a2smTTaQzWZ59ek9/OGep2lUwxgcPhvXf/My1t6x+tT6Gb9HDfUEeernm9n00Es58Dj9zBpu/PZlLFmz4LQBuZHRKJse2cnTv3yBIXVGxlvq5JqvXMjFn142JQ+q71WfgNt3AbcHDhygqqoq18zS29tLU1MTs2bNwuFwANDYOchnfvD4hPWKbGacdjMGo4aBYAi7xcKR1vzFq9Rto7s/ryO1GHWEw0ly56qYHyitRgAEUsnshLuqTiuRVNldZLDqtbkkMRkFeKbSGSRBIJ7KoNNIJAsiXseXE94pS1DfkGUwagTiySyCALKg7GckVsAOG7REou9oWkumcmBXpxFJZvIstsmgxaATyCRhLJxQdMMqwLZbDZT6bASDY/T15/XJRX4LiWSWQJGDzvZhvG4LDS15ZnNatR0BDV2dI8RiKWbPLOHgsR5EQaCmyoPLYWJPoTXVzBKaO4apKncx3B/G6TBxpKAhrW6ai0QiRX93mEQiQ02Nj8bWASwWPZVlbkTg4MF881+gzIXBqEUEmk70UVRky/nABgJOXA4DJ473kVDBosttIiPL2KwaQgNxNBqJUCiuvmemvNxNV8cwgyo49visZAG/305vZwhREBhQQxX8JXaK/Xaaj/flGrj8AQc6oxa9TkPriT58fjud7UFMZh0VVR50Oon9b+VlB7MXlJHNyHS1DDIajFI3u4TOjiDlVR6iozFMZh3HDnYjSSKV07w4PWYO7G4lGU8r4PXsauLRFF1Ng4yFokxfUMbYaAyb3Uhv6xAev4PGI9185yfXseCcablxa25uxmaznVRmAMrvctWqVezdu/eky4zXO8Htt7/9bdxud66hbHh4mB/+8Ids3LiRe++9N9dQdtddd/Hmm2++7+cX1OlxR5mimmxwO16JWJKXn9zFpodf4uiuxtzrM86q4dIvrGLF1WdNyfRwV2Mvzz34Ett+vzMnnRAlkcVrFrDm8+ezaBI8P7PZLAd2HOWF3+/k1ad3Ew7lm3I/sRVTqqe5j1//82PsXKc0f5bWFvOF/3sz51y+aNJAnizL7Nl6gN/++5McV1P5nEV2rv/WZVx6+6opA7nhUIRnH3iRp+7dzIh67a+aVcYN31rLiqvPOuWpfB+2Usk02596kyd+toV2lbyzOs1cdtu5XP6F83B4bR/Jfn2swW0mkyGdTv/F64cPH6a0tBSr1crRo0dJp9PMmjVrgidn58AIN3z3dxPWcxgNjIbz9lH1ZYq9lCzCaCyBzagnEk+SUQGXXlKBqloCCrgsBJ6ykB88nVbCoNMwGknk3reMg1t1/C16LdFInmXVSCJJsmglEZ0kEU+myMmM1Q8RgWw2v12tJOQ1tzl7sQQCAgiKzdSYKheQJAGjXksknG9a046DW1lGkFFsyd5xBmh1EnpJIhJOKtIH63i0rEBlwIkoZGlqDubWq6p00dk7SlWZg9DQKA6HjRNNebC7YF4Z6XSWnq4gw0MRZs8u5eCRbnVdDz63hbffbiOlSkdmzPTT3hWkosxJX9cwVouetnYFnAoCzJtXRjyeokl1C6is8tDSNoTXa6XIZyWTSHPseB4cl1e4sVgNii9t+zAOl4HgaAK9XkN1tReNKChWWurxeLxmjGYNqViKvu6w0ow2HMVg1FJV7UUSBA4dyEcce4pMOFxm4mMputqGKClz0d0VorjUgctlJpNMc/zouJm9yIy5pSSiKVpP9JNOZaiuL2JkNIbVriU8HMfpstBwtBe9QUNFjQ+bTc/bu1rJpDMIosD8xVXEoyk6GvuJjMaZubCcUCiCRiszOhCnpNzNkX0d+MtdOF0mBEHg8J42BAEC1V48JTZajvRw1/97FbPPrMyNU0NDA263G5fr5NZQIyMj3HTTTezcufOkywDcdNNNbN++ncHBQYqKirj77ru58soruf7662lvb6e8vJwnnngCl8uFLMvceeedbN68GZPJxMMPP/zX6G3hE3A76dVyqIPnfrOdbY+9SkS1IrS6zKy+aRkXf3YllTPfW6d9KiqTzrBn6wG2/GY7rz+7l4zqaOIJuLjg0yu48JbllNae+mafZCLFW1v389Ljr/H6M29NsBVbsvYMll+9mLMuWYDRMjVT5Kdb7X3hIP/99YfpUPskZi+t567//gKVs8ombZuyLPPmc/t49HvrOPFWMwB2r40bvn0Zl3/pginzqI1HEmx6+CXW/ddzudCU4kovN3xzLRd8empcHj5IZbNZ3ti8nz/9bAvH9ijjpTNoufBTS7n2zgspLp9aJ4hPwO27gNtjx45hsVjo6OggEAgQCAT+4ilxKBThuw9uJZpM0TM8ymgkgc9qZrDg6dtqVK3AxpuG9FoisZTypwB6nUg8nZ1g+SW+o79NEFBE5ipINOg0xMaZWEGJsk2lM8TjKWRZxqjTEo/nrcF0WoW5FQq+AVkAWRCQBNBpJDLpDOl0Xpag10pKAMO4LEH/LrKEaDIHhg06iZgK0iVJwGzUE40llMQTQciBdmQ5xzgLWRkKxlSUFP9eIaMcq2INphyHw2bAYdPS0z2WA6f104s50TzAtCovZLLotRoOHc03iM1Xwe5A7wj9vaPMml3KoaM9CAJUV3nxuMzs3duWE8bX1xczMBSm1O+gtzOIw2mmsUlh3fUGDbNmlTA8GKFNlUWUV7rp6ApSXeNFIwjEI0naxhviBJgxswQEaG3oIx5L4S910NM7SkWlB5NRS3QkllteEAWqa90kk0l620dJp7L4iq0ERxKUV7qIjIwhyhLd3Qr4drjMVNf66O0M0aO6HVTUeEESMJl0tDf04fM7aGkcwGo3UlruRKeVOLC7VfmONCJzF1USDSdoPd5LMp5m+vwywuE4VquB7tZBSivcHNnXib/MidNtQaMVOfBGCwDF5U4CVR7ajvcy0D2CIArMO6eGRDRFT9sgocEw0+aUIggCt/3DxdTMyutrjx8/TnFxMXa7nZNVV1cXX//619m8efNJl/kI6hNwO0UVjyTY/uQbPPvACzSo08OgGPCv+dx5rLjmrClhz4J9I2z97cs899BLdDcV6PvPruOiz65k5bVLJsX1IGcr9ugO9m8/nHtdZ9By5sXzWXnd2Sy+dOGUaUFPl0ol02x6YBu/+/5TjAyMotFKXPety7nxH6+Y1LGQZZk3Nu7lsR+s57gK2jwBF5/6p6u46DMrpwxcJhMptj32Ck/8dFPufPQGXFz/92u56NYVp03QgizLHN7VyBM/28KurQcAZRbkvGvO4rq/u4jKKdKWfwJu3wFuZVlm7969RCIRFixYcFKfzUgsyZo7H1DWAdx2I0VuK/2hMMOjMTKyjNWoY0ztVhdQbbnGQaIsK1rbeBoxq2I+AVBnGkRRkSWIspwDvgDGcXcEFeyadVqiqt5VBkxGLalMFkmAZCqrWH9l3oGY38EO5+zF1O/QrNMQiaVzsgSb2ZD365Vl5TgKdL0GnYZ4IpWzLdNKIukCXbBBr0EEYvG0Sk2rO1uAFwSV5R0vjar7FbKywiZr8g4OkihgNWuJhFN5X9pqD22dw1RXeZGQ0Ws0HDyUlxHMm19OJpOltyPI8GCY2uk+jjcOoNVK1NR4sZj0vL0nL2OYVldEMpPBbNTReqIPf6kjF5JQ7LcTCDhpPN7HiJo6E6hwMToWw+MxMzocx6DX0qk2oHl9VgLlbjpaBhlSZQclZU5kQcTpMtHdOoTJrKe7K4ggCpRVODEaJVqOD+Y0sKWVLix2E8loktaGPsqrPLS1KAyuw2WCrMyR/Yrm2GTWM31ugJHBMC0nepEzMrWzS0im06STCYZ7IpRVezlxuIfSCjd2pwmNRuTALgW8+stdlFa5aT/RR7/aMLdg2TTisRRdLX2MDsWYvqCcRDyF3qChq2kAX8BJX1eIQJWHVCJFMp6ks3mQHz/xZcpq8/raI0eOUF5ejsVy8s70hoYGvv/977Nu3bqTLvMR1Cfg9iOohrdb2PTwdrb/6fWc/tDiMLHqpqWsue28KWFzs9ksB3ce4/lHd7Bj3a5c9K7epGfFNYu55LZzmXVO/aRMk/e3D7LzqV3sfGoXR14/kXtdb9Jz9mVncP5NSznjgnmnDXs3FRUZifLrf3qMjQ9sA5SmvDt+dAvLr148qXrUcSb34f/zOM0H2wEoqvRy8z9fxeqbl01ZI1Umk2XHul089sMNOS9pV5Gdq++6hLVfOP+0Yvdbj3XzxM8289K6N/NRyBfN5fq7LmbW4mnvs/b/rD7W4DabzZJK5UFaKpXi8OHDxGIxysrK3tOuKJ3JsuqL9014TSOKpDN5PaxZryGSTIMqLTAbtEQTaVABlFYUyaQmAk8ZBeiNm9lqtSLJjAIINRoRi0HHyGg8d6c1G7RKaIM6wqbxBjL1Ry4IkBGUAAiNJJJMZfMMqrqARhJIp7M5twTDhGAIGZvZwOhoXm5hsegIx1JIkoBOKyEJApGxvN2YKAqKxdo4SwsTgCsyyMiQyZO3Gq1IOiOj12uQZRk5nck7NgA6rUgykWeTTQYNsVh+Hw1GiXgknRsXu93IaDiB3WZAlBXQ39WVd2yomuZAbzDS3jRINJKkfqaf48d6cXssFBfbkQQ4WNCgVltfjFavYWxY8XWtqPHS2jqIyaynvMJFPBahrTH/+ZXTvBgteiLBKO1NgwQq3HR2DuN0mykpdUI2y+H9efA9fW4pkiTS3TJAaChCUcDOUH+Eimlesqk0iXiC7g4FGDu9ZsqrPPR2hOjrVMDntFklSBqRbDpDy7FequuLaTrWQ3mND6NJiyDLHNmrHE9plYfiMgctx3oZVpvW5i2pIplIM9ATYrB7hJmLKgiPxDFb9fS1D1EUcNF0rBe334TVoqTpnNjXgafYjrfUgaQROLy7Da1WonyaD5NZT8vRHn7wxzsoKstLEA4ePMi0adMwGk/OeL399ts8+OCDPPLIIydd5iOojxW4nT9vgbzxqc2njVl7PJLg5SffYONDL+XYM1DY3Es+s5IV1yyekpt6LBxn51NvsuWR7RzcmbcUK51WzKqbl7H65uUUV05OM9hg1zA7nnyDl594naO7GnKvWxxmlly6kHOuPJNFF86bMk3oR12HXzvOf3/tYRr3tQJw5sXz+ftf3THpYRnZbJad697k0e+to/2Ycg0vmVbE5+6+gRXXTi7Afud+vLrhLf5wz59pOqCAbavLzLV3reHyL60+rbyUe9sGWfeLrWz5/au5KORZS6Zx0zfWcMb5k+ME8Qm4VcFtKBTi8OHDVFdXk0op4LCs7L31PNd/6xEGQhEFyAkCRq1ELJ6eCDzHbbpk1PczyvsC6HSK5lYQcqQpZOQJd1Gt2kA2rlu1GLQTkqrsVgPpdIZ4IkU2K6PTakglx+N4ZSRJAdB/eerIyDJoRAFJFBTQqy5kNGqJxVI5gG0xaPP2Y6oGNxxO5ICrTqchrmrTdJKAXqchHEnmWFqhMHlivNLZCSe0RiOQLmie02hEhYEWBbSSiCiSB7MCWEwGYvFkjpU2G7QTLNCMBolYAdg1mVSLNFUeYTLqciy6KAp4vRZi0SSjwRgCUBJw0D8wRqDMhYQSmdt4Qo1G1krMmhcgFk3QdLyPTCpDoNJFX+8Y1dN8ZFMZ0sk0LU0K02u26KmfVUJwKExbYz9yVqasykM8kcZXZGOgO4TeoKWjdRBJEikKWDFbdHQ2hoipx1Q3pxStTiI0MEZ36xD+Sgf9PWGKy2xoRBGdRkvDkR5ESaC8xoenyMaJ/R2MBqNKEMMMN3qtgcHuEYb6Rpm1qJLwqAJee9sGKSpz0nCoh7IaLzqdhEZSNLRWh5HSSg9Gi4FDbzaTSqYJVHnxBZx0NQ/Q1zaEw2OhalYJo8MR2o/3otVpqJldSjKe4ps/+xQOT372Y//+/cyYMeMvbPYK65VXXmHDhg3cd999J13mI6iPFbit8NfIM1KrmL9iOms+s4KzL5l/2rCDTfvb2PjQS7z4x9eIqT0ORouBc69bwiWfO5e6hVVTAjC6GnrY8sjLbH10B8M9efu5eStnsvrTy1hxzZJJA9w9Lf28/MTrvPjYKzn7KlAszc64cB7Lr17MkrULMdv+dzejZTJZnnvwRR7+1z8wFoxgc1v52i++wPKrF0/Jtrc//hq///56OlXf9/oza7jtezcwfwqtu2RZ5s0t+/njj57hyBvKQ4/VZebqv7uEK+5YfVo1JIYGRnn6gRd59sHthFVdfe28Cm74+sWcvWbBKW3a/NiD22QySWtrK319fcydOxeTyURXVxepVIrKysr3XP+8z92LnB33iJUxmlSdqHpOW4w6JS0sp03V5BKekGU0KvDMs6ggSALZrIwkCgiigEaARIF/biFTK8gqU6tqU2VArxWRRRGNKBCLpxAFIZeKNb5fggxyAYiWRNWBTGV0zTpNTu+KoAQMxBIpNJJEMqFYl8UKZAl6vYZEPJUDu5Io5JrmkBVT6mxazoF6AEESMeg0ZDNZEsk0oiDkJAGgAv+CBwW9TkMikQfYRr2G+Lh+GbDaDaRVUJlKZ7FZDEoTnACiJKDVCMRjmdznGU1q4516zKZxQK+exyazjuhYniHX6zWkUqo+Oi2siDoAACAASURBVJXBXNBUZ3cYsVoM9HWHSKsPFsWlDnRGHcgyXS0D+MtcdLYN4/RY8Jc6kESBg7vbAGX/Zi0oJ5VK03aih3gkTWVdEaFQjJKAk9FgBL1Ooul4H3qjloppPqw2Awd3tZBMpBU7ruluEok0wd4w0dEk9fPLSMTTaLTQ3TJAWXURjUd6qKgrQq/ToNGKHHyjGaNZT/k0H1aHkcO7molFknhLHZTX+ejvCNLRNIBer2HmWVVEwwnaj3cTj6SYc3Y1qXiaYP8ofW2DVM4OQFYmMhpjsDuIp9iBIML3n/jqhCSqvXv3MnfuXDSakwOlLVu2sGvXLn70ox+ddJmPoD5e4LakRp4vXUxC/Z07fTYuvmU5l9yyDN8k+Y3+tRULx9m5fjebH9nO4dfzTGbN3HIuue08zr/+7Cm5sWfSGfa+cIhtv9vJq3/enWOmxpPQLvzMSmadU4coTk5YQ8fxbl79825effrNXHc/gFavZdGFc1l+zRIWr1lwykMqTqca6h7mx1+4n7eeVzSe595wDl/+j1txFjkmfduZdIbNv9nOo/++Lue0MW/lTD5793XMOqf+fdY+dSXLMm+/dJhHv78+B3ItDhNXfPlCrvzKhVOSCPhBKzoWZ+PD21l33/OEBpTZw9KaIq77u4tYdf2SU/Ig/bEGt7FYjL1792K1Wqmtrc1dfHp7e4lEItTU1Lzn+qtvvZfCgDODXjNBD2vUCsRSck6WYDIqzV6yCqgEVGBcUJIImbRcwIoqTWcAep2EyaBjdDSOPM4Wjzd7qSOs1yqgcEKJgMrSZlJZREkgJ8MVwGhQpAzqn+g0AqlUXrpgNesYG807NBiNWqLJNHqthJzJIiBPYH41GukvwihyZ8C4JCI7kbkVVI2xJEAqlcGgk0iokg2tTsKg1xAeSyiSDkGYsM+gMLXxgr8tVoMSOCAroFqnl0ikFXszSRDQaCAeVRluQcBmUxjwZEyxhzOadDnWFBTv2ESkIBxDLykPKqomWKfT5C3XZFkB5wUMutGkIxZOgOI5gcGoJZ3OIkkCqUQag8o8a7USRpMOnU5ioHdUCdXQiHhL7MSjKUaGw2TTWbwldrJZhVEeGRjD6bMw2BfG7jYhZ7MIYpbhngiSRsTuMmO2GuhpGyadSmM063AX2wkHo4SGwggyFJe7iEUSxMIJErEk7mI78WiCTDJNPJrA4jATjyXJpjNkM9ncw8d4abSS+j1COplBq5OQNBK/euNf0Rvy06S7d+9m0aL3tvFZv349LS0tfPe73z3pMh9BfazA7aJFi+TtL+zghT+9wcaHX85Z/AiCwKJVs1hz6wrOunDOaWNH1Ha0i82PvMy2x15hVI2Z1ht1LLtiERd9ZiVzltVPGrgsrMhIlB1P7WLrIy9z+LW8RraowsP5Ny7l/JuWUjGJOuHBrmFeWf8mO9a9weFXjzN+XxYlkdlL61mydhFnr104KY4PH3XJsswz923lge/8nkQsicvv5N8e/wYzz66bku3HInGevncLT/zHM4TVtMhlV57J579/45SOtyzL7H/5KL+/588c2KEEhphsRq6+8yKu+upFWBzmKduX96tELMnWP7zGk/duoa9dCbTyljq57q6LuehTS/9HTXIfa3CbTCYZGBj4C8/NgYEBgsEgdXXv/aNY8/n7iY9LBAQBq2ncMkspg1YFpurYGHUaYlGlUWt8ul5G0cLKMmSyWaQsZAvG0mDQEourzgSyEq8biSVzA2qz6kmnszkmVauVCmQJ6h05O1HqgDhuOaYATZ1GJDlu/SWA3WYkkUgTT6TVxjeJRDxvWWY26YgUsJpabUHog6y6IBR841qthE4nkUqkSeWsz2S1g075rygobPJ4KeAwDx71Bi2JhPJgIEoiFrOOsZG4KlJWwGwymUYUBZKJFCajjshoPCfqtVj1jI3ECgC6jti4Vjkro9eLJBPj9mcy/z977xkmR3lnff8qd5g8o5xzGuWckZBAYEwGyYCxWfN47fXu4ucxixdsr+11WnsB2/uu7bXXGQxIBGEbBEIooRxQGmWBhFCWJs90qq6q+/1wV1f3CCWk0WgwOtfFJaamQ3V1T9epc5//OdE8i8aGBBlOEw4bpB0PTVNxUg6GoUpyqyiEQgamqdFYnwxM85E8C88VeI6LnXIIh02SSelTFsK/aGm0g/0zQxp2Djm3woZUzTI1xSGDlF/Hi4BQxAgGWwCi+SFi9Yng53CeSaI++/tQVCeVcOTDuR55hWGptiOnkPPyQthpF01VcOw0pqnjpF00XcVJOyia/FdXZboGisBzhPysegLdUFEUVXq8HRfNUNA0nT9s+17uJ48NGzYwevRozoWnn36aWCzGww8/fM7btTA+duQ2M1AmhKBi9V5e/f1brH41WyNb2r6IWfdNYtanJ9Gm09mj3VoSdirN6r+8zYLfLmXrW9kmsA492nL9Z6Zw3X1TKO1w+dU8kE1oC/+wnMXPrqTycLbMp8+IHsy4bzLTZk+4rBmgVcdqWPnSOlbOX0/Fyt3BdxNA534dmXjzKCbcMpp+o3u1CPFvKRw7cJLHP/cLKlbsQjc0vvDEZ/jkF2a2mE2gsTbGCz9+lRd/soBUwkbTNT75hRnc+9htFJa1bOZrxao9/OkHL7N5qUzdyCuKcNs/zuLWL85sVSTXdVyWvbSBuT99jff9ZtHitgXc/sWZfOKzU4nkf3h7z8ea3AohsG37A9urq6s5fvw4AwcOPOf9b3zgF5Ig+CkB+Zmlav9vKBoxZdmBTzJ1TZXxWJA9Im42JUAgVcq062EZqm9LUInFssNa0bBJLBMvJiRhTuaUNOiaKhVB4Q91+TxTURQ/gQGZwJBjAbBMX4XMDMKFDeI5RCsSMbBtqdh5niAU0kgmM9FfKqapyWYq//aKogTqNDkqdc6Bz2ScBeTU0DUcTw6U4ROwwMKBbxOIZQfnwmFdKrWZhIeoSawxh+zlWZLcZqwW+RaxWBpVU7AsHUPXqK+JBV940XyLdNrFTbu4jocV0kkls0psOGySyFFuwxGTRCyZVdgtHTs4hkK+j7abvbCJWiQaEgGZDYUNknE7GC40Qzq2Lf3XUvlVSSUkedZUhVDUJFYnyauiKkTzQ8Trk3i+1zmvMEw8lpLvuSuwIoa8v5cl25lpc4TACGmkAw+zQjgiybRmaNJaois4tovuW0dcN42KhqqqOLaDIOdzLASaqUlN2r8YEQh0U+N3236Q+85fELn95S9/STQa5Ytf/OI5b9fC+NiS21zUVjaweO4aFvxxBUf8OCJVVRhz3RBuuH8yo64tb/ayg4vF8fdOsfCpt3jjqRVUHpHkUtVUxt4wjOvvn8Lo64a0yIS753lsX7mHxc+s5K0X1wUZvpquMeaGYVx7zyTG3jj8skY5NdQ0svGNbax9ZSMbXt/apDCirFMJ424ayZgbhjH0mkF/ExFjTtrhV488zcv/LeMEx39yJI/87kst6j+tPFLNH779Am/8YTlCCCL5Ye76yk3c+X8/0eKxXRUrd/PH777ENn8IMloY4bYvXcft/zirVXlyPc9j9YItPPvEq7xbIb3keUURbnlwOrf+/bXkF184Ib9Kbs9Abuvr6zl48CCDBw8+5/1vuf8X2WgvIGRpJHyCo3gQMrTAUpAZIAPwHA8n43n1s2CDxzA1UgknR2E0iKXkz5YpSxzq6hLBqTZkGVJhhUABxTnD4c5JSNB0maurqHJ5X1dV6nOU2EjYzA5nBWQ3Z0k+k1zgOxEUTclwNCxLw9BV4o02uZ8JRfU9tRmiKzwC5k3WjpFVg3OTHQQhSw9ep65r5OWbJGJpSSiRymw8bgcDdIYOdo7anFcQoiFDDsmQ0+xFQiisk8xJX4jkm8Trssqvaao4jvRCO2nXJ6dpNF3FtHR0XaWhJh681rzCME7aJRm3Ea5HJM/C8Qfk0qk0hqmTaLTRDRXD0NENJbi/YemSDDemSPs+44KiCOm0S9p2cFIOeYVh3LQLilzaiUQtUkkHRZVKqmnpxBtSGP7Fgm6oxOqT6Lrqk1udREMq+FwYIZV00kE3NBRVRTf9QURVwUk7GJoqebLnSfVcV0EoKIpcUfAUD1XRUBTpsUZ45BVHeXLpY/6FlSQ8b7/99nnJ7ZNPPkmvXr247777znm7FsZVcpsDIQTbVu5hwR/eYtWrm4O86LKOxVx/z0Suv29iq/Hmuq7HpsXbee33y1j76uagmKGoTQHT50zg+k9Pofugyx8pBvJvde0rm3jzTyvYsHBrdqUnP8zEW0czbc4Ehk8bdFntHk7aoWLlblb/eSOr/7KBU4eqgt8Zpk75pP6Mun4oo68fRreBH8x4/yhh2bzV/PQffk2sLk6/Ub34/oJHW9x7/O7Wg/zm68+xcaGsE2/btYwHv/8ppt41rsWP7da3dvH0D14O7Ap5xVHu/vKN3PLF6654XW4uhBBsXLyd537yGjvWyubCSF6ITz44jdu/OIPC0jNHtObiY01uAVKp1Ae2xWIx9u3bx7Bhw85530/9/W+prG70LQYQNjXisdOGoBw3IBAZzytkD4hqqIQMqY4lbQdL14NlP/DV4IasQhgJ+xmz/vEOWYYf/SVvrxsajuNhGhqu58mMXLepv9U0VemX9B8zFDICCwICueTvD2OBHCiLJ9MyMsx2MQ0tSwTJWCGcwN8KEERAZNRb14Ocpa9QWEdRFFKJNJ4rsPzkCE1XUVUVVSFYNgcIhwzpgfUPXCTjic0ot3kmjTkRaeGoQSIuB9W8tCs9uI0pNF2Vyq2hUVcdC8hrQWGYdNrFsdM4tkckTxJ8XVMRnkDVaKJ0hiIGyRylWNoGcm0EejCMA4JQxGxiIwhFdJKNOep4vq+sZpTpaMaj6//sv97MUF44YpBoSKLpGoqqYFo6sboEhqWj6xqGqVJfHccMyZ81n3wbpoaiKBiGRqw+EVhjwmETOyUvDjzPQ9EAoUj/rqJiGKocTPQEiqagqNI9rKgKhqWTVxShtEMxHbu3odfwbgy7ZgAFpfm4rosQAs/zcByHbdu2MXLkSPken2Up9Lvf/S7jx4/n1ltvPePvrxA+umf4i8CHybmtOVnPG8+uYuHTqzh6QCaKBN7cz0xhzMzW482tOVHHm8+s5I2nV/D+7mzpS79RPZn1GVnMEC1omQil6uO1LJ27mqXPrQ4asEBWvV4zewIz751Mr2HdLnt2675NB1j7yttsWLiFvRv3NxEl2nYtY8wNwxlzwzCGTSv/SMaMHTtwkq9e/12OHzhJz8Fd+e5f/5WyK2Cj2bp8J7/4ylPs3yYHiQeM7c3nf3Qfg1rIE5yLipW7+cN3XqRi5R5AXujN/spNfOLB6a2mDCKD7Wv28cyTr7Jp6U4ArIjJJz4zlTv+YeY5LUZXye0ZyG0ymWTHjh2MHDnynPe97+9/y8mT9dnIrIjMfwU5WBONmKSS0meqBE1dounR8AS5p3jTJ8SGquA5HpGIH7uVsSVELbn87hNTQ9eyPlYhZMZs2guIqQBQQdM0TEP6XnVNIZXK8dBmlvQzBDqIzcoQR4tYXTJ4TMvSSdr+PgqBrqpyeMon+aaly9Yz248w85U8qdTmeDByjoNpyiSGjEXDsDTslIumKagoGKZCIi7Jpaqp5BeGSCXSgTUhryBELJZCVeVThUM68Yas2nx25Va+H+EPkGVLelh9kh7Os0g0JIPfG1ZO5BoiO2ClKOiaihU2srYIVSGvIEQqnpL38QShqCnVLk/g2GnCeRappIuqIsm+Ja0eqHKpPxw15fNn3rPCMLEcpdiK6CQbU6iahmFqmCGDxtqEP9iloumqJL+GhhACw9RJxlKomoKqSILquV42sUKVnlohPFRVQSgeoXCIvMIIJe2L6NC9jD7DezLs2oGUtj9/rmQqlWLr1q106NCBtm3bNjmBqqraRN199NFHueWWW5g5c+Z5H7cFcZXcngee51Gxai8L/riiiTe3rEMR190zkevundjiFZxngxCCPRv3s/Cpt1j2/Frivl/diphMvnU0M++dzJAp/VvMi3p47zGWPLeKJc+t4ug72Ta0bgM7M33OBKbeNZ6OLZA5XF/VwNuLtrFh4VY2vrGV2pPZ7G4zZDBkykCGTS9n2DWD6DWse6uxoJwPJw9V8q+zvsfhvcco61TCE0u+SYeeLZ/h7LoeC3+/jD9863lqTshjO+WOsXz+R/fRtkvLrnRk0hV+/+0XguzoknaFzHnkZm78u2mtJvovg91v7+eZx19l/aIKQK4yXH/vRGZ/+YYzev4/9uTWtpsun4Msc9i8eTNjxow56/2EENz7wP9S5RMMOD1LVQ5qpZ1sU5dpyiV7O5mWBQUK2QisjGJnNlVF5WPmeGwtXVofQCp4YRNFkUNB6bRsRVC8HAKJXDYmx2NrmD4h9oTvJzWCODFFkQUIqZRDMpGWw1YhTZLhzD6GdJI5/lNNU3H8x2qi3soDJXc0x18L+MvxBq7rYSfTUrn1PaeKqmAaapP0g4wNIKvcGpL8BZ5Wk3jOMF+0IOSTS/m8kXyLeKONbmqoqiyfaPTJrmZoRPMtUok0KZ/gRgvC2GkHFXBSLlbEIN6QxLR0NF1tYkPQTU3uX8wOosAiBaHsQFnSJpoX8t8f4SvVOolYEsvvJ9d0hcbaBGbIQNOlUlpfFZfPZWiYYYOGmhggUBWVSNTM2iAU6aGK1SfQNXl7w9JJNCbRDQ0hwNAVGVHk20NMS8d1PRkLh5DeWj9NQtUhlGfQqUcn2vdsQ+9h3ek3pjuKJaiurqa+vp5IJEJJSQklJSVEIpFzqkuJRIKtW7fSu3fvYHjT8+0NnucF/y8/LoKHHnqIL33pS4wfP/6sj3kFcJXcfgicyZurKArDp/Zn1qcnt6rc3GQ8xcqXN7Lwj8sDTyJAu65lXHvPRK67bzIderRtkX2RpPtdFv9pJUvnrg6SH0AOok2bPYFr7h7fIsqj53nse/sA617bxPoFm5uoyyDLIwZPGcDwaeUMn15O1wGdWrWFob6qgW/e/jg7Vu+h3+he/Hj5t1usVex0xBsSPP/EK7zw41dJJWysiMV9X7uN2x+6scX/LoQQrHt9C09/b35Qd92uWxn3PXob135qQqtZdcngnW3v89xPFrDqr5sRQqAbGtfdI0luu5wLhKvk9gzk1vM81q5dy4QJE854H8dx2L59Oz/97w0cPSkzSHVNQ1OhocFXgk9v/jo9sQCCwSMn7eG5ssAgmicVSEVV0DQ1iMAKEhgsXSY0+GRX06TCmwtFVSQpc1wUFDRdxXUFembJH9F0yT+co1oKqeTGM+RVCCJRk1hDKngXQ2GDlO1gWbpUil1PLsHnWCOEK3CdnPIIr+k+Bkou8nWYIQM7kR2+M0wNO+2hqTLJTDfVQLnVDY28PItE3Jb3QdoQHMcn2rZDKKTTWJ8k0+wWjlg01MYDMhwpCBGvSzQhx7k2AMPKGbjCJ8t12TSCSL5FPKe1LbAd+ATfDOlNorKsiE4qlkZVFVRNJRQxaayNo2oqhqlhhU0aamIoAsywgRnSidcncB0PM2RIJbg2jvAEiurfvy4mj5WhE4qaJBtT/heRVGbtVNof7pLWEdfxpJ3AH1LL2AlKOhTRoXsbug/pjF4G3ft2pVu3bqd/WrNvnRDE43Gqq6uprq4mHo9TUFAQkF3Lyi5dNjQ0sH37dgYOHEhhYeFZHzNDcPfv38+sWbOYO3cuU6ZMOevtrwBa71n7MqC56ncz3tzX/7SKlX99m7R/YV5Yls/MOeO54dOTW00LGsCRd0/w5jMrWfzMKk68XxlsHzypH9ffP5XJt45uMW9i2nZ4e9E2lj+/ltV/2RgUViiKwpCpA5g+ZyKTbhvdYh7S6uO1bFm6nc1LtrN1+U6O+xaUDEo6FDNiejnDrx3MiGvLKe3YOhI0ctFQ08gXRn6VU4eqmP3ILXzue5+6ovtz8lAVv/yXp1jx0noAOvfpwOd/dC9jbxze4hcKQghW//Vtfv/vLwa1vl36deDTX7udybeNbnWJGgf3HOXZJxawfP4GhBBousqM2ROY/dAsOvZse5XcnoncAqxevfqM5La+vp7t27fTvXt3Hn9iObt2Hmua/5p0AqXM0BQSCYczfkb9p9RVJZuggG87yPHYmqZKKp3x12pYliGrcD3hEzcNx3GbHmHH9XNj5fMYvh0hsxumpcviBFUuoZuGKskryEizghCpVBon7eI5HqGw+UEVNZYl3LJuN6vcZh4nA0NT8YTXpGrYChuoqoLrZ8sahoqT9lA1FU1T0XSFRKMtq4gVRU77N6ayZDRiNCGjEV+5zSCvMCwngjNkNj8kf+/vY9gnx5ldjURNYnU+WVVktFYylpLDJ0Le306lEZ7ATTvSRpBwUFQQrlS3E4128IUUjhrZ5wPMiE6qMat2RwvCxOsTwZWn3L+kTGqwdEIRWSLhuR6GqWOENGJ1CRQUVFWqq+mUi2EYwbCiY7u+jUHeR5JZhXCeRX5xhOL2RXTu1Z4+o3pSPqUf+YXZydNkMsm2bdvo1q0b7dp9OLLheR4NDQ0B2XUch6KiIkzT5Pjx4wwZMoRo9PxTrtu2bePzn/88v/71r8+5anKFcJXcXiIaamMseX4drz21gvd2ZqunB0/oy/X3TWTSTSNajafT8zy2vbWbN55ewcqXNwQxfOG8EJNvk7aF8omXr5jhdKQSNutf28LSuatZt2BzMGiqGxojZw5hyh1jmXDzqBadfD924CRbl+1g85LtbFm6PVhmz6Bjr3YMGNuHAeP6MnBcH3oM7toqVMDtK3fz8LXfxvMETy79FuWT+l/pXWLjom38/Mt/CJrOxt44nH/6rwdoewVsPK7rsXTuGp7+/nyO+RcwPQd35XPfuZuRMwa3OnX+0L5jPPvkApa9uB7Pk9bM6XeN419+/ncfb3KbTqdlfNJpOJ3cCiE4dOgQR44cCU7WX31kHhXbDssbKH70V453NWidzcRhCUmEgs+GPxgkUFAQJJMOEcuQqql/m7w8i8YcsqvrCo4jgsdUNQXXdrMfOEUus1umjmu7pFLpgDhmnjgSNonFctIRIibxnOQAy1KzSQNC+j1TSUeqa54gFDZJJdN+SoCG8LwmMVmaP5GfIbNK5hicjpwWMytsSEuADz2zz57cqVDEkHYNxc/NtXTpifUfo6AkQtr2cNMudsImryhMvDGFFZJpAZqu0lgTR1EUrIiBFTKI1SWk71VRKCgOYyfTpG0H13bJK4zgOC6qopC205iWQaIxiRk2ZFSWptJYKwe2NF1DN6RNQVHkcJcZ0onVJvAcF1XXCOeHpPLqT0eH8kxSsZS8EDI0wvlWkF5gmDq6pZFoSAUzeGZIHh8Zs+ZhmjqZ0C0F0C2dUNiiqE0+JR2L6Ny3A/1G9WTghL6B9eFsaGxsZPv27fTr14/i4kvvZXddlwMHDnDkyBEsy0LTNEpKSigtLaWgoOCMhGDFihU88sgjzJ07l/79r/zJ5gxoXd/olxmXg9xmIIRg99sHeO2pFSyfvyH4u4/kh5h+51iuv28SfYaefeWgpRGrT/DWS+tY+Ifl7FqfbQBr162Maz81kZn3TqJjC/o3Y3VxVr68niXPrWbr0h1SWEB6EEfOHMLUu8Yx4eZRl63690wQQvDejsNsXlzB5iUVbF2+s8kALcjGtn6jezNwvCS7A8b2oeACpt4vBx7/3C9444/LefAH93D3wzdfkX04HWnb4a//s4invvMisbo4VsTi3sdu444vt7xVAWSqxsI/vsUz//FnKo/WADB0ygAe+PZdDBjTu8X353w4uv8kz/30NRbPXUPbLqX8fuP3r5Lb85HbjA3BMAz69++Ppsmrz6//6wts2nRQTpALIZMMcvywlqnjuYK0na19zY3kAjB1SOfU60aiJrFYGk1V/Agpk5iv+CmqQjTPIhlP46T9TFVFkepm7vE/LV7MtDQZmZXx2EZMEkkHTVMwQ4bMfK2NBcNf4ahB2vYQnofreIRCsuo2sCWEZMZsNtfW55jeGTy3yOE6AOFkW8wiEROhKDipNGnf02qnHKyQ4Q/eebLkAEngrYiOnZQ5tAiBGdZx/OPmeXLwLlBuhSBaYGWVWDJKbtYfHZQeZNINIgYpP3VCQQ6WyDQCaeUwwwaxmjiapqKbOlZYp8G3CVhhaRtINKSwU2mskIEVMYnVxfEcD8PQpGe3PonrVytH8kMkGhLSQqIqqLpsKlMVOVxlhXVpi/B92XpIw00LPFwKivNo07mYsk6ldOnXgfIJ/eg1vPtFXVFXV1ezd+9eBg8efEHq6oXg0KFDnDx5kiFDhmAYBrZtB6puXV0doVCI0tJSQqEQZWVlvPrqqzz++OPMnz+fzp1bJpLpInCV3F4GxBoSLH9pAwv/tJI9m94Ltvce0pUbPj2Za+4YTbSg9eRwHtp7jMXPrmLxs6s4mROhNXhSP2beO5nJt40mkt8yaQsANSfrWPXyBpa/sJZty3cFq5BW2GTcJ0Yw9e7xjL5+aItPwLuOy4GK99m5dh871+xl17q9HNt/8gO369y3Q6Du9h3Zk24DO7fIvj7/5F/536/+idv++Qa++MRnLvvzfRhUHavhF//vj7z14joAuvTryD/+1wMMnzboiuxPKmHz518sYm5O89r4m0bw2X+7s8Ui9D4Mjh+spPJYDYPH971Kbs9FbjM2hB49etChQ9MKve9+Yz5rV70T/GyaGqm0K8mmz+NEDuHQdRXLUEklHenFVbKRVpkc2GjYIN6YWxbgK7mZKX1dljSAvFo2dE0ulTsuMq5A5s6aho4CpPx0BMdv0wI/0D+nzSoStYg3JgPlNhLNKSzIKLcpB8+RhNe0DNKOixUy0HxbRaC6+sql8FyctBcolbKCjOB1qJC1MoAcWkvk+IAzHlj/k9NE2fXJrZ1wgvvnFYZozBnuyw6U+TaGfMt/PD8dIddjKyAUNUjk2gYKQ0EaAcgg6Vhd3LcR6ET89AQn7WCGDEIReczcp5zzNQAAIABJREFUtINhaqiajDkTnpDe6YhJojGBpmWiu0xSiZSfFCDVWsd28YS0lBghlVCeRXH7Yrr07Ui3QZ0w2sLYSaMpKGielpvjx4/z/vvvM3To0CY+2YuFEIJ3332XeDxOeXn5WZdsM37d3/3udzzzzDPYts03vvENbrnlFjp16nTJ+3GZcJXcXmYc2HmY159eyeJ5a4OTqBU2mPTJkVx3z0SGTOzbapZEM7aFRX9awYqXs+qzFTYZf9MIrp0zkZEzylt0Gb76eC0r569n2bw1bF+1J9geilqMmTWMSbeNYeyNw1tU0c1FzYladq17h11r97JjzV72bnxXDrnmQFUVOvZuT/dBXeg6oBNd+3ei24DOdOzTvtnKJU4cPMV35/yEPRvf5br7p/Lwb1pVWUyAjYu28bOHfs+Rd44DcMPfTePzP7z3ipUuNNTEeOGnC5j/s4Wk4jaqqjDzvsnc/43bKWuF/uqPvefWcRxc1/3A9lWrVtG5c2eOHj16Vs/gkz94lSWLdmKaOrqmoiCkLzQDP0OUnPICTWlK6jLDWpnG2mieSSLuBE1duq4Eg1Eg/bJp25X2hszznK7ccpo6bMpYLYQAT0hyG0+j+pmvmiporEsFMVx5hSFs20V4HmnbxbL0JpYB09KbfCnJpC/RhLw2GRjLsObMPikyTsxOOVLNBUJ5VnBc0imHUEQnEXOwLNmKpWlKkG5ghAxfPU6R9oe28gpDuI4czEvFpS3BTjlomobrOBimTrw+iWkZKCqBWq1qMvkgFDZoqJUeWE2VHt+G2nhge8grjhCvSyKE9LOGohaJxgTCk0kDpqX7ZFnGZ1khk3TSQVGVwKqQKV0AD02XrytSEKa4bSFlnYvp1Fv6YQeM64NpGSSTSaqrqzly5Aj19fWUlpbStm1bSkpKCIUu/oteCMHBgweprq5myJAh6PqlL3l5nsfu3btRVZV+/fqdl4R4nseTTz7JunXreOyxx1i1ahVHjx7lJz/5ySXvy2VC62BVLYQrQW4zsJNpVr2yideeWsG2VXuD7R16tOH6eyYyc86EFqvQvRDEGxK89dJ63nxmZZAbClDctpBpd49jxj2T6NXCNouT71eybN4alr+wln2bDgTbzZDB6OuHMeWOsYy7acQVI7ogl+H3bz3IzrV72bVuHwe2v8+h3Ueb1ATnoqxzCZ37dKBDz3a079GW9t3b0qZTCaWdSijtUIR5FvuV53lUHa3hvR2HeO23S1j98gY8T2CFTb6/4FEGTxpwOV/mJcFOpXn+iVd45vvzSdsOZZ1KeOhnn2PsjcOv2D7VnKjjmR/9mVd/vRTXcbHCJrf/0yzu+vKNrart7Cq5PQO5TafTrFixgjZt2jBw4MDAhnA6fvmTRfz1xU3BWU/TFNxM5FVugYF/oldUhbyoheN4pJI2wvNrXRPZcoK8PIvGukS2CCJkyGSDTMyWqmR5rO8/VQTYtm87UBQMUy6lK4DtK7fpTK6tokirg79krwBWWCeVGRgTQg6MJbI/y+rY7BK/pmugCDRdQ7geruPIgH8FSR4VQTrlBikOqk8eM6kKwvUwLQ2BgqaqOI6LphLUv2q6hmEqxGqlp1bVVKyItCE4aRfheuQVRbBTaZ8Mu4SiBnZc1usKIdMOEg1JGa3lx2PVV8UwTA3d1NFN6cFVFQXD1DHDJvG6GK7roWkaoagZqEeqqhAtCJFoSAYDb4alk4zbqP57a4R07LiN57nouvTcuo7MiA1FLQrKohSWFtKuexndB3elfHIf2nc9t09PCMH7779PVVUV5eXlpFIpqqqqqK6uxrZtiouLKSkpobi4+IIJqhCCPXv24LouAwYMaJaBGNd1qaiooLCwkO7dz2+PcF2XRx99lPr6en7zm9/IobjWj6vk9grg2HuneOPZ1Sx6dnXg+1M1lTEzB3P9PRMZPbP8isU5nQnHD55i6bw1vPnMKg7vPRZs71HehRn3TGLa3eMo7XDpvvYPgxMHT7Hy5Q2seGk9O9dkLxbMkMGYG4Yz+fYxjLlhWKuwf9ipNIf3HOXA9kO8v/sIh3Yf4eCuwxx790TQgnc2WBGLvKIIkYIwqirLaFzHo+pIdTAQCPL8NfWu8cx+5BZ6lHe53C+pWXBw52Ge+Pyv2L1erhRPvXMcX/rpZylq0zyreBeDI+8c57fffJ6VL28AIL8kyqf+5WZu/sLMVhHzd5XcnkZu6+rq2LFjB0IIRo4ceU6F7I//s4znn14bKHOapshiAC9LaLMkV/5o6Gr2j1QIovkWjfWJLLktCBFrtAmFZJqAqiCVWx+6KSOdhJtzSD2vyZlXUZSsHUAIwnmmXHLPxFSFDeyUi6r5cWMhjYaarE2hoDiC43ikU2lfRTVJJWRlrGTWIojgwo8sczO5uacj93PRJLhfwXOyxz0UMUk2Zl9nJK9pY1coz8zm2gpBOE96VjOvN5JnEatPommqXPYPa8TrZEmBbmhYYYN4nWzk0gwNzQA7ngY/Kk0OmMXlz6qC6TeA6bqOokrSbvs2AhTFb4JzgwsOI6ShWTrtOpXRtmspXQd2YcCYnvQZ2fOiCKTneezZswfP885IQl3Xpba2lqqqKmpqaj4wtHUmgum6Ltu3bycvL4+ePXs2yxJvOp0OyhkuxFJg2zZf+MIX6Ny5Mz/60Y9aXbzMOXCV3F5BuK7H5mU7ee2pFax9fWuQMFPUJp/pd47junsn0r1/xyu8l1kIIdi76QBvPrOSpfPW0FAdA+R31bBrBnLtnAlMvGVUi/pzAU4drmLl/PUsf2FdE6JrmDrDpg9i4i2jGf/JkRS3PXts35WA67icOHiKw/uOcXz/SY6/d5Lj752i6mgNlUerqT5WG9QqnwmFbQro1Ksdw6aX88m/n9kqY8rOB9f1mP9fr/GHb79AKp6iuF0hX/nfv2fMrHM3qV5u7Fy3j998Y15ghenQsy2f+85sJt0y6oraiD725NZ1XRzH+UAawr59++jTp885h2xeeGo1f/zZsmCISqYjyEYrzbcpOJ5oQvryC0I4aQ8n7eCkXRlhlWNlyMu3aKzNJhnoRtPCBVWRPl5/9gvdTyZwUk2JouI3ayUTNqGwLmOqVBXdUDEtjVhtMlCVzbCGHXfIvE2yMCHr87XCBqncNARDw7WdpsQVciwJmbgIFVVV/NciJAFGXjmbIQ07ng62hQtCOCl5oeGmXcJRy1dmZURuKKQFNcNCCDlAFviEBdEi2dilaiqqphDOC9FYEwvauTRDJdloo2qyMtYKSzKdUbhlGkHKtxGovo1A+pSF8NANXQ70FYQpbJNPaadi2ndvS88hXVFKPApL8unbt3migRzHCZTQHj16XNAXhG3bgaqbKVkoLS0NShZs22br1q107Nix2XytyWSSrVu30rNnT9q0aXPe2zc2NvLpT3+aa6+9ln/5l39pNf7JC8RHamcvFa2N3Oai5mQ9b85dw6LnVvP+nqw62m9Ed66/dxJTbx9NtIVJ47lgp9Ksf30LS+auYf1rW4Lmtow/d8Y9kxgxfVCLx2SdPFTFipfWserPG9mxak8wjKaqCuWT+jPx1tFMvm3MFamq/bAQQpCMpWisjckVNyH8c4FKSfuiVrVcfqk4/t4pHn/wf9j21i7gyntxQR7/9Qu38r+PPcsh/29y4Lg+fP4Hn7piyQpXya3rkkgk2LFjB6Zp0q9fPzRNo6Kigm7dup1zeGfBCxv55Y9eByTh01RFZqGK7JmwqR9Vek1TmUQFIcgvCNFQF5eZYYoscUgkbCxLRyAQnucTT4Jlf8DPoM3Wv+YeYVXNKXbw1eFYzgCZFdFJxZ1AVQ5FjCDHVtVUTEshlXQDP2w4avn7IkglbTRVxfMEZshAVSCdSvsDa2CFTDRdxXEcbD9hwbR0jJC0FaQSNngekYIIwvM9sokUoYiF8DwUVZWkEg83LQetZECztBnohuZHh+lygEyVByZTqqAbKpqqYoYMko0pWSiBkI1dDQlfeZWNYGnbRcuQ2ZBMttAMjXDUoqA0j6K2RbTvUUa38i4MmtiPtp2b1iPats22bdto27YtXbt2vfAP3TmQyZvt0qXLBwYYLxRCCGKxGNXV1VRVVZFIJLBtm86dO9OtW7dmsQE0NjZSUVHBgAEDKCo6v/+xqqqKOXPm8OCDD/LZz372o0Zs4Sq5bXUQQrB383ss/NMqlr20Xq70IC/GJ988iplzxjO4BbNoLwQNNTFW+DFeuf7cknaFTL1zHNNmj6fviAu7oG1O1JysY+2rm1j18gY2vVnRxAIwcFwfxn9yJONvGkmX/h0/in+7f3NwXY8Xf/wqf/jW86RthzZdSnn0j1+ifOKVjVF00g6v/X45T333JeoqGwCYfNtoHvzeHNp3O78A0pz42JPbmpoatmzZ8oE0hJ07d9K+fXtKSs5+1frWwu088dhLTV+dIv/Tfe+nIsh+USgKBUVhHNvFttO4tusTz5wygtOSDHRDleH8ucNaqnKaSirAzf4uGrVIp10cWyYcRAtCJJNpNF2qqIauB8NZZkj3kwNsOSQmBJH8kPS24uHYsiXMsV10Q1bXoijYcbnPqiYbtxDg+GqupmtohoJw5dCAEIJQxAQh8DyBnUwTihgyUUJVcNPSIuE5nk+MXXRdIZ3y0A352JqhBp7XTC5uvN6P6lIUrKhBOpH2c2DxybQDKAjP9UOGFTRNwzB1IoVhwnkW0ZIIhe3yyO8UofuQzvQY0I3S0lIKCwvP+SUei8WoqKigV69eF6RaXggybV79+/dvlrxZyNpsunbtSjKZpKamBiFEYGEoLCz80Cf/2tpadu/eTXl5OXl5529HOnz4MHPmzOFb3/oWN9/cOjIlLwIfqzP6R4Hc5iIZT7HylU0sfHoVFauzy+3tupYyY/Z4Zn5qAu2vQCD+uXDi/UoWP7eaxc+s5PC+48H2jr3aMe3u8UyfPZ7OfS7uAvdSEKuLs/bVTaycv4ENC7c0GR7u1Ls9428eycSbR9F/bB80rfVcOHwc8d6Owzzxf/6HPRv3o2oq9//bncx+5OYr/r7E6hPMfeIVXv7ZQlIJG8MyuPOhG5j9lZtabIjxY09u6+rqcF33A/aDvXv3UlxcfE7isnHFXr7zz8/6g106ih/4L3KqdjPtYBl1NVBJMxFWBU0jrKyQju14aJqC4gkEPmlELp3LRrKsKooi27A8V/qSHNsJhtA0TUUIGbOVyG0gKwzTUJNt7wpHrZz6XalypnO+0AxLJ50T06Vqygf9Taf5bRUVMoYEz/UwTdV3Qci6XlWX8RCapsrqYU3BS7sIv9LCMHV53BSB53hYYZk+gCLVbCti4tpZ5dqwDNy0iydAVTOJCibhwhBqSNB7SE/6DO1JvzG96Nir/RmJayaPtaqqqsnSfmlpKeFwdpkzkw07aNAg8vObJ4S8qqqKffv2NWve7KlTp3j33XcZOnRok/1Pp9PB68zNnS0pKSEajZ6T1J88eZIDBw4wdOjQC0ps2LVrFw888AA/+9nPmDx5crO8riuEq+T2I4Kj+08GtoVTR2qC7cMm9+e6eyYy8abhLZ77ei4IIdizcT9L561h+QvrqDmZbfrqO7In186ZwDV3jqOobcsPDyUak2x8Yxtr/rqRda9toaG6MfhdcbtCxt00gom3jGbYtEHBquJVtCyctMPvvjGP5598BYChUwfy1d//Q6uwk5w6Us1vvj6XpfPWAHKF4v5/u4PrPj3lshPwjz259TyPdDr9ge3vvvsu0WiU9u3bn/W+e7cd4pH7fv1B72kAkR22Qvpno/khUsk0yYQNniCvIEQiZmMYGq7noeDJ/FZ8T63pE80mSV+iyb8Z1TODUEQuyWdgRQ1Z/Zohs3lWk0axUFgn2WgHsVWhiEG8IYkQAkWTcWHppIPnughPoOpqNs7s9NiWzL4pksgqiiS3hh9tpqjgpT30kO5nAcuMXk1XcGwviEQzQ4avBIMQHqGQGdQMK6pUcjVVI5RnkV+SR2nnYtp2KqXroE4MHN+Xdt3acuTIkcBD/WGjszJL+1VVVVRVVWHbdrD8Xl9f32zZsCCVzWPHjjF06FBMs3lOuocPHw6qb8/3mJnc2aqqKuLxOAUFBYGym3vfzGMOHTr0gqwN69at46GHHuLpp59myJAhl/yarjCuktuPGDzPY8uK3Sx6ZjWrXt0cKJDRgjBTbhnFzE9NYMDo5hmsbC64jsuW5btYOnc1q/6yMbBaqJrK8GmDuObOcUy8eeQV8Ve6jsuONXtZ/ZeNrP7LRo4fOBX8LpwXYuSMwYz9xHDGzBpOcbvWNZD2ccDGN7byn5/7H2pO1FFQmsc3nvsyQ6cOvNK7BcCOtfv41b8+w+4NsuGv5+Cu/MMTn2bwxH6X7TmvktuzkNv33nsPwzDOOXxz7GAlX/zET/0BKR3hCdLJdFbVVBSssIadcIL0gnBe01itaH5Ok5YQWBFTZsrmkMSMQutPUwUqqaYpqLqGpiskYza4HoqmklcQIp1ycGwHx3aJFoVJp2Qjmet6GKZGY008UIJ1/2fPL2iwwgZ2Mh3YFMIRC1d4eH6CgqbJ3FnhWy6E50kirMidFR4YpuqXCgOehxkyEJ483kIIDFML6nld10HTVRSh4AkPXdPQTAXPkfEukXyLgjb5FLcrokOPdvQa2oUBE/qSX3xm1VQIwd69e0mlUgwaNOisUW4fBo7jsHPnThoaGtB1HV3XAwKYn59/USfITOlBLBajvLy8WfZTCMH+/ftpbGy8qMcUQlBfXx8Mp7muS3FxMalUCtd1GTx48AU95htvvMG///u/89JLL9G9e/eLfDWtCq2HAbUAevfoL24c8vfMmj2WqZ8cQTT/yuWhNgca6+Isf2kDr/9pJfu2HAy2d+rZlhlzxjNjzgTadGzZiK7zIRlPsXbBZhY/u4q339wenFcMy2DM9UOYdvd4xswadkVUaCEEByoOserPG1j1543s33awye/7je7F2BuHM+GTo+gxuEuruoD4W0bNiTp+9Hc/5+1FFaiayhce/zS3/MN1reL4CyFY/sI6fvONuUG737S7x/Pg92ZflhKIq+T2LOT20KFDCCHOOSgUq49z75jvNNmmG5r0yPqtZ1bEbJKxZ4U1Uo3Z58srCpNKyMxbJ+VIYpn2sELS5uA5riS7fh6rbmrgybxYz3FRNZVIvoXryAzYdDJNJD+EnUyj6Sp4oJsqsbpENvPV0miojsuUAJ/MpuIpkok0uq4Qjlo4aVc+XsohHDVByOVsNy19sQqyjMJzXFRVQSDkbBeKtCSo2R4HVZFpBcIVIDyp6GoKwhUIxSOUF6K4bRFFpXmUdiyhc/+O9BralT6jemGYH26pK5M0UFBQ0GxxV5kIrWg0Sq9evVAUhVQqFaidDQ0N5OXlBRaGC1F0Xddlx44dhEIh+vTp0yz76Xkeu3btQtd1+vZtnjandDpNRUUFqVQKRVEwDCN4nXl5eR94DiEEc+fO5Te/+Q3z58+nbdu2l7wPrQRX/uzQgmhf0lUML7wTkOkrU24axqw54+g/rFurOFFeCt7bfZTFc9eweN5aqk9IC4CiKIyYNpCZc8Yz/oYrQxjPhfqqBlb+eSNLn19LxYrdQbJBpCDMxJtHMX32eIZOGdDiiQsZnHy/krULNrP+tc1sXrKDdCp7jmvXrYxxN41k3CdGMHhy/6v2hcsM1/X4/TfmMvfxvwJw/Wem8k//3wNnLbloaSTjKZ7/8avMe/JVOX8TtZj98Ce5859nNes+fuzJrRAC27Y/sP3o0aMkk0l69ux51vt6nsed5V/3Y7/AttMYmkradtEtHcPQMAyNhrp4kEtbUBIhnXJwHRc75WBaGulEGt3UZa6tqgS1sJkYK8+VS/fClWkChqniupJYem7Wf6oocp9UTcFJyQGwTOxVQ1UDmq6hGxqhsEmsIYFju5iWTihi+kqtjaapWGFpAXBSjt/IZcgLAA9AoOsawh8OUxRkeoLioaKiKsiBN987C0LWAUc0okVRStoV0alXRzr2b4/ISzN6yohmI0DxeJyKigq6d+9Ou3bnLki4UGTSCzp37kzHjmfO0RRC0NjYGFgYHMehuLiY0tJSioqKPqB0ZlIW2rVrR5cuzRMi7jgO27Zto7S0lG7dmqcNKUPq8/Pzg0iyTGtaVVUVjY2NAakPh8MUFRXx85//nEWLFvHiiy82mx+5leCjzeg+JEaOHCn+8+u/5PW566hY926wvVvf9lx/91im3zaSwpLzDxO2ZriOy6ZlO1n07BrW5ER0ZWwL184ex6CxvVsdma88Ws3yF9axdN4a9m1+L9he1KaAybeNZuodYxk04cqlRCRiSbYs2cHaVzex9tVN1JzIeoitiMWwawYyetYwRl8/lA49/mYuflsdls5dzZOf/xWphM3gyf359otfIa+oeeY5mgPHD57iV//6DKv+8jYg83H/8cn7GTWzeSxsV8ntWcjtyZMnqauro0+fPue8/219v4pwPRkFpmXyVFPShqBAXkE48K8KT3zAlhCKGCQbsv5YzfBLHpqUHwQ7K2+jZ328IJVZNyUzWVEgHLGINyTQdc1v9zJkG5ff1JVJGhCerJI1LJ1UPIXwPFRNQ9c1bDvtl1HIHZBf8LKwAQXZxKVpKIqCrmtYUZO8oigFZXm06VJK++5t6D2iF31G9cDyr8aSySSVlZUcPXqUhoYGysrKgkSKS42nqq6uZs+ePQwcOJDCwubxe11seoHrutTU1AQFC6ZpBmqnoijNnrKQSqXYunUrXbt2PadH/MMgU87Qvn17OnfufMbb5JL6b3/726xbtw7TNPnhD3/IzJkzLyhJ4SOE1sVwLjNyPbeH95/k9efWsviljdRWyYEi3dAYN6OcWbPHMnxy64rbuhg01MRY+uI6Fj23poltoUOPNsy4ezzXzh7X6tIWAN7fc9QfRFvLkXdOBNvLOhYz5Y6xXHPXuCsSLZaB53ns2fAua/76Nutf3/oB+0Lnvh0Ye+NwxtwwnPKJ/VpFs9XfEt7d8h5fv/U/qTpaQ8/BXfneK19t8Ya882HLsp38/OGnOLjrCAATbx7J5//jnkuODrtKbs9Cbquqqjh16hT9+587N+7Ovo8EaQbgk9VY1jMbiVqybABAQKTAIubHcMmkA0uS4YyP1tDwXE8esNxhrYz31vNQ/YSBTKCuaWnYSUcWJqgqoYhBoiGFbkryaYZ0+bOuSjJq6qQSSb86VkE3ZaKDz41RNMADT3gIBKGwRShkEsq3KCjJp7RzCW27ldJrSA/6j+tNfvGFkRghBAcOHKC2tpZBgwaRSCSorKykuroaRVECAni2hq2z4VIGx86GTNLAkCFDiEQubXgjmUxSVVXFsWPHqKuro7S0NCD1lzpA1tjYyPbt2+nXr1+zxYdlyhl69OhxQap6Op3my1/+MoZhcPvtt7NkyRKi0Sjf/OY3m2V/MnBdl1GjRtGpUydeeeWVZn3sC8DHltxm4KRd1i3ZwRvz1rNx2S45VAq07VTMdXePYeYdY2jbqXWdOC8GB/ccZfHctSyet5aq47XB9qGT+jFjzngmfmIEkVbmQRZC8O7Wgyx/cR3LX1zHiYOVwe869mrHNXeOZcrtY+k+qPMVVaKrjtaw4Y2tbHh9C5sWb/dbISUi+WFGXFvOqOuHMnLGYNq1cC7q3ypOHDzFo5/4Dw7vPUb7Hm34jwWP0bFX86xsNhectMP8/17I0z94mWQshRkymP2Vm7j7/33ioq0KH3tyC1L5Oh21tbUcOXKEQYMGnfE+clne477BXyOdkvFfruNiRQyclIumq3Lq3zJorPWbsjQ5/GUnZTOXpqmEohaOLW0KTspBtzQ5iCUEnuvJogZNQRFyG55UiYWbbYrQdQXhyYla4QlCESObTSgERsjASTrBPJpmKriO50fyKhghAzNkEM6T5QUFbfJQo9CjvBvjZ42mXZdLXzrKeEwty6JPnz4fUHoyDVsfxsN6OQbHhBC8//77VFZWMmTIkGYpPAA4fvw4Bw8eZMiQIU1e66VkztbU1LBnz54Lzpu9EGTIcv/+/S+onCGRSPDAAw8wcuRIvvGNb1xWBe/JJ59k48aN1NfXXyW3lxnnS0uoPF7Louc3sHDeOk4crgakb3X4pL5cd/cYxs8cjGl9tFU41/XY8tYuFj27htULsmkLVthgwidGMGP2OIZNGXDFM0VPhxCC3RveZdm8tSx/sWm0WJd+HZhy+1im3D6G7gPPvCLTUnDSDjvX7mP9gi2se20zB3cebvL7Tr3bM2LGYEZcW86waYOIFvzttIy1NOoq6/n6zT9iz8b9tOtWxo+XfatVRIWdjsqj1fz6a9nosM592vNPP/0swy4i9eEqueXM5LahoYEDBw6cMcJICIHruggh+Oywr+PYDoqqIlzpd000pjBDOqqmYZqqTCJwBZqpEo5apBNpbF8pDUVMHNvFc10c20Uz5Bel8ATCdRFC2g6EUBCeBwJ0U8N1XCnmCg8rYuGmPRQEQoAZ1oM6XkWRQ226oREtiJJfGqW4QxFtO5bQeUBHeo/oSfvubYKr+fr6enbu3Env3r0pK2ueZbhEIkFFRcU5faunH9+GhoaAAHqeR3FxMWVlZQEBTKfTbN++/UNV1J4Pnuexe7cc1hgwYECzEDUhBAcPHqS6upohQ4ag601P+I7jNMmctSyLsrKyoDb3bK/rxIkTAVluLrW6traWXbt2MXjw4Asiy7W1tdx7773cfffdfOELX7isitDhw4f5zGc+w9e+9jWefPLJq+T2MuNCo8A8z2PLqn0snLeO1W9UyGFaIL8owvTbRjJr9ji692v5IoLmRqw+zvL5G1n8/Fp2rH0n2F7avojpd41lxpzxdOt3/u+2lobremx7axfLX1zHqr9spL4qm1PbbUAnrrlrHFPvGEun3s1jZ7oUnDh4ig0Lt7LpzQo2LdnepMxI0zUGjOvDqJlDGHXdEHoP7/6Rt8K0NBKNSb466/vsXv8O3QZ04olEj9efAAAgAElEQVSl36SglfrmK1bu5qf//LugynfGPRP5P9//FEVtLjzr+Sq5RaqGp+9/PB5n9+7djBgxosl2IQSOk8mhVXhgyGMkYrLmFaSK2libwDB1NF2Vym1dI54ra2jNsEEqZuOkpY3AsAycVFoOZ+H7aV3Xb5WV7V+q6icLIPuyFU3BSaUBgaKqqDqYlkleUYSitgW07dqGNp1K6T6wM31G9aTkAj02x44d4/3332fw4MGXvBSfQU1NDbt3777gmtYzIZcA1tbWYpom8Xic7t27N9tAViYVoKSkhG7dmmciPEOWAfr3739BX8bxeDwg9YlEgsLCwqBgIaMiHzx4kKqqqjOS5YvFqVOn2L9//wWXMxw/fpw5c+bw8MMPc/fddzfLPpwLd955J48++igNDQ08/vjjV8ntZcbF5Nw21MZY8vIm3pi3jv27jgbb+w3tynV3j2HqTcOJFoTP8QgfDRx77xRLnl/Hm/PWcCwn67Xv8O5Mv2ss19w2+kOdhFsKTtph61u7eeuldaz880Yaa2LB73oP687kW0cz+bbRrYLouo7Lno3vsunN7WxctI3d69+RVjwfhWX5DJs2iKHXDGLY1IF06nPmYp6raIr6qga+Mv3fObjrCAPG9uaJJf+GbrTOFRY7leaFnyzgmR/+hXQqTV5RhAe/N4dZn5l6Qe/1VXLLmcmtbdts3bqV0aNHA1kbguf5UVb+wX1w+GM01saDBAHdUInXJ32yq6Cqnu+H1VDVTCmD9PgqqiSvniNQFDm0pagKTtrGMEwZo6UqWGEdKxohWhCmsCwP10jTsVcHRk0bRp8RPQlHQx9Y1s/Pzw+W9c/n6/Q8j3379pFKpRg4cGCzEabDhw9z9OjRZlUXq6qq2L17N23atKGxsRHbtoNkguLi4ouyJmRSFi7UY3ohyKQXXApZ9jyPurq6IHNWVgsLdF1n6NChzWLDAOlZzpRIXIgN45133uH+++/n8ccfZ8aMGc2yD+fCK6+8woIFC/j5z3/OsmXLrpLbFsCllDgIIXhn+2EWzlvH0j9vCooITEtn4qwhXD97LIPH9vrIK29CCHauf5dFz67mrT83LVwYOW0gM2aPZ9ysoa0uVgxkLfrmJTtY9sJa1rzydrDvIAP2J98+him3jb4i9b9nQmNtjC1Ld7Bx0TbeXrStiacYoKxTCUOnDmT49EEMu2YQbVvh8F9rQeWRar489VucfL+S+75+O/f/251XepfOiSPvnuBn//cPvL14OwDDpg7kof9+gI49z+0bvkpuOTO5dV2XDRs2MG7cuLMSW4B/HP9Nqo/XShuByNbECuHJmK6w4acfSDKr6arMf/UTCDI1saGoSX5pHqXtiyjpUkrXfh3oPbwH7Xu0DZ6voaGBHTt20LNnz3OSsNwg/qoqGZZcUlJCWVnZB4a1bNsOFMvu3bs3m2K5d+9e0uk0AwcObDYSlmnyGjJkSODDdV2X2tragADmJhOcr0oWskvxgwYNoqCgedSWzEBWt27dmi29wHVdtm3bFmTNnqse+EKRGfCrr6+/4HKGzZs388UvfpHf/e53jBw58mJeyofGo48+ylNPPYWu6ySTSerr67n99tt5+umnW+T5fVwltxeBZMJm9evbeOP59Wxdk13Ob9+1lOvuGsPMO0dT1v7iVnRaE1IJm7Wvb2XJ8+vYuGQ7rt8YGckPMfnmUcyYPY5B43q3SkKfSti8vbiClfM3sGbB5iZ2gJ6DuzL1jrFMuWPMeclES0EIweG9x9i8dAdbl+1g21u7qKtsaHKbjr3aMWzaIEZML2foNQMpLGt9SvqVxNblO3nkuu+hqAo/XvZNBow9dyrUlYYQgmXPr+XnDz9FfVUjZsjgvsdu445/nnVW5fkquUUuSXte0xpZIQRr1qxh/Pjxgb/2dGIL8JVrvsPxA6cQkrFihg3shI3AIxwJE84PYVkm0eIIhWUFtOlaQuc+HejUryM9h3TBtC7sqj5jGSgvLyca/XBZdel0mqqqKiorK4NhrbKyMkzTZN++fc3qr82Q5UzeanOR5X379mHb9nnJciaZoLKykng8fsZl/QyOHTvGoUOHmlVZzsSHXYoN43ScKZYrUw9cXV1NZWVlUA+cUbDPp74LIdizZw+e512wZWL58uU8+uijzJs3j759+zbLa/uwuKrctgwuR/3u8UNVvPH8eha9sIHKYzKFQFUVRkzux8w7xzBuZvlHfggNoLaygeXzN7B43lr25uTQtu1SyrQ7xjD9rrGt0p8Lcil40+LtvPXSeta8uqkJ0e01pCuTbh3NxJtH0bV/x1ZjA/A8j4M7DrNl+U62LJVkNzeFAaBr/06UT+pH+YR+lE/qT7tuZa1m/68UfvWvf+KFJ1+lc58O/LriP1vlhdfpqD1Vzy+/+gxL5q4G5Gfy4V99np6DP1i2dZXccnZyu2rVKsaMGYOqqmf9Q/jvf/odJw6eorA0j+IORdh6kl6DujFh1jjyCi89MDmjgmaI3aVaBjLDWgcOHKCqqopIJEKbNm3OqOp+WGSU5eYkyxkvbFFR0YceHPM8j/r6+jPGjZ06dSqoqG0uG0ZlZSXvvPNOs8SHZZBIJNi6det5c3E9z6Ompobq6mqqq6vPWQ+cSa6IRqMX3OI2f/58fvrTn/Lyyy9f0FDg5cJVctsyuBzkNgPX9diyci8L561jzaLtcmULOYR2zc0juO7uMfQedGUn+ZsLh/Yd4825a1ny/FpOHakJtvca3IXpd41j2h1jKGnXPLnczQ07lebtNyt468X1rF2wqYl1oUu/Dky+dTSTbh1Dz1ZWr+s6Lvs2H2Dz4u1sXrqDnWv2ZtODfJR1LmHwxP6S8E7sT7eBnT4S5K45YafS/N2gr3Dy/Up++PpjDJ9efqV36YLx9psV/NdDv+f4e6fQDY1PPXIzsx/+ZJOc5Kvklg+S24wNYe/evVRVVQVK57n8q5kSgX79+lFS0jwRG6lUioqKCsrKyppdBU0mkwwaNAghRGBfqK+vv6DXeiacOHGCAwcOMHjw4A+tLJ8N8Xicbdu20aNHj2ZpHLNtOxiccl03ILoXWpl7Lhw6dIgTJ04wZMiQS86uzaC+vp4dO3ZcVDHF2eqBCwoK2LNnD23btr2gYTwhBL/97W958cUXmT9/frNl6X4E0XrO3i2Ay0luc1FfE2Ppnzex6IX1vLvjSLC958BOXHfXGKbdMoKC4tbTqnSx8DyP7Wv2seT5daz4y9vEfEVUVRWGXzOQGXePY/wNwwhFL+176HLBTtpsXraTlS9vYM2rm2iozg6jdezVLhhG6z2seaxtzYm07bBv0362r9xDxcrd7Fyzl4acYTqA/JI8yif0Y/Dk/gwc34few7q3mrray4k/fvsFnv7eS1x7zyS++vt/uNK786GQaEzy668/xyv/uwSAHuVd+Mr//B/6DO8OXCW3gBz+cV2pHuTGfOV6XSsrKwP/amlpKWVlZUG96MGDB6msrKS8vLzZY5makyyfz1+bG8FVWVmJECIgf4WFhWf80hJCsH//furr6ykvL2+2XNjMxUJzemEzQ4IdOnSgU6dONDY2Bu+r67qB0llUVHTBV/FCiCYXC83lL25OFfj/Z++8w6K80/X/oYgivap0pJeZoQoWsOJgT0x2E1NML7vpyZbkZGPM7kmy2c2eZJPsSc5mS/aXnBzXxJJItaBgBQGZoReRDtJBOsy8vz9wRlBUxJE6n+vyuuL7DjPfl4wz9/t8n+e+VUlidXV1VFZWYmBggK2t7XXjgVUolUr+8Ic/IJPJ2LVr15j6eqcRk+sb+w4zXuJ2KOfzqjl4eQjtUuvgtrK+gR7hq/2JujeU4Egv9PQ18+9rIunr6SftcDZJu8+QdihbXbmePdeAJesCWHHPIoJX+k7aKfaB/gHkxws48UM6J39Ip7WhXX3OxsGSJZuCWbIpGNHSyfn/S6lUUp5XTc7JgkHBe7KAxstezSr09PVYKHbCe5E7XiFueIe64eC1YNpVd6tL6njM91Xmmhiyv+nvE72cMSFLyeejn/+d2gv16Onr8dCbd3PfaxvR19fTiluVuFUoFOoK7vXexCpXAlX/qkKhwNjYGD8/P41U7ARBoKqqirq6OkQikUZ7QXNzc28p9rW/v1/d06mq6qqEvYGBAQMDA+Tm5mJoaIiHh4fG7thHGhy7XVThBB4eHlhZWV1z/mq7MUNDQ/W1Xk/UKRQKcnJymDt3Lu7umsugr66upqamBolEorEqcGdnJ9nZ2Xh5eWFqanrdeGDVEJ5CoeBXv/oVPT09/PWvf9XYTcsURitux4m+3gHOHMrh4HepZB4vUg/7WtiYsHprCGt/sgjHSZawNFbamztI2T/on5t/tlR93MzKmMi7Qlh5bxg+IaNrHZoIFAolOScLOb4vjVMHMmmqvdJ6YWZtwuINQSzdHELASl8MZk/OzxBBELhY3kj28XyyTxSQn1pCRX71NUPmc00N8QpZiFeIG16hbniHumNlN7V3sioKqnlS/EvmOVvzdfEnE72cMdPT2cs/3/6O/Z8fBMBvsQcfHdmhFbf9/f3q1oSRhsZGQjU4NG/ePJRKJc3Nzejp6WFlZYWNjc0NDfivh0KhID8/H11dXby8vDRWBbydYTQVquqfqtI5MDBAb28vDg4Oo+7bvBl3ymVBVQUdbZKXIAjD/GZ7e3sxNzfH2tpabTc2tAqsGvK6XVRV8EuXLo3avWA0tLW1kZeXh7+/v3q3YSiqIbympiaysrKIiYmhq6sLf39/Pv7442lXrRgjk1Nd3CEmUtwOpaG2laR96Rz6/izVQzxlfYJciLo3lMgNAdPCOxegrryRY3vTSPo+lYrL5vUAC1ysWXVvOCvuCcVxklhzjYRSqaQwvZSTP2Zw6kA61SUX1efmmhoSvi6QJZuCCIkSY2g8ueKLr6brUjdFGaUUpZdSkFZCwdnzNFY3X/M4KzsLvELccA9wwVXkyEKxM/OcrafMZ2byd2d498FPCFsfyO/2/3Kil3PbZBzJ4U/PfInBnFn8K/dPWnH74osv4ubmRnR0NA4ON8/erqmpobKy8hqxePWkvsp/1dLS8qZCpauri5ycHOzs7DQmlpRKJSUlJXR3d+Pn56exwanm5mYKCgpYsGABXV1dtLe3Y2RkpO7VHUu1VTU4ZmFhoTFLMtBML+xQu7GWlhZ0dXXp7u5m4cKF2Nvba0zY5+fno6enh5eXl8auXyXsJRLJqNoKWlpaePzxx9HX11f7CH/33Xcae09OYbTidgIRBIH8zDIO7k4jJTaL7s7BVEmD2foskYpYc88iApZ6TLoo3LEgCAKlOVUkfXeGo3vSaL54JT7XTeTIynvCWL41FJtJXDUUBIHyvGpO/HCWE/vTuZBbqT43a/YsAlf6snhjEIvXB2ExSQfqrqappoXC9PMUnj1PwdkSijIuXOPKAGBoPAdnXwdc/R1x8XPA2dcBFz9HLOaN3No3UeSnFvP2PX+itb6dh9+6h4ffumeil6QR2ps7aK5rxdXPUStuCwoKiI2NJT4+ntbWVlasWIFUKiUsLGyYIFQqlRQWFjIwMICPj88NxaJSqaS1tVU9qa+KVR1pm7uxsZHi4uIxDQ5dj76+PnJycsbkMnA9hrZMDG0ZuLqqq1Qqh/nq3uwuVrVlfjP/3ltd69AqsKbupFtaWsjLy2P+/Pl0dnbS2dl5Q7ux0TAwMKAW9poaHITBm7Dq6upRtzc0NDRw//3387Of/YyHH34YHR0d9Y2LpqrIMHgTGBkZSW9vLwMDA9x777288847Gnv+O8Tk+VYaByabuB1KT1cvx+PlHNlzdph3rvUCc1bfHULUvaHYu46u9Wqyo1AokR0v4NjeNE4cuOJYoKOjg2iJByvvDSNiczDGZppxZ7lTVJ+/yKkf0zkVk0l+aol6y19HRwffcHeWbAph6eZgFrhq5vN/PFAqlVQX11GYXkppdjkXsiu4kF1Jc13riI83sTDCycceJx97HL3scPKyw9HLDltnm3G9Kevu6OGH/z7IN/+5h76efoLWiNjx75eZazI9dkBUaAfKrqK9vZ2DBw8SGxvL2bNn8fX1Ze3atXh4eLBr1y5eeuklHB1v3fpEtc3d2NhIb2+veniptbWV1tZWRCKRxvorx9JfezNUUbKCIODt7X1DsXN1r+6NqrqqwbHrbZmPBZVYNDMz05iwh5F9cVV2Y6pt/aF2Y6OxVuvt7UUmk+Ho6MiCBZrZchQEgbKyMlpbWxGLxaMSphUVFTzwwAP87ne/Y8OGDRpZx43W19nZibGxMf39/Sxbtow///nPhIeH39HXvU204nYScrGqmcN7z3L4+7PUVV7ZNvYLcWX11pBp1bagGkQ7tieN1INy+nsHY+BnGegTGiVixd2hLForYs7cyem4oKLlYhtn4s9x6kAG547m0d97xabL1c+R8A2BhK8PxDPYdcps7w+ltaGdstxKLuRUUp5XRXleFWW5VSNWeQH0Z+kxz9mG+a422DpaY21vibWDJVYLLLCcZ47FfDPMrE3GPGDY0dpJeV4VF3IqKUwv5UxMhjr0YsNTq3nu40cm7fDi7aAVtzdAqVRy7tw5PvroI+Li4pBIJERGRhIdHY1IJBrzPzyFQkFDQwPFxcUoFArMzc3VXrO3O0BVV1dHWVmZRi25+vr6kMvl2NjY4OTkdEtiUVXVVQl7VVXXysqKS5cuqVsGNDU41t3djVwu12g6mCrJq62tDZFIdMOKfV9fn1rYD7XgGknYqyrWnp6eGnPEUFWsVbsLo3mP5uXl8fjjj/P555+zdOlSjaxjtHR1dbFs2TI+//xzwsLCxvW1b5EpL251dHSigT8DesDfBEH4/fUeO1XErQqlUknu2Qsc+j6N43EyeroGI86nY9sCQGd7FydjzpH0XSqyE4XqSugco9ksjpawYusiglb6DvP9nIx0Xeom/VA2J39MJy1RNiw0wsLWjLD1ASzeEETgSr9JGWM8WgRBoLm2lYqCasryqqgqqqWqqIbKwtoRe3lHYq6JISZWxhibzcXQeA5zjOdgMHsWevq66OrpgjDoXdvf2093Rw8t9W201rcP+52q8F7kzva37yUkSqzpS500aMXtTThz5gxvv/02X3/9NQBxcXHExcWRl5dHaGgoUqmUlStX3lLVUTW57+rqiq2tLZ2dnddYUllbW1/XfmskBEGgpKSEzs5OjQYTqAbnPD09R3QZuFUGBgZobGyktLRUXcFWtWvcrsBVDU5pMh1M1QurGvK7lRuaq9s1htqNARQWFiISiUY15DbatarcG9zc3Eb13jl9+jSvvPIK3377Lf7+42firVAoCA4OpqSkhOeee44PPvhg3F57jExpcaujo6MHFAFRQBVwFtgmCELeSI+fauJ2KF0dPZxMzObw92nIz5xXH7eab8aarSGs2RqKg9vU2f6+GY21LRz/IYPkfWcpyLigPm5iYUTE5mBW3rNo0kb/DqWvt5/s4wWciT/Hmdhz1Fc2qc/NnmtA8GoRSzYGsSg6ADNrzezyTQZ6unqpLa2nrqyexupmGqtbaKhqouViKy11bTTVtXKp6RJK5dhklMGcWTj52OPi58hCkRMBK/xwC9Bc+9tkRStub4Iq0OHqrd3+/n5OnjxJbGwsR48excLCgqioKKRS6Q1toVSV1etN7g8MDKirnKMNVVANY5mZmWnMuUC11vLy8ttyWbiaoYNjzs7OdHV1DXNgGCrsb+XD+OLFi5SVlSEWizXmx6paq5WV1S1XrEdCZTdWVVVFS0sLFhYW6or97a55YGAAmUymrq6PhoSEBN5991327t2Ls7Pzbb3+WGltbeXuu+/m008/HVdxPQam9DeBjo7OYmCnIAjSy39/A0AQhPdHevxUFrdDuVjVzJG96Rzee5ba8itiyTvQmdVbQ1i+MQAT86kfEqGitqyB5H1nObonjfKCGvVx6wXmRGwJYcXWUDwDJ1/QwtUIgkBpdiVn4jI5HZNJ8ZAYY11dHbwXuRMWHUDYugBc/G4+BD7VUSqVdLV3097UQVd7N10d3fR09NDb3Y9SoUSpUCIIAgaGBhjM1meO0RzMbU2xmGeGsbnRtP/9jIRW3GoAVY+jqqpbXV3NsmXLiI6OZunSpcyePZu+vj6KiopQKBSjdi5QhSpcL0BCR0fnjvTXCoLA+fPn1ZZUmqoC32xwTCX+GhsbaWtrY+7cuWphfz2/X9XvvqWlBZFIpDE/VlV7g4uLi0bS0VRUVFTQ0NCASCSiv7//Grux0bprDEXVt+vs7DyqtQqCwLfffsu//vUv9u3bp7H3zVh55513MDIy4he/+MWEruMmTOlvBx0dnXuBaEEQnrz894eBMEEQnh/ymKeBpwGcnJyCy8vLJ2StdwJBEAbbFvakcTxWpnZb0DfQI2yV3+WQCG/0Z02+0IGxUppbxbG9aRzbe3ZYFXS+szXL7w5lxdZQXH2nhgtKQ3UzZ2IzOXUgE/nxfHXwBYCtoxVh6wIIiw5AstxnRiSLabk5WnF7B+ju7iYpKYmYmBhOnjzJggULqKmp4YknnuDJJ58c8/bQ0ACJjo4OZs2aRXd3N2KxWGMuCwMDA+Tk5GBkZKTRYIKmpiaKi4vx8/MbVQuHaujo6qru0ASxofZZnp6eGtt2u53Y2+uhSjLr7e3Fz8/vmrUqlcphwQr6+vrqGxlVsMJI3GrfriAIfPLJJyQnJ/P9999rrCXiVmhoaGDWrFmYm5vT3d3N2rVr+fWvf83GjRvHfS23wFQXtz8BpFeJ20WCILww0uOnS+V2JHq6+ziVmM2RvemcO3ElJMLcypiVdwWzZmsIC33tJ3iVmkMQBPLTS0nZn07K/vRh1mLO3nas2BrK8rtCsVs4NVo1ui51k5mUQ2p8FmcT5bTUX7meOUazCV7tT9i6QELXirGcr5n2NC1TD624vcOcPn2axx57jMjISIqKiujq6mLlypVIpVJCQkLGVBVVCaW2tjZMTU1pa2tTB0jcTAzdiK6uLrKzszU6jAWDXrNX24fdKldXdefMmUNXVxfz58/Hzc1NY2ttaGjg/PnzGom9VaFQKNRJbqO9YRgarNDZ2YmpqSnW1tbD7MZuFs5wNUqlkh07dlBXV8dXX32lMXeOW0Uul/PII4+oEwF/+tOfsmPHjglZyy0w1cXtjGxLuBmNda0k7c/g8J50KoeEDrh4LWD13cGsvCsYqyniwzoaFAolOaeL1dZil1o61efcxU5E3hVC5JYQ5jtbT+AqR49SqaQo8wKp8Vmkxp3jvLxi2Hl3iTOhUgmLoiV4hbhNm4FCLTdHK27vMN988w3Lli3DxcUFGPRJTUxMJDY2lszMTMRiMVKplKioKMzNzW8qfK7XX3s7ARIwWFktKirCz88PU1PT275uuOILrFAo8PHx0ZhXakdHBzKZDHNzc3p6ekas6o4FVcuAWCzWWHtDf38/crkcW1tbHB0dx/QcQ+3GmpsHJ2sNDQ1pa2sjMDBwVCK8v7+fF154AXNzcz766CON+tbOEKa6uNVncKBsNVDN4EDZA4Ig5I70+JkiblUIgkCRrILDe9JJjjnHpdZB2yZdXR0Cl3myemsIi9eKmDOFJ/avpr9vgMxjeSTvO8uZeBldHT3qc15BLiy/O5TIu0KwXjB5wyKupr6ycVDoxmchS8mnr+eKzZiJpREha8QsipYQEiXG1HL8d620jB9acTuBKBQK0tPTiYmJ4fDhw+jr6xMVFUV0dPSIwQMql4WbhR3cSoCEIAhUVlZSX1+PSCTSmCXXnUoca25uVotwVbVyYGCAlpYWGhsbaW1tZe7cueoq9vV6dYdypwIfVH27KlcMTVFZWUlFRQUmJiZqv9jr2Y3BYEX+0UcfZfHixbzxxhuTfmp6kjKlxS2Ajo7OeuBjBq3A/iEIwrvXe+xME7dD6e8b4OyxfJL2pZN6JE/d32loPJuI9RJW3x2C/6KF0+rfUV9PPxlJuSTvT+dMooyeyz3JOjo6+IW5E3l3CMs2BmE5harYvd19yFPyOXtITlqCjNoL9epzuro6+IS5EyqVELJGhJvEeVr9/9SiFbeTBkEQqKurUw+lFRUVER4ejlQqZfny5fz444/Y2toSFhZ2y32S3d3dNDY2DguQUKWHFRYWoqOjg7e3t8b+cd+JxDGA6upqampqbtjeIAjCMAeG/v5+LCwssLa2HrGqq1AoyMnJwdjYWKNOEyoLNU327QLq4TlVOMNQH+GhvckWFhYYGxvT3d3Ntm3beOihh3jqqadm5NSshphRv7iZLG6H0t7SSUpMFof3nKVQdmXL29begpVbglm9NRhHN80NnE4Gerp6STuUTfK+s6QdylaHRahS0SK2DApdC1vN7PCNB4IgUFVcR1pCFmkJMrJPFqIYuDKUZmZtQvBqESFRIoJXizCfQtemZWS04naS0tfXx/Hjx/nxxx/5/vvvMTMz46GHHmLLli23VQlVKBQ0NzdTX19PXV0dc+fOxdHRcdRVzptxq4Njo0Hl4dvd3Y2fn98tbamrrldV1TU0NFRXsXV0dJDL5djb22NnZ6eRtcKV34Em+3ZHW11WVbHlcjkvv/wy/f39REdH88Ybb+Dq6qqRtcxQtOJ2hlNRcpGkfekk7c+goeZKxKqn2HHQVmxTIGbTbKu781I3Z+JlpPyQTubRPPr7BoWurq4O4qVeRGwJZunGIMynmO9sZ/vgUFrG4WzSD8lpqBoepOAR6ELoWjEhayV4hyxET1/bxjXV0IrbSYwgCNx33314eXnx8MMPEx8fT1xcHA0NDURERBAdHc3ixYtveTBI5Qbg6enJ7NmzhzkSqLbzbyVAQrVWVXuDWCzW2LCSqrJqZGQ06mCCG61RVdW9ePEily5dwtraGkdHx9vq1R1KTU0N1dXVSCQSjf0OlEolubm5zJkzZ9QDaUVFRWzfvp3XXnuNS5cukZCQwJtvvsnixYs1siYYbI/Yvn07dXV16Orq8vTTT/PSS2EPvJUAACAASURBVC9p7PknGTNK3Pr5iYX/3PElq6QizMw1c4M2XVAqleSklXJkXzrH42R0dwxu4evp6xK6wodVd4cQttoXg9ma6dufLHS2d3E6Qcbx/RlkHM1Vt2vo6ukSEOHFsk3BLNkQOOWEriAIVBbWkH44m/SDcuQnCodFAhtbGBG4wpegVf4ErfJnvsvEWidqGR1acTvJqa6uxt5+uC1NR0cHR44cIS4ujlOnTuHh4cHatWuRSqXY2treUPzU1tZSUVGBSCS6pqo4lgAJGD44psme1Z6eHuRyOQ4ODhqtrKr6dn18fNT2ai0tLeqqrpWV1S2HKqgietvb2xGJRBob2BoYGEAul2NtbT3qcIbMzEx+/vOf869//YvAwECNrGMkamtrqa2tJSgoiEuXLhEcHMz+/fvx9fW9Y685gcwocWu/wE3wc3kUfX1dFkd4Id0UQPCihdpp86vo6e7jzOFcjuw5S+bxQnWKlJHJHJatk7Dq7uBp158L0NHWxam4LFL2n+Vccj6KASUwpKK7OZilGwMxt5l62/s9Xb1kHy/g7CE56YfkVA9x0QBYsNCWoFX+BK/2J2C5L0Zm2pu/yYhW3E5xlEol2dnZxMTEkJCQQF9fH6tXryY6OprAwEC1yFJt7Xd1dY0qRGI0ARJwxQ3AysoKZ2fNRfqpela9vb2xsNDctG5NTQ1VVVVIJJJhfbuqqq5K3Pf19al7dS0sLG745aRUKikoKEBHR+eWI3pvRF9fH1lZWTg5OY3amu3o0aP85je/4bvvvsPd3V0j6xgtW7Zs4fnnnycqKmpcX3ecmFHi1tvLX7hnw5tkpJ5XCzZrGxOi1otZuyEAe8ebeyrPNJob2kk+cI6j+zMozq5SH7e1s1D7506n2F8V7c0dnI7P4viPGSML3SnauqCipvQimUm5ZCblIEvOo+OykwYMVq29Q90IXu1P0Gp/vIK1LQyTBa24nUYIgkBzczMJCQnExcUhk8kIDAwkMjKSf//737z99tsEBQWNSYBeHSBhamqKiYkJ1dXVuLu7azTl6k54zQqCQGlpqTp17WaVVYVCMcyB4XqOEwqFArlcjrm5uUZdIbq6upDL5Xh4eGBlZTWqn9mzZw9/+ctf2L9/v0Z9ikdDWVkZkZGR5OTkaMxKbpIxo8Stque2sb6dQ3FyEmNl1AzpS/SXOLJ2QwCRq3yYa6QZh5XpxGB/bgZH92dQX9OiPu4hdmTlliCWbwrEcgpWNW/GpdZOziTIOP5DBpnHrjhN6Orq4L/Yg2Wbgli6IQirBVMzXEGhUFKceYGMI9lkJuWSn1oybDBtrqkh4mXeSJb7ELDcFxc/h2lXtZ8qaMXtNGZgYIDdu3fz2muv4erqioGBgbp94XYqjIIgUFFRQVlZGQYGBhgYGNx2gMTQ521sbNSo16xSqSQvL49Zs2bh6ek55oALleOEqqprZmZGRUUFjo6OLFiwQCNrhSs90aP1HBYEgS+//JIff/yRvXv3Ym4+vl8cHR0dLF++nDfffJOtW7eO62uPIzNS3KoQBIEcWSUJB86RkpRP72X/0DmGs4hc5Yt0YwD+EketG8dVXK8/V+Wfu+quYJZIRcyZO/1uEC61dnI6XsbxH9I5lzw8Mtc3zI2ITcEs2xSEjf3U3QXobO9GlpJHZlIuGYezqTk/vIXBzNoEyXIfAlf4EbjSjwWu069yP1nRittpjCAI/OQnP+Gtt95CLBZTXV1NbGwscXFxlJWVsXjxYqRSKZGRkaPuMR1pcOzqAAlzc3N1mtZoe09VW/uCIODj46Oxu11V24SNjc2oe1ZvhkKhoLa2lpKSEvT19TEyMrquj/CtcqtOC0qlkvfee4+CggK+/fZbjThe3Ar9/f1s3LgRqVTKq6++Oq6vPc7MKNV2I7eErs5eUpLyORibRY6sUn3czsES6QYJa9aLsdFaKV1Db08fqYfzOPpDBunJBWqxN2euAUvWilh1VzABSz2m5bZ2R1sXZxJlnDyQSXpSrtpeDMA7ZCERm4JYuimI+U5TIxntetRXNiJLzicrOY+sY3k0DqnaA8xztiZwpR8By30RR3hjNYUCMqYaM1Lcfvfdd+zcuZP8/HzS0tIICbly/e+//z5///vf0dPT45NPPkEqlV7z8xcuXOD++++nubmZoKAgvv766wmLMh0rPT09pKSkEBMTQ0pKCnZ2dkilUqKjo3FwcBixAjMaAXorARIqVIEPlpaWGu3bvVMhCq2treTn56tjb4f66vb29g7z1b2VwbK6ujoqKioICAgY1ftpYGCA1157DYDPP/98TFHOt4MgCDzyyCNYWlry8ccfj+trTwBacTsCVRVNHIyVcShOTlPjJQB0dCBo0ULWbpCwJMKL2XOml2uAJmhv6SQlNouj+zPIyyhTH7ewNiFyYwArtwThKXGalpXwrks9nD2czfEfMzh7OJve7ivOBO5iJ5ZuDGTpxiCcPDW3GzYRqLx1s5LzOHc0F1lKPh1D4o4B7NzmIY7wRrzMG1GEN7YOo2tB03JzZqS4zc/PR1dXl2eeeYYPP/xQLW7z8vLYtm0baWlp1NTUsGbNGoqKiq4RKD/96U/ZunUr999/P88++ywSiYSf/exnE3EpGkHloRoTE0N8fDytra0sX74cqVRKWFgYs2bNoqmpiQsXLmBtbX1LAvR6ARIq662uri6ys7M1LkDb2trIy8vTeIhCfX09Fy5cQCKRjFglVfXqqhwYVOLeysrqhpXY8vJympqaEIvFoxKpPT09PPXUU/j4+PDb3/52Qvq6Tpw4QUREBCKRSP367733HuvXrx/3tYwD009l3IBb9blVKJRkpJWSeCCLMyeK6L9clTQyns3KKH+kGwPw9FkwLcXa7VJT3sjRHzI4uj+T6gsN6uP2LjasvCuIlVuCsJum9lM9nb2kHc7mxI+ZpB3OViejATh6zGfppiAiNgWz0H/kgstUQqFQUiov59zRPGQp+eSeLqJ7SOQxDDoxSCJ8EEdoxe7tMiPFrYoVK1YME7fvv/8+AG+88QYAUqmUnTt3DvMGFQQBGxsb6urq0NfX5/Tp0+zcuZPExMTxv4A7RHt7O4cOHSI2Npa0tDQcHR0pLCzkk08+YeXKlbcVIKEa0mppaWHWrFl0dXXh6+uLtbXmtqNUAlQsFt92m8BQhrZjjLYfeKgDg6qqa2VlhYWFhTphrKSkhJ6eHvz8/EYlUtvb23nwwQfZvHkzL7744pT/0J8izKhf8u2EOLS3dXPsUA6JsTKKC2rVx10W2rB2g4RVUhGWVtMr7EATCIJAcXYVR3/IIPnAOVoaLqnPeQU4sXJLMJEbArCwmZquAzejr6efzGN5nIjJ5EyCbJgrwQIXa5ZuDGLJhkC8g12nxZCWYkBBcVYZ2ccLkJ8oIOdUEV3t3cMes8DVFtEyL/yXeOG/xBM7t3naz/tRohW3Q8Tt888/T3h4OA899BAATzzxBOvWrePee+9V/0xjYyPh4eGUlJQAg4Jn3bp15OTkjP8FjAPx8fG88sorREVFkZmZiSAIREVFIZVKEYvFY/6Qqampoby8HBsbG9ra2m4rQELFnRpIG4sAHQmFQqFu2WhpacHAwID+/n6MjY3x9fUd1TXX19dz//338+KLL7Jt27Yp+UFXUVGBg8OUmyKeer/o20BTCWUXSi6SGCvjSGI2bS2DYkVXT4fQcHfWbpAQttQDA4PxbaeZCigGFMhOl5C0P4NTidl0X65o6urpErjUgxWbg1giFTHXeHx77MeLgf4B5CeLOHEgk1Nx52gdIvQt55mxeF0ASzYEIFnmhf6s6fH+UVV2ZSkFyI/nk32y8Bqxa25jit9iD/wWe+K3xBN3ifO0uX5NM23F7Zo1a6irq7vm+LvvvsuWLVuAa8Xtc889x+LFi4eJ2/Xr13PPPfeof76hoYHFixcPE7fr168nOzv7Tl/ShPDZZ59x3333YWNjgyAINDQ0EB8fT2xsLHl5eYSEhCCVSlm1atWo4naHWnL5+/urt+DHGiAx9HlVQRKaHEgbSzrYaBgYGCArKwt9fX0EQaC3t1c9iKeq6l5NWVkZDz74IO+//z7R0dEaWcd489577/H73/+eXbt2sXbt2nHvE74NtOL2NujvV5B6sphD8TLSTpagUAx6oZqYGrJK6s/aDRLcPedPyZu1O01Pdx9nDuVw9IdMMlIK1D6yBrP1CV/jz8q7ggmO9GLWNL1JUCiU5J4p5lRcFqdiz1E/xJLO2Gwu4dESlm4IJGilL7MNp9bsy41QiV358QJyTxeRe7qY1ob2YY+ZbWiAV6gb/pcFr0+YB0ammtutnMpMW3E7Gm63LeHBBx/k3Llz1NXVYWlpibm5OVlZWde8jouLCyYmJujp6aGvr890yWzv7+/n5MmTxMXFkZSUhJmZmdpqzMPD45ovKoVCQV5eHgYGBje05BIEgY6ODhoaGm4YIKFiYGCA7OxszMzMcHV11dgXpMppwdbWFkdHR408Jwx6BstkMhwcHNQWYkqlcljLhoGBAdbW1piammJubk52djZPPfUUX375JWFhYRpby3iSk5PDO++8g52dHeXl5fzyl79kyZIlU0XQTIlFagpNi9uhtDR3cvRgDgfjZJQWX7FOWuhuy5r1ElZL/bGw1LYtjER7Sycn4mUc3Z9JztlS9XET87lErJewfFPgtExEUyEIAiXyCk7FZXEyJpOKwittL3OMZhO80pfF6wMIixJjYmE0gSvVPIIgUHP+Irmni8k9XUTO6SKqimqHPUZHRwcXPwd8wtzxDnHDZ5EbDp4Lpu374UZoxe0QcZubm8sDDzygHihbvXo1xcXF11TRfvKTn3DPPfeoB8rEYjHnz5/HzMyMHTt2XPM6Li4upKena7SvdLIhCALl5eVqq7GqqiqWLVtGdHQ0y5Yto7GxkbS0NEJDQ3FwcLil5x4pQEJV1VUoFMhkMo17zfb09CCTyTQ+6Nbd3Y1MJrtpOINqEO/bb7/l66+/pre3l7feeovt27drLNhivGltbaWyshKRSMSHH35IcnIyv/3tbxGLxejp6aFUKifzh7BW3N4BSgprSYyVcfRgDu1tg1uwuno6LFqsalvwZNas6WeNpQkuVjWTfOAcSfszKC+6sktpNd+MFZsCWbElCDdf+6ly8zgmKovrOBV3jhMHMinOKlcf19XTRbzEk8XrA1iyPmBKe+neiNaGdvJSi8k5WUTemSKKMsuGhUoAGJnNxTPIFe9Qt8E/IW6YzwCrvhkpbvft28cLL7xAQ0MD5ubmBAQEqAfC3n33Xf7xj3+gr6/Pxx9/zLp16wBYv349f/vb37Czs6O0tFRtBRYYGMjXX3+Nh4cHSUlJeHh4XPN6M0HcXk13dzdHjx4lJiaGw4cP09HRwQMPPMCzzz7LggVjn5oWBIG2tjYaGxtpaGigu7ub+fPn4+TkdFsBEkNRRf/6+PhoNBBB9by34uAQExPDH//4R1555RUyMzM5efIkx44dGxYdrAkef/xxYmJisLW11Xj/+FDR2t3drR7y27FjB7m5ubz77rt4e3tTXl6Os7OzRl9bg0xfhTAC4yVuVfT1DZB2qpiDsTLSTpegVAx+ZZiYGrJqrT9rN2rbFm7EhYIakg+c49iP57g4ZNve0c2WFZuDWLE5cNo6Lqior2riTIKMU3FZZJ8qUrdvAHhInFmyIYAlGwJx8py+rh09Xb2UZJWRn3aewvTz5Kedp7G6+ZrHzXO2xifUHa+QhXiFuuEmdpp2QSIzUtxqmpSUFF599dXrthu4urpiYWGBjo4OzzzzDE8//fQ4r3DiSEpK4he/+AU7d+6koKCA+Ph4Ojo6WLlyJdHR0YSEhIyp71IVduDl5aX2mR1rgMRIzysSiTAy0ty2VnNzM0VFRaMOZxAEga+//ppvv/2Wffv2jTqCd6ykpKRgbGzM9u3bNSpuFQrFDauyr732Gt3d3RgbG5OamkpMTAzGxsaT8ctn0i3oTjLe4nYoLc0dJCXmcChORmlJvfq4y0Ib1qwTszpahJX19HQMuF0EQaDgXDlHf8gkJTaLtqYO9TlPsSMrNgcRsUGC9fypGX87Wi61dpJ2MJtTcedIT8qlt6tPfc7O1ZbwaAmL10nwXeQ2LUMzhtJU20LB2fPqP0WZF4ZZrsFgpdvJyw73AGfcJM54BLiwUOw8pft3teL2JoxmMO1nP/sZ7u7uakP9q6mpqcHOzo76+nqioqL49NNPiYyMZOfOnXz55ZfY2AzeUV/PIzQhIYGXXnoJhULBk08+yeuvv67BK7yzFBYWYmlpqb5GGNyeTkxMJDY2lszMTPz9/ZFKpURFRalvAm5EdXU1NTU1SCSSYcNmVwdIqPpWbWxsRmUJVltbS2VlJRKJRKOV0YsXL1JeXj7q5xUEgY8++ojTp0+ze/dujYrsG1FWVsbGjRs1Jm5VgvbixYu8+OKLuLq6EhYWxqpVq4ZVru3t7TE3NycuLk5buZ0kTKS4HUpJYS0H4+QkJWZfaVvQ1RkWEmEwe3oOUt0uigEFWSeLOfpDJqcOXnFc0NHRwX/RQlZsDmTZOgmm06w39Wp6u/vIPJbHqbgsUhNltDdfCVIwtTRiUZSYxesDCF7hyxyj6VW9HAnFgILy/GoK0s9TmF5KYXop5XlVKJXXyjQ7t3m4SZxxFzvjJnbCTeKM5RS5MdKK29tkYGAAe3t7MjIyRtVLunPnToyNjdXVTNV/Xw+FQoGnpyeHDh3CwcGB0NBQ/u///g9fX19NXsaEoVAoyMjIICYmhkOHDqGvr8+aNWuIjo6+xnZLEATOnz9PZ2cn/v7+N63MXh0goUoOs7CwuOZ5y8rKaG1tVfd/aoqKigoaGhqQSCSjqlArFAp+85vf0NzczN///vdxTb7TtLiFQTeRe++9l1dffZXCwkIOHDjAtm3bePLJJzE1NeX777/n97//PUeOHNFo2MYdQCtuJ5D+fgVnT5dwKE5G6sliBi5vORubzGHFGj+iNkjw9rWbjBX/SUFvTx9pSfkkH8gkLSmf/r7B+Fs9fV2CI71ZsTmQ8DX+GE5zcacYUJB/tpTT8VmcjpdRc+HKzoDBnFkErfBlyfoAFkWJMLeZ/n2pKnq6einLraI4q4ySrDLOy8opy61Sv0+GYmFrhpvEmYUiR1z9HHH2dcDRawEGsydXEqFW3N4mCQkJvP/++yQnJ494vrOzE6VSiYmJCZ2dnURFRbFjxw6io6NHJW6vDom42tFhOiEIAhcvXiQ2Npb4+HgKCwsJCwtDKpWyaNEi/vznP/Pwww/f0GnhelwdIDF37ly1A8OFCxcQBAFvb2+NDTSphHhXVxf+/v6jet6+vj5+/vOfM3/+fD788MNxH67ShLjt6+tDV1dXbXEWGxuLUqkkNDSUTZs2ERERQVNTExERETzyyCO0tLRga2s7FUTJpF+gJpls4nYoba1dHD2Uw6E4+bCQCAcny8G2BamIeQumRnVpIuhs7+bUoRySf8zk3MlilJdt2WbPmcWiVb4s3xRI6EqfSSdWNI0gCFQW1w0K3bgsCjIuqM/p6OjgFeRCmFRMeLQEF5/pPZg3Ev19A1QU1HBeVs55WTkl8nJKsyuu8d6Fwd2UBQttcfK2x8nLDkfPBTh62+HoaTdhrQ1acXubPProo4SHh/Pss8+qj9XU1PDkk08SFxdHaWkpd999NzBY5X3ggQd48803gcEq7ldffYWpqSkhISH86U9/wsLCYtjzf//99yQkJPC3v/0NgK+//prU1FQ+++yzcbrCiaOvr48TJ07w3XffsXv3biQSCevXryc6Ovq2LL8EQaCrq4v6+nrKy8vR1dVlwYIF2NjYjDlAYihKpZL8/Hz09fVHLcQ7OzvZvn07y5cv59e//vWEfJDerrjt7e1lz549eHt7U1ZWxokTJ/jwww/p6+vj5ZdfJjo6mrvuuostW7bQ1dXFm2++yYoVKzR7EXeOGfXNNpnF7VAulFzkYJycowdzaB7SXyoJdiFqnZiIlT4Yzp0+3qeaprXxEimxWSTHZJGXfkXcGRrPZslaESs2BxKwxBP9GeBY0VTbypkEGWcSZWQdL6C/90rVcp6TFWHSwT5d0WKPGRucIAgCF8sbKZGVUZpdSVleFWW5ldSW1o/Y1gBgOd8cB88FOHjMx8F9PvaX/8x3sbmj3sxacXuHuVHPbnh4ONbW1ujo6PDWW29RW1vLP/7xj2GP++6770hMTBwmbtPS0vj000/HZf0TTVdXF5GRkbzzzjt4e3urrcbq6+uJiIhAKpWyZMmSW96+V3nN2tvbY2trS3NzMw0NDWMKkBiKQqFALpdjYWGBs7PzqERqU1MT27Zt47HHHuPxxx+fsAqBJiq3iYmJ/OxnP0NfX59PPvmE6Oho+vv72bBhA5s2beKFF14YZqU3hdCK20mMYkBJ5tlSDsXLOZVcSN/l7dQ5hrNYtsKHqHViJMEu6OrOqP+Nt0R9dcug0D1wjpKcKvVxU0sjlq2TsHxjAH6hC9HTm7R2fRqjp7OXzOQ8ziTKSTsoH5aQZmRqSOgaEWFrRYSs9p92frpjoa+nj+qSi5TnV1NZVENFYQ2VBbVUn6+jr6d/xJ/R1dXBxtGKBa62zHOyxtbJGlsHK6ztLbC2s8DKzpK5JnPG/H2oFbeThOsJixu1Jfzyl7/kwIEDGBgY4Obmxj//+c8RraumeohEfX39NV6zHR0dJCUlERsby6lTp3B3d0cqlbJ27Vrmzbtx/nZXVxdyuXxEr1lVgISqVxduHCAxlKGC2c7OblTXVl1dzf33389bb73FXXfdNaqfuRNs27aNY8eO0djYyLx583jnnXd44oknRvWzV1t9PfbYY5SVlfHNN9/g6OjI7NmzSUlJ4amnnsLIyIj169fzn//5n3fycu4EM0oVTTVxO5SOSz2kJOVxMFZGXvYVkWZta8qaaBFr1olxcpk5toxjoaq0nuSYcyQfyKKy5ErQhqWtqToswjtwdDfvUx2lUklBxoXBqm6CbFhwhK6uDr6L3AlbK2KRVDytbcbGglKppL6yiaqiWqpL6qgqqaO6uI7q8xepr2i8brVXxey5BljON8dynhlm1qaY25hiZm2CiYURxuZGmFgYMdfEEEOTORgaz8FgziwMZs9itqEBxuZGWnE7UdTW1qqDBz766CNSU1PZtWvXsMcMDAzg6enJkSNHsLe3JzQ0lG+//RY/Pz8OHjzIqlWr0NfX59e//jUAH3zwwTWvM919dpVKJTk5OcTExJCQkEBPTw+rV68mOjqaoKCgYQNibW1t5OXl4e/vP6q44OsFSFhaWjJr1pWeNFU4g7u7+6h/zwUFBTz22GN88sknLF++/NYvfBIwVNgeOXIEZ2dnbG1t+eGHH9i1axfvvvsuAQEBKJVK2tvbqaqqwt/ff4JXPSZm1DfWVBa3Q6mubOJwfDaHE7K5WNuqPu7lY0fUejErovwwNZuaoSjjgSAIXMivITnmHCkxWdRVXvFMtbW3IHJjAMs3BU77sIihVJ+/SOpBOWmHsq/x053vbE2YVEyYVIxosee0jUTWBP19A9RXNFJz/iIXK5toqGqiobKJxpoWGmuaaaxpGWbhdissFDnxReq7WnE7UTz88MNkZWUNRua5uPA///M/LFiwYFjPLkBcXBwvv/wyCoWCxx9/XN2zO5R9+/bx/fff87//+7/XnJvu4nYogiDQ3NxMQkICcXFxZGVlERgYSHR0NG1tbdTW1vLKK6+MyhpspOdWBUg0Nzejp6eHlZUVhoaGnD9/Hj8/v1FP/J89e5YXXniBr7/+GolEcstrmWy8/PLLFBQUEBQURF5eHvv37+eNN96goqKCsLAw/vjHP5KSkoKrq+tEL3WszIxv7stMF3GrQqkUyJVXcjheTvKRPLou22Lp6+sSttSDNevELFrioU1DuwGCIFAkryQlJouU2Cwah9ws2LvaELkhgIgNEly8Zk71svNSN5lH80g9KOfsoexhvsJzTeYQtNKXRWtEBK/yw2qKWGhNFgRBoOtSDy0XW2mua6OtsZ3Wxku0NV6io6WTSy0ddLR20dXRQ/elbro7eujr6ae/dwAXPwc+iH1dK26nA5s2beK+++7joYceuubcTA6RGBgYIDU1ld/97nfIZDK8vb1Zs2YNUqn0tt0Rent7qaiooKqqCgMDAywtLUcVIHH48GF27tzJnj17prLYU7Nnzx4OHTrEF198wbZt25g1axb/7//9PwC++OILioqKWLNmzYgezlOImfFtfZnpJm6H0tvTz6mUQg7Fyck8W6reGjUxNWT5Gl+i1onx9ps5lcixoFQqycsoI/nHcxyPlw0TdY7u81i+MYDIjQE4us2bwFWOLwqFksLMC6QmyjmTIKO8oGbYeXexE4uiRIRGifAMdJkRvcsTibbndpIzmhCJd999l/T0dPbu3TviB/L1QiRmCnv27GH37t189dVXNDc3q4fSSktLCQ8PJzo6msjIyFElhw1laDjDrFmzRgyQsLa2Vj+vIAjs3r2bv/71r+zfv59586bmB78qdUzF7t27KS8v5/z58/T29vLPf/4TgIyMDIKDg695/BRlRimd6Sxuh9LUcImkgzkcSZAPS0Ozd7RUp6HN19qK3RDFgAJ56nlSYrI4lZhNe8uVkARX7wUs3xRI5MZAFjjd2ZTFyUZdRSPph3M4eziHrOP59HZfGawyszYhdI0/YWvFBK3wwchU2xqjabTidorzr3/9iy+++IIjR46MSpzt3LmTqqoqjh8/ft3Es97eXrZv305GRgZWVlb8+9//xsXF5Q5dwZ2nv78fPT29a6q0vb29JCcnExMTQ0pKCgsWLEAqlRIdHY2jo+MNKzeVlZXU19cjFouH9d6qGBogUV1dzYEDBzA3NycvL499+/Zhajr1DMIFQVD/Trq7u2lubsbe3p6SkhIiIyMJDw9n7969ALzzzjs0Nzfzhz/8QaNpbxOIVtxOc84X13EkPpukq2zFRlwL0gAAIABJREFURAFOrI4WEbnKF2OTORO4wsnPQL8C2alikmOzOJ2YTccQT1QPkQPL1kuIWB8w44Rub3cf8pOFpB3KJu1QNhcrmtTndPV08Q11I2SNP6Gr/Vno76DdNdAAWnE7hUlISODVV18lOTl5WLztUK4OkVizZg1lZWWcPHnyuoln//3f/41cLueLL75g165d7Nu3j3//+9/jdVkTgiAIFBUVqau6LS0tLF++HKlUSnh4uFrAjiWcoaOjg1/96ldkZGSgq6uLm5sbO3bsICAgQOPXcaeimru6unj99dd56623MDQ0ZO3atSiVSn7605+ydetW0tPT+eCDD3jyySeRyWTk5+eze/fu674vpyAz6ttmJopbFSpbscPxck4OsRWbZaDH4mWerFknJiTcDX39Kb8bcUfp7xsg83ghyQfOceZwrjr+F8BD7EjkegkRGwKY52A5gascfwRBoKKolrREOakHs8k7e14dpAFgOc+MkNV+hK4Raau6t4FW3E5h3N3d6e3tVdtZhYeH88UXX9wwRGLZsmWUlZXdMPFMKpWyc+dOFi9ezMDAAPPnz6ehoWFG3U22t7dz+PBhYmNjSU1Nxdvbm9WrV5OYmMi2bdvYuHHjqH4fAwMDvPLKKxgYGPDZZ5+hq6tLYWEhZmZmaqcMTXGnopoFQaClpYUPP/yQsrIy9PX12bRpE66urnz++ef4+/tzzz33UFJSwpkzZ+jp6eHNN9+cLhVbFTPnzc/MFrdD6ezs5cTRfA4nZCPPLEP1NWdmMZeVUf6siRbh4T1zBqjGSm9PHxkphRyPzSL1SN4woesV4ETkhgCWrZNga29xg2eZnnS2d3EuOZ+zh3NJP5JDU92VQT09/cGqbmiUiJBVfrj6aau6o0UrbmcYo0k88/f3JyEhAQcHBwDc3NxITU2dEW4LI6FUKjlz5gxPPPEEc+bMYfbs2axduxapVIpEIrlu9ba7u5snnngCiUTC22+/fcfjdO9EVHNHRwcHDx5k69atJCQk8Nvf/pampiZOnz6NpaUlx44dY9euXfj4+PDQQw9d4xs8jZhR3yhacXst9RfbSErM4XC8nIqyRvVxBycrVkeLtP25o6S3p4/0YwWkxGSRmpRHb/cVuyevACci1gewbJ14xlV04bL1Wl41Zw9nk344h9y0a6u6QSt9CVnlR9AKX0wtjSdwtZMbTYlbrZnbFGGkm5Cr7wRH85iZhK6uLvv37+dXv/oVjz76KI2NjcTHx/PJJ5+Qm5tLcHAwUqmUVatWqXtp29raePDBB9m6dSvPPffcuPz+qqurcXR0VP/dwcGB1NTU23pOQ0NDMjMzee+99xAEgd/85jd88803/PrXv+bLL79kxYoVdHZ28tVXXxEUFERERMTtXoYWLZMS23lm3L99Kfc9vITiwjoOx8s5diiXqoom/vXXY/zrr8fwD3BijbY/94bMnmPA0mgxS6PF9HT3cTYpj5RYGWeP5lGYVUFhVgV/e+/HGVnR1dHRYaGfAwv9HLjvpXV0tHWReSyP9CM5ZCTl0VTXyuFdpzm86zQ6Ojp4BjoTssqf4FV+eAW5oKdtldE42srtFGE01b0btSVUVlayfft26urq0NXV5emnn+all14a9hrHjh1jy5YtapurrVu3smPHjnG6wjvD0LCCoQwMDHDy5Eni4uJISkrCxMSE8PBw4uLieP3118c1YvZORTUfPHiQhx9+mCVLlrBv3z6Ki4t59913sbGx4Y9//CMAOTk5UzWcYbTMqLs7beV2dAwMKMg8e4Ej8XJOpRTS23ulPzd8qSdr1okICXfX+ueOgp6uXs4ezed4nIy0o/nDKrregc5ErJewNHpmVnRhsOhUll9NRlIeGUdzyTldTP/lfnAAY7O5BK7wIWiFL0ErfJnnOG130UaFti1hhnGjxDMVf/nLX8jOzlYPlO3du5fdu3cDg6lqtbW1BAUFcenSJYKDg9m/f/+wvs5jx47x4YcfEhMTM+7XN5EIgkBFRQWfffYZ9vb2vPzyy+P6+neiLQEG3zP5+fn8x3/8Bz4+PvzhD3+gpqaGp556iqVLl/If//Eft732KYBW3Gq5IZ2dvZw8VsDheDmyIf25Kv/c1VIRviJtz+Ro6Onq5eyxAo7HZpGWlEdvzxUbLU+x46DQXSeZca4LQ+np7EV+qoj0pFzSD+dQc6F+2HkH93lqoSte6sXcGbaToBW3M5CREs927NhBSEgImzdvpqenh4cffphz585haWnJrl27WLhw4YjPtWXLFp5//nmioqLUx2aquJ1oRnPjcjucP3+exx57jLvvvpvo6GgeeeQRfvOb37B582aNPP8kZ0YpEq24vT3qL7Zx7FAuRxKyuXD+iuiYb2fOaqmINetE2M/wytpo6enqJS0pn5MJ8mt6dN39HYjYMDPtxa6m5kI96Um5nDuWh+xEIV2XetTnVINpQSt9CVrhh7vEadqHSGjFrZYxU1ZWRmRkJDk5OcN8W48dO8Y999yDg4MDdnZ2fPjhhxoTWFpuzGiimm+H/Px8Hn30Ufr7+3n77bfVQSIzAK241TImSksuciQhm6TEHJoaL6mPe/nasTpaxPLVflhYGk3gCqcOPd19ZKQUcCJeTupV9mJufvYsjRazbJ14RiWjjcRA/wCFmWVkHssj81gehRkX1El8ACYWRgREehMQ4U3gch8WuNhMux0FrbidojQ1NWFhYXHHJ/CvR0dHB8uXL+fNN99k69atw861t7ejq6uLsbExcXFxvPTSSxQXF0/IOrVonvb2dtra2oYNr80Aptcn/03QilvNo1AokWeWczhBzoljBXR3DVYgdfV0CApdyOpoEUsivTA0NJjglU4N1PZicbJrhK6z53yWrROzbJ0EZ8/500643SodbV1kHS8gIymXzGN5w0IkAOY5WREY6UPgch8kEd6YW5tM0Eo1h1bcTlHefPNNnnvuOQwMDDh16hSrVq3C2Hh8bEH6+/vZuHEjUqmUV1999aaPd3FxIT09fZiVmIuLCyYmJujp6aGvr8/VX6SCIPDSSy8RFxfH3Llz1dP4WrRMEDPq21Erbu8sPT39nDlRRFJiNmdPn0dx2e5pjuEsli73ZrVURGCIK3r603vrWFP09faTebyIkwlyzhzKGZaMZu9qw7J1EiI2SFjoYzfjha4gCNSU1pOVUsC54/nIjhdyaUhkMoCbyJHA5YPDab6L3Jgzd+p5lmvF7RRDEARef/11/vd//5eqqiry8vJ4/PHHOXToECYmJigUCvT07txkriAIPPLII1haWvLxxx+P+Ji6ujrmzZuHjo4OaWlp3HvvvZSXlw/7UBlJ8A4lLi6OTz/9lLi4OFJTU3nppZdu29ZKi5bbYEZ9I2rF7fjR1tpF8pE8khKzycuuUh83tzBiRZQfq9b64+WrFWWjpb9vAPnpEk4kyDl1MJv25ivCbb6TFUulIpZGi/EKcJqwnc/JhEKhpDS7kqyUfDKT88k5U0x/7xUXhlkG+ngHuyJe5kVAhDdewa4YzL42cn6yoRW3UwylUskDDzzA8ePHcXJywsrKCmtra7788kt1ROzVj9fkP+ATJ04QERGBSCRSP+97771HRUUFAM8++yyfffYZn3/+Ofr6+hgaGvJf//VfLFmyZNjz3EzcPvPMM6xYsYJt27YB4OXlxbFjxzSe6qVFyyiZUcpCK24nhpqqZpIScziSmE11ZbP6uL2jJSvX+rNa6q8dRLsFFAMK5KnnOREv51SCnNamDvU5q3mmLFkrYuk6Mf6hC7UesZfp7e4jN62Ec8fyOZecz/nsymHe97MNZ+EX5o4kYrBn113iPCmH07Tidgpy33338dBDD7Fu3TqWL1+Oubk5/f39KBQKPv74Y0Qi0TU/IwjCpLrzd3V1xcLCAh0dHZ555hmefvrpYec3btzI66+/zrJlywBYvXo1H3zwASEht/1e1aJlLEyefzzjgFbcTiyCIFBcUMuRxBySD+fSPESUefnasUoqYsUaXyy0CVWjRqFQkp9ZxskEOacSsqmvaVGfM7MyZnGUP8uixYgXuzPLQJtLpeJSayfZp4rIOl6I/EQBZfk1w84bmRoiWuKJZJkX4qVeuPrZT4qKuFbcTjFqampYt24dBw8epLe3ly1btvDJJ58QERHB5s2buffee9m+fTtdXV3ExMSgUCjYuHEjJiaDDeIlJSXIZDLWrVuHoaHhhAnempoa7OzsqK+vJyoqik8//ZTIyEj1+Q0bNvDGG28ME7d/+MMfCA4OprCwkPvuu0/92NLSUn77298O85WdjkESWiaUGSVuReIA4bOvvmep2BV9bUVrQlEolGRllJGUmD18EE1Xh8BQV1ZG+bN0hTdGRlOvL3KiEASB4uwqTibIOBEvp2ZInLKRyRwWrfJlabSY4EivKdlveidpbWhHdqKQrOMFyI4XXuOva2w+F/9wD8RLPS+LXYcJqexqxe0UY//+/fz5z3/m6NGj7N69m++//14dsPDYY4+xZs0aHnzwQe6//36io6PJyMjg9OnTfPXVV/j6+vLiiy8yb9483nrrLfVzCoKAUqm8o726N2Lnzp0YGxvzi1/8Qn1stG0JCoUCe3t7UlNTcXZ2Vh+fLl673333HTt37iQ/P5+0tDRt5XrimFHi1t7FU7Bf8SwWJoZEL/Fh4zI/PBxtJnpZM56enn5OHy8kKTGH9DNXBtEMDPRZHOHJKqm/NhHtFhEEgbKC2sEe3UQ5ZYV16nOz58wieLk3S6UiFq32w9jUcAJXOjmpr2pCdqIQ2fFC5CcLqa9qHnbeyNQQ/8UeiJd6IV7qyUJ/x3ERu5oSt9oa/jhRWlqKpaUlgiBQVFSEt7c3AHl5ecyZMwcrKysOHTrEnj17kEgkPP/880RGRnLgwAEGBgb44YcfmDt3LiUlJfzlL3/ByMgIHR2dYcJW1cKg6X5dFZ2dnSiVSkxMTOjs7OTgwYPXVFU3b97MZ599xv33309qaipmZmYj9tseOXIENze3YcJ2OuHv78/evXt55plnJnopWmYQc2br42pnxYWaJv4vMZP/S8zE29mWDcv8kIZ7Y26i/ZKfCObMmcXKKH9WRvnT3tZFSlI+SQdzyMmqIPlIHslH8jAxNSRylQ8ro/zxD3BCV3dG3ZfdMjo6Orj62OHqY8fDr0RTfaGBU4nZnEyQUyir4FRiNqcSs9GfpUfAEg8WrxURHuWHpY3pzZ98BmDrYEXU/UuIun9wrqauopHsU0XITxaRfaqIuvJGUhPlpCbKgctiN9wD/3B3/BZ74CFxntRtINrK7TiRm5vLe++9R3FxMZcuXeLjjz9GKpXy7bffkp6ezgsvvMA333xDRUUFAQEB7Nmzh4qKCqKiovjoo4/Y9P/bu/fgKuosgePfwztAhoS4aADH8MjwCoghooBaQTBxRGFZcGVTlrxGd9aCcspSBoG1XHG2YHiUheUIDuIoO+owq6wO40CiPAbkFdAANyZACEEyQhJIwkMe4XH2j+7Em3DzAHLvTW7Op6orfbt/3X3ur7vuPen769/vsceYNWsWOTk5TJo0ifnz55ORkcH999/Pk08+SVSU87BCQUEB8+bNY+/evYwZM4ZnnnmGNm3qZ/i+3Nxcxo4dCzijaqWkpDB79myWLl0KOA+lqSrTpk1j7dq1tG3blnfffdfnXcspU6YQHx/PtGnTKi0PtYEkEhMTWbhwod25DZ4mlSEkJCRoeno6WXkFrNmcybrt2Zw55/Qj2qJ5M+4b2J1Rw/pas4UGovD4KTakeVi/zlNpRLRbOv2ExJH9GJEcR/fYWxvUcxeNQdGxUralOomuZ2duxUAIIkKf+DsYktSfocn96XyH7wejDRQcPcner/ZXJLzHj5yotL51WEt6xXdzEt4hsfRJ6E5Y+5vPNaxZQiPm8Xjo3bs3LVq04IUXXiAsLIy5c+cyfvx4Ro0axeTJkwEoLS0lPDycDz74gPXr1/POO+/QrFkzrly5QklJCUVFRSxbtoyWLVuyYMECzpw5w9NPP83AgQOJj49nwYIFLF682OeDasFUVlZG586dyczM5NZbK49IE2oDSVhyG3RNKiuo+kDZxbLL/P2bQ6zZkskOzxGuup/31myh4cnNKWBDqoeNaZkUHD9VsfynMbcwPCmOB5PiiO4SGcQIG6fSk2fZ8YWHrakevtlygEtlP3aX1a13NMMeHsDQpP7E9I62fyJqUHD0JPu2HSBzWw6e7Qc5evB4pfXNmjejR//bibs3lv5DY+l3T086RF3/oBKW3DZy5U0IiouLKS4upmfPnmRkZDBr1iySk5MZNWoUYWFhdOnShZSUFIYPH05KSgrt2rVj8+bNfPzxx7Rr145WrVpx5MgRVqxYwcqVK3n//fdJS0sD4I033qCoqIhXX301yO+2sk8//ZQ333yT1NTUWsvGxMQwdOhQvvjiCzp16oTH4wGguLiYJ554gry8PGJiYli1ahWRkdd+8L/33nu89tprAMyZM4eJEyfW2/sYOXIkx48fv2b5b37zm4rhbS25DbpG+20lIo8DrwB9gMGqWms3CDX1llBUcpa127JYsyWTw9//2L6u1x2dGDWsL8n39ibyJ23rJ3hzw65eVbI8+WxI9bDpy285VXquYl3vfl0Y/lA/HhjRl6gQGI0q0M6dvcDuTdlsTd3Hzg1ZnDtzoWJd9B1RDBkZx5Ck/vQZFNMgu8lqSEpPnOHbnTl43GQ3Z+93XHXbkpf76c+i6XN3D/oO7k7fwT3o2rP2UecsuQ1Ra9eu5ZNPPiE7O5vp06czbtw4Jk+ezNSpUyt6JYiKiuKtt97i9OnTLF++nNjYWFauXMno0aMZMWIEzz33HAAvvfQS58+f5/XXX29QXYpNmDCB5OTkijvU3nwNJLFy5UrCw8N56qmnKpLbGTNm0LFjR2bOnMm8efMoKSlh/vz5lfZVXFxMQkICu3btQkQYNGgQu3fv9pkE+4slt0HXMC76GyAifYCrwDLghZtNbsupKlmHC1izpXKzhebNmzFsQDceva8fw+7sRktrthB0ly9f4Zv0w6xP9fDVpmwunL8EOD0u3Bkfw/CkOO5L7E378PppetaUlF28zJ5tB9m6bh/b0jyc8uq2rUNUe+4Z0ZchD/Xnrvtiad3GhlauzfmzF8janYtn60E82w+SvfswZRcuVSoTHtmOPglOotvn7h70uiuGNlV6C7Hktgm4ePEirVu3Zvny5cyYMYMXX3yR0aNHM27cOLKzswF4/vnniYiI4OWXX6Zr167s3LmTzp07A85DTYsWLSI5ObnBJLfnzp3j9ttvJzc3lw4dOgBUarNb3UASeXl5PProoxXJrXcvDMeOHSMxMZH9+/dXOtaHH37Ixo0bWbZsGXBtTw6BYMlt0AX/or9JIrKRekxuvV0su8zmjFz++lUm2/flccVtmxgRHkbyvb0ZmziA7l1s8IGG4Pz5MrZvOcDGtEzSt+Vw+bJzl6xly+YMHtqT4Q/Fcf+DfRrE53xjU96X7rZUD1tT93H8u5MV69q0bcWgB3ozNLk/D4waSAvr0aJOLpVdJmfvd2SlH+Lb9EN8u+MQxQWnKpUpb8rQd3AP+t7dg3uSBhDWvo0lt01JcXExJ06c4LbbbiMlJYUffviBHj16sGnTJpYsWcKAAQNISUlh7dq1hIWFUVhYSFxcHIWFhbXvvBGomtxGRERQWlpasT4yMpKSkpJK2yxcuJALFy4wZ84cAObOnUtYWFilrsv8ZfXq1UyfPp2ioiIiIiIYOHAg69at8/txzTUa/Te9P5NbbydKf2Dd9mzWbPFwKN/5cv/1UyMY9+CdN7Q/4z9nTp9ny8ZsNqR62PN1HqoQ2zuaN9/9RbBDa/RUlSMHjlckujkeZ2jliKj2/M+OV6y5wg1SVQrzi/l2Rw6ZOw+RlX6Iw5n5FQ/7Aaw6sJgOUeEBSW5NAyUi9wAxQE8gFdgNLAH+DGwG/gvoqqqTRaSZql6tbl+NgYjEAGtUNc59XaqqEV7rS1Q1sso2LwKtVfU19/V/AudUdVHAAjemBiLyBXCbj1WzVfVTt8xGakhuReQZoHyowDjA44dQb9YtwIlaSwVHQ43N4ro+Ftf1aahx9VLVm25Q3nA7KTM1UtUdwA7vZSKyH1gOnAX+F/jv8uKBjS4gCkQkWlWPiUg04OsWdT6Q6PW6K7AxALEZUyeqOrIe9vE28DaAiOyqj7se9a2hxgUNNzaL6/pYXNenIcdVH/ux++shRFXfAH6GcxdnvqoedJeHYnL7GVDe9cFE4FMfZdYBSSISKSKRQJK7zBhjjDEhypLbEKOOdOBKsGOpLyLyIbAN6CUi+SIyFZgHPCQiB4GH3NeISIKILAdQ1WJgLpDuTq+6y4xp8ERkrIjkA0OAv4qI/WNmjDF1YM0SQlQo3a1V1eq6Nxjho+wu4Bder1cAK/wUmjF+o6qrgdXXudnb/oilHjTUuKDhxmZxXR+L6/qEdFz2QJkxxhhjjAkZ1izBGGOMMcaEDEtujTGmERGRx0UkU0SuikhClXUviUiOiOwXkeRqtu8mIjtE5KCI/ElE6n34JXe/Ge6UJyIZ1ZTLE5F9brl6eUq6DrG9IiL/8IrvkWrKPezWY46IzPRzTAtEJFtE9orIahGJqKZcQOqrtvcuIq3dc5zjXksx/orF65i3i8gGEclyr//nfJRJFJFTXuf2ZX/H5XXsGs+NOJa4dbZXROIDEFMvr7rIEJHTIvKrKmUCUmciskJECkXE47Wso4ikuZ9Fae6D3762neiWOSgiE32VuYaq2mSTTTbZ1EgmoA/QC6dbuwSv5X2BPUBroBtwCGjuY/tVwAR3finwH36OdxHwcjXr8oBbAlx/r+D0G1xTmeZu/XUHWrn12tePMSUBLdz5+Ti93QSlvury3oFngaXu/ATgTwE4b9FAvDsfDhzwEVciTn/oAbue6npugEeAv+EMLHMvsCPA8TUHjgN3BKPOgAeAeMDjtey3wEx3fqav6x7oCOS6fyPd+cjajmd3bo0xphFR1SxV3e9j1RjgI1W9qKqHgRxgsHcBERHgQZx+sAHeA/7ZX7G6x/tX4EN/HcNPBgM5qpqrqmXARzj16xeqmqqql92X23H65A6Wurz3MTjXDjjX0gj3XPuNqh5T1a/d+TNAFtDFn8esZ2OA99WxHYhw+2gPlBHAIVU9EsBjVlDVvwNVeyvyvo6q+yxKBtJUtVhVS4A04OHajmfJrTHGhIYuwFGv1/lc++UfBZR6JVK+ytSn+4ECdfvc9kGBVBHZ7Y60FijT3J+GV1TzU2hd6tJfpuDc4fMlEPVVl/deUca9lk7hXFsB4TaDuIsqAxm5hojIHhH5m4j0C1RM1H5ugnlNgXOHvbp/MoNVZ7eq6jFw/nkBOvkoc0P1Zl2BGWNMAyN1GJbX12Y+llXtDqcuZeqkjjH+GzXftR2mqt+LSCcgTUSy3Ts8N6Wm2IC3cPq/VvfvIpyEstIufGx7U10L1aW+RGQ2cBn4YzW78Ut9VQ3VxzK/XUfXS0TaAx8Dv1LV01VWf43zs/tZty31/wGxgYiL2s9NMOusFTAaeMnH6mDWWV3cUL1ZcmuMMQ2M3tiwvPnA7V6vuwLfVylzAufn0BbuHTdfZeolRhFpAfwLMKiGfXzv/i0UkdU4P4nfdLJW1/oTkd8Da3ysqktd1mtM7oMyjwIj1G1s6GMffqmvKury3svL5LvnuQPX/uRc70SkJU5i+0dV/aTqeu9kV1U/F5HficgtqnrC37HV4dzU+zV1HX4OfK2qBVVXBLPOgAIRiVbVY24TjUIfZfJx2gWX64rzvEGNrFmCMcaEhs+ACe6T7N1w7r7s9C7gJk0bgPHuouqGrq4PI4FsVc33tVJE2olIePk8zkNVHl9l61OVdo5jqzlmOhArTs8SrXB+0v3MjzE9DPwaGK2q56opE6j6qst79x7+fDywvrqEvL64bXrfAbJUdXE1ZW4rb/srIoNxcpyT/ozLPVZdzs1nwFNurwn3AqfKf5IPgGp/QQlWnbm8r6PqPovWAUkiEuk2IUpyl9XM30/I2WSTTTbZVH8TTkKWD1wECoB1Xutm4zzpvh/4udfyz4HO7nx3nKQ3B/gz0NpPcf4B+GWVZZ2Bz73i2ONOmTg/zwei/lYC+4C97pdrdNXY3NeP4DyRf8jfsbnn4iiQ4U5Lq8YUyPry9d6BV3GSb4A27rWT415L3QNw3u7D+Tl6r1c9PQL8svw6A6a5dbMH58G8oQG6pnyemyqxCfCmW6f78OrpxM+xtcVJVjt4LQt4neEk18eAS+7n11ScdtpfAgfdvx3dsgnAcq9tp7jXWg4wuS7HsxHKjDHGGGNMyLBmCcYYY4wxJmRYcmuMMcYYY0KGJbfGGGOMMSZkWHJrjDHGGGNChiW3xhhjjDEmZFhya4wxxjQRIhIhIs+684ki4msQi5q2nyQinetQrqOIpInIQfevr2GOjfELS26NMcaYpiMCePYmtp+E0/9ubWYCX6pqLE4fpjNv4pjGXBfr59YYY4xpIkTkI2AMzkAfl4AfcIZljgN2A0+qqorIIGAx0N5dPwkYhjM4xz+A88AQ4EXgMSAM2Ar8u7v9fiBRfxxadaOq9grU+zRNmyW3xhhjTBMhIjHAGlWNE5FEnCFP+wHfA1/hJKs7gE3AGFUtEpEngGRVnSIiG4EXVHWXu7+Oqlrszq8EVqnqX0SkVFUjvI5boqrWNMEERItgB2CMMcaYoNmpqvkAIpIBxAClOHdy00QEoDnO0Km+DBeRGTjDvHbEGcr1L36O2ZgaWXJrjDHGNF0Xveav4OQFAmSq6pCaNhSRNsDvgARVPSoirwBt3NUFIhLt1SyhsP5DN8Y3e6DMGGOMaTrOAOG1lNkP/JOIDAEQkZYi0s/H9uWJ7AkRaQ+M99rHZ8BEd34iTvMHYwLC7twaY4wxTYSqnhSRr0TEg/NQWIGPMmUiMh5YIiIdcHKF13GaHPwBWCpNCmmDAAAAeUlEQVQi5Q+U/R7YB+QB6V67mQesEpGpwHfA4357U8ZUYQ+UGWOMMcaYkGHNEowxxhhjTMiw5NYYY4wxxoQMS26NMcYYY0zIsOTWGGOMMcaEDEtujTHGGGNMyLDk1hhjjDHGhAxLbo0xxhhjTMiw5NYYY4wxxoSM/wce77fiaX6WLQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# grid over which we will calculate J\n", + "theta0_vals = np.linspace(-10, 10, 100)\n", + "theta1_vals = np.linspace(-1, 4, 100)\n", + "\n", + "# initialize J_vals to a matrix of 0's\n", + "J_vals = np.zeros((theta0_vals.shape[0], theta1_vals.shape[0]))\n", + "\n", + "# Fill out J_vals\n", + "for i, theta0 in enumerate(theta0_vals):\n", + " for j, theta1 in enumerate(theta1_vals):\n", + " J_vals[i][j] = computeCost(X, y, np.array([theta0, theta1]))\n", + " \n", + "# Because of the way meshgrids work in the surf command, we need to\n", + "# transpose J_vals before calling surf, or else the axes will be flipped\n", + "J_vals = J_vals.T\n", + "\n", + "# surface plot\n", + "fig = pyplot.figure(figsize=(12, 5))\n", + "ax = fig.add_subplot(121, projection='3d')\n", + "ax.plot_surface(theta0_vals, theta1_vals, J_vals, cmap='viridis')\n", + "pyplot.xlabel('theta0')\n", + "pyplot.ylabel('theta1')\n", + "pyplot.title('Surface')\n", + "\n", + "# contour plot\n", + "# Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100\n", + "ax = pyplot.subplot(122)\n", + "pyplot.contour(theta0_vals, theta1_vals, J_vals, linewidths=2, cmap='viridis', levels=np.logspace(-2, 3, 20))\n", + "pyplot.xlabel('theta0')\n", + "pyplot.ylabel('theta1')\n", + "pyplot.plot(theta[0], theta[1], 'ro', ms=10, lw=2)\n", + "pyplot.title('Contour, showing minimum')\n", + "pass" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/introduction_to_matrix.ipynb b/introduction_to_matrix.ipynb new file mode 100644 index 000000000..f92f097c1 --- /dev/null +++ b/introduction_to_matrix.ipynb @@ -0,0 +1,102 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "from mpl_toolkits.mplot3d import Axes3D # needed to plot 3-D surfaces\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils \n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def warmUpExercise():\n", + " \"\"\"\n", + " Example function in Python which computes the identity matrix.\n", + " \n", + " Returns\n", + " -------\n", + " A : array_like\n", + " The 5x5 identity matrix.\n", + " \n", + " Instructions\n", + " ------------\n", + " Return the 5x5 identity matrix.\n", + " \"\"\" \n", + " # ======== YOUR CODE HERE ======\n", + " A = [] # modify this line\n", + " A=np.eye(5)\n", + " \n", + " # ==============================\n", + " return A" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 0., 0., 0., 0.],\n", + " [0., 1., 0., 0., 0.],\n", + " [0., 0., 1., 0., 0.],\n", + " [0., 0., 0., 1., 0.],\n", + " [0., 0., 0., 0., 1.]])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "warmUpExercise()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/plotData.ipynb b/plotData.ipynb new file mode 100644 index 000000000..c4f11e1cb --- /dev/null +++ b/plotData.ipynb @@ -0,0 +1,136 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "from mpl_toolkits.mplot3d import Axes3D # needed to plot 3-D surfaces\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils \n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Read comma separated data\n", + "data = np.loadtxt('ex1data1.txt', delimiter=',')\n", + "X, y = data[:, 0], data[:, 1]\n", + "\n", + "m = y.size # number of training examples" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def plotData(x, y):\n", + " \"\"\"\n", + " Plots the data points x and y into a new figure. Plots the data \n", + " points and gives the figure axes labels of population and profit.\n", + " \n", + " Parameters\n", + " ----------\n", + " x : array_like\n", + " Data point values for x-axis.\n", + "\n", + " y : array_like\n", + " Data point values for y-axis. Note x and y should have the same size.\n", + " \n", + " Instructions\n", + " ------------\n", + " Plot the training data into a figure using the \"figure\" and \"plot\"\n", + " functions. Set the axes labels using the \"xlabel\" and \"ylabel\" functions.\n", + " Assume the population and revenue data have been passed in as the x\n", + " and y arguments of this function. \n", + " \n", + " Hint\n", + " ----\n", + " You can use the 'ro' option with plot to have the markers\n", + " appear as red circles. Furthermore, you can make the markers larger by\n", + " using plot(..., 'ro', ms=10), where `ms` refers to marker size. You \n", + " can also set the marker edge color using the `mec` property.\n", + " \"\"\"\n", + " fig = pyplot.figure() # open a new figure\n", + " \n", + " # ====================== YOUR CODE HERE ======================= \n", + " pyplot.plot(x, y, 'ro',ms=10, mec='k')\n", + " pyplot.ylabel('Profit in $10,000')\n", + " pyplot.xlabel('Population of City in 10,000s')\n", + "\n", + " # =============================================================" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEHCAYAAACncpHfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de5wcVZ338c9vZhqYcdIhMElkUcCdR10VI2jUILoPrvsooxhWjBcChEtCIBd2MwZNgrvP4uNrQdTA7hq8QMYLCRHciBrZzLoYb+yG4AaUAQRl2kVEuSTqhonhFTrh9/xR1UlPp7ureqaru6f7+3696tU91VVdpzud+tU5dc7vmLsjIiKtp63eBRARkfpQABARaVEKACIiLUoBQESkRSkAiIi0KAUAEZEW1ZHUG5vZi4GbgBcCzwM3uPs/mdmVwMXAjnDTK9x9c7n36unp8RNOOCGpooqINKV77rlnp7tPLfV6YgEA2Acsd/d7zWwScI+Z3RG+dp27fzruG51wwgls3749kUKKiDQrM/tVudcTCwDu/gTwRPh8xMweAo5N6ngiIlKZmtwDMLMTgJOBu8NVS81syMy+aGZTalEGEREZLfEAYGbdwNeBZe7+DPA5oBc4iaCGsLrEfgvNbLuZbd+xY0exTUREZBwSDQBmliI4+d/s7rcBuPtT7r7f3Z8HbgTeUGxfd7/B3We6+8ypU0vewxARaTqZTIb+xYuZnk7T3tbG9HSa/sWLyWQyVT1OYgHAzAwYAB5y92vz1h+Tt9l7gAeSKoOIyEQzODjIrBkz6Fy7lq0jI+x1Z+vICJ1r1zJrxgwGBwerdixLKhuomb0ZuBO4n6AbKMAVwNkEzT8OPApcEt4wLmnmzJmuXkAi0uwymQyzZsxg0549nFLk9buA2V1dbBsaore3N/L9zOwed59Z6vUkewH9B2BFXirb519EpFWtWb2ai7PZoid/gFOABdks1193HdeuWTPu42kksIhIg9iwfj3zs9my2yzIZtmwbl1VjqcAICLSIHbu3s3xEdscF25XDQoAIiINoqe7m7JDd4HHwu2qQQFARKRBzD33XAZSqbLbrE2lmHveeVU5ngKAiEiDWLp8OTemUtxV4vW7CALAkv7+qhxPAUBEpEH09vZy08aNzO7qYlUqRQbIAhlgVSrF7K4ubtq4MVYX0DgUAEREGkhfXx/bhobYu3Ahp6bTdLa1cWo6zd6FC9k2NERfX1/VjpXYQLBq0kAwEYFgoNSa1avZsH49O3fvpqe7m7nnnsvS5curdlXcTKIGgqkGICITQi1TJLQK1QBEpOFVO0VCq1ANQEQmvEpSJEh8CgAi0vBqnSKhVSgAiEjDq3WKhFahACAiDa/WKRJahQKAiDS8WqRIqNUsXI1EAUBEGl7SKRJatYupAoCINLwkUyRkMhnmzZnDpj17uCqbpZdgpqxe4Kpslk179jBvzpymrAkoAIjIhJBUioRW7mKqgWAi0tKmp9NsHRmhXN0hA5yaTvPkrl21KlZVaCCYiEgZhV1MM0A/MB1oDx//GdgxMlKH0iVLAUBEWlp+F9NBYBbQCWwF9oaPXcAR7k13M1gBQERaWq6LaQaYB2wCroJRN4OvBr4LTXczWAFARFparovp3wIXQ0vdDFYAEJGWluti+i1gfsS2zZZvSAFARFpeX18fe81aLt+QAoCICK2Zb0gBQESE2uQbajQKACIiJJ9vqBElFgDM7MVm9n0ze8jMHjSzvwnXH2Vmd5jZI+HjlKTKICISV5L5hhpVkjWAfcByd38FwdiKJWb2SmAlsMXdXwpsCf8WEam7pPINNaqa5QIys28Ba8LlNHd/wsyOAX7g7i8vt69yAYmIVK4hcgGZ2QnAycDdwHR3fwIgfJxWizKIiMhoiQcAM+sGvg4sc/dnKthvoZltN7PtO3bsSK6AIiItKtEAYGYpgpP/ze5+W7j6qbDph/Dx6WL7uvsN7j7T3WdOnTo1yWKKiLSkJHsBGTAAPOTu1+a9tAk4P3x+PvCtpMogIiKldST43qcC5wH3m9lPw3VXAJ8AvmZm8wkG1r0vwTKIiEgJiQUAd/8PwEq8/LakjisiIvFoJLCISItSABARaVEKACIiLUoBQESkRSkAiIi0KAUAEZEqymQy9C9ezPR0mva2Nqan0/QvXtyQk8krAIiIVMng4CCzZsygc+1ato6MsNedrSMjdK5dy6wZMxgcHKx3EUepWTbQ8VA2UBFpdJlMhlkzZrBpzx5OKfL6XcDsri62DQ3VbE6BhsgGOpFNpOqciNTPmtWruTibLXryBzgFWJDNcv1119WyWGUpAJQx0apzIlI/G9avZ342W3abBdksG9atq1GJoqkJqIRGrM6JSONqb2tjr3vZ/DpZoLOtjX3799ekTGoCGqOJWJ0Tkfrp6e7mVxHbPBZu1ygUAEqYiNU5kWbXyPfk5p57LgOpVNlt1qZSzD3vvBqVKJoCQAk7d+/m+Ihtjgu3E5HkNfo9uaXLl3NjKsVdJV6/iyAALOnvr2WxylIAKGEiVudEmlUmk2HenDls2rOHq7JZegly2fcCV2WzbNqzh3lz5tS1JtDb28tNGzcyu6uLVakUGYI2/wywKpVidlcXN23c2FD3DBUASpiI1TmRZjVR7sn19fWxbWiIvQsXcmo6TWdbG6em0+xduJBtQ0P09fXVtXyF1AuoBPUCEmkc09Npto6MUO5/WgY4NZ3myV27alWshqdeQGM0EatzIs1K9+SSoQBQxkSrzok0K92TS4YCQITe3l6uXbOGJ3ftYt/+/Ty5axfXrlmjK3+RGtI9uWQoAIhIw5uIXSwnAgUAEWl4uieXDAUAEZkQdE+u+iK7gZqZAW8AjgUc+C3wY69h/1HNByATUSaTYc3q1WxYv56du3fT093N3HPPZeny5bpSlZoYVzdQM3s78AhwJfBO4F3Ax4BHwtdEpIhGT1sgAhE1ADN7COhz90cL1r8E2Ozur0i2eAHVAGQi0SBCaRTjHQjWATxeZP1vgPJ9skRa1ERJWyASVQNYBbwfuAX4dbj6xcAHga+5+9WJlxDVAGRiUdoCaRTjqgGEJ/hzACO4cHlT+PycqJO/mX3RzJ42swfy1l1pZr8xs5+Gyzsr+TAiE4HSFshEEdkN1N1/5u6fAP4e+Dt3/4S7/yzGe38ZOL3I+uvc/aRw2VxZcUVqYzwTjyhtgUwUUb2AjjOzW8zsaeBu4MfhVf0tZnZCuX3d/UfA76tWUpEaGW8PHqUtkIkiqgZwK/AN4Bh3f6m7vxQ4BvgmwX2BsVhqZkNhE9GUMb6HSCKqMfGI0hbIRBEVAHrc/VZ3PzCFvbvvd/dbgKPHcLzPEfxfOgl4AlhdakMzW2hm281s+44dO8ZwKJHKVaMHj9IWyEQR1QvoFoJmnK8wuhfQ+QTB4f1l3zxoJrrd3U+s5LVC6gUktVLNHjyZTIbrr7uODevWHRwJfN55LOnv18lfaiKqF1BUADgMmA+cSZAKwgjGBWwCBtx9b8TBTyDvJG9mx7j7E+HzfuCN7v7BqA+hACC10t7Wxl53OspskwU629rYt39/ma1E6i8qAJT7nePuzxE023xuDAf+KnAa0GNmjxP0IjrNzE4iyCn0KHBJpe8rkqSe7m5+FVEDUA8eaRZRvYA6zOwSMxsMb9zeFz6/1MzKdnNw97Pd/Rh3T7n7i9x9wN3Pc/dXu/sMd5+dqw1IdYyn66IE1INHWknUTeB1BDdsP8boZHCvAdYnWzSphJKPVYd68EgriQoAr3X3Re6+zd0fD5dt7r4IOLkWBZRo1ei62IqK1ZjWrF7NNZ/5jHrwSEuICgB/MLP3mdmB7cyszcw+APwh2aJJXEo+VrlyNaYVl13GNZ/5jCYekaYX1QvoBOAa4C84eMI/Evg+sNLd/zvh8gHqBRRFyccqo3TN0irGmwzuUXf/gLtPJUwG5+7TwnU1OflLNCUfq4xqTCKB2HMCu/vv3H0ngJnNNLNjkyuWVELJxyqzYf165mezZbdZkM2yYd26GpVIpD7GOin8ZcDtZnZrNQsjY6Oui5VRjUkkMKYA4O7nu/vJwIIql0fGQF0XK6Mak0ggMgCY2WQz+4CZfcjM+sPnRwK4+0jyRZQoSj5WGdWYRAJRI4HnAfcSpHToAl4AvBW4J3xNGkRfXx/bhobUdTEG1ZhEAlHdQH9OkLDtfwrWTwHudveXJVw+QN1ApfoGBweZN2cOC7JZFmSzHEfQ7LM2lWJtKsVNGzcqaMqEN65uoATZP4tFiOfD12SCa9X8QY1aY2rVfw+pE3cvuRDk/c8QZAO9Ilw+H667oNy+1Vxe97rXucQzPDzsyxYt8mmTJnmbmU+bNMmXLVrkw8PDh2y7efNm7+nq8lWplA+DZ8GHwVelUt7T1eWbN2+uwydoXfr3kGoDtnu5c3y5F4P9mQJ8EFgOXB4+nxK1XzWXiRwAKjkhj/cYkzs7vQv88vDEUe4EMjw87D1dXb4Vgp9BwbIVvKerq6rllNL07yFJGHcAaIRlogaAWlzR5Y5xaUeHHx2eKOKcQJYtWuSrUqmi2+aWlamU9y9ZMu4ySjT9e0gSEgsAwP1j3bfSZSIGgFpc0eUfYxn4qjInj8ITyLRJk3w4Yvth8OnpdLW+EilD/x6ShKgAENUN9KwSy3uBF1b9hkQTqUW+mfxjbCCYu7Oc/PQGGg3bWPTvIfUQ1Q00C9xM8Z5Ac9x9UlIFyzcRu4HWIkNn/jHagb2Un+Mzfy5bZRBtLPr3kCSMtxvoEPBpd7+wcAH+J2LfllaLK7r8Y/RARekNNBq2sejfQ+ohKgAsA54p8dp7qlyWplKLfDP5x5gLDERsn38C0WjYxqJ/D6mHqPkA7nT3x0q8NrHaZGqsFld0+cdYCtwIsU8gyh/UWPTvIXVR7g5xeH9gGvCC8Hkn8FHgE8AxUftWa1EvoHjH2AzeA74y7DHyXPi4oqOjZLfT4eFh71+yxKen097e1ubT02nvX7JE/c3rRP8eUk1UYSDY94DjwuefBL4ErAC+H7VvtZaJGADcD/bRXxmOA8idkFcmMA4gd4yHwC8CnwzeBn50V5dOICItKioARHUDPR/oBU4Ln38A2A48CRxvZvPMbEa1ayXNohb5ZgqPcWJbG/+aTnPRkiX8YniYnX/8I9euWaOmAxE5RFQ30OOB7wDnAZOBq4A5BIngNgLvBXa5e6L90iZiN1ARkXqL6gZarts47v4rM/sn4HYgBcxz98fM7Dhgp5e4QSwiIo0vckYwd/8cQTPQi9z99nD174CzkyyYSC0o/bK0slhzArv7bnffk/f3H71gkhiRiWZwcJBZM2bQuXYtW0dG2OvO1pEROteuZdaMGQwODta7iCKJGtOk8HGY2RfN7GkzeyBv3VFmdoeZPRI+Tknq+CLlZDIZ5s2Zw6Y9e7gqm6WXoD20F7gqm2XTnj3MmzNHNQFpaokFAODLwOkF61YCW9z9pcCW8G+RmqtFsj6RRle2F9C439zsBOB2dz8x/PvnwGnu/oSZHQP8wN1fHvU+6gUk1abka9IKxpsMLvcmZ4XNNrvM7BkzGzGzUjmCypnu7k8AhI/TyhxzoZltN7PtO3bsGMOhREpT+mWR+E1AnwRmu/tkd0+7+yR3TydZMHe/wd1nuvvMqVOnJnkoaUG1SNYn0ujiBoCn3P2hKhzvqbDph/Dx6Sq855io+19rqyRZn34r0qziBoDtZnarmZ2dPzPYGI63CTg/fH4+8K0xvMe4qfufxE2/fOJrX6vfijSvcomCcgtBArjC5YsR+3wVeIIgq+3jBDMWHk3Q++eR8PGoOMevZjK4WmTplIkhKlnfwMCAfisyoTGeZHB5QeKQGcHc/aKIfc5292PcPeXuL3L3AXf/nbu/zd1fGj7+fgwxa1zU/U9yopL13b99u34r0tSiksF9xN0/aWafoci8wO7+10kWLqea3UDV/U/i0m9FJrpxJYMDcjd+m6YTvrr/SVz6rUizi8oG+u3w8Su1KU7yerq7+VXEVZ26/wnotyLNL8lUEA2pFnP1SnPQb0WaXcsFgLjd/3KTp0vjqHV/fP1WpNnFTQVxapx1E0Fvby83bdzI7K4uVqVSZAj6qWaAVakUs7u6uGnjRk2h2GDqMXZDvxVpeuX6iOYW4N4465JakpgUfnh42PuXLPHp6bS3t7X59HRak6eP0fDwsC9btMinTZrkbWY+bdIkX7ZoUdW+y3qP3dBvRSYqIsYBRHUDPQV4E7AMyO/snAbe4+6vSSwy5VE20MY1ODjIvDlzuDibZX42y/HAr4CBVIobUylu2riRvr6+cR2jf/FiOteu5apstuQ2q1Ip9i5cyLVr1ozrWCLNZLzZQA8Dugl6C03KW54hmBxeWkCptvfvfe97NZlUZcP69cwvc/KHYEDWhnXrxnUckVYTaz4AMzve3aOSJyZGNYD6KXeFf707p7tz6/79JfevxpV5e1sbe93L9lnOAp1tbewrUxaRVjOuGoCZ/WP4dI2ZbSpcqlrSBjERMz8mVeaoaRP/bd8+tuzfT7mjVOPKXKmbRZIR1QR0U/j4aWB1kaWpTMQsoUmWOVbeJOD6Mu9RaqRsJUFL/fFFElLuDjHB/L0A15TbLukliV5Aherd02Qski7ztEmTfLjEe+eWYfDpUa+n06PeN5eFc1WYhTMbbrcqzMK5efPmmn5OkWZFRC+gqADwM+B/E+QEOhl4bf5Sbt9qLrUIAMsWLfJVqVTZk93KVMr7lyxJ5Phj6Uo53jJHHbPNzLMRAeA58PbwBL4MfBp4W/i4DPySjo5Rxx/ryTwqdXNh0BCR8QeAOcAgMAJ8v2D5Xrl9q7nUIgDEvtotuJqthlJXxCs7Ojzd0eGTOzuLnqDHU+Y4V+Fx378bvAt8efh37r1WhOsHBgYOHHc8QUv98UUqM64AcGAj+Ls42yW11CIAxL7aNTuwTzUGQMW5Ij4a/OGCE/TAwIAfXuSKu/CE/Rx4e1tbxcfs6eryC+bOjTxZfwj8BeE+ca7o6xloRVpNVACIOyHMx81stpl9OlzOqMb9h0bS3dERq6dJd3gzslo3X+PcaL0Y+AKj+9dfNn8+5wFbgb3hYycwi6DKll/mwt4xcSfFaTOLzIVzI3BeuE+598pNmqIUyyINpFx0yC3A1QRTOF4ULncAV8fZtxpLLWoAk1MpXxlxZboCfHIqVdWbkmO90foR8P5Sx86rCRRrTqnkKrxU2/vlZj4ZfHKRWke5K3rVAERqhyo1AQ0BbXl/twNDcfatxlKLAGDhibPsSR28zayqN4wrudEaFRQOHDsMDqUCUexjhk1HxdreJ6dSvoWg+amS96r3zXaRVlLNAHBU3t9HNVsAmDZpkg+EJ/mV4Qn2QE+TcP1AeGVaeBVbrAfMheBHd3fHOu5YagDFgkL+9pPDk3+x3jHVuArPBZFpVFYDUJdOkdqJCgBx5wO4GviJmX3ZzL4C3ANcVY0mqEYx99xzGU6l2EbQpn4qQZv6qeHf24BHwsFG+e3YgwTt7p2Mbo+fDjy7e3fkvYBYg5yAuQXrHgN6Smx/HEG3rW1DQ0UTsVVjYFVudO5cYKDsO41+L6VYFmkg5aJDEEAw4MXAMcBs4EzghVH7VXOptAYwlt45lVyZ5q6gh4nRbBRxNRvruEWusleGtYxife+3RFy9V+MqPNeUM9bvQF06RZJHlZqA7omzXVJLJQGg0lGmxfaNGmyUO/ktA18V0fwRpz271HE/Ep5cNxc5qaYJuoeuYnTf+1Vh889fnXHGmI4Zd2BVfhDZTPGms+XgR3d2apCWSJ1UKwBcD7w+zrZJLHEDQDWubONcmW7ZssXT7e3eSfk++Ln276nd3ZE1ksLjHt3V5en2dr+ko2PUSXVFR4cfEZ7ky44d6OyMvJou9lkvOuccv2Du3Fi1p/wgsgX8b8Cnht9JF/hZZ5xR9Sv6pCefEWkm1QoAPwP2EzTVDgH304A3gWvRw2Tz5s1+dGenX27mwwQDtC4MT8gGflRBMHguPCGOpUZSKhi947TT/PIq1DyKfbZKa0+1bMoZT+1OpBVVKwAcX2yJs281lrgBIOk+5sPDw37kYYcduPLONX0UNsPkeg1t5uB9gmr2eKnkc8a9Ym703jmNXj6RRjSuAAAcQTAd5BrgEqCj3PZJLXEDwFjSOVTiHaed5svzTrBxxg0soPiArWJX6nFP1pV8zrhXzI3eP7/RyyfSiMYbAG4F1ocn/28C/1Ru+6SWatcAuqDiK8Xh4WHv5GDTTpwbwB8Bn8ToewOFYwZ6CEYXDwwMxD5ZV/I5myVHT6OXT6QRjTcA3J/3vAO4t9z2cRfg0fA+wk+jCugVBIBlixb5h83KniRWgs8yq/hKcdmiRaNGvcYdAHV03t+lmoyWhyfr1TFP1nGuhi8381lR30XeFXOlo4NrrdHLJ9KIxhsA7i3391iXMAD0xN2+kl5AkVe9jO4nH7fZZdqkSaP648dOgZAXDOI0GZUKKoVNRVHt4V3h54x7xdzoV9iNXj6RRhQVAKJGAr/GzJ4JlxFgRu65mT0TPcystnp7e3mWYLTaKhg9yjRcfxPwFoJsk5Vk9Ny5e/eoUa89ECt76KTw+RqCrJ5jnV5xQTbLF66/nva2Nt508smcetppvLuzs+Ro2meBP48oX37WzUafdrHRyycyIZWLDkktwH8D9xKklFhYYpuFwHZg+3HHHRc74k2bNMm3ENx4nR5egU8P/x7Ou1I8uru7ol4luffNXcXHuQewoqPD0+3tvpUKcuZE1Cby7w1MOeIIP+uMM4p2waz0irnRe9k0evlEGhHV6AZa7QX4k/BxGnAf8Ofltq9kJHCc9vEVHR1+7JQpFfWlX7Zoka/s6DjQjn8JQft+1Akpd3M3TpPRQ1BykpdiwaHwpDeqOYtgbEKpAWqFn8+98addbPTyiTSahgwAowoAVwKXl9umkgAQt308HfeKvMgV8jBBjeJIRk+FWOqENDw8HMwjUOZYm8OAcjmHpnboAX8fB2sx+b2IJoO//sQTS/YiWkHpdBITMUdPo5dPpJE0XAAAXgBMynu+FTi93D6VJoMrdaW4oqPjQG+bSvPY57/virz0DFvA3wDeSdDvPndC2rJly6iby5NTqVE9lPJP5EZ0l80u8Ksp3otoQYz9jyaoYZQKUEqvINJ8GjEA/GnY7HMf8CDw0ah9xjIfwJYtW3zmq17lXXkn2GOnTPFL2tvdqTyPfU6cK9BiKQu2cDB/T2F30L8Or9TLleXDBLWWYif5ZTH2X07QvFRYXqVXEGleDRcAxrKMtQZQeFLLn75wvJk8S101b9mypWQT1OawDIUn8qNiBqMjS7w2nmCmG6sizavlAkC5k1p+s894cvmXu2pOt7f7irCWUWy5EEbdfB4mqKGMZVrIYp8rbnOWu9IriDS7lgsApU5qm2FUKgcnmOIxzaE3cT9E6ekUo66aj464Gi+8Wl9GBROrx3zPuDUADa4SaW5RASDulJATxob165mfzY5alwHmEUxllhvINQisIJjS8A8cnALydcDngZNe/3pe9rKXHfL+a1av5uJstuSArj/Agekii9kB/DPBlJHtwA3AWURPq/hZ4F0lXqt0Wsac/KktS8kfLCYiTaZcdGiUpZIaQLGcMbn2/lyzz9eIbv7pAu9ua/OBgQF3P9jm30X5SWDKXY1vDt83N3NWNnyvh2OWZ0GZq/SxNGepBiDS3Gi1GkBusvJ8G4D5QC9BKogFwIWUT8uwBHjV889z2fz59Pf3H0gZMcTBid87CSaEz5/2fS7BJO6FcrWQ7wJXh2XpIEgp0RGWq1QKi3cDHUccwTe7uriryHv3htv9JbCyoyP2ROtKryDS4spFh0ZZxnIPoLCfff4Ve1Q7fe7Kd2pYW4iTYG5Umoki25fqdZS/PjfArDCFxSUdHd6/ZEnkSNiBgYGKBkmpF5BIc6PVbgIPDw97+vDD/SiKT5jeQ/xeN23hCfrDEduuZPSkL+9rb/d0R8eoE3WpTJ+VNt9UeySs0iuINK+WDABTDj+8KqmSu6g8iVvuhL1ly5ZRJ+pyQSc3MGwF5VNKJEXpFUSaU8sFgDh92z8EPqvISbwwx05nQW2hcJtcs9JDBE025U7YUTdch8EvCoOOTsIiUg1RAaDpbgIX6wZaaDEwBAduqA4S3MztJLi5u5cgT/XicN1NJbbJ3Qh+M8GN3L0LF7JtaIi+vr5Djhl1w7UXmJZKccmSJezbv58nd+3i2jVrDrlxKyJSLRYEicY2c+ZM3759e6xt29va2OtOR5ltsgSz3R8FvBfYCHyb4r2C7gLeDhwesc3pHR3c+/DDJU/YmUyGWTNmsGnPnpLvMburi21DQzrpi0hVmNk97j6z1OtNVwMo1g200GMEAeCzBLPSRHUJfQVwUcQ2i4Drr7uu5DF7e3u5aeNGZnd1lZzFq1hXTRGRpDRdACjV1JIB+glG4L4MsLY2FrS38xBwacR7/jdwScQ2F+/bx4Z168pu09fXx7ahIfYuXMip6TSdbW2cmk6XbToSEUlK0zUBZTIZ3vjqV/PtZ589cMU+SDAI62KCAWHHE8zn+3kzPuvOPwI/A9YDvyeoHewnmKxgHkHqhr0Q2azU2dbGvv37K/14IiKJaLkmoN7eXt781rfSRzA69nsEJ/FNwFUcHIHbC3zKne8Cy4A9wDaCE/0QQW3BgN8StP/HaVbq6e6u+ucREUlK0wUAgLvuvJPbCE7mZwHnU779finB1X5+cLia4Kbv94C/AD4XcUylTBCRiaYpA8DO3bv5c+Bagqv3RRHbLyTIF1ToFIK8QdMJ8vsUy8NDuP7Gjg6W9PePrcAiInXQlAEgvyfQTsqnZ4Yw5XGJ1xYAtwAjwNuANxDUCnI9eFYCfUD2+ef5xS9+Mc6Si4jUTlMGgPyeQD3EbL8v8dpxBE1Je4H7gdMIsnMeQTCHwHMEg8b+be9e5s2ZQyaTKfo+mUyG/sWLmZ5O097WxvR0mv7Fi0tuLyKStKYMAEuXL+fGVIq7iDlZSrhdMY8BhwHHAmsIuoN+l2AQ2X8SNDP1EjYXZbNFxwIMDg4eSCe9dWSEve5sHRmhc+1aZs2YweDg4CH7iIgkrSkDQP6gq90Es26Va79fS5D/v5gbCe4R5BuIi2gAAA+RSURBVOf//x+CpqHrC7ZdkM0eMhYgk8kwb84cNu3Zw1XZ7KgbzVdls2zas6dszUFEJClNGQDg4KCr5885h90Ek6VczujJVlaG61cRnJAL3UVQe7gsfP0qgu6k5wGPAF8gmNZxOkG30SyHTp8YNYVkuZqDiEiSmjYA5KTTaY7o7OR54E7gJGASMAP4FEEvoY8RjAYunIlrNkEiuPzgcApwAfAbOGR2sDcDkw4/fNTx4ySnK1ZzEBFJWtMGgPx293uefZafAvuA5wmu1nMn7/8iyPr5VYKgcDjBSX4vwcCwYskZFhGkhxjVnEMwbuD5bHZUc44mXheRRtWUAaBYu/tvgIc5dE7e3KCvfwNyGYR+y8Gbu8WU6jZ6CkFOoA+eeeaBIBA3OZ1GEYtIrTVlAMhvd88lgTuT4Mq9XFv8xUA34+s2uggYfvDBA717kpx4XV1LRWQ8mjIA5Nrd8ydxOYLoEcGXEjQTXRGxXbluo8cRDBrL9e5595w5B7qkFnMXQQCodBSxupaKyLiVmy4sqQU4Hfg5MAysjNq+kikh3d3bzPzhgsnW28rMyZs/EXx7OC3j18pN0l5mnuD8+YFXplLev2RJ1SdeHx4e9p6urtgTyYtIa6LRpoQ0s3aCLvR9wCuBs83sldU8Rk93N9cQNOnkmnwqGRG8lKCf/ypG9wz6sBl9HNozKF9+7SDXu6fa8wCoa6mIVEW56JDEQnB++k7e36uAVeX2qbQGsGzRIp9ccJW+DHxVRA1gJXh/uN/U8Pn0vFrBReec41OOOKL8lXfecZ8LJ3ivtqgJ5g/URNLpqh9bRCYOGq0GQJBV4dd5fz8erquapcuX8wyjk8AtJRjVG2dE8HEEE8NcCzwJfDicrH1g/Xpuvu02Znd1HTKorNi4gaR696hrqYhUQz0CgBVZd8i0ZGa20My2m9n2HTt2VHSA3t5epnR2jmry6SU4Of8lwQjgcifv/F4+hTdpc805P3zVq5hJcIP5VIqPG0hqjgB1LRWRaqhHAHgceHHe3y8i6Ho/irvf4O4z3X3m1KlTKz7IvAsuYG3H6Ekc+4D3Az8kOGmXOnnfCLyL0pO19/b2csu3vkVHVxd3EtQSCscNjLV3TxxJdi0VkRZSrn0oiYVg/NUvgZcQJNq8D3hVuX0qvQfgHvSUmXL44Ye01w8X9A4q1o7fBX50d7f3L1lStidNtXv3VPLZ1AtIRKLQaPcA3H0fQZP8d4CHgK+5+4NJHGs/cAaje/MAvJWgKWg5BU1B4RX/xs2b2TkywrVr1oy68i9U7d49ceVnO12VShX9DIW1FhGRQhYEicY2c+ZM3759e0X79C9eTOfatczPZrmeYMrHnQRt+3MJAsMVZjycSrF73z56uruZe955LOnvnzAnzkwmw/XXXceGdevYuXv3hPwMIpIcM7vH3WeWfL1ZA8D0dJqtIyMl++tDcMX8xq4udv7xj+Mqn4hII4oKAE2ZCgLid5X8w549FefOUQ4eEWkGTRsA4naVnAQVjZhVDh4RaRZNGwDmnnsun4/YZi3wXog9GYumdxSRZtK0AWDp8uV8luiRvx8m/ohZ5eARkWbStAGgt7eXVGcn7+bQpG75I39TxB8xq+kdRaSZNG0AALjwggt4X0cHeyk98reSEbPKwSMizaSpA8DS5cvZeNhhvI8gXcM+RqdtqDRdg3LwiEgzaeoAUO0Rs8rBIyLNpKkDAFQ3XcPS5csTmd5RRKQemjIAFA7UetPJJ+PPP89/3nsv+/bv58lduyLz/BSjHDwi0kyaLgAkPVCrXgngRESqralyAWUyGWbNmMGmPXuK9tW/C5jd1cW2oSFdpYtI02upXEAaqCUiEl9TBQAN1BIRia+pAoAGaomIxNdUAUADtURE4muqAKCBWiIi8TVVANBALRGR+JoqAGiglohIfE0VAEADtURE4mqqgWAiInJQSw0EExGR+BQARERalAKAiEiLmhD3AMxsB0SO8SqlB9hZxeIkTeVN3kQrs8qbrIlWXohf5uPdfWqpFydEABgPM9te7iZIo1F5kzfRyqzyJmuilReqV2Y1AYmItCgFABGRFtUKAeCGehegQipv8iZamVXeZE208kKVytz09wBERKS4VqgBiIhIEU0TAMzsUTO738x+amaH5I2wwD+b2bCZDZnZa+tRzrAsLw/LmVueMbNlBducZma78rb5vzUu4xfN7GkzeyBv3VFmdoeZPRI+Timx7/nhNo+Y2fl1LvOnzOzh8N/8G2Z2ZIl9y/5+aljeK83sN3n/7u8sse/pZvbz8Pe8so7lvTWvrI+a2U9L7FuP7/fFZvZ9M3vIzB40s78J1zfk77hMeZP7Dbt7UyzAo0BPmdffCQwCBswC7q53mcNytQNPEvTXzV9/GnB7Hcv158BrgQfy1n0SWBk+XwlcU2S/o4Bfho9TwudT6ljmtwMd4fNripU5zu+nhuW9Erg8xm8mA/wpcBhwH/DKepS34PXVwP9toO/3GOC14fNJwC+AVzbq77hMeRP7DTdNDSCGM4GbPLANONLMjql3oYC3ARl3H+tAt0S4+4+A3xesPhP4Svj8K8BfFdn1HcAd7v57d/8DcAdwemIFzVOszO7+7+6+L/xzG/CiWpQljhLfcRxvAIbd/Zfu/hxwC8G/TaLKldfMDHg/8NWkyxGXuz/h7veGz0eAh4BjadDfcanyJvkbbqYA4MC/m9k9ZrawyOvHAr/O+/vxcF29fZDS/2lOMbP7zGzQzF5Vy0KVMN3dn4DgxwpMK7JNo37PABcR1AKLifr91NLSsLr/xRLNE434Hb8FeMrdHynxel2/XzM7ATgZuJsJ8DsuKG++qv6GO8ZawAZ0qrv/1symAXeY2cPhFUuOFdmnrl2gzOwwYDawqsjL9xI0C+0O24G/Cby0luUbo4b7ngHM7KPAPuDmEptE/X5q5XPAxwm+s48TNKtcVLBNI37HZ1P+6r9u36+ZdQNfB5a5+zNBZSV6tyLravIdF5Y3b33Vf8NNUwNw99+Gj08D3yCoJud7HHhx3t8vAn5bm9KV1Afc6+5PFb7g7s+4++7w+WYgZWY9tS5ggadyzWbh49NFtmm47zm8gXcGcI6HjaWFYvx+asLdn3L3/e7+PHBjiXI01HdsZh3AWcCtpbap1/drZimCk+nN7n5buLphf8clypvYb7gpAoCZvcDMJuWeE9w0eaBgs03APAvMAnblqoF1VPKqycxeGLarYmZvIPi3+l0Ny1bMJiDXG+J84FtFtvkO8HYzmxI2X7w9XFcXZnY6sAKY7e57SmwT5/dTEwX3pd5Tohz/BbzUzF4S1iI/SPBvUy9/CTzs7o8Xe7Fe32/4/2cAeMjdr817qSF/x6XKm+hvOMm72rVaCHpD3BcuDwIfDddfClwaPjfgeoLeE/cDM+tc5i6CE/rkvHX55V0afpb7CG78vKnG5fsq8ATBtMqPA/OBo4EtwCPh41HhtjOBtXn7XgQMh8uFdS7zMEFb7k/D5fPhtn8CbC73+6lTedeFv88hghPVMYXlDf9+J0EvkUw9yxuu/3Lud5u3bSN8v28maLYZyvv3f2ej/o7LlDex37BGAouItKimaAISEZHKKQCIiLQoBQARkRalACAi0qIUAEREWpQCgMRiZvvDLIMPmNm/mFlXld//AjNbE7HNaWb2pry/LzWzedUsR5FjfirMzPipIq/1mdn2MHvjw2b26cJyhZ/rTyo85loze2UF2/+Zmd1lZnvN7PKC1yKzhlqJ7JjhmJmiGXStThlfpcpq0R9Xy8RfgN15z28GPlTl978AWBOxzZVEZMpM4HM/AxxeZP2JBH3w/yz8uwNYXGS7H5DwmBOCXDavB/4h//shZtZQSmTHpEQGXeqY8VVLdRfVAGQs7gT+F4CZfSisFTxg4ZwGZnZCeEX8lfDKcWOuxmBBzvKe8PlMM/tB4Zub2bvN7G4z+4mZfdfMpluQHOtSoD+sibzFgtz5l4f7nGRm2+xgzvTcVewPzOwaM/uxmf3CzN5S5HgWXuk/YEE+9Q+E6zcBLwDuzq3L8xHgH9z9YQB33+funw33u9LMLjezOQSDi24Oy/wuM/tG3nH/j5ndVvC+uTLPDJ/vNrN/sCAp4DYzm164vbs/7e7/RTBAK1/crKGlsmOWyqBbNFOmmbWb2Zfzvsf+IseSBqIAIBWxIO9LH3C/mb0OuBB4I8EV4sVmdnK46cuBG9x9BsFV9OIKDvMfwCx3P5ngpPURd38U+Dxwnbuf5O53FuxzE7AiPN79wN/nvdbh7m8AlhWszzkLOAl4DUFag0+Z2THuPht4NjxeYZ6bE4F7yn0Id98IbCfI33ISsBl4hZlNDTe5EPhSufcgCEDb3P01wI+AiyO2zxc3o2Wp7Jil9i+1/iSC9MUnuvurif5sUmcKABJXpwWzPW0HHiPIWfJm4Bvu/kcPEtfdRpAWGODX7v6f4fP14bZxvQj4jpndD3wYKJsK28wmA0e6+w/DVV8hmLwkJ3eVfQ9wQpG3eDPwVQ+SsD0F/JCgSaWq3N0JUj2ca8GsTqdQOrVvznPA7eHzUuUvZbwZLUvtX2r9L4E/NbPPWJC/5pki20kDUQCQuHJXwie5+2Vhk0K5vLqFJ5rc3/s4+Ls7osS+nyG4H/Bq4JIy28W1N3zcT/EU6LHyAxd4EHjdGPb7EnAuQSLAf/GDE32Ukg0DB5QufylxM1qWyo5Zav+i68PmoNcQ3PdYAqytoKxSBwoAMh4/Av7KzLosyED4HoL7AwDHmdkp4fOzCZp1IJi2LnfifG+J950M/CZ8nt/DZIRgqrxR3H0X8Ie89v3zCK7iK/kcHwjbsKcS1B5+HLHPp4ArzOxlAGbWZmYfKrLdqDJ7kLL3t8DfEiRRS1LJrKFmdrWZvSfcrlR2zFIZdItmygzv7bS5+9eBvyOYPlIaWDNNCCM15u73mtmXOXiyXOvuPwlv2D4EnG9mXyDIuvi5cJuPAQNmdgWHznaUcyXwL2b2G4JMqC8J138b2GhmZwKXFexzPvD58GbzLwna1+P6BkFzzH0ENZWPuPuT5XZw96HwpvdXw2M68K9FNv1yWK5ngVPc/VmCXlRT3f1nFZSxJDN7IUHTXBp4PizXKz2Y/GQpwQm7Hfiiuz8Y7vZqDqaQ/gTwNTObT9C8975w/WYOZqPcQ/iduvvvzezjBAEG4P+F614DfMnMcheWxSY6kgaibKBSdWEAuN3dT6xzURqSBeMdfuLuA3Usw3fc/R31Or40BtUARGrIzO4B/ggsr2c5dPIXUA1ARKRl6SawiEiLUgAQEWlRCgAiIi1KAUBEpEUpAIiItCgFABGRFvX/AYH/yuNsMedbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plotData(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 7ddb6f6c20ba0b9e430d62da219b744a3815faf3 Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Tue, 14 Apr 2020 19:40:17 +0530 Subject: [PATCH 3/9] Add files via upload --- LogisticRegression.ipynb | 484 ++++++++++++++++++++++++++++ ex2data1.txt | 100 ++++++ ex2data2.txt | 118 +++++++ regularisedLogisticRegression.ipynb | 440 +++++++++++++++++++++++++ 4 files changed, 1142 insertions(+) create mode 100644 LogisticRegression.ipynb create mode 100644 ex2data1.txt create mode 100644 ex2data2.txt create mode 100644 regularisedLogisticRegression.ipynb diff --git a/LogisticRegression.ipynb b/LogisticRegression.ipynb new file mode 100644 index 000000000..2d8c1ee4c --- /dev/null +++ b/LogisticRegression.ipynb @@ -0,0 +1,484 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# used for mathematical operations of elements\n", + "import math\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "\n", + "# Optimization module in scipy\n", + "from scipy import optimize\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils\n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Load data\n", + "# The first two columns contains the exam scores and the third column\n", + "# contains the label.\n", + "data = np.loadtxt('ex2data1.txt', delimiter=',')\n", + "X, y = data[:, 0:2], data[:, 2]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def plotData(X, y):\n", + " \"\"\"\n", + " Plots the data points X and y into a new figure. Plots the data \n", + " points with * for the positive examples and o for the negative examples.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " An Mx2 matrix representing the dataset. \n", + " \n", + " y : array_like\n", + " Label values for the dataset. A vector of size (M, ).\n", + " \n", + " Instructions\n", + " ------------\n", + " Plot the positive and negative examples on a 2D plot, using the\n", + " option 'k*' for the positive examples and 'ko' for the negative examples. \n", + " \"\"\"\n", + " # Create New Figure\n", + " fig = pyplot.figure()\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " # Find Indices of Positive and Negative Examples\n", + " pos = y == 1\n", + " neg = y == 0\n", + " \n", + " pyplot.plot(X[neg,0],X[neg,1],'ko', mfc='y', ms=8, mec='k', mew=1)\n", + "\n", + " pyplot.plot(X[pos,0],X[pos,1],'k*', lw=2, ms=10)\n", + "\n", + " \n", + " # ============================================================" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO29e3hU5bX4/1kTLkMMBoG0ikShgK03IIKttv4kIaj4LRY8rS3UKvaotNb+TjFo21M5oUFsj0LR+vRoD4giaRv5atsAalvuYtW2BusVtNSKaEG5aCIpcgms7x97T0jCTDKZzOzLzPo8z/vs2XvP3nvNnpm93rXe9a4lqophGIZhAET8FsAwDMMIDqYUDMMwjGZMKRiGYRjNmFIwDMMwmjGlYBiGYTTTzW8BukL//v110KBBfothGIYRKjZu3LhbVYvi7Qu1Uhg0aBB1dXV+i2EYhhEqROStRPvMfWQYhmE0Y0rBMAzDaCZjSkFEHhCRnSLySottfUVklYhscZcnuNtFRO4Rkb+LyEsick6m5DIMwzASk0lLYTEwvs227wNrVHUYsMZdB7gUGOa2acB9GZTLMAzDSEDGlIKqbgDeb7N5IvCQ+/ohYFKL7UvU4U9AHxE5KVOydYXGxkZmz55FcXEReXkRiouLmD17Fo2NjX6LZhiG0WW8jj76uKruAFDVHSLyMXf7ycDbLd73jrttR9sTiMg0HGuCU045JbPStqGxsZHS0vMoLHyDWbP2M3gwvPnmbmpq7mT58l+zfv2fKCgo8FQmwzCMdBKUgWaJsy1u+lZVXaCqo1V1dFFR3DDbjDF//lwKC99g5sz9DB0KeXkwdCjMnLmfwsI3mD9/rqfyGIZhpBuvlcJ7MbeQu9zpbn8HKG7xvoHAdo9l65CFC+9lypT9SBsVJgKTJ+/n/vszOxTS0NDA5ZdfTkNDQ0avYwQL+94NL/FaKSwHprqvpwLLWmy/2o1COg9oiLmZgsT27XsYPDj+vsGDnf2ZZPny5dTW1rJixYqMXscIFva9G16SyZDUGuBZ4JMi8o6IXAv8N3CRiGwBLnLXAZ4A/gH8HVgIfCtTcnWFAQP68eab8fe9+aazP5M88MADrZaGN/jdU7fv3fCSTEYfTVHVk1S1u6oOVNVFqrpHVctVdZi7fN99r6rqjao6RFXPVtVA5q64/vpvUVMTpW2xOlV4+OEo1113Q1qvN27cOESkuT3zzDMAPP300622jxs3Lq3XzXXaKgGve+ph+979VppGegnKQHMoqKi4hYaGIcyZE2XLFmhqgi1bYM6cKA0NQ6iouCWt17v11lvJz89vXj948GCrJUB+fj4zZ85M63VznbZKwOueejq+dy8f1ObeyjJUNbRt1KhR6jV79+7VqqpKLS4u0ry8iBYXF2lVVaXu3bs3I9dbu3at5ufnK040VquWn5+v69aty8h1c5k+ffq0us89evRotYy18vLyjMnQ1e99yZIlCmh1dXXGZIxRWlqqgJaVlWX8WkZ6AOo0wXPV9wd7V5ofSsEPVqxYodFotNWDIRqN6ooVK/wWLSsoLy9vdW+7desW92HstULuyveeyQd12/vlh9I0ukZ7SsHcRwkI0szl+vp6unXrRiQSoVevXkQiEbp160Z9fb3nsmQjbd01TU1N7b4/Pz+fxx9/nNLS0ozK1Znv3ctxCHNrZjmJtEUYWqYshb179+qoUWfq2LFRXbgQXb0aXbgQHTs2qqNGnZkxV1EiSktLNRKJaElJia5cuVJLSko0EomYuZ5G2nPX4JOF1pnvPRn502ndmFsz3GCWQucI2szlwsJC5s6dS11dHRdddBHPPfccd955J8cff7yncmQzZWVlLF26lGg0esw+vyy0znzvZWVlPPbYY6168C1Jt3WT6H5Fo1GWLl2acSvKyCCJtEUYWqYshYED++vChei6dce2BQvQ4uKijFzX8Jfq6motKCjQSCSivXr1au75nnrqqaGx0Lwcf2p7vyKRiBYUFHgyuG10DcxS6Bx+z1w2/GHRokXs27ePESNGsGzZsuYe+eDBg0NjoXk5/tT2fo0YMYJ9+/bZJLuQY0ohDn7PXDb8oa275v3332fevHkUFhYCkJeXx4wZM6itrfVZ0sR4+aA2t2Z2Io4lEU5Gjx6tdXXpn/w8e/YsnnzyTmbObJ38TtWZqDZmzHeprKxK+3UNI1kaGhq45pprWLx4cbPSApg0aRIXXngh06dPJxKJcPjwYe6++26eeuqpQCszw1tEZKOqjo67z5TCsbSsmzB5cqxugpPKoqFhiNVNMHynurqaq6++murqar72ta/5LY4RMtpTCuY+ikNBQQHr1/+JMWO+y223FTF+fITbbitizJjvmkIwAoElyTMyhVkKhhECxo0bx5o1a5rXe/TowcGDB5uXMcrLy1m9erUfIsYlkZvL8BezFAwj5IR1FrElywsfphQMIwR4PTktXZibK3yYUjCMkBCGWcSJcjCtX78+kLUgjGMxpWAYISLoyRETublajl0G0c1lHMWUgmGEiExOTktHYZ6wurmMo5hSMIwQkclZxOkaFL799tvZt29f3H379u2jrKzMXEgBxkJSDSOHaRkyOmnSJNavX09ZWRlr165N+Zzr1q1j/PjxrSKj2mIWg78ELiRVRL4jIq+IyKsiMt3d1ldEVonIFnd5gh+yGcHAisFnnnHjxtGnTx9qa2vp06dP2grzlJWVcfrppyfcbwoh2HiuFETkLOB64NPACGCCiAwDvg+sUdVhwBp33chRLL4989x6661EIkcfAemc+zBo0CCuvfbaYyKlIpFIYCKljPj4YSmcDvxJVfepahPwJHA5MBF4yH3PQ8AkH2Qz2uBXj93i2zNDy5DRsWPHtlIKbelKj762tpbS0tJjIqXy8/MDEynVGXLJcvVDKbwCXCgi/UQkH/g/QDHwcVXdAeAuPxbvYBGZJiJ1IlK3a9cuz4TOVbzqsXtZYziXSbYedffu3bvco8+megu5ZLl6rhRUdTNwB7AK+D3wItB+pfTWxy9Q1dGqOrqoqChDUhoxvOqxhzWNQ9joKGQUQETo2bNnl3v02VRvIacs10Ql2bxqwI+AbwGvAye5204CXu/o2EyV48xlysvLW5Vy7NGjR6tlrJWXl6f92lYM3jvile0UEZ09e7aWlJSoiGj//v21vr7eb1E9p76+Xvv37+/b/8ALCFo5ThH5mLs8Bfg3oAZYDkx13zIVWOaHbGEmHX5PP3vsYUjjkC20nBkdiUQQEY477jgGDx7Mc889x1e+8hV2796dE+6Stixfvpzdu3fTo0eP5m25ZLn6NXnt1yKyCVgB3KiqHwD/DVwkIluAi9x1oxOkw+/p94zUoKdxyBZa+vt///vfM3LkyGZ/f15eHu+++y6QI+6SNsQ+8xlnnOHL/8D3Qe1EJkQYmrmPWlNaWqqAlpWVdflc8dwL0WhUV6xYkQZJE1NaWqqRSERLSkp05cqVWlJSopFIJC2fyTjKxIkT9Sc/+YkePnxYVVXHjh2b1e6S9kjWZerV/2DJkiUKaHV1dcauQdDcR0Z6yGTEjl89dj8GJ33vmflAbW0tFRUVzSGpM2fOzNmB/mRcpuAUNvLif+D7oHYibRGGluuWQnsDs7GW6gBtLvXYveiZhYHly5drXl5eTg70d/RfGjp0aMb+B34Ed9COpeD7g70rLdeVgmrmInbauheampp03rx5OnHixDRKHwzS6XZLB/X19Tpp0iTPI39iyrF79+6euw2DQDyXaSQS0WuvvTaj/4NMdu4SYUohy/HL/x9W/Ay7TQa/LJeYcszLy9NIJKK9evXSSCSiBQUFOWFFVVdXa0FBgS+f3etw7PaUgo0pZAEWsdM5gj5RziufcmlpadwxqcOHD3PkyBE++ugjjhw5QmNjY05EIfk5AztI4dimFLKAbEon4AV+h922xa8UH+eff36r9XiprvPz8/nmN78ZylnIncXvGdiB6dwlMiHC0Mx95JBL/v90EhS3mx8+ZdWj7qJIJJKTg8tBw8vgDmxMwTCOxU8fclu88CknGkvp1q2b57H4xrF42bkzpWAYcQha2G2mLZdkLBJwciDlyuByrtKeUrAxBSNn8duH3JZM+5Q7GksREebOndsq5YWRgyTSFmFoZikY2YRXlks8i6Rbt266bNkyVbUxqVwAsxQMI/h4ZbnEs0ii0SgffvghAHl5ecyYMYPa2tq0XtcIB+IojXAyevRoraur81sMwwgVZWVlbNiwgREjRnDHHXfwve99jxdffJExY8awdu1av8UzPEBENqrq6Hj7zFIwjBwjaGMpRrAwS8EwDCPHMEvBMDJMLqbfNrITUwqGkQbSUfXOMIKAKQXDSAO+F0YxjDRhSsEwUsCvJHaGkWlMKRhGCgQ9/bZhpIovSkFEbhKRV0XkFRGpEZGoiAwWkT+LyBYRWSoiPfyQzTCSIWjptw0jXXiuFETkZOA/gNGqehaQB0wG7gDuUtVhwAfAtV7LZhidIUiFUQwjXfjlPuoG9BKRbkA+sAMYCzzq7n8ImOSTbKGisbGR2bNnUVxcRF5ehOLiImbPnkVjY6PfouUEgSmMgoXFGunBc6Wgqv8E5gHbcJRBA7ARqFfVJvdt7wAnxzteRKaJSJ2I1O3atcsLkQNLY2MjpaXn8eSTdzJr1m5WrlRmzdrNk0/eSWnpeaYYPCBIVe8sLNZIB364j04AJgKDgQHAccClcd4ad6q1qi5Q1dGqOrqoqChzgoaA+fPnUlj4BjNn7mfoUMjLg6FDYebM/RQWvsH8+XP9FjHriaWMWLNmDffeey+rV6/2LWWEhcUa6cAP99E44E1V3aWqh4DfAJ8F+rjuJICBwHYfZOsUfrtuFi68lylT9iPSersITJ68n/vvv88TOXKZ2tpaKioqeOyxx6itreWJJ57wLMOohcUamcAPpbANOE9E8kVEgHJgE7AO+JL7nqnAMh9kS5oguG62b9/D4MHx9w0e7Ow3vMGPXrqFxQaTsI/t+DGm8GecAeXngZddGRYA3wMqROTvQD9gkdeydYYguG4GDOjHm2/G3/fmm85+IzMEoZduYbHBJOxjO75EH6nqLFX9lKqepapXqeoBVf2Hqn5aVYeq6hWqesAP2ZIlCK6b66//FjU1UdomulWFhx+Oct11N2RchlwlKL30bAiLDXvPui1hH9uxGc0pEgTXTUXFLTQ0DGHOnChbtkBTE2zZAnPmRGloGEJFxS0ZlyFXCVIvPUhhsakQ9p51EKzGdGJKIUUy6bpJdgC7oKCA9ev/xJgx3+W224oYPz7CbbcVMWbMd1m//k8UFBSkLENXCWLvL90yBaWXHqSw2FQIe886KFZjujClkCKZct10dgC7oKCAysoqtm3bSVPTYbZt20llZZWvCgGC2fvLhExB6KUHpZJasko323rWQbIa04KqhraNGjVK/WLv3r06atSZOnZsVBcsQFetQhcsQMeOjeqoUWfq3r17UzpvVVWljh0b1bVr0XXrjra1a51zV1VVpvmTZIbS0lIFtKyszG9RmsmETKWlpRqJRLSkpERXrlypJSUlGolEAvW5vWLJkiUKaHV1dbvvW7t2rebn5yvOXKS4LT8/X9etW+eN4GlixYoVGo1GW32OaDSqK1as8Fu0YwDqNMFz1SyFFGhsbGT+/Lm8++67rFu3n+nThUsvhaqq/l123QRhADsVgtj780KmoPTSg0CybqCs61m7BMFqTAuJtEUYmh+WQksLYeFCdPVqdOHCrlsIMSIR0dWrW1sJsbZqFZqXF0nTJ0kvQez9BVGmbKK8vLzVvezRo0erZayVl5fHPT5MPetkCJPVSFcsBRE5TUTWiMgr7vpwEQnHiEkGyPT8hLDOPQhi7y+IMmUTyQyw5uXlMX369LjHZ03P2iVrrMZE2iLWgCeBTwN/bbHtlY6O86L5YSkMHNhfFy6M35NfsAAtLi7q0vnDPqYQxN5fEGXKFtqzxmIWQ6IxhjD1rLMNujimkK+qf2mzrSnuO3OATM9PCPvcgyD2/oIoU7bQXljuaaedBiQeY8iannWWkYxS2C0iQ3CzlorIl3BSXuckmXbvBHnuQTIEMWY+GZmCOK8iLMSUbkv279/Pa6+9BiQe2I8lE4xEnMdQXl6eZ8kEjcQkoxRuBP4X+JSI/BOYDnwzo1IFmGTmJ3Q1e2pQ5x4kQxB7f8nI1HYOgymJ5Ikp3aFDh9KzZ8/m7U1NjkMhrJO4cpZEfiXH7UQE+LL7+jigd3vv97r5HX0Ub37Cjh07MhqdZGSGtnMYko25N1QnTpyoP/nJT/Tw4cPtjjFYpFf6qK+v10mTJml9fX1Kx9POmEIyA80bOnqPX82vyWt79+7VqqpKLS4u0ry8iBYXF2lVVWXz9jAPFOcKyYZTnnDCCX6LGjpsYD/zdLXT0p5SSMZ9tEpEbhaRYhHpG2tpMVNCSnvunbBOPss1kgmnBNi7d28oUy/4iQ3sZ55M5otKRin8O864wgacWsobgbq0S5IlBCF7qtExHc1hiBHzi4P5w5MliMEGYcfLjAEdKgVVHRynfaLLV85S0h2d5HfJz2wmUThlPGyiW/IEMdgg7HiZiTWZGc3dReQ/RORRt31bRLp3+cpZSjqzpwah5Ge2E8/V0ZYwFawJAhZqmn68nJ2fjPvoPmAUcK/bRrnbjDikc/JZEEp+ZjttXR3FxcXN+8wf3hoL0/UXr+p3JKMUzlXVqaq61m1fB85Ny9WzkHROPrNB68zT1tUxaNCg5u0t/eELFizIqgdiKg/4INbISJWwKjhPBvEThSXFGvA8MKTF+ieA5zs6zovmZz0FLwhrxtSO6GqMdSZpGXOvqtrU1KTz5s3Tc845J6vmLaQS0hjEGhmpEtZ5KOnKF0UXQ1JvAdaJyHoReRJYC8xIVQmJyCdF5IUW7UMRme6Guq4SkS3u8oRUr5EthDVjakcEuceZyB8eGyTNlgiaZEIag1gjI12EtQSoJ4P4ibRFywb0BIYDI4CeyRyT5HnzgHeBU4E7ge+7278P3NHR8dluKWTrRLgw9Di7WisgaKTyeZKpR9GrV69QzFIOy/fZnhWdTgubLs5ovhHo02L9BOBbHR2XTAMuBp52X78OnOS+Pgl4vaPjs10pZKrkp9eE5Q/Zkmwr0JPq5+nouB/84Af+fKBOEpbvsz23VjpdXl1VCi/E2fbXjo5LpgEPAN92X9e32fdBgmOm4UyeqzvllFO6fHOCTnspNcJCWP6Qbcm2PD6pfp54aSsikUjgrb22hOH7bM+KTqeF3VWl8BIgLdbzgFc7Oi6J8/YAdgMf104ohZYt2y2FbCIMf8h4ZFsen1Q+T3V1tebl5cX97oJs7cUjaN9nslZ0ui3s9pRCMgPNfwD+r4iUi8hYoAb4fRLHdcSlOFFM77nr74nISQDucmcarmEEBK9irNNNtuXxSeXzLFq0iCNHjiBtY6MJX1rsoH2fyebgSrQvE/c8GaXwPWANcAPO+MIa4LtpuPYUHAUTYzkw1X09FViWhmsYASJof8hkyLY8Pql8nsLCQubNm8eqVatCX+86aN9nRzOVe/bs2apGRUsyds8TmRBtG467pwT4WLLHtHOufGAPUNhiWz8chbPFXfbt6DzmPgoXYazJm2jewsSJE32WLDW6+nmC5n7pLEH9Ptu7r5m456QypgD8HDjTfV0IbAJeBv4JTEl0nJfNlEK4COof0k+CPJEvHtXV1VpQUKCRSER79eqlkUhECwoKQjcJLGi0d18zcc9TVQqvtng9Hah1X59ImqKPutpMKXSOWCTTwIH9NRIRHTiwf+gimbKNsM2sDaO1Fwbau6+ZuOftKYX2xhRajnRcBNS67qZ3O+2jMnzHMq4Gk7DNrM3GtNhByIPU3n31/J4n0hbAOmACzjhCPXCiu70b8Fqi47xsZikkT7bOjg4bYZzIl+1kwloLuluQFC2FbwDfBh4EputRC6EceDy9qsnINJZxNRh4WSzFSI5MWGtBzu/VEQmVgqr+TVXHq+pIVV3cYvsfVDXlhHjGsXhRXS1byoQGwdTvCl4WSzHi40Wiv7C5BVuSzDwFI4N45evPloyrYe6BxQjrRL5sIRPWWjZllDWl4DNeVVdLZ5lQPwlzD6wlYZzIly1kwlrLKrdgosGGMLRsGGgeOLC/LlwYv5DOggVocXFRWq4T1oyr2Towa6Gd/pPuSWFhyu9FqrmPRORTbs6jgjbbx6dXNeUuXvn601km1EuyqgfWgmwM7Qwb6bbWssYtmEhbAP+BU+OgFtgKTGyxz8pxpgmvLIUwE6YemBEeMmGthWXGNylaCtcDo1R1ElAK/JeIfMfdd2y6RCMlssXXnwypRlllTQ/MCBSZsNaClnAvFUTbPo1iO0Q2qeoZLdYLgEdxciCNVdWR3oiYmNGjR2tdXZ3fYnSJWPRRYeEbTJ68n8GDnWighx+O0tAwJNCunc7Q8nNOmXL0c9bUJPc5f/GLX3DDDTewb98+evbsyYEDB8jPz+e+++7ja1/7moefxDASM2nSJC688EKmT59OJBLh8OHD3H333Tz11FPU1tb6LV4zIrJRVUfH3ZnIhADWAiPbbOsGLAEOJzrOy5YN7iPV7Kiu1hFdnVFtA7OGkT5ox33UnqUwEGjSOLmORORzqvp0WlRWF8gGSyFXKC4uYtas3Qwdeuy+LVvgttuK2LYtcV2lsPTADCMMtGcpJFQKYcCUQnjIy4uwcqWSl3fsvqYmGD8+QlPTYe8FM4wcpD2lYJPXDE/IlhnV6SDsqToMf/Dqd2NKwfCEXIqy6ohsSNVheI9Xv5uklYKIHC8ifWMtk0IZ2UdFxS00NAxhzpwoL78MixfDFVdAeTn85S+HOHjwYM7UdMiWVB2Gt3j1u+lQKYjIN0TkPeAlYKPbzJGPN9lNs4XYjOrzzpvOrbfm8be/wY9/DKtWwV13HebZZ+/O2mI/2ZQszfAOv343yVgKN+PUah6kqoPd9om0ShFCrJKZQ2cUY0FBAT179uDcc7tz++1kJAFgEP312Zqqw8gsfv1uklEKbwD70nlREekjIo+KyGsisllEznfdUqtEZIu7PCGd10w3XmU3DTKpKMZMF/sJor/eaigYqeDX7yYZpfCfwDMi8r8ick+sdfG6PwV+r6qfAkYAm4HvA2tUdRiwxl0PLFbJLDXFmOkEgEH111uqDiMV/PjdJKMU/hdndvOfODqmsDHVC4rI8cCFwCIAVT2oqvXAROAh920PAZNSvYYXZEsls66QimJMd2hqmPz1VkPBSAWvfzfJKIUmVa1Q1QdV9aFY68I1PwHsAh4Ukb+KyP0ichzwcVXdAeAuPxbvYBGZJiJ1IlK3a9euLojRNSzuPjXFmO7Q1DD567MhWZrhPV7/bpJRCuvcB/FJaQpJ7QacA9ynqiXAv+iEq0hVF6jqaFUdXVRU1AUxuobF3aemGFuGpm7Z4sxm3rIF5sxxEuNVVNzSKRnC5K+3GgpGKnj9u+kwzYWIxPvba6oRSCJyIvAnVR3krv9/OEphKFCqqjtE5CRgvap+sr1z+ZnmIleym7bH7NmzePLJO5k5s7ULSdV5yI8Z810qK6uOOa6xsZH58+dy//33sX37HgYM6Md1191ARcUtKd+zxx57jCuuuIL9+/c3b4tGozzyyCNMmDAhpXMaRrbSpTQXLcJQB6cjJNVNsPe2iMQe+OU46biXA1PdbVOBZalewwvCWsksnaTa6y8oKKCysopt23bS1HSYbdt2UllZ1aV7Zv763COI4cdZQaL0qS0bcBbwZeDqWEvmuHbONxJnAtxLOJXdTgD64UQdbXGXfTs6T7akzg4zQUn7bam1c48lS5YoELiqZmGAVFJnxxCRWTiV184AngAuBf6oql9Kr3rqPJYl1YhhqbWzk4aGBq655hoWL15MYWFhq31lZWWsX7+esrIy1q5d65OE4SSlIjt6tFf/Mo6b6UV3/ePAio6O86KZpZAasd79wIH9NRIRHTiwf9YV9TGyg5bWQHl5eav63D169Gi1jLXy8nK/xQ48pFijOcZHqnoEaHLnGOzECSs1Qoil5zDCRMvJiGEKPw4zySiFOhHpAyzEmbT2PPCXjEplZAxLz2EEmfYmI44dO5Z9+xJn3AlS+HGY6VTlNREZBByvqi9lSqDOYGMKnaerZTENI5OsW7eOCRMmtPvw79mzJ0eOHOHQoUPN2yz8uHN0KSRVRK6NvVbVrcCr7uCzEUIsPYcRZJKZjDhjxgx69uxp4ccZIhn3UbmIPOHOaD4LJwdS7wzLZWQIS89hBJ2OksA988wzli4kgyQzee2rOAnqXsYJSZ2uqjdnWjAjM1h6DiMMtDcZ0dKFZJZk5ikM46hSOB1n9nGFqqa1xkIq2JhC57H0HEYYKCsrY8OGDYwYMYI77riD733ve7z44ouMGTPG5iSkgS6NKQArgP9S1W8AY3BmHD+XRvkMD7H0HEYYMGvAP5KxFI5X1Q/bbBumqlsyKlkSmKVgGIbReVKyFETkuwCq+qGIXNFm99fTKJ9hGHGwhG+GH7TnPprc4vV/ttk3PgOyGIbRgiDWmzayn/aUgiR4HW/dMNJOY2Mjs2fPori4iLy8CMXFRcyePStnUnEEtd60kd20pxQ0wet460aOkekHdlByNHmpmMJUb9rIXhIONIvIYZxSmQL0AmIhqAJEVbW7JxK2gw00+0PLsNYpU46GtdbUpC+sNdWqbunEi8/ZkmRSPFh+HyMdpDTQrKp5qnq8qvZW1W7u69i67wrB8A8vkuotXHgvU6a0VggAIjB58n7uv/++Ll+jI7xOHhimetNG9pLMPAXDaIUXD+wg5GjyQzF1lOLBFIKRaUwpGJ3Giwd2EHI0+aWYrN604SemFIxO48UD2+8cTY2NjfTp08sXxbRo0SJL+Gb4hikFo9O098CuqYkybNjpXY7Wqai4hYaGIcyZE2XLFmhqcuo9zJnjDPJWVNySxk/UmtgA8wknHKC6Gs8Vk6V4MPykU0V20nZRka3AXuAw0KSqo0WkL7AUGARsBb6sqh+0d57ORh81NjYyf/5cFi68l+3b9zBgQD+uv/5bVFTcYjl/OkGipHo1NVH++ldl+HC46qoDXY7WiX1f999/X/P3dd11N2T8+4pFPs2Ysa9GCJUAABwOSURBVJ8ZM+DjH4crr6T581RXd2Pfvk9arigjtLQXfeSnUhitqrtbbLsTeF9V/1tEvg+coKrfa+88nVEKXocXZjvxHtjDhp1OU9Of+eEPD/gWRpoOWlan++gjeOQR+N3vYOdO6NcPDh3K5+2337PfixFawqIUXgdKVXWHiJwErFfVT7Z3ns4ohSDEvWc7HZX6nD27P2+/vct7wTpJXl6ElSuVvLxj9zU1wfjxEZqaDnsvWA7R0NDANddcw+LFiyksLPRbnKyjq6mzM4ECK0Vko4hMc7d9XFV3ALjLj8U7UESmiUidiNTt2pX8AyYIce/ZTkfROv/85+5QpKgIQuRTrmN5n/zDL6XwOVU9B7gUuFFELkz2QFVdoKqjVXV0UVFR0hcMQtx7ttPRw7R3b9I+4SsT+B35ZFjeJz/xRSmo6nZ3uRP4LfBp4D3XbYS73JnOa1rvL/Ncf/23ePDB+NE6v/wllJURCovMz8inoJLpNN6W9yk4eK4UROQ4Eekdew1cDLwCLAemum+bCixL53Wt95d5Kipu4fnnoaqKVg/Tqip47z249tpwWGRWne5YMu3OufXWW1ul9zh48GCrJThpPmbOnJmR6xstUFVPG/AJ4EW3vQrc6m7vB6zBKfe5Bujb0blGjRqlybJ3714dNepMHTs2qgsWoKtWoQsWoGPHRnXUqDN17969SZ8r0fmrqip14MD+GomIDhzYX6uqKrt83rAxYEA/nTgRPfFENBJxll//OvrEE879Li4u8ltEIwVKS0sV0LKysoxdY+3atZqfn684Y46tWn5+vq5bty5j1841gDpN9IxOtCMMrTNKQfXog7u4uEjz8iJaXFyUlgd3S4WzcCG6ejW6cGH6FE6YqKqq1LFjo7p2LbpundOeeMJRDL17oyLkrMJMhN8divr6ep00aZLW19c3bysvL2/1UO7Ro0erZayVl5enVZYVK1ZoNBptdY1oNKorVqxI63VyHVMKGSbeg3DdOnTtWkcxVFVV+i2iZ7S1yJYvRz/xCfSCC8h5hRmPIHQolixZooBWV1c3b2uv157J3nt1dbUWFBRoJBLRXr16aSQS0YKCglayGV2nPaVgaS7SgIW7HqWtP/7f/g1OPBFmz8aT9NNhw+v03PGIF+njVxrvbMv7FMY626YU0oCFu7amoKCAysoqNm36BwUFvfjb32DcOJg8GZYscWYJ56LCjIcfHYpkI31uv/12z9N4+5X3KVMP7zDOtzClkAYs3PVYYmlFTj/9I378Y1i5EubMgX/8AyoqHMWQiwqzLX50KDoT6eN1Gu/a2loqKiqIRJxHU15eHjNmzKC2tjYj14uRqYd3GOdbmFJIAxbueiwxt8jtt7d2G82a5SSYe+SR3FWYLfGjQ9EZ11BX3TlhcZ+k6+GdDfMtTCmkAZvsdCztuUWuvNJJMJerCrMlfnUokq3w1lV3TlDdJ5l6eGfFfItEI9BhaEGJPlLNXLhrWIlERFevbh2NFWurVjmhqRZ9lPn5M+3hRaSPF/MbUiGT0VVhmG+BhaQeJR0x4X7HlYeBgQP768KF8ZXCggVov375dr9c/OpQlJaWaiQS0ZKSEl25cqWWlJRoJBLp0gM8U/Mb4s2l6CqZfHgHfb6FKQWXdMSEByGuPAzY3I3gM3HiRP3JT36ihw8fVlXVpqYmnTdvnk6cODHlc2aqBx5vLkU6SPTwPu+887qkgII+38KUgktnH1TxLIKxYy/UCy/saQ+7DvDTLWL4SyZ64JlyQ8V7ePfs2bPLCigTVlg6aU8p5NRAc2diwmMhlU8+eSezZu1m5Upl1qzd7N+/gXfeOcD+/R2fI5expHLt09jYyOzZs7pcyzqIJDuI3R5eRfHEi646cOAA0LVIpFDX2U6kLcLQOmspdDT4mZcXaX5ve1bFmDFOLp+OzmEEHz/Gh3LBBZmM+6S9e+9Vmo2JEyfq0KFDW503Eol4kufJTzBLwaEzMeHJhFR2dA4j2CSyBp988k5KS8/LWK89CKktMk1H8xs6uvfnnnuuJ2k2amtrWbBgQavrHDlyBAhZGGkaySml0JmY8I5mmu5sUwIo3jmMYOPXwzkXcmV15D5J5t6nww2VDH7leQoqOaUUOjPJrCOroqAAm6gWcvx6OAchV1amxzQ6SleR7L33Ks2GVwooDOSUUujM4Gd7VkVNTZTRoy+0AdSQ49fD2e9cWX65zVqS7L33Mmuq13megkpOKQU4msFz27adNDUdZtu2nVRWVh3zMG/PqvjwwyEsW/Z4h+cwgo3XD+dY73zfvn1Mm9Y6ayx454IMwphGsvfeyyiebEvbnSo5pxSSxUIqsx8v8w617J3fccc+Vq1yssa+8YaTNfbll71zQQZhTOP667/Fr36V2BKP3Xsvs6aGOow0jYi2/VZCxOjRo7Wurs5vMYyQEntQFxa+weTJ+xk82OmlPvyw83BOp/KfPXsWTz55JzNntn4Yq8Ktt8LmzfncdNPNVFTckvEOR15ehJUrlby8Y/c1NcH48RGamg5nVIZ3332X008fxJlnHmDqVJrv/UMPwauv9mTz5q2ceOKJGZUhlxGRjao6Ot4+sxSMnMVLa7C93vnXvw69ex/nmQvS7zENgAUL7mP4cDjtNKishEsucZannQbDhzv7DX/wzVIQkTygDvinqk4QkcHAw0Bf4HngKlU92N45zFIwwkIQeucx2rNa5syJMmbMd6msrMqoDMXFRcyatZuhQ4/dt2UL3HZbEdu27Tx2p5EWgmopfAfY3GL9DuAuVR0GfABc64tURigIW5qIIPTOYwSh/kcQwnKN+HTz46IiMhD4PHA7UCEiAowFvuq+5SHgh0CnbchDhw7xzjvvsL9tciLDV6LRKAMHDqR79+5dPlfLsYBZs2JjAbupqbmT5ct/HchAAGdQO37v3OtJjzG32fz5c7nttvvYvn0PAwb047rrbvBkTANiSjK+pRCGzACNjY3Mnz+XhQvvbb5/11//Lc/uXybxxX0kIo8CPwZ6AzcD1wB/UtWh7v5i4HeqelacY6cB0wBOOeWUUW+99Var/W+++Sa9e/emX79+SFsHruELqsqePXvYu3cvgxN1DztBENwfncXLQe0wEMbvMEbL73LKlKPfZU1NeL7LQLmPRGQCsFNVN7bcHOetcbWVqi5Q1dGqOrqoqOiY/fv37zeFEDBEhH79+qXNegtCSGVnsRDn1gTBhZUqqczzCJO703NLQUR+DFwFNAFR4Hjgt8AlwImq2iQi5wM/VNVL2jtXvIHmzZs3c/rpp2dEdqNrpOu7CdKgrZE6MRfM/ff748JKlc4OkgfRsgiUpaCq/6mqA1V1EDAZWKuqVwLrgC+5b5sKLMu0LGHS3sZRgjRoa6ROstkFgkZnB8mDMIO8MwRpnsL3cAad/w70AxZl8mKZzP8iIsyYMaN5fd68efzwhz9s95ja2lo2bdrU7ntGjBjBlClTEu7funUrZ511zDBMu1RWVrJ69WoA7r77bvbt29e870c/+lGnzgWwePFivv3tb3f6uM7g5Uxkw2hLZzslYXN3+qoUVHW9qk5wX/9DVT+tqkNV9QpVPZDJa2dSe/fs2ZPf/OY37N69O+ljOlIKmzdv5siRI2zYsIF//etfKcvWltmzZzdXr0qHUvCCMPujjfDT2U5J2MJvg2QpeEomtXe3bt2YNm0ad9111zH73nrrLcrLyxk+fDjl5eVs27aNZ555huXLl3PLLbcwcuRI3njjjWOO+9WvfsVVV13FxRdfzPLly5u3b9y4kREjRnD++efzP//zP83bFy9ezKRJk7jssssYPHgwP/vZz5g/fz4lJSWcd955vP/++wBcc801PProo9xzzz1s376dsrIyysrK+P73v89HH33EyJEjufLKKwH4xS9+wac//WlGjhzJN77xDQ4fdvz2Dz74IKeddhpjxozh6aefTvm+JYsN2hp+0tlOSejcnYlKsoWhxSvHuWnTpg4K0Tl0pjRnZznuuOO0oaFBTz31VK2vr9e5c+fqrFmzVFV1woQJunjxYlVVXbRokU6cOFFVVadOnaqPPPJIwnMOGzZMt27dqn/4wx/0sssua95+9tln6/r161VV9eabb9YzzzxTVVUffPBBHTJkiH744Ye6c+dOPf744/W+++5TVdXp06frXXfddcx1Tz31VN21a1erzxFj06ZNOmHCBD148KCqqt5www360EMP6fbt27W4uFh37typBw4c0M9+9rN64403xv0MyX43hhF0YqVEi4uLNC8vosXFRQnLuLZX2nfs2KhWVVV6Lj9WjvNYMq29jz/+eK6++mruueeeVtufffZZvvpVZ47eVVddxR//+McOz/Xcc89RVFTEqaeeSnl5Oc8//zwffPABDQ0N1NfXM2bMmObztaSsrIzevXtTVFREYWEhl112GQBnn302W7du7dTnWbNmDRs3buTcc89l5MiRrFmzhn/84x/8+c9/prS0lKKiInr06MFXvvKVTp3XMMJIZwbJw+buzFml4MVg5fTp01m0aFG7YwDJzKeoqanhtddeY9CgQQwZMoQPP/yQX//616hqu8f37Nmz+XUkEmlej0QiNDU1deKTOBbl1KlTeeGFF3jhhRd4/fXXmwfPvZgTYpFiRlgJm7szZ5WCF9q7b9++fPnLX2bRoqOBVJ/97Gd5+OGHAfjlL3/JBRdcAEDv3r3Zu3fvMec4cuQIjzzyCC+99BJbt25l69atLFu2jJqaGvr06UNhYWGztfHLX/6yS/K2laF79+4cOnQIgPLych599FF2usWp33//fd566y0+85nPsH79evbs2cOhQ4d45JFHuiRDPIJQKcwwukKYwm9zVil4pb1nzJjRKgrpnnvu4cEHH2T48OFUV1fz05/+FIDJkyczd+5cSkpKWg00b9iwgZNPPpmTTz65eduFF17Ipk2b2LFjBw8++CA33ngj559/Pr169eqSrNOmTePSSy+lrKyseX348OFceeWVnHHGGcyZM4eLL76Y4cOHc9FFF7Fjxw5OOukkfvjDH3L++eczbtw4zjnnnC7JEI+wxXkbRpjJuiI7NqM5uKT63ViaZcNIL4Ga0WwYnSVscd6GEWZMKRiBJ3Rx3oYRYkwpGIHH0loYhneYUjACT9jivA0jzJhSABoaGrj88stpaGjwWxQjDmGL8zaMMGNKAVi+fDm1tbWsWLHCb1GMBIQpztswwowpBeCBBx5otUwHv/3tbxERXnvttbj7Y4nokmX79u186UtOuYkXXniBJ554onnf+vXreeaZZzot46BBgzqVydUwjOwnJ5XCuHHjEJHmFnugPv300622x1JKp0JNTQ0XXHBB8+zlrjJgwIBmJZIupWAYhtGWnFQKt956K/n5+c3rBw8ebLUEyM/PZ+bMmSmdv7GxkaeffppFixY1KwVV5dvf/jZnnHEGn//855vTRYDTY//BD37A+eefz+jRo3n++ee55JJLGDJkCD//+c+BowV0Dh48SGVlJUuXLmXkyJHccccd/PznP+euu+5i5MiRPPXUU+zatYsvfvGLnHvuuZx77rnN6az37NnDxRdfTElJCd/4xjcI88RFwzAyQze/BfCDsrIyHnvsMSZMmNCqqEyM/Px8Hn/8cUpLS1M6f21tLePHj+e0006jb9++PP/882zdupXXX3+dl19+mffee48zzjiDf//3f28+pri4mGeffZabbrqJa665hqeffpr9+/dz5pln8s1vfrP5fT169GD27NnU1dXxs5/9DICPPvqIgoICbr75ZgC++tWvctNNN3HBBRewbds2LrnkEjZv3kxVVRUXXHABlZWVPP744yxYsCClz2cYRvaSk0oBHMWwdOlSrrjiCvbv39+8PRqNsnTp0pQVAjiuo+nTpwNOTqOamhoOHTrElClTyMvLY8CAAYwdO7bVMV/4whcAJ611Y2MjvXv3pnfv3kSjUerr6zt1/dWrV7eq4vbhhx+yd+9eNmzYwG9+8xsAPv/5z3PCCSek/BmN8NPY2Mj8+XNZuPBetm/fw4AB/bj++m9RUXGLDeDnMDmrFADq6+vp1q1bc1rpAwcO0K1bt04/hFuyZ88e1q5dyyuvvIKIcPjwYUSEyy+/PKk01y1TXMfWO5vm+siRIzz77LNxE+R5kebaCD6xzLOFhW8wa9Z+Bg+GN9/cTU3NnSxf/msL9c1hcnJMIcaiRYvYt28fI0aMYNmyZYwYMYJ9+/Z1KQrp0Ucf5eqrr+att95i69atvP322wwePJi+ffvy8MMPc/jwYXbs2MG6detSvkbbFNdt1y+++OJm1xI4A9PgZFeNpdf+3e9+xwcffJCyDEa4scyzRiI8VwoiEhWRv4jIiyLyqohUudsHi8ifRWSLiCwVkR6ZlqWwsJC5c+dSV1fHRRddxHPPPcedd97J8ccfn/I5a2pquPzyy1tt++IXv8i7777LsGHDOPvss7nhhhuaq6WlQllZGZs2bWLkyJEsXbqUyy67jN/+9rfNA8333HMPdXV1DB8+nDPOOKN5sHrWrFls2LCBc845h5UrV3LKKaekLIMRbjJZo9wIN56nzhbHf3GcqjaKSHfgj8B3gArgN6r6sIj8HHhRVdv9ZVrq7HBh301wyMuLsHKlkpd37L6mJhg/PkJT02HvBTM8IVCps9260bFSWd3dpsBYIDab6yFgkteyGUauYJlnjUT4MqYgInki8gKwE1gFvAHUq2psRPUd4OQEx04TkToRqdu1a5c3AhtGlmGZZ41E+KIUVPWwqo4EBgKfBuL5FOL6tVR1gaqOVtXRRUVFic6fNlmN9GDfSbCwzLNGInyNPlLVemA9cB7QR0RiIbIDge2pnDMajbJnzx57CAUIVWXPnj1Eo1G/RTFcLPOskQg/BpqLgEOqWi8ivYCVwB3AVODXLQaaX1LVe9s7V7yB5kOHDvHOO++0mpBm+E80GmXgwIF0797db1EMI+dpb6DZj8lrJwEPiUgejqXyf1X1MRHZBDwsInOAvwKLUjl59+7dGZyooK9hGIbRLp4rBVV9CSiJs/0fOOMLhmEYhk/k9IxmwzAMozWmFAzDMIxmPB9oTicisgt4K8XD+wNhKjsWJnnDJCuYvJkkTLJCuOTtiqynqmrcmP5QK4WuICJ1iUbfg0iY5A2TrGDyZpIwyQrhkjdTspr7yDAMw2jGlIJhGIbRTC4rhbDVogyTvGGSFUzeTBImWSFc8mZE1pwdUzAMwzCOJZctBcMwDKMNphQMwzCMZnJCKQSpBGiyuDUn/ioij7nrQZZ1q4i8LCIviEidu62viKxy5V0lIif4LSeAiPQRkUdF5DUR2Swi5wdY1k+69zTWPhSR6UGVF0BEbnL/Y6+ISI373wvkb1dEvuPK+aqITHe3BebeisgDIrJTRF5psS2ufOJwj4j8XUReEpFzUr1uTigF4AAwVlVHACOB8SJyHk521rtUdRjwAXCtjzK25TvA5hbrQZYVoExVR7aIm/4+sMaVd427HgR+CvxeVT8FjMC5x4GUVVVfd+/pSGAUsA/4LQGVV0ROBv4DGK2qZwF5wGQC+NsVkbOA63HyrY0AJojIMIJ1bxcD49tsSyTfpcAwt00DUi+yrao51YB84HngMzizAbu5288H/uC3fK4sA90vfCzwGCBBldWVZyvQv82214GT3NcnAa8HQM7jgTdxAyyCLGsc2S8Gng6yvDjVEt8G+uIk23wMuCSIv13gCuD+Fuv/BXw3aPcWGAS80mI9rnzA/wJT4r2vsy1XLIUulQD1gbtxfqBH3PV+BFdWcKrkrRSRjSIyzd32cVXdAeAuP+abdEf5BLALeNB1zd0vIscRTFnbMhmocV8HUl5V/ScwD9gG7AAagI0E87f7CnChiPQTkXzg/wDFBPTetiCRfDGFHCPl+5wzSkG7UALUS0RkArBTVTe23Bznrb7L2oLPqeo5OCbsjSJyod8CJaAbcA5wn6qWAP8iIK6X9nB98F8AHvFblvZw/dsTgcHAAOA4nN9EW3z/7arqZhy31irg98CLQFO7BwWbtD0jckYpxNAMlABNM58DviAiW4GHcVxIdxNMWQFQ1e3ucieOz/vTwHsichKAu9zpn4TNvAO8o6p/dtcfxVESQZS1JZcCz6vqe+56UOUdB7ypqrtU9RDwG+CzBPS3q6qLVPUcVb0QeB/YQnDvbYxE8r2DY+nESPk+54RSEJEiEenjvu6F8+PdDKwDvuS+bSqwzB8Jj6Kq/6mqA1V1EI7LYK2qXkkAZQUQkeNEpHfsNY7v+xVgOY6cEBB5VfVd4G0R+aS7qRzYRABlbcMUjrqOILjybgPOE5F8ERGO3t+g/nY/5i5PAf4N5x4H9d7GSCTfcuBqNwrpPKAh5mbqNH4P+Hg0WDMcp8TnSzgPrEp3+yeAvwB/xzHNe/otaxu5S4HHgiyrK9eLbnsVuNXd3g9nsHyLu+zrt6yuXCOBOve3UAucEFRZXXnzgT1AYYttQZa3CnjN/Z9VAz0D/Nt9CkdpvQiUB+3e4iipHcAhHEvg2kTy4biP/gdnrPRlnAiwlK5raS4MwzCMZnLCfWQYhmEkhykFwzAMoxlTCoZhGEYzphQMwzCMZkwpGIZhGM2YUjCyDhE53Ca7qGezluNltozznk+KyHpXts0iEqZqX0aWYyGpRtYhIo2qWuDTtS8EGoEl6mQKjfeePwD3quoyd/1sVX25i9fNU9XDXTmHYYBZCkaOICKFIvJ6bDazm+v/evf1fSJSJy1qbbjbt4rIj0TkWXf/OSLyBxF5Q0S+Ge86qroBJ2VCe5yEMxkpdszL7vXyRGSeOLUpXhKR/9/dXu4m8HvZtUR6tpCvUkT+CFwhIkNE5PduYsKnRORTqd8xI1fp1vFbDCN09HIz4sb4saouFZFvA4tF5KfACaq60N1/q6q+LyJ5wBoRGa6qL7n73lbV80XkLpz89p8Dojizt3+eonx3AWtF5BlgJfCgOjm5puEkkytR1Sa3oErUvW65qv5NRJYAN+DkwwLYr6oXAIjIGuCbqrpFRD4D3IuTO8swksaUgpGNfKRORtxWqOoqEbkCJx3AiBa7vuym/O6G04s/AycNBjg5ZcBJHVCgqnuBvSKyX0T6uA/zTqGqD7oupPE4WUW/ISIjcHJy/VzdNNOuohqBk2Tub+7hDwE3clQpLAUQkQKc5HOPOGmHACfFhGF0ClMKRs4gIhGclOkf4RSCeUdEBgM3A+eq6gcishjHEohxwF0eafE6tp7y/0edzLIPAA+4g9Jn4eSvaTvIFy8lckv+5S4jOHULjlGGhtEZbEzByCVuwsmOOwXnYdwdpxrbv4AGEfk48fP/pxURGe9eGxE5ESfJ2T9xXEnfjKWZFpG+OMnlBonIUPfwq4An255TVT8E3nQtoVjN3hFt32cYHWFKwchGerUJSf1vETkNuA6YoapPARuAmar6Ik4G3Vdxeu5Pd+XCIlIDPAt8UkTeEZF49YgvBl4RkReBPwC3qJPW+36c9NMvufu+qqr7ga/juIVexrFQEo1lXAlc6x77Ko5ryjA6hYWkGoZhGM2YpWAYhmE0Y0rBMAzDaMaUgmEYhtGMKQXDMAyjGVMKhmEYRjOmFAzDMIxmTCkYhmEYzfw/N4/xvaIQSC8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plotData(X,y)\n", + "pyplot.xlabel('Exam 1 Score')\n", + "pyplot.ylabel('Exam 2 Score')\n", + "pyplot.legend(['Not Admitted','Admitted'])\n", + "pass" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def sigmoid(z):\n", + " \"\"\"\n", + " Compute sigmoid function given the input z.\n", + " \n", + " Parameters\n", + " ----------\n", + " z : array_like\n", + " The input to the sigmoid function. This can be a 1-D vector \n", + " or a 2-D matrix. \n", + " \n", + " Returns\n", + " -------\n", + " g : array_like\n", + " The computed sigmoid function. g has the same shape as z, since\n", + " the sigmoid is computed element-wise on z.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the sigmoid of each value of z (z can be a matrix, vector or scalar).\n", + " \"\"\"\n", + " # convert input to a numpy array\n", + " z = np.array(z)\n", + " \n", + " # You need to return the following variables correctly \n", + " g = np.zeros(z.shape)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " g = 1/(1+np.exp((-z)))\n", + " \n", + " # =============================================================\n", + " return g" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "g( [0, 100] ) = [0.5 1. ]\n" + ] + } + ], + "source": [ + "# Test the implementation of sigmoid function here\n", + "z = [0,100]\n", + "g = sigmoid(z)\n", + "\n", + "print('g(', z, ') = ', g)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup the data matrix appropriately, and add ones for the intercept term\n", + "m, n = X.shape\n", + "\n", + "# Add intercept term to X\n", + "X = np.concatenate([np.ones((m, 1)), X], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def costFunction(theta, X, y):\n", + " \"\"\"\n", + " Compute cost and gradient for logistic regression. \n", + " \n", + " Parameters\n", + " ----------\n", + " theta : array_like\n", + " The parameters for logistic regression. This a vector\n", + " of shape (n+1, ).\n", + " \n", + " X : array_like\n", + " The input dataset of shape (m x n+1) where m is the total number\n", + " of data points and n is the number of features. We assume the \n", + " intercept has already been added to the input.\n", + " \n", + " y : arra_like\n", + " Labels for the input. This is a vector of shape (m, ).\n", + " \n", + " Returns\n", + " -------\n", + " J : float\n", + " The computed value for the cost function. \n", + " \n", + " grad : array_like\n", + " A vector of shape (n+1, ) which is the gradient of the cost\n", + " function with respect to theta, at the current values of theta.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the cost of a particular choice of theta. You should set J to \n", + " the cost. Compute the partial derivatives and set grad to the partial\n", + " derivatives of the cost w.r.t. each parameter in theta.\n", + " \"\"\"\n", + " # Initialize some useful values\n", + " m = y.size # number of training examples\n", + "\n", + " # You need to return the following variables correctly \n", + " J = 0\n", + " grad = np.zeros(theta.shape)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " z=theta.dot(X.transpose())\n", + " h=sigmoid(z)\n", + " \n", + " for i in range(m):\n", + " J=J+((-1*(y[i]*math.log(h[i])+(1-y[i])*math.log(1-h[i])))/m)\n", + " \n", + " for i in range(theta.shape[0]):\n", + " grad[i]=((h-y).dot(X[:,i]))/m\n", + "\n", + " # =============================================================\n", + " return J, grad" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost at initial theta (zeros): 0.693\n", + "Expected cost (approx): 0.693\n", + "\n", + "Gradient at initial theta (zeros):\n", + "\t[-0.1000, -12.0092, -11.2628]\n", + "Expected gradients (approx):\n", + "\t[-0.1000, -12.0092, -11.2628]\n", + "\n", + "Cost at test theta: 0.218\n", + "Expected cost (approx): 0.218\n", + "\n", + "Gradient at test theta:\n", + "\t[0.043, 2.566, 2.647]\n", + "Expected gradients (approx):\n", + "\t[0.043, 2.566, 2.647]\n" + ] + } + ], + "source": [ + "# Initialize fitting parameters\n", + "initial_theta = np.zeros(n+1)\n", + "\n", + "cost, grad = costFunction(initial_theta, X, y)\n", + "\n", + "print('Cost at initial theta (zeros): {:.3f}'.format(cost))\n", + "print('Expected cost (approx): 0.693\\n')\n", + "\n", + "print('Gradient at initial theta (zeros):')\n", + "print('\\t[{:.4f}, {:.4f}, {:.4f}]'.format(*grad))\n", + "print('Expected gradients (approx):\\n\\t[-0.1000, -12.0092, -11.2628]\\n')\n", + "\n", + "# Compute and display cost and gradient with non-zero theta\n", + "test_theta = np.array([-24, 0.2, 0.2])\n", + "cost, grad = costFunction(test_theta, X, y)\n", + "\n", + "print('Cost at test theta: {:.3f}'.format(cost))\n", + "print('Expected cost (approx): 0.218\\n')\n", + "\n", + "print('Gradient at test theta:')\n", + "print('\\t[{:.3f}, {:.3f}, {:.3f}]'.format(*grad))\n", + "print('Expected gradients (approx):\\n\\t[0.043, 2.566, 2.647]')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost at theta found by optimize.minimize: 0.203\n", + "Expected cost (approx): 0.203\n", + "\n", + "theta:\n", + "\t[-25.161, 0.206, 0.201]\n", + "Expected theta (approx):\n", + "\t[-25.161, 0.206, 0.201]\n" + ] + } + ], + "source": [ + "# set options for optimize.minimize\n", + "options= {'maxiter': 400}\n", + "\n", + "# see documention for scipy's optimize.minimize for description about\n", + "# the different parameters\n", + "# The function returns an object `OptimizeResult`\n", + "# We use truncated Newton algorithm for optimization which is \n", + "# equivalent to MATLAB's fminunc\n", + "# See https://stackoverflow.com/questions/18801002/fminunc-alternate-in-numpy\n", + "res = optimize.minimize(costFunction,\n", + " initial_theta,\n", + " (X, y),\n", + " jac=True,\n", + " method='TNC',\n", + " options=options)\n", + "\n", + "# the fun property of `OptimizeResult` object returns\n", + "# the value of costFunction at optimized theta\n", + "cost = res.fun\n", + "\n", + "# the optimized theta is in the x property\n", + "theta = res.x\n", + "\n", + "# Print theta to screen\n", + "print('Cost at theta found by optimize.minimize: {:.3f}'.format(cost))\n", + "print('Expected cost (approx): 0.203\\n');\n", + "\n", + "print('theta:')\n", + "print('\\t[{:.3f}, {:.3f}, {:.3f}]'.format(*theta))\n", + "print('Expected theta (approx):\\n\\t[-25.161, 0.206, 0.201]')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3hUZdbAf+9MypBKCzWhhl4SICpFCQnFhoCu7KK7Aq5YsFJE/JSlyVrABewKKE0FBCQUGy0QQEGCBlEEAekttIQECJDkfH+kmIT0aXcm7+955pnMvXPvPXNn8p73nPcUJSJoNBqNpuJhcrYAGo1Go3EOWgFoNBpNBUUrAI1Go6mgaAWg0Wg0FRStADQajaaCohWARqPRVFBKVABKqU+UUolKqV/zbKuqlFqjlNqX/Vwle7tSSr2tlNqvlPpFKdXensJrNBqNpvyUxgKYA9xRYNuLwDoRaQKsy34NcCfQJPvxGPCBbcTUaDQaja0pUQGISBxwvsDmvsDc7L/nAv3ybJ8nWWwFKiulattKWI1Go9HYDo9yHldTRE4CiMhJpVSN7O11gaN53ncse9vJgidQSj1GlpWAr69vh+bNm5dTFMjMzOT06VOcOXOG69fT8fT0ICgoiJo1a2Ey6WUOjUbjnuzYseOsiASV9/jyKoCiUIVsK7TWhIjMAGYARERESHx8fLkumJqaSrduHWne/AITJqTTsCEcPJjOggUXSE6uyoYNW/Hz8yvXuTUajcbIKKUOW3N8eafHp3NcO9nPidnbjwEhed4XDJwov3glM3XqFAIDDzBmTBqhoWA2Q2gojBmTRmDgAaZOnWLPy2s0ZSI5OZl7772X5ORkZ4ui0ZRbAawABmX/PQhYnmf7wOxooI5Aco6ryF7MnPk+DzyQhipgeygFAwakMWuWY9ah9T+2pjSsWLGCmJgYVq5c6WxRNJpShYEuAH4AmimljimlHgFeB3oqpfYBPbNfA3wN/AnsB2YCT9pF6jycOHGOhg0L39ewYdZ+R6D/sTWl4ZNPPsn3rNE4E2WEctCFrQFcv36dY8eOkZaWVuyxx44dJTAwE0/PG/ddvw7JySaCg0Nu3GljTp8+TVpaGhaLhZo1a9r9ehUBi8VCcHAwnoV9uWUgOTmZwYMHM2fOHAIDA20kXeno0aMH69aty33t5eXFtWvXcp9z6N69O2vXrnWobBrXRym1Q0Qiynu8rReBbcaxY8fw9/enQYMGqIL+nTwEBgaQknKK2rUlnxtIBE6eVAQH16JOnbo2l2/v3r2kpKTkvvb398fPzw+lFJcuXcq3vVmzZja/vrsjIpw7d45jx47RsCgTrwgKDvh5rbN//etfdpK4cF5++WV++OEHLl++DJA76Ocd/H18fBgzZoxD5SoLzlSgGvti2BjJtLQ0qlWrVuzgD1CzZi0yMiycPKlIS8sa+NPSsgb/jAwLNWvWsot8tWvXzhdimmNJ5bWoTCYTderUscv13R2lFNWqVSvRAiyMgu44Z7pdoqKiWLVqFT4+PoXu9/Hx4auvvqJbt24lnstZ60zavem+GFYBACUO/gBms5lmzZrj71+Lkyc9+OMPOHnSA3//WjRr1hyz2WwX2QICAggNDS0yz8BkMtGkSRP8/f3tcv2KQGm+/8J49tlnAXjooYdQSvH9998DsGXLFpRSuY8ePXrYTNbiiIqKYtGiRVgslnzbLRYLixYtKtXgD84biPW6hftiaAVQWsxmM3Xq1KVt23AiIiJo2zacOnXq2m3wzyEgIIBGjRrdMFAppWjUqJEe/B1Ejx498g3sqamp+fYbwe2SlJSEh4cHJpOJSpUqYTKZ8PDwICkpqdTncNRAXPB+OluBauyHyyiAjIwMTpw4zi+/JBAfH88vvyRw4sRxMjIySE1NZeLEcYSEBGE2mwgJCWLixHE3DATlYdmyZSil2LNnT6H7hw4dmrvIl2MNKKXIyMgo9P0nTpzg/vvvByAhIYGvv/46d9+GDRty/9nKQoMGDTh79myZj3MXXn755XwulvT09GLfXxa3i634+OOPuXz5MmFhYSxfvpywsDAuX75c7GDurIG44P00ggLV2AeXUAAZGRns3bsne7E3naZNoXbtdFJSTvHTTz/RrVtHNm6czLhxZ1m9Whg37iwbN06mW7eOViuBBQsWcOutt7Jw4cJC96elpSEi+Pj4EBoaio+PD5mZmUUOyHXq1GHJkiWA7RRARackP3teyup2sRWBgYFMmTKF+Ph4evbsyfbt25k8eTIBAQFFHuOsgdiW6xYagyMiTn906NBBCrJ79+7cv48fPyZ79sRLcvJ2uXjxr0dy8nZ55plHJSrKW9avR2Jj/3qsX49ER1tkwoSxN5y7tKSkpEidOnVk79690qxZMxERyczMlKeeekpatGghd911l0RGRsrMmTMlMzNT6tevLy+++KJ06NBBWrduLTt27JBevXpJo0aN5IMPPhARkYMHD0qrVq3k6tWrEhISItWrV5ewsDB5/fXXpWbNmlKnTh0JCwuTuLg4SUxMlPvuu08iIiIkIiJCNm/eLCIiZ8+elZ49e0p4eLg89thjUq9ePTlz5ky5P6eRyfs7KImVK1eKxWIRssqP5D5MJpNUqlRJTCaT+Pn5yfz58+0osW1Zv369+Pj43PCZAPHx8ZHY2Fi7Xbuw+2mxWGTlypV2u6ambADxYsXY6xIWwNmzZ6haNX+YJ2Rl+3755WIefPCqXTKBY2JiuOOOO2jatClVq1blp59+YtmyZezdu5ddu3Yxc+ZMEhISqFy5cu46QL169YiPj6dHjx4MHjyYJUuWsHXrVsaOHZvv3F5eXkycOJF//OMfJCQkMHr0aJ544gmGDx9OQkICt912G8899xzDhw9n+/btLF26lCFDhgAwYcIEbr31Vn7++Wf69OnDkSNHyv0Z3YmCfvYcQkJCSu12MRq2WkAuD7ZYt9AYG5dQANeupePtXfi+kyeT7ZYJvGDBAgYMGADAgAEDWLBgAXFxcTzwwAPZC891iI6OzndMnz59AGjTpg233HIL/v7+BAUFYbFYyvyPs3btWp5++mnCw8Pp06cPFy9eJCUlhbi4uNx49rvvvpsqVaqU+zO6EwX97DnulYYNG5ba7WJEnDUQl2fdQuNauIQC8PLy4OrVwvfVrh3IwYOF7zt4EOrUqVaua547d47169czZMgQGjRowJQpU1i0aBEiUmx4one2pjKZTLl/57wuaXGyIJmZmfzwww8kJCSQkJDA8ePHcyOLyhsi6c4U9LOfP3+eN998Mzd5yWw2M3LkSGJiYpwsadlw1kBcnnULjWvhEgqgevUgzp9XFKxaIQL33defzz/3LnTfwoUWhgwZWq5rLlmyhIEDB3L48GEOHTrE0aNHadiwIVWrVmXhwoVkZGRw8uRJYmNjy/mpsrKEC2YT533dq1cv3n333dzXCQkJAHTt2pXPPvsMgG+++YYLFy6UWwZ3IiYmhhEjRuRGY7nqgF8QZw3E7no/NX9hCAVw5XrhIZM5FJft+9BDj3LxYiiTJlnYtw/S02HfPpg0yUJycmNGjBhVLpkWLFjAvffem2/b3/72N06dOkWTJk1o06YNQ4cOJTIyslznhyz/7u7duwkPD2fRokXcc889LFu2jPDwcDZt2sTbb79NfHw8bdu2pWXLlnz44YcAjBs3jri4ONq3b8/q1aupV69euWXQGIeiMn31QKyxF4YoBuddu4m8OncVT0eH4u2Rlbz1+++/06JFi9z3ZGRkcPr0Kc6ePcO1a+l4eXlQvXpW168rV64wdeoUZs36gBMnzlGnTjWGDBnKiBGjdDMYF6fg78CdmT9/PgMHDmT+/PkOr1mkcU2sLQZnCAVQq3ErsfSfTLOa/rzZP4w2wYEV6h9fUzQV6XcQFRXFhg0biIqKYv369c4WR+MCWKsADOECCq5SiU8GR5B05Rr93t/Cm9/txQiKSaOxJ+5SckE3Q3JdDKEAAKKb12T18EjubVeXd2P3k5hylcvXyhY1o9G4Eu5SckFXC3VdDKMAAAIrefJm/zBmD76JTIEDiZc4lXyFTG0NaNwQdym5oKuFui6GUgA5RDWvQc0Ab6r4eJKYcpX9p1O1NaBxS5yZ6VteCrqutmzZAsDmzZtdynWlMagCADApRXBVHxpW9yVDhAOJqZxMvkJmZtHWgPZFalwRVyu5UNB1df369XzP4BquK42BFUAO/hZPmtb0o4qPF2dSrrIvMZXLVwu3Bmzti1RKMXLkyNzXb775JuPHjy/2mJiYGHbv3m3Vdcta3nnFihW8/vrrhV5/zpw5nDhxokzXP3ToEK1bty7TMZry44hMX1tOjtzFdaVxAQUAYDaZcq2BTBEOnCncGrC1L9Lb25svv/yyTIOxLRRAWenTpw8vvvhiodcvjwLQOBZHZPracnLUo0cPoqOjc/scF+Ty5ctERUVpF5ArYE0pUVs9SioHnZf0jAw5ev6S7Dx6QTrd1i1fqVovL698zzmP7t27l76+ah58fX3l1VdflZdeeklERKZMmSLjxo0TEZFDhw5JdHS0tGnTRqKjo+Xw4cOyZcsWqVKlijRo0EDCwsJk//79+c63YsUKufnmmyU8PFy6d+8up06dEpGiyzsfPHhQmjVrJo888oi0atVKHnzwQVmzZo107txZQkNDZdu2bSIiMnv2bHnqqaduuP7rr78uvr6+0rRpUwkLC5PLly9LfHy8dO3aVdq3by+9evWSEydOiIhIfHy8tG3bVjp27CjPP/+8tGrVqlz3zNaUpRy0pmi6dcv6X4mKirL6XMWVqMZBpao1WWBlOWirBm7gOeBX4DdgWPa2qsAaYF/2c5WSzlMWBZDDxSvXZPbilWKpVMluP0RfX19JTk6W+vXrS1JSUj4F0Lt3b5kzZ46IiHz88cfSt29fEREZNGiQLF68uNDznT9/XjIzM0VEZObMmTJixAgREXnmmWdkwoQJIiKyatUqAXIVgNlsll9++UUyMjKkffv28vDDD0tmZqbExMTkXjNHARR2/cjISNm+fbuIiFy7dk06deokiYmJIiKycOFCefjhh0VEpE2bNrJhwwYREa0A3IDIyEi7To7Wr18vJpOp0P85k8mkB38HYa0CKLcLSCnVGngUuBkIA3orpZoALwLrRKQJsC77tc3xt3jy0H13MXfhUix5ar/nxRa+yICAAAYOHMjbb7+db/sPP/zAgw8+CGQ1H9+8eXOJ5zp27Bi33347bdq0YcqUKfz2228AxZZ3btiwIW3atMFkMtGqVSu6d++OUoo2bdpw6NChMn2WvXv38uuvv9KzZ0/Cw8OZNGkSx44dIzk5maSkpNy6Rg899FCZzptDeno6+/fvL3PVU43t6dSpU77Xts4xiIqK4qabbsLDwyPfdg8PD2666Sbt/3cRrFkDaAFsFZHLIpIObATuBfoCc7PfMxfoZ52IRWM2mfh7nzuZ++nneHvbL4xu2LBhfPzxx1y6dKnI95SmPPMzzzzD008/za5du/joo49IS0sr8fiCJaXzlpsu60ArIrRq1Sq3vPSuXbtYvXp1iSWuS0uOItFRWM5n69atwF99qgtii8nR008/jcViyRe9ZLFYePrpp8t9TiNREaIKrVEAvwJdlVLVlFI+wF1ACFBTRE4CZD/XKOxgpdRjSql4pVT8mTNnrBADrl1OxdMzK4zO25L1QzTbMIyuatWq/P3vf+fjjz/O3da5c+fcPsGfffYZt956K3BjSee8JCcnU7duXQDmzp2bu91W5Z3T09PJzMzM97nzytOsWTPOnDnDDz/8AGSF7f32229UrlyZwMDAXCsmR5aykrNYXpEb1DuLospKFKYAbDU5cveGMRUhw7ncCkBEfgfeIMvP/y2wEyj1lFREZohIhIhEBAUFlVcMIP8P8YslS2nWsjWXL13igxmzis0bKAsjR47MN7C9/fbbzJ49m7Zt2zJ//nzeeustIKtz2JQpU2jXrh0HDhzId47x48fTv39/brvtNqpXr5673VblnZOTk4mMjMx3/cGDB/PEE08QHh5ORkYGS5YsYfTo0YSFhREeHp47UMyePZunnnqKTp065WunWBx79+4lPj4+95GamgpAampqvu179+4t1+fRlJ6iykoUtBKVUjbLMXD3hjEVIcPZZtVAlVKvAsfIWhjuJiInlVK1gQ0i0qy4YyMiIiQ+Pj7ftrJUgezXrx9du3Zl2LBhmEwmrl1PZ9LrU9i0eTMfzl1IcJVK+Hp7lHwiF2fv3r2kpKTg7+9Ps2bF3nKbcPHiRfbv309mZmaR7zGZTDRp0iS3k1lZqUjVQK0lNjaW3r17FxqeqZRi8uTJfP755+zcuZPIyEhdcbQAPXr0YN26dbmvvby8uHbtWu5zDt27d2ft2rXOEPEGnFoOWilVQ0QSlVL1gNVAJ+Al4JyIvK6UehGoKiIvFHceaxVAUaSmXefYhStcy8ikup83tQIsmEzu00oxZ8DPQSmV68/P+73aUyEUpwSsHfxBK4CysmrVKvr3759vfcnDw4OlS5fSp08fMjIyeO2113jvvffYs2dPbrvMikxycjKDBw/m3//+NwMGDCgyvwGMl+Tm7HLQS5VSu4GVwFMicgF4HeiplNoH9Mx+7RT8LJ40qelPNV9vzqZeZV9iCpeKyCJ2BLaOkqldu3Y+H2/OoJ938DeZTNSpU8cm1yuMgIAAGjVqdMMislKKRo0aWTX4a8pOYWUlLBYLFy9eBLK6idWvX59Tp065tW+7LOT4+pOTkytchrNVCkBEbhORliISJiLrsredE5HuItIk+/m8bUQtH2aTom6VSjSq7osAB86kciLpChk2WhsoC7aOkgkICCA0NLTISA9bzMBLQ0ZGRq4CyJFFKUVGRvGtPjW2pzQLsxXBt10W8t4PVyzOZw0uUQrCFvhZPGlSw59qfn9ZA6kOtgbsESVjhBn42bNnyczMxMfHh9DQUHx8fMjMzNTRQE6gsIXZRo0aERsb6/KNZ2xFSY147rnnnlwXmqOL8zk69LTCKADItgYqV6JR9aw+wX/a2RpwVJSMs2fgZrOZ4OBgWrRoQUBAAC1atCA4OBiz2Wz3a1eEWO2yUFgD+RkzZrhF4xlbUZpGPAChoaEOD291dOhphVIAOfhZPGhSw5/qdrYGHOWjd/YMPDQ0lFq1auUqIaUUtWrVIjQ01O7Xrgix2taiq3fmp6T7YTabGTp0KHv37nV4eKuj3XMVUgFAljVQp3IlGgX9ZQ0cL2ANmM1mwsPDadWqFWFhYUydOrXYkMeC5PXRf/jhh2zbti3f/rw++g8//JB58+aV77PkmYGfP3+eDh06MHjwYPr160fnzp0dEofv5+dn92sUhtH92UawUJKTk3n77bf55JNPKoxvuySK8/XHxMTw/vvv57OiRo4cSUxMjM3lcHZf6AqrAHLw8/7LGjiXYw2kZVkDlSpVIiEhgd9++401a9bw9ddfM2HChDKdP8dHP3ToUG655Zbc7QV99E888QQDBw4s12coOANv3Lgxv/76K7///juDBg3i1VdfLdd57YWIlEmR5sXZ/zBlxQgWSo4MGzZscKnGM/bGCI14nN0XusIrACjEGjibZQ3kpUaNGsyYMYN3330XESEjI4NRo0Zx00030bZtWz766KPc906ePJk2bdoQFhbGiy++SEZGBuPHj2fdunWYTCbeeecd+vfvT5cuXXj++eeBrCzhN998E4CEhAQ6duxI27Ztuffee3NLQ3Tr1o3Ro0dz880307RpUzZt2lTiZ7t48WJucbm0tDQefvhh2rRpQ7t27YiNjQWyegbkrd/Su3dvNmzYAGTN7F9++WXCwsLo2LEjp0+fBuDgwYN06tSJm266if/85z+5x6amptK9e3fat29PmzZtWL58OZDVZKZFixY8+eSTtG/fnldeeYXhw4fnHjdz5kxGjBhR4udx9j9MWXGGhVLQ6si59sKFC926dENZMUIpC2e751wiPXbCyt/YfeKiTc/Zsk4A4+5plW+bn7cHTWv4c+piGmdTryKSlUzmZ/EEoFGjRmRmZpKYmMjy5csJDAxk+/btXL16lS5dutCrVy/27NlDTEwM27Ztw8fHh/Pnz3PmzBlEBC8vL6pWrUpcXBxffPEFAQEB1KxZ8wbZBg4cyDvvvENkZCRjx45lwoQJTJ8+HcjKJfjxxx9zrZHCMhIPHDhAeHg4KSkpXL58Odf19N577wGwa9cu9uzZQ69evfjjjz+KvU+XLl2iY8eO/Pe//+WFF15g5syZjBkzhueee46hQ4cycODA3PNClgm9bNkyAgICOHv2LB07dqRPnz5A1qL47Nmzef/997l06RJt27Zl8uTJeHp6Mnv27HxKtChy/mGKynh1tj+7sGxS+MtCycGe2aSdO3dm9+7dVK5cOZ8MFy9eJDMzk59//plevXoRHR3N5MmTSzWRcEdyIqZyKghER0czffp0h9+PHHdUwQQ+R7jntAVQAFO2NdA41xq4xPELl3PXBnIWcFevXs28efMIDw/nlltu4dy5c+zbt4+1a9fy8MMP52r0qlWrYjab8fX1JTg4mODgYAICApg2bRpr1669QfMXLM08aNAg4uLicvffd999AHTo0KHIctCNGzcmISGBAwcOMH36dB577DEgq2l3Tqnn5s2bU79+/RIVgJeXF717977hmlu2bOGBBx4A8pePFhFeeukl2rZtS48ePTh+/Hiu1VC/fn06duwIgK+vL9HR0axatYo9e/Zw/fp12rRpU6wsORg5VtsIFoqnp2e+1znXzut28/Hx4T//+Y/dfNuuQGERU866H85yR7mEBVBwpu4IfL09UIrcSKGUtHSuJ53EbDZTo0YNRIR33nmH22+/Pd9x33777Q0x+aGhoVSqVCm3ENePP/7IunXrWLhwIUuXLi1TTZacctBms7lUGcV9+vTh4YcfBvJHH+XFw8Mj3+CQdxbi6emZ+3kKXrOwEtKfffYZZ86cYceOHXh6etKgQYPc8/n6+uZ775AhQ3j11Vdp3rx5roylJe8/jLe3N1evXjWEP9sZFkpRVkdRONtK0txIXnfUG2+8wejRo9m5cyeffPJJbq8Qe6AtgBLIsQYunDvHY48PZeAjj5MpcPvtt/PBBx9w/fp1AP744w8uXbpEr169+OSTT3L/+c+fz58InZqaSnJyMnfddRfTp08nISEh3/7AwECqVKmSa4bOnz8/1xooD5s3b6Zx48ZA/rLTf/zxB0eOHKFZs2Y0aNCAhIQEMjMzOXr0KD/++GOJ5+3SpUu+ctg5JCcnU6NGDTw9PYmNjeXw4cNFnuOWW27h6NGjfP7557nWRGkxgv+2KBxtoRRldRSGEawkzY04q7KqS1gAzuLKlSuEh4dz/fp1PDw86Hv/AO4b9Dj7Tqcw4F+DOHToEO3bt0dECAoKIiYmhjvuuIOEhAQiIiLw8vLirrvuyheFk5KSQt++fUlLS0NEmDZt2g3XnTt3Lk888QSXL1+mUaNGzJ49u0xy56wB5Kw7zJo1C4Ann3ySJ554gjZt2uDh4cGcOXPw9vamS5cuuZ3HWrduTfv27Uu8xltvvcWDDz7IW2+9xd/+9rfc7f/85z+55557iIiIIDw8nObNmxd7nr///e8kJCTk64JWGozivy0KR1ooJVkdkGUVpKenG8JK0txIQbdTjjtq5MiR9r2wNf0kbfUoT09gZ5Gadl32nLwoO49ekKPnL0l6RoazRXJp7r77blm7dm2R+436OyiJbt26iclkknbt2snq1aulXbt2YjKZbNKUvShWrlwpFovlhh69jRo1cpgMGseCs3oCV1R8vT1oUsOPIH9vLly6xr7TqaSkXXe2WC5HUlISTZs2pVKlSnTv3t3Z4tgcZ5j0BRcSIWvmP27cOLds2KKxHps1hLEGe/UDsDeXrqZz7MIVrqZnUNXXi9qBFsxFVObUlA9X+B0YhaioKOLi4m5YSNTNX9wXZ/cDsCtGUE7FUdAa+ENbAzbF6N+/0XD3Fo0a22NYC+DgwYP4+/tTrVq1QsMNjcblq+kczbEGfLyoXVlbA9YgIpw7d46UlBQaNmzobHE0GkNirQVg2Cig4OBgjh07xpkzZ5wtSqkRES6npZOYls4+k6KyjycWT/uXRHZXLBYLwcHBzhZDo3FbDKsAPD09XXbml3A0iecX72R/Yip/jwjm5btbEljJs+QDNRqNxoFoH4UdCA+pzKpnbmVot8Ys2XGM26fFEbs30dliaUqBEco3azSOQisAO2HxNDP6juYse7ILAZU8eHj2dkYt3knyFb1IbGSMUL5Zo3EUWgHYmbCQyqx85laeimrMlz8fp9e0jcTu0daAUTF6gxmNxpZoBeAAvD3MjLq9Ocue7EzlSl48PGc7I7/YSfJlbQ04G1drMKPR2BKrFIBSarhS6jel1K9KqQVKKYtSqqFSaptSap9SapFSqvjShBWItsGVWfFMF56JDiUm4Ti9pm9k/Z7TzharQmOE8s0ajbMotwJQStUFngUiRKQ1YAYGAG8A00SkCXABeMQWgroL3h5mRvZqRsyTXaji48W/58Qz4osEbQ04CWd3ZNJonIm1LiAPoJJSygPwAU4C0cCS7P1zgX5WXsMtaRMcyIqnb+XZ6FCWJ5yg57SNrN2trQFnYOQGMxqNPSm3AhCR48CbwBGyBv5kYAeQJCI5XUOOAXULO14p9ZhSKl4pFe9KyV5lJTU1lYkTxxESEoTZbCIkJIiJE8eRmpqKl4eJEb2asfypLlT19WLIvHhGLEog6XLR9dw19sEIDcILQ4elauyJNS6gKkBfoCFQB/AF7izkrYXWmhCRGSISISIRQUFB5RXD0KSmptKtW0c2bpzMuHFnWb1aGDfuLBs3TqZbt46kpqYC0LputjXQvQkrdp6g57Q41mhrwKEYtcGMDkvV2BNrXEA9gIMickZErgNfAp2BytkuIYBg4ISVMrosU6dOITDwAGPGpBEaCmYzhIbCmDFpBAYeYOrUKbnv9fIwMaJnU2Ke6kJ1P28enRfPsIU/c+GStgYcQWBgIBMnTqRevXrcfPPNhimkpsNSNfbEGgVwBOiolPJRWdXaugO7gVjg/uz3DAKWWydi2SjO5eJoZs58nwceSKNgLTulYMCANGbN+uCGYwuszEcAACAASURBVFrXDWT5U10Y1qMJq345Sc9pcXz32ykHSVxxiYmJoV69eixfvpyVK1c6rUG4DkvVOBJr1gC2kbXY+xOwK/tcM4DRwAil1H6gGvCxDeQsFaV1uTiKEyfOUVQ5o4YNs/YXhpeHiWE9mrL86S4E+Xvz+PwdPLtAWwP2xgizbR2W6rq44nqNVVFAIjJORJqLSGsReUhErorInyJys4iEikh/EblqK2FLoiwuF0dQp041Dh4sfN/Bg1n7i6NVnUBWPN2F4T2a8vWuk/SctpFvf9XWgK0w4mxbh6W6Lq64XuNWmcDlcbnYk0cffZIFCywUbLkgAgsXWhgyZGiJ5/A0m3iuRxNWPH0rNQMsPPHpDp5Z8DPntTVgNUadbbtjWKorzo7LihEsyLLiVgqgvC4XezFixCiSkxszaZKFffsgPR327YNJkywkJzdmxIhRpT5XyzoBxDzVhRE9m/LtryfpNW0j3/560o7Suz9Gnm0bNSy1vLji7LgkjGhBlhW3UgDWulxsjZ+fHxs2bCUy8gVeeSWIO+4w8corQURGvsCGDVvx8/Mr0/k8zaasUNGnb6VWoIUnPv2Jpz//iXOpDvOyOQ17zSCNOts2alhqeXHF2XFJGNWCLAtupQBs4XIpibJGGfn5+TF27ASOHEkkPT2DI0cSGTt2QpkH/7y0qB3Asie78Hyvpnz32yl6TYvj613WWQNGN9HtOYM04mzb1fv7usPsuCSMbEGWGhFx+qNDhw5iC1JSUqRDh1YSHW2RGTOQNWuQGTOQ6GiLdOjQSlJSUmx2/pkzkbVrkZkzbXf+8rDn5EXp/fYmqT96lTz56Q45m5JWrvPMmzdPAJk/f76NJbQN3bp1E0CioqLscm6TySTt2rWT1atXS7t27cRkMtnlWq5MUlKS9OvXT5KSkkp87/r168XHx0fISgQt9OHj4yOxsbH2F9zOrFy5UiwWS77PZrFYZOXKlXa/NhAvVoy9bmMBpKamMnXqFE6dOkVsbBrDhinuvBMmTKhebpdLQYwWZQTQrJY/y57szKjbm7Fm92l6Tovjq1/Kbg0YzUR35AzS1WfbjqIsVphbzI5LiREtyFJjjfaw1cNaC8BRM/Pg4OoycyYSG3vjY8YMJCQkyCbXKS97Tl6Ue97JsgaGfhovZ4qxBrp3755vxuLl5ZXvOefRvXt3B36Cv6hIM0hXoTxWmDNnx47CmRYk2gJw3MzcaFFGBWlWy58vh3bmhTuasXZ3Ir2mxbFy5wmk4KIIxl/AqkgzSKNiCyvMpWfHpcSlLUhrtIetHtZaAI6amRvdAsjLH6cuSp9sa+DxefGSePFGa6C4WbZRZtcVYQZpVEpjhZnN5mK/C72+Yl/QFoDjZuaOiDKyFU1q+rN0aGdG39Gc9XsS6TVtIysKWANGDYHMS0WYQRqVkqwwLy8vMjIyiv0uXHp2XAFwCwXgqPh/WyZ2OQIPs4mh3Rrz1bO3Uq+aL88u+JknPt1BYkpa7nuMPsC6Wzy8q1HcJKFp06ZA8YEDMTExjBgxApMpa6hxVpE9TeG4hQJw1Mzc1oldjqJJTX+WPtGJ/7uzObF7z9BrWhzLE44jIoYfYEs7gzR6HoMrkzNJyEtaWhp79uwB3Cu2v8Jhjf/IVg9bRgHZI/7fndh3+qL0fXez1B+9Sh6du13uum+A/O9//5OMjAwREUlPT5c333xT+vbt62RJy0bBPIayxKxriifHjx8aGire3t46MstAYOUagNMHf7GBAhDJUgITJoyVkJAgMZtNEhISJBMmjM0d/HP2BwdXF5NJSXBw9Xz7KxLpGZny0cb90uTlr6Xt+O9k2U/HJDMz09liWUXBEEWjJ7a5En379s2dJLhC4EBFIGeCA/wsVoy9Sgr6TZxARESExMfH2+38OX0CAgMP8MADaTRsmLU2sGBBlu/eyO4be7I/MZUXluzkpyNJ9GhRk1fvbU2NAEvJBxqAHj16sG7dutzXXl5eXLt2Lfc5hypVqnD+/HlniOi2rFq1iv79+5OW9tdaksViYfHixfTu3duJklUc5s+fz8CBAyGrK2Oj8p7HLdYASsKIGbxGILSGH4uf6MyYu1uwad8Zek6LY9nPxzDCpKAkSpPHAJCSkqL90zbG6IEDFYE8a3TVrTlPhVAARusTYCTMJsWQ2xrxzXO3EVrDj+GLdvLovHhOX0wr+WAnUlKIYg7p6em5fxu9MqOrYPTAAXekqKQ8wCrXRYVQAEbP4DUCjYL8+OLxTtnWwFl6Tt3I0h3GtgaKClEsDJ05bDt0bL/jKcriBVShB5SSCqEA7JUnYKQG9LYgxxr4dlhXmtb0Z+TinQyZa2xroDB3REGMlNjmDujYfsdTWou3rFQIBWCPPAGjNaC3JQ2r+7Lo8U6M7d2SLQeyrIElBrUGCrojQkJCcvdp/3Tp0XkUxqcsFm9pqRAKwB4ZvO6+sGw2Kf59a0O+ea4rzWr58/zinfx7znZOJRvLGijojmjQoEHudu2fLj3u2LLRHSlo8VqNNTGktnrYqiFMcZSUJ1BWXKkwnLVkZGTKJ5v/lGZjvpbW476VRduPGDZvIG/MushfiW133XVXhUgMK28CnD0b7hgBd0kMLFhcD7gkzkgEA5oBCXkeF4FhQFVgDbAv+7lKSedyhAKwNSaTkrVrC1cAa9YgZrPJ2SLalKSkJLmz/0C57904qT96lQz8eJucSLrsbLFKTUVJDCvt5zR6Pwhb4y7ff8EJDs6qBioie0UkXETCgQ7AZWAZ8CKwTkSaAOuyX7sdRmtAb29WrFjBN4vn0TfgMOPvacmPB8/Ta2ocX2w/asi1gYIYreOZvSjt5zR6Pwhb4y7ff8EFeGux1RpAd+CAiBwG+gJzs7fPBfrZ6BqGwpVKQ9uCnH+cObM/YXCXhnw77DZa1gnghaW/MGj2dk4kXXGyhPmpCE3Jofyfs6SoErPZ7NKRU676/Ze0GG/zxXprzIecB/AJ8HT230kF9l0o6XhXdAG5ewG60rkIlHQYMEKaj/lGWo39VhZsO2yYtYGK0lLS2s9ZWMMdT09Pl3eXuOr3X5KrquB+nF0MDvACzgI1pQwKAHgMiAfi69WrZ4t753BsvbBsJMryD3T47CX5x0ffS/3Rq+Rfs7bKsQvGWBuoKIXLrPmc8+fPFz8/PzGZTFKpUiUxmUxiMpncYkHYFb//khbjC+43ggLoC6zO83ovUDv779rA3pLO4YoWQEWgLP9AGRmZMu/7g9LiP1nWwOcGsQYqSkvJ8n7OnAGlsIc7LAgb/fsv7WJ8cfvFivHbFmsADwAL8rxeAQzK/nsQsNwG19A4gbK0jDSZFA91asB3w7rSpm4g//flLgZ+8iPHLlx2sNT5qSiFy8r7OQMDAxk6dGihMeXusCBs9O+/tEUNS7u/zFijPQAf4BwQmGdbNbKif/ZlP1ct6TzaAjAuhbkI/Pz8ivUPZ2RkyvwfDknLbGvgs63OswYqSlNyaz+nK7pLSoMrfP8l3fupU6cW547NEGe6gGzx0ArAuFjzD3Tk3CV5cOYPUn/0KvnnzK1y9PwlB0icn6ISw1yt41lJ2OJzGt1dUh5c5fsv6d4XtR/YJ1oBaOyFtf9AmZmZ8unWLGug5X++kfk/HDLE2oA9cPVs0/JYexrbUNK9L2o/8KdoBaAxOkfPX5J/ztwq9Uevkgdm/CBHzjneGrA3rp5t6gruEnelpHtf1H7golgx9laIYnCuhLuVmM4huIoP8x+5mdfua8Mvx5K5fXoc87ceJjNTnC2azXD1bFNd5995lHTvi9oPZFhz3QrRE9hVqCi9i48nXeHFpb+wad9ZOjWqxuT72xJS1bZ1zh1BafsSd+/enbVr1zpDRE0RJCcnM3jwYObMmUNgYKDhz1sUSqkdIhJR3uO1BWAg3L3EdA51K1di3r9v5vX72rDreJY1MO+HQy5nDVS0ejruhL3KX7taWW2tAAyEu/YuLqx+iVKKATfX47vhXYloUJWxy3/jgZlbOXLOuXkDZaGkejq6DaVxsZe7ztXcgFoBlIAjffLu2ru4uFlR3cqVmPvwTbzxtzbsPnGR26fHMfd717EGypIsp3Ee9ioO56pF53LQCqAYHN320V1LTJc0K1JK8Y+bsqyBmxtWZdyK3xgwcyuHz11ypJjlxujZphr7uetc3Q2oFUAxONon7y4lpss7K6pTuRJzHr6Jyfe35fcTF7lj+iZmbzloeGugYF9i3YbSeNjLXefybkBrYkht9TBqHoCj2z66S4lpW5TiPZF0WQZ9sk3qj14l/T/4Xg6eSXXcBygjrpJtqrFftrOzsqhxVkewioCjffJ+fn5s2LCVyMgXeOWVIO64w8QrrwQRGfmCS4WA2mJWVDuwErMH38SU+9vy+6mL3PFWHJ9sNqY1ULBLk9lsZuTIkcTExDhZMk1B7OWuc1U3oFYAxeAMn7yfnx9jx07gyJFE0tMzOHIkkbFjJ7jM4J+DLRZHlVL0jwhhzfBIOjeuzsRVu/nHjB84eNY11gY0xsNe7jpXdQNqBVAM7uKTtwZroqBsNSuqFWjh40ER/K9/GHtPpXDnW3F8vPkgGQa0BjTGxl7Zzq6aRa0zgYshb2bugAF/ZeYuXOhemblFYW1mclRUFHFxcYSFhfHGG28wevRodu7cSWRkJOvXry+XTKcvpvHSl7tYtyeRiPpVmHx/WxoFue93oNEUh84EtiPu4pMvL9ZGQdljVlQzwMKsQRFM/XsYf5xO4c63NjFr05/aGtBoyoG2ADRFEhISxLhxZwkNvXHfvn3wyitBHDmS6HjBskm8mMZLy3ax9vdE2terzJT+YTTW1oCmAqEtAI3dMHpmco0ACzMHRjD9H+EcOHOJu97axIy4A9oa0GhKiVYAmiJxhcxkpRT92tVlzfCu3NYkiFe/3sP9H37P/kTXLp+t0TgCrQA0ReJKUVBZ1kAH3hoQzsGzl7jr7U18tNH+1kBhhe40Gntgj9+aVgCaIhkxYhTJyY0ZP96b6dNhwACIjoa+fWHvXj8ee8w4CgCyrIG+4XVZPbwr3ZoG8do3e/jbB9+zPzHFbtd0tfK/GtfFHr81t1MA7tpRyxn4+fmxatVaDh0K4MwZmDQJ1qyBqVOhadNUevfuYcj7WsPfwkcPZVkDh85d4q63N/PhxgOkZ2Ta/FquVv5X47rY47fmVlFAFaWjliOZOHEcGzdOZsyY/H0KRGDSJAuRkS8wduwE5wlYAmdSrjImZhff/XaasJDKvHl/W5rU9C/3+XQXMI2jKO1vTURUYceXBqssAKVUZaXUEqXUHqXU70qpTkqpqkqpNUqpfdnPVay5RlmoKB21rKGsFpKjmtTYy5ce5O/Nh//qwDsPtOPIuUvc/fZm3t+wv9zWgKuX/9W4DqX5rQFWmbXWuoDeAr4VkeZAGPA78CKwTkSaAOuyXzsEd+2oZSvK09/AUaGg9vSlK6W4J6wOq4dHEt28BpO/3cvfPvieP06XfW3A5cv/alyG0vzWgP3WXKPcCkApFQB0BT4GEJFrIpIE9AXmZr9tLtDPGgHLgtHj1p1NeSwkR4WCOsKXHuTvzQf/as+7D7bj6IUr9H57M+/Flt0a0F3ANI6ipN8aYFWEgzUWQCPgDDBbKfWzUmqWUsoXqCkiJwGyn2tYI2BZcIW4dWdSHgvJXqGgzmqlp5Sid9s6rB7elZ4tazLlu73c98H37D1Vtv8jVy3/q3E97Plbs0YBeADtgQ9EpB1wiTK4e5RSjyml4pVS8WfOnLFCjL9wpbh1Z1AeCyknFHTSJAv79kF6elYZiEmTshbWR4wYVS5ZnO1Lr+7nzXv/bM97D7bn+IUr3PNO2awBVy3/q3E97Plbs0YBHAOOici27NdLyFIIp5VStQGynwstFiMiM0QkQkQigoKCrBDjL+w1WLkL5bGQ7FUQzyi+9Lvb1s6yBlplWQP3vv89e05dLPE4Vy3/q3E97PlbsyoMVCm1CRgiInuVUuMB3+xd50TkdaXUi0BVEXmhuPPYshhcamoqU6dOYdasDzhx4hx16lRjyJChjBgxqsKHgBoxpHPVqlX079+ftLS03G0Wi4XFixfTu3dvh8ry9a6T/CfmVy6mXefZ6CY80a0xnma3S5XRuBHWFoOzVgGEA7MAL+BP4GGyrIovgHrAEaC/iJwv7jy6GqhjMGJ/g08//ZShQ4dy+fJlvL29uXr1Kj4+PnzwwQf861//cqgsAOcvXWPcit9YufMEreoE8Gb/MFrU1rN6jTFxajVQEUnIduO0FZF+InJBRM6JSHcRaZL9XOzgr3EcRuxvYDRfelVfL955oB0f/qs9py+m0efdzby1dh/X7ZBFrCkdut6S/XCrTGCN69GvXz+6du3KsGHDMJlMZGRkMH36dDZt2uT0purnL11j/IrfWLHzBC1rZ1kDLetoa8DRzJ8/n4EDBzJ//nynWIVGxqkuIFuhFYDGyHz76ynGxPxK0uVrPB0dypPdQvHy0GsDtiQ5OZnBgwczZ84cAgMD8+2Liopiw4YNREVFlbuVqLuiG8K4KbqonXG4o3Ut1gzvyt1tazN97T76vreF305od4QtyZsJ7qwckYqItgAMiC5qZ1y+++0ULy/LsgaeigrlqShtDdiCvLP8//znP/Tu3ZvLly8X+X5dciMLbQG4IbqonXG5vVUt1o7oyj1hdXhr3T76vLuZX49ra6CsFDfLj46O1oO/g9AKwIDoonbGprKPF9P+Ec7MgRGcu3SNfu9tYerqvVxL15FCpaU0meDe3t54enrmO07XW7ItWgEYEF3UzjXo2bIma4Z3pU9YHd5ev19bA2WgNJngI0eOxNvbW9dbsiNaARgQXdTOdajs48XUf4Qza2AE5y9do+97W/jf6r1cTc9wtmiGp6RKl99//72hckTcEa0ADIguaud69GhZkzXDI+kXXpd31u+nzztb2HVMWwMlUVylS11vyf7oKCADYsSSDZrSs37Paf7vy12cTb3G0MjGPNM9FG8Ps7PFMiRRUVHExcURFhbGG2+8wejRo9m5cyeRkZE65r8U6CggN8SIJRs0pSe6eU1WD4/k3nZ1eTd2P/e8s5lfjmm/dWHoWb5z0RaARmNHYvck8n9f7uJM6lUe79qI53o00daAxmZoC0CjMTBRzWvw3fCu/K19Xd7fcICwUQvY/PsxZ4ul0QBaAWg0diewkieT7w9jYL0UUq+m89DcBF7/Zg9p13WkkMa5aAWg0TiITYs/4sTHT+GX+CsfbjxA73c28/ORC84WS1OB0QpAY1OMVsTOmfIUVu5Arl3mj8/GcfqLsezZf5B+724ifNB4bQ1onIJeBK4A5LTJnDnz/dw2mY8++qTN22QarYids+WJjY0ttqiZ8vIhqNfjVGrVncZBvkzpH0b7elXsJo/G/dCLwJpiyRkEN26czLhxZ1m9Whg37iwbN06mW7eONp0JG62InbPlKancQSUPWDSyD/P+fTNXrmVw/wff89rXv2trQOMwtAJwcxw5CBqtiJ0R5Cmp3EG3bt3o2jSI74Z35R831eOjuD+56+1N7Dis1wY09kcrADfHkYOg0YrYGUWe4sod5OBv8eS1+9ow/5GbuXo9k/s//J7/frVbWwMau6IVgJvjyEHQaEXsjCJPWRrf39YkiG+H3caDN9dj5qaD3PXWJnYcPu8QOTUVD60A3BxHDoJGKmKXmppK06YtmT0bp8tT1nIH/hZP/ntvGz4bcgtX0zO5/8MfmLRqN1euaWtAY1t0FJCbM3HiODZunMyYMfndQCLwyisWlLqZP/7YbZPoIKMUscuRw9d3P8eOXSUkBP75T/JFAV286BpF9VKvpvP6N7/z6dYjNKzuy5T72xLRoKqzxdIYBGujgKxSAEqpQ0AKkAGki0iEUqoqsAhoABwC/i4ixa5oKaUkOLi6XUITKzpFDcoLFlj4+WehbVt46KGrNguRzAk5nTXrg1ylMmTIUId+r3mVXloaLF4M33wDiYng5wcREV1Zvvwrl/qdfb//LC8s/YXjSVd4uHNDRt3ejEpeuqZQRccICiBCRM7m2TYZOC8iryulXgSqiMjo4s7TrJmSUaN003N7Udig3KRJC9LTtzF+/NUbLINJkyxERr7A2LETnCe0FYSEBDFu3FlCQ2/ct28fvPJKEEeOJDpeMCu5dDWd17/Zw/yth2lQzYfJ94dxc0NtDVRkjKgA9gLdROSkUqo2sEFEmhV3nmbNlHz0kXsMPq5CSYPkxInVOXr0jOMFswFms4nVqwVzIRPk9HS44w4T6S7csev7A2cZvfQXjl24wuDODRh1ezN8vDycLZbGCTg7EUyA1UqpHUqpx7K31RSRkwDZzzUKO1Ap9ZhSKl4pFf/XNt303FGUFB10/PhZp5VvsBajRP/Yi86Nq/Ptc10Z2LE+s7cc4s63NrHtT9fsE52cnMy9995LcrLunuYMrFUAXUSkPXAn8JRSqmtpDxSRGSISUVB76abnjqGkQdLfH4dn7toKI0Uj2Qtfbw8m9G3Ngkc7IgL/mLGV8St+4/K1dGeLViZWrFhBTEwMK1eudLYoFRKrFICInMh+TgSWATcDp7NdP2Q/l8nZ6g4zNFfg0UefLDJE8rPPICoKl7XERowYRXJyYyZNsrBvX5bbZ9++LPdicnJjRowY5WwRbUanxtX4dthtDO7cgDnfH+KO6ZvYWkZrwJmz8JxcCN3o3TmUWwEopXyVUv45fwO9gF+BFcCg7LcNApaX9pzuNEMzOiNGjOKnn2DCBPINkhMmwOnT8MgjrmuJVbSWmj5eHozv04qFj3UEYMCMrYxb/iuXrpbOGnDkLLywCqkAW7Zsybe9R48edpdFY8UisFKqEVmzfgAP4HMR+a9SqhrwBVAPOAL0F5FiUxmbNs2KAtJNzx1L3brVuemmc2zblhUiWaMG3Hkn9O8Px465brRMRebytXQmf7uXOd8fIqRqJSb/LYxOjYu3qKOiotiwYQNRUVF2b8ReUoVUAB8fH7766iu6detmV1ncAWsXgRERpz8ACQkJkgkTxkpKSorYipSUFJkwYawEB1cXk0lJcHB1m1/DlZkwYaxER1tk/XokNvavx1dfIY0bm6VqVR9931yUrQfOyq2vrZX6o1fJC4t2SGra9dx93bt3F7ICOAQQLy+vfM85j+7du9tFtvXr14uPj0++a+U8fHx8JDY21i7XdUeAeLFm7LXmYFs9OnToYPMbk5KSIh06tJLoaIvMnImsXYvMnIlER1ukQ4dWejCT/PdoxgxkzRrk7beRatWUdOmi9H0rB0aadMyaM0+qRA+RBqNXSpfX18mW/WdEpPgB2FED8cqVK8ViseS7psVikZUrV9rtmu6ItQrAbWsBObsWvCtQmK987FgfWrUy88orou9bGXFk74XS8OmcT7iwfha1dy/Cw6R4cOY2xsTs4ubOtxXbp8ARLpjSVEjV2B+3VQBGqAXvCvj5+TF27ASOHEkkPT0DPz8fHnooXd+3cuDsSUdRC6w7vvuCuJfu5OL2GOb/cIiwF7/AO6RNiX0K7ElZKqS6Iq6S3+C2CsAoteBdidTUVE6ePMuYMdC9OwwYAPPmwZUrWfv1fSseZ086Xn755Xyz+mvXruU+S/pVLqyfRdKSsVSvUpkHZ21j3u5reFTyc8osvKwVUm2NvQdoV8lvcFsF4O7ZoLYmx31xyy0waRKsXp31/OefMGJElhLQ9614nD3pKKkFpY+PD8s/nsaG/7udR29ryI/nvAj8xxu0jLrX4bPwmJgYRowYgcmUNQSZzWZGjhxJTEyM3a8N9h+gXSW/wW0VQEXIBrUlOe6LSZPI574YNw5q1syqqKnvW/EYYdJRmhaUFk8zL9/dkiZHVlC9ahVSIh5mfUot1m/6ocyzcFdxdRTE1gO0q+Y3uK0CqEjZoLagOPfFP/8JS5ei71sJGGXSUdoF1jULZrB1fB8e69qIRduPcPc7W7i5z8AyzcJdxdVh7wG6OPdbDj4+PowZM8aKT2EHrAkhstXDHmGgIn+F5IWEBInZbLJLroG7YDIpWbs2fz5AzmPNGsRkUvq+lUBhYbUzZjg+hLZbt25iMpmkXbt2snr1amnXrp2YTCaJiooq8pj4Q+cl6s1YqT96lby4dKdcvHKt1NcCij23EXBE6Ksz8hvQeQBZGCn+2hUJDq4uM2cWrgBmzMhK1NOUjBEmHX379pX//e9/kpGRISIi6enp8uabb0rfvn2LPe7KtXR59evd0vDFVdLp1bWyYW/iDe9xdhKZNThigHZ0foNbKABPTw+rBm2d9GU9RWUFr1+fdR8nTBjrbBE1DuKnw+clOtsaeGHxTknOYw3YeyadlJQk/fr1k6SkJBt9mvwUNUAvXLjQJtedP3+++Pn5iclkkkqVKonJZBI/Pz+ZP3++jT5BfqxVAIZYA6hTJ71USTOpqalMnDiOkJAgzGYTISFBTJw4jtde+69O+rISvWaiyaFdvSp89extPBHZmMU7jnL7tDg27M2qCVWaSCNrksjsvaZQ1PpIbGysTa7rcvkN1mgPWz2aNi15xlncLN/PzyzvvKPdF9ZiBPeFxlj8fOSCdP/fBqk/epWMWpwgSZezrAF7uTrsvaZQ1PpI5cqVbXLd8rrfygvu4ALKqwCKGrSLc1F06oQMHlz0AqbZbLLR7dZobsTd15+uXEuX17/5XRq+uEpu+e9aWb/ndKldHSXdG0evKeQM0NHR0fnOr5RymbWMvFirAKzqCWwrcnoC51BY39aSeti+/DJ88UXh+3RZY/clp+H9zJnv5za8f/TRJxkxYpRDSornJNAFBh7ggQfSaNgwK+Z/wQL3K22+82gSzy/eyb7EVPwSd7Fn4au0bR7KG2+8wejRo9m5cyeRkZG5JaVLc2+2b9/ulPLQ7lKW2tk9ge1CYUkzJWVZnj1beHcrnbzkvhih+Jqz6/84krCQyqx69laeimpMalArmg2bx5TPvi6ylENp7o291xSKwlnXo+HpOgAADdVJREFUNRqGUwBFDdolZVn6+pr1AmYFwwiDr7Pr/zgabw8zo25vzopnbiM4qCqPzN3ByC92kno184ZSDqW9N6XJXrYHzrqukTCEArh6teRBu6Qsy+eeG1VhWgBqsjDC4Ovs+j8FKSpSztbWUNvgyqx4pgvPRIcSk3CcXtM3sn7P6XzvKcu9cVZ56IpeltoQCuDECY8SB+2SwhRffPHlfGWNjxxJZOzYCXrwd2OcNfjmHWRF5IaqqTk4unieo11i3h5mRvZqRsyTXaji48W/58Qz4osEki9fB8pWG8lZ4ZMuF7ZpYwyhANq2DStx0K5ojb41JeOM4msFB9k1a+C11/JXTQXnrD85yyXWJjiQFU/fyrPRoSxPOEHPaRtZu/t0mWojOas8tLPLUjsbQ0QBRURESHx8vLPF0LgYEyeOY+PGyYwZk98NJJJlGUZGvsDYsRMcds3x47Msjy5dsgY4R0cBlRQp54houF+PJ/P84p3sOZVC79Y1+P7dJ6ns82u+KKA5c+DYsSC2bfuFWrVq2VUed8faKCCtADQuS94wwwED/hpg7Dn4ljTIPvssBAUFMWTIUIeFouZgNptYvVowm2/cV1hotb24lp7Ju7H7eT92P4EWM4lfv8nF39eSmgo1asAtt8CFC95cuhSqrXcrsVYBeNhSGI3GkeS4BadOncIrr3yQmwdgz8G3pHWH69dNTss5yXKJFa6cHLke4eVhYkTPpvRqWZOB736Hudsw7nwgjH+1mIGfVwoAIleZNCnLLWVrK01TeqxeA1BKmZVSPyulVmW/bqiU2qaU2qeUWqSU8rJeTI2mcAr2NLb34r8Rmr4UhVH6EeTQum4gZz5/lq5VP2P7qdt4afP77DjdEXDfMFlXwxaLwM8Bv+d5/QYwTUSaABeAR2xwDY2b4KgwRXthtEE2L0Ys6HfiWCKDOixgbKfhBHpf4J2fx/DhzudJveave0wbAKsUgFIqGLgbmJX9WgHRwJLst8wF+llzDY37YITMXWsx4iCbgxEj5XIspvoBBxnXaTj3hn7K9lO38tLm9/lmVyeX6zHt6hOYgli1CKyUWgK8BvgDzwODga0iEpq9PwT4RkRaF3LsY8BjAPXq1etw+PDhcsuhcQ2cEbVjD3LqD82a5Zh1B1emsO/8yMWGzNr1HEdSQmloPsfSlwZQ1df4nmIj1n1yWi0gpVRvIFFEduTdXMhbC9UwIjJDRCJEJCIoKKi8YmhcCCNk7toCR687uDKFWUxXTx/EI/ZlfA6s5qhUp9e0jXz760lni1oi5c2zMLLVUG4LQCn1GvAQkA5YgABgGXA7UEtE0pVSnYDxInJ7cefSYaAVA6OEKWocS3EW09GUTEYt2cmvxy/Su21tJvRpRTU/b2eLXCjlybOwt9XgNAtARP5PRIJFpAEwAFgvIv8EYoH7s982CFhe3mto3AsjR9Bo7EdxFlOL2gEse7ILz/dqyne/naLXtDi+3mVMa6A8pUeMULCwOOxRCmI0MEIptR+oBnxsh2toXBAjR9BonIen2cTT0U1Y+cyt1KlciSc/+4mnPvuJc6lXnS1aPsozgTG629MmCkBENohI7+y//xSRm0UkVET6i4ixvkWN0zByBI3G+TSvFcCyJzsz6vZmrNl9mp7T4vjqF+NYA+WZwBitWmxBDFEMTlMxMGKYosZYeJhNPBUVyspnbiW4SiWe+vwnnvxsB2cNYA2UZwJjdLenrgWk0WgMSXpGJjM2/cn0Nfvw9TYzsW9reretjSroT3EgZQ0Btnfosy4Gp9Fo3Jp9p1N4fvFOdh5L5o5WtXilX2uC/I0ZKVQQexcsdMuewBr3wcgx0BrXoElNf5YO7czoO5qzfk8ivaZtZMXOExhh8loSRnd7agtAYzeMmDmpcW32nU7h+SW/sPNoEre3qskr/VpTw99S8oFuirYANIbF6DHQGtejSU1/lj7Rif+7szmxe8/Qa1ocyxOOu4Q1YES0AtDYDaPHQGtcEw+ziccjG/P1s7fSoJovzy1M4PH5O0hMSXO2aC6HVgAau2H0GGiNaxNaI2tt4KW7mrPhjzP0nBpHzM/aGigLWgFo7IbRY6A1ro/ZpHisa2O+fvY2Ggf5MmxRAo/O20HiRW0NlAatADR2Q5d+0DiK0Bp+LH6iMy/f1YJN+87Qc1ocy34+pq2BEtBRQBq74Yym7RrNgTOpvLDkF3YcvkCPFjX4771tqBngnpFCOgpIY1iMHgOtcU8aB/nxxeOdGHN3CzbtO0vPqRtZukNbA4WhLQCNRuO2HDx7iVGLdxJ/+ALRzWvw6r1tqBXoPtaAtgA0Go2mCBpW92XR450Y27sl3x84S89pG1kcf1RbA9loBaDRaNwas0nx71sb8s1zXWley59RS37h33O2cypZRwppBaDRaCoEDav7suixToy7pyU//HmOntM28kUFtwa0AtBoNBUGk0nxcJeGfPtcV1rUDuCFJb8wePZ2TiZfcbZoTkErAI1GU+FoUN2XhY92ZPw9Lfnx4Hl6TY3ji+0VzxrQCkCj0VRITCbF4C4N+XbYbbSsE8ALS39h0OztnEiqONaAVgAajZuhezCUjfrVfFnwaEcm9m3F9oPn6TUtjoU/HqkQ1oDOA9Bo3Ajdg8E6jpy7zAtLd7L1z/Pc1qQ6r/+tLXUrV3K2WEWi8wA0Gk0uugeDddSr5sPnQzrySt9W7Dh8gdunxbHAja2BcisApZRFKfWjUmqnUuo3pdSE7O0NlVLblFL7lFKLlFJethNXo9EUh+7BYD0mk+KhTg34blhX2tQN5P++3MXAT37k2IXLzhbN5lhjAVwFokUkDAgH7lBKdQTeAKaJSBPgAvCI9WJqNJrSoHsw2I6Qqj58NuQWXunXmh2HL3DH9E18vs29rIFyKwDJImdVyTP7IUA0sCR7+1ygn1USajSaUqN7MNgWk0nxUMf6fDesK22DA3lp2S4e+vhHjp53D2vAqkVgpZQZ2AGEAu8BU4CtIhKavT8E+EZEWhdy7GPAY9kvWwO/llsQ51MdOOtsIaxAy+88bC17HV9fatWtiyq44/hx5NIlTgEnbHg9V7734PryNxMR//Ie7GHNlUUkAwhXSlUGlgEtCntbEcfOAGYAKKXirVnJdjZafufiyvK7suyg5Xc2SimrwidtEgUkIknABqAjUFkplaNYgrHtbEOj0Wg0NsKaKKCg7Jk/SqlKQA/gdyAWuD/7bYOA5dYKqdFoNBrbY40LqDYwN3sdwAR8ISKrlFK7gYVKqUnAz8DHpTjXDCvkMAJafufiyvK7suyg5Xc2VslviExgjUaj0TgenQms0Wg0FRStADQajaaC4nAF4A4lJJRSZqXUz0qpVdmvXUn2Q0qpXUqphJwQMqVUVaXUmmz51yilqjhbzqJQSlVWSi1RSu1RSv2ulOrkKvIrpZr9fzvnE2JVFcfxz5cEYQaLnDAmpzBBahE1TWGWMJRGZYhBEChBm8iNkLYJJQrat1AhIrA/0MIgkZBZWGKbaFGkNPasBg1FxyafFBnURvPb4pyHl8e895rVfaf3+8Dl3nO48/i8c3/3/eace+7J7d7a/pS0oxR/AEmv5Pu2IWl/vp+LiH9J27P3SUk7cl1ft72k9yU1JTUqdfM6K7FX0mlJJyRN9Pr8OnoA/4clJLaTZjy1KMkd4DHb45X5zzuBo9n/aC73K3uAw7bvBu4jXYci/G3P5HYfBx4A/ia9P1OEv6TlwMvAg/nlzhuAzRQQ/5LuAV4CVpPiZqOkVfR/238IPNVW18l5A7Aqb1uB3gs/2a5tA4aA48BDpLfxFuX6h4HP6nTr4jyWG30dMAWoFPfsdxa4pa1uBhjNx6PATN2eHdxvBM6QJy+U5t/m/ATwVUn+wHLgPLCUNINwCniyhPgHngP2VcqvA6+W0PbACqBRKc/rDLwLbJnvvE5bLc8A8hDKd0ATOAL8DPxh+2o+ZZYUbP3IblLgXMvlEcpxh/Rm9ueSjuXlOAButT0HkPfLarPrzkrgEvBBHoLbJ2mYcvyrbAb25+Mi/G1fAN4CzgFzwGXSUjAlxH8DmJQ0ImkIeBq4nULavo1Ozq0E3aLntaglAdj+x6kbPEbqkv3nJSTqRNJGoGn7WLV6nlP7zr3CWtsTpO7iNkmTdQstgEXABPCO7fuBv+i/LntP8hj5JuCTul0WQh5rfga4E7gNGCbFUTt9F/+2fyQNVR0BDgPTwNWuf1QeC/4tqnUWkMtbQmItsEnSWeBj0jDQbspwB8D2L3nfJI0/rwYuShoFyPtmfYZdmQVmbX+dywdICaEU/xYbgOO2L+ZyKf6PA2dsX7J9BTgIPEIh8W/7PdsTtieB34FTlNP2VTo5z5J6NS16Xos6ZgEVu4SE7V22x2yvIHXhv7D9PAW4A0galrSkdUwah24Ah0je0Mf+tn8Fzku6K1etB36gEP8KW7g+/APl+J8D1kgakiSut38p8b8s7+8AniVdg1Lavkon50PAC3k20BrgcmuoqCM1PNC4l7RExAnSj88buX4l8A1wmtQ1Xlz3w5ce3+NRYKok9+w5nbeTwGu5foT0YPtU3i+t27XLdxgHvs3x8ylwc2H+Q8BvwE2VupL83wR+yvfuR8DiguL/S1LCmgbWl9D2pCQ1B1wh/Yf/Yidn0hDQ26Rnqt+TZmt1/fxYCiIIgmBAiTeBgyAIBpRIAEEQBANKJIAgCIIBJRJAEATBgBIJIAiCYECJBBAEQTCgRAIIgiAYUP4Fa8/wDXOZq3sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot Boundary\n", + "utils.plotDecisionBoundary(plotData, theta, X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def predict(theta, X):\n", + " \"\"\"\n", + " Predict whether the label is 0 or 1 using learned logistic regression.\n", + " Computes the predictions for X using a threshold at 0.5 \n", + " (i.e., if sigmoid(theta.T*x) >= 0.5, predict 1)\n", + " \n", + " Parameters\n", + " ----------\n", + " theta : array_like\n", + " Parameters for logistic regression. A vector of shape (n+1, ).\n", + " \n", + " X : array_like\n", + " The data to use for computing predictions. The rows is the number \n", + " of points to compute predictions, and columns is the number of\n", + " features.\n", + "\n", + " Returns\n", + " -------\n", + " p : array_like\n", + " Predictions and 0 or 1 for each row in X. \n", + " \n", + " Instructions\n", + " ------------\n", + " Complete the following code to make predictions using your learned \n", + " logistic regression parameters.You should set p to a vector of 0's and 1's \n", + " \"\"\"\n", + " m = X.shape[0] # Number of training examples\n", + "\n", + " # You need to return the following variables correctly\n", + " p = np.zeros(m)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " for i in range(m):\n", + " if sigmoid(theta.dot(X.transpose()))[i]>=0.5 :\n", + " p[i]=1\n", + " else :\n", + " p[i]=0\n", + "\n", + " \n", + " # ============================================================\n", + " return p" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For a student with scores 45 and 85,we predict an admission probability of 0.776\n", + "Expected value: 0.775 +/- 0.002\n", + "\n", + "Train Accuracy: 89.00 %\n", + "Expected accuracy (approx): 89.00 %\n" + ] + } + ], + "source": [ + "# Predict probability for a student with score 45 on exam 1 \n", + "# and score 85 on exam 2 \n", + "prob = sigmoid(np.dot([1, 45, 85], theta))\n", + "print('For a student with scores 45 and 85,'\n", + " 'we predict an admission probability of {:.3f}'.format(prob))\n", + "print('Expected value: 0.775 +/- 0.002\\n')\n", + "\n", + "# Compute accuracy on our training set\n", + "p = predict(theta, X)\n", + "print('Train Accuracy: {:.2f} %'.format(np.mean(p == y) * 100))\n", + "print('Expected accuracy (approx): 89.00 %')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/ex2data1.txt b/ex2data1.txt new file mode 100644 index 000000000..3a5f95245 --- /dev/null +++ b/ex2data1.txt @@ -0,0 +1,100 @@ +34.62365962451697,78.0246928153624,0 +30.28671076822607,43.89499752400101,0 +35.84740876993872,72.90219802708364,0 +60.18259938620976,86.30855209546826,1 +79.0327360507101,75.3443764369103,1 +45.08327747668339,56.3163717815305,0 +61.10666453684766,96.51142588489624,1 +75.02474556738889,46.55401354116538,1 +76.09878670226257,87.42056971926803,1 +84.43281996120035,43.53339331072109,1 +95.86155507093572,38.22527805795094,0 +75.01365838958247,30.60326323428011,0 +82.30705337399482,76.48196330235604,1 +69.36458875970939,97.71869196188608,1 +39.53833914367223,76.03681085115882,0 +53.9710521485623,89.20735013750205,1 +69.07014406283025,52.74046973016765,1 +67.94685547711617,46.67857410673128,0 +70.66150955499435,92.92713789364831,1 +76.97878372747498,47.57596364975532,1 +67.37202754570876,42.83843832029179,0 +89.67677575072079,65.79936592745237,1 +50.534788289883,48.85581152764205,0 +34.21206097786789,44.20952859866288,0 +77.9240914545704,68.9723599933059,1 +62.27101367004632,69.95445795447587,1 +80.1901807509566,44.82162893218353,1 +93.114388797442,38.80067033713209,0 +61.83020602312595,50.25610789244621,0 +38.78580379679423,64.99568095539578,0 +61.379289447425,72.80788731317097,1 +85.40451939411645,57.05198397627122,1 +52.10797973193984,63.12762376881715,0 +52.04540476831827,69.43286012045222,1 +40.23689373545111,71.16774802184875,0 +54.63510555424817,52.21388588061123,0 +33.91550010906887,98.86943574220611,0 +64.17698887494485,80.90806058670817,1 +74.78925295941542,41.57341522824434,0 +34.1836400264419,75.2377203360134,0 +83.90239366249155,56.30804621605327,1 +51.54772026906181,46.85629026349976,0 +94.44336776917852,65.56892160559052,1 +82.36875375713919,40.61825515970618,0 +51.04775177128865,45.82270145776001,0 +62.22267576120188,52.06099194836679,0 +77.19303492601364,70.45820000180959,1 +97.77159928000232,86.7278223300282,1 +62.07306379667647,96.76882412413983,1 +91.56497449807442,88.69629254546599,1 +79.94481794066932,74.16311935043758,1 +99.2725269292572,60.99903099844988,1 +90.54671411399852,43.39060180650027,1 +34.52451385320009,60.39634245837173,0 +50.2864961189907,49.80453881323059,0 +49.58667721632031,59.80895099453265,0 +97.64563396007767,68.86157272420604,1 +32.57720016809309,95.59854761387875,0 +74.24869136721598,69.82457122657193,1 +71.79646205863379,78.45356224515052,1 +75.3956114656803,85.75993667331619,1 +35.28611281526193,47.02051394723416,0 +56.25381749711624,39.26147251058019,0 +30.05882244669796,49.59297386723685,0 +44.66826172480893,66.45008614558913,0 +66.56089447242954,41.09209807936973,0 +40.45755098375164,97.53518548909936,1 +49.07256321908844,51.88321182073966,0 +80.27957401466998,92.11606081344084,1 +66.74671856944039,60.99139402740988,1 +32.72283304060323,43.30717306430063,0 +64.0393204150601,78.03168802018232,1 +72.34649422579923,96.22759296761404,1 +60.45788573918959,73.09499809758037,1 +58.84095621726802,75.85844831279042,1 +99.82785779692128,72.36925193383885,1 +47.26426910848174,88.47586499559782,1 +50.45815980285988,75.80985952982456,1 +60.45555629271532,42.50840943572217,0 +82.22666157785568,42.71987853716458,0 +88.9138964166533,69.80378889835472,1 +94.83450672430196,45.69430680250754,1 +67.31925746917527,66.58935317747915,1 +57.23870631569862,59.51428198012956,1 +80.36675600171273,90.96014789746954,1 +68.46852178591112,85.59430710452014,1 +42.0754545384731,78.84478600148043,0 +75.47770200533905,90.42453899753964,1 +78.63542434898018,96.64742716885644,1 +52.34800398794107,60.76950525602592,0 +94.09433112516793,77.15910509073893,1 +90.44855097096364,87.50879176484702,1 +55.48216114069585,35.57070347228866,0 +74.49269241843041,84.84513684930135,1 +89.84580670720979,45.35828361091658,1 +83.48916274498238,48.38028579728175,1 +42.2617008099817,87.10385094025457,1 +99.31500880510394,68.77540947206617,1 +55.34001756003703,64.9319380069486,1 +74.77589300092767,89.52981289513276,1 diff --git a/ex2data2.txt b/ex2data2.txt new file mode 100644 index 000000000..a88899234 --- /dev/null +++ b/ex2data2.txt @@ -0,0 +1,118 @@ +0.051267,0.69956,1 +-0.092742,0.68494,1 +-0.21371,0.69225,1 +-0.375,0.50219,1 +-0.51325,0.46564,1 +-0.52477,0.2098,1 +-0.39804,0.034357,1 +-0.30588,-0.19225,1 +0.016705,-0.40424,1 +0.13191,-0.51389,1 +0.38537,-0.56506,1 +0.52938,-0.5212,1 +0.63882,-0.24342,1 +0.73675,-0.18494,1 +0.54666,0.48757,1 +0.322,0.5826,1 +0.16647,0.53874,1 +-0.046659,0.81652,1 +-0.17339,0.69956,1 +-0.47869,0.63377,1 +-0.60541,0.59722,1 +-0.62846,0.33406,1 +-0.59389,0.005117,1 +-0.42108,-0.27266,1 +-0.11578,-0.39693,1 +0.20104,-0.60161,1 +0.46601,-0.53582,1 +0.67339,-0.53582,1 +-0.13882,0.54605,1 +-0.29435,0.77997,1 +-0.26555,0.96272,1 +-0.16187,0.8019,1 +-0.17339,0.64839,1 +-0.28283,0.47295,1 +-0.36348,0.31213,1 +-0.30012,0.027047,1 +-0.23675,-0.21418,1 +-0.06394,-0.18494,1 +0.062788,-0.16301,1 +0.22984,-0.41155,1 +0.2932,-0.2288,1 +0.48329,-0.18494,1 +0.64459,-0.14108,1 +0.46025,0.012427,1 +0.6273,0.15863,1 +0.57546,0.26827,1 +0.72523,0.44371,1 +0.22408,0.52412,1 +0.44297,0.67032,1 +0.322,0.69225,1 +0.13767,0.57529,1 +-0.0063364,0.39985,1 +-0.092742,0.55336,1 +-0.20795,0.35599,1 +-0.20795,0.17325,1 +-0.43836,0.21711,1 +-0.21947,-0.016813,1 +-0.13882,-0.27266,1 +0.18376,0.93348,0 +0.22408,0.77997,0 +0.29896,0.61915,0 +0.50634,0.75804,0 +0.61578,0.7288,0 +0.60426,0.59722,0 +0.76555,0.50219,0 +0.92684,0.3633,0 +0.82316,0.27558,0 +0.96141,0.085526,0 +0.93836,0.012427,0 +0.86348,-0.082602,0 +0.89804,-0.20687,0 +0.85196,-0.36769,0 +0.82892,-0.5212,0 +0.79435,-0.55775,0 +0.59274,-0.7405,0 +0.51786,-0.5943,0 +0.46601,-0.41886,0 +0.35081,-0.57968,0 +0.28744,-0.76974,0 +0.085829,-0.75512,0 +0.14919,-0.57968,0 +-0.13306,-0.4481,0 +-0.40956,-0.41155,0 +-0.39228,-0.25804,0 +-0.74366,-0.25804,0 +-0.69758,0.041667,0 +-0.75518,0.2902,0 +-0.69758,0.68494,0 +-0.4038,0.70687,0 +-0.38076,0.91886,0 +-0.50749,0.90424,0 +-0.54781,0.70687,0 +0.10311,0.77997,0 +0.057028,0.91886,0 +-0.10426,0.99196,0 +-0.081221,1.1089,0 +0.28744,1.087,0 +0.39689,0.82383,0 +0.63882,0.88962,0 +0.82316,0.66301,0 +0.67339,0.64108,0 +1.0709,0.10015,0 +-0.046659,-0.57968,0 +-0.23675,-0.63816,0 +-0.15035,-0.36769,0 +-0.49021,-0.3019,0 +-0.46717,-0.13377,0 +-0.28859,-0.060673,0 +-0.61118,-0.067982,0 +-0.66302,-0.21418,0 +-0.59965,-0.41886,0 +-0.72638,-0.082602,0 +-0.83007,0.31213,0 +-0.72062,0.53874,0 +-0.59389,0.49488,0 +-0.48445,0.99927,0 +-0.0063364,0.99927,0 +0.63265,-0.030612,0 diff --git a/regularisedLogisticRegression.ipynb b/regularisedLogisticRegression.ipynb new file mode 100644 index 000000000..29006e75c --- /dev/null +++ b/regularisedLogisticRegression.ipynb @@ -0,0 +1,440 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# used for mathematical operations of elements\n", + "import math\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "\n", + "# Optimization module in scipy\n", + "from scipy import optimize\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils\n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Load Data\n", + "# The first two columns contains the X values and the third column\n", + "# contains the label (y).\n", + "data = np.loadtxt('ex2data2.txt', delimiter=',')\n", + "X = data[:, :2]\n", + "y = data[:, 2]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def sigmoid(z):\n", + " \"\"\"\n", + " Compute sigmoid function given the input z.\n", + " \n", + " Parameters\n", + " ----------\n", + " z : array_like\n", + " The input to the sigmoid function. This can be a 1-D vector \n", + " or a 2-D matrix. \n", + " \n", + " Returns\n", + " -------\n", + " g : array_like\n", + " The computed sigmoid function. g has the same shape as z, since\n", + " the sigmoid is computed element-wise on z.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the sigmoid of each value of z (z can be a matrix, vector or scalar).\n", + " \"\"\"\n", + " # convert input to a numpy array\n", + " z = np.array(z)\n", + " \n", + " # You need to return the following variables correctly \n", + " g = np.zeros(z.shape)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " g = 1/(1+np.exp((-z)))\n", + " \n", + " # =============================================================\n", + " return g" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def plotData(X, y):\n", + " \"\"\"\n", + " Plots the data points X and y into a new figure. Plots the data \n", + " points with * for the positive examples and o for the negative examples.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " An Mx2 matrix representing the dataset. \n", + " \n", + " y : array_like\n", + " Label values for the dataset. A vector of size (M, ).\n", + " \n", + " Instructions\n", + " ------------\n", + " Plot the positive and negative examples on a 2D plot, using the\n", + " option 'k*' for the positive examples and 'ko' for the negative examples. \n", + " \"\"\"\n", + " # Create New Figure\n", + " fig = pyplot.figure()\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " # Find Indices of Positive and Negative Examples\n", + " pos = y == 1\n", + " neg = y == 0\n", + " \n", + " pyplot.plot(X[neg,0],X[neg,1],'ko',mfc='y', ms=8, mec='k', mew=1)\n", + "\n", + " pyplot.plot(X[pos,0],X[pos,1],'k*',lw=2, ms=10)\n", + "\n", + " \n", + " # ============================================================" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2df5xVZbXwv+sMDuM4OgpMpQ0Ghl3FChCy7L4Jw2BSL1ewVw26GhZkWu8tL15NrwQBdvMnYbfyBlQovYEvVIr2WoADapk3x/xV+lEQighLQIeGaIAZ1vvH3gfOHM45s885++c56/v5PJ+zz97P3nudfc7Za69nrWctUVUMwzAMo1hSUQtgGIZhJBNTIIZhGEZJmAIxDMMwSsIUiGEYhlESpkAMwzCMkugXtQBhMmjQIB0yZEjUYhiGYSSKp59+epeqNmWvryoFMmTIENrb26MWwzAMI1GIyB9yrbchLMMwDKMkTIEYhmEYJWEKxDAMwyiJqvKBGIZheOHgwYNs376drq6uqEUJlbq6OpqbmznmmGM89TcFYlQte/fuZeHC21my5Nvs2LGbU04ZyGc+8zlmzbqOhoaGqMUzImT79u0cf/zxDBkyBBGJWpxQUFV2797N9u3bGTp0qKd9TIEYVcnevXsZN+4DNDa+yty5XQwdClu37mLFittYs+ZHbNz4pCmRKqarq6uqlAeAiDBw4EB27tzpeR/zgRhVycKFt9PY+CqzZ3cxbBjU1MCwYTB7dheNja+ycOHtUYtoREw1KY80xX5mUyBGVbJkybeZNq2L7P+LCEyd2sXSpXdHI1hA7N27l/nz5zJ4cBM1NSkGD25i/vy57N27N2rRjARjCsSoSnbs2E2+Yd6hQ53tlUJ6uO7RR29j7txdrF2rzJ27i0cfvY1x4z5gSqRMkqKcH3vsMc4++2z69evH6tWrfTmmKRCjKjnllIFs3Zp729atzvZKwYbrgiNJyvnUU09l2bJlfOITn/DtmKZAjKrkM5/5HCtW1JFdkFMVVq6sY+bMq6MRLACqbbguTIJSzl/+8pe56667Dr+/6aab+MY3vlGWrEOGDOG9730vqZR/t31TIEZVMmvWdezZ805uvrmOTZuguxs2bYKbb65jz553MmvWdVGL6BvVNFwXNkEp5xkzZnDPPfcAcOjQIVauXMk///M/H9XvQx/6ECNHjjyqrV+/vqTzFouF8RpVSUNDAxs3PsnChbezYMHdh+eBzJx5dcXNA3GG63YxbNjR2yptuC5sglLOQ4YMYeDAgTzzzDP85S9/YdSoUQwcePT39Pjjj5d0fL8wBWJULQ0NDcyZM485c+ZFLUqgOMN1tzF7du8n5UocrgubIJXzzJkzWbZsGX/+85/59Kc/nbPPhz70ITo7O49af8cddzBhwoSSz+0VUyCGUeHMmnUda9b8iJtvfpWpU9OTJh3lUWnDdWETpHK+6KKLmDNnDgcPHuSHP/xhzj5RWyDmAzGMCic9XDd27PUsWNDExIkpFixoYuzY623GfZkE6Uurra2lpaWFSy+9lJqamrJlfeqpp2hubmbVqlV89rOf5ayzzir7mKhq1bTRo0er4dDZ2anz5s3R5uZBmkqJNjcP0nnz5mhnZ2fUosUWu2bVw4svvui5b/p3MXhwk9bUpHTw4CZffhc9PT06YsQIfeWVV8o6TrHk+uxAu+a4p0Z6Qwe+B7wO/DbPdgG+AWwGngfOztg2HdjktulezmcKxKGzs1NHjz5Lx4+v0yVL0PXr0SVL0PHj63T06LMq9oZYjgKo1mtWrRSjQILgd7/7nQ4dOlRnzZoV+rmLUSBRD2EtAyYW2P4R4HS3XQncDSAiA4C5wPuBc4C5InJSoJJWENU4sazcCV/VeM2M6Bg+fDhbtmzhzjvvjFqUgkSqQFT1MeCNAl0mA/e6SvBJ4EQRORm4AFinqm+o6pvAOgorIiODuE4s27NnDxdddBF79uzx/djlKoC4XjPDiJKoLZC+eDvwx4z32911+dYfhYhcKSLtItJeTJriSiauE8vWrFnD/fffz4MPPuj7sctVAHG9ZoYRJXFXILlyC2uB9UevVF2sqmNUdUxTU5OvwiWVuOaB+t73vtfr1U/KVQBxvWaGESVxVyDbgcEZ75uBHQXWGx6ISx6oCRMmICKH2xNPPAHAL3/5y17r/ZgQVa4CiMs1M+JLkEOwcSXuCmQN8Elx+ACwR1VfA34OfFhETnKd5x921xkeiEseqJtuuon6+vrD7w8cONDrFaC+vp7Zs2eXfa5yFUCU1ywp6cKrnSCHYP1g//79fPzjH2fYsGG8//3v5/e//335B80VmhVWA1YArwEHcayKGcBVwFV6JIz3W8CrwAvAmIx9P40T3rsZ+JSX81kY7xH8iF33Y15EW1ub1tfXK84QZK9WX1+vGzZsKOHT5ZY1HYa7eDG6bh26eHFxYbher5mf80UsfDgaSgnjHTdunALa0tISgETl861vfUs/+9nPqqrqihUr9NJLL83ZLzHzQMJupkD8w88b24MPPqh1dXW9lEddXZ0++OCDvsscxISv7HP4ecOfN2+Ojh9fp21t6IYNR1pbm3PMefPm+Ca7cQQvCqS1tbXXb7a2trbXa7q1trYWff7Zs2frokWLDr//93//d73rrruKPk4mH/7wh/WJJ55QVdWDBw/qwIED9dChQ0f1S9I8ECNE/BwK8XNeREdHB/369SOVSnHssceSSqXo168fHR0dRctViHTyxG3bXqe7u4dt215nzpx5vqby8Hu+iIUPx5cgh2CDSOf+pz/9icGDHddxv379aGxsZPfu8qIHTYFUCX5XTvPzxvbd736Xffv2MWLECB544AFGjBjBvn37AonGChq/b/gWPuyNKPxELS0tPPTQQ72USCb19fX89Kc/Zdy4cUUfOzOd+9q1awumc3/22WeParkCTzTbAQhI9g+1SEyBVAl+Pxn7eWNrbGzk9ttvp729nfPPP5+nnnqK2267jRNOOKEomeKA3zd8Cx/umyjLyra0tHDfffdRV1fXa31dXR333XdfScojTTqd+/e///2C6dy9WiDNzc388Y/O9Lnu7m727NnDgAEDSpYPTIFUDX4/Gft5Y7v//vuZNWvW4VKbNTU1XHvttdx///1FyRQH/L7hW/hw30SdZiaoIdiLLrqIn/3sZzz11FNccMEFOfsUY4FceOGFh4fFVq9ezfjx480CMbzh95Ox3dhy4/d1iUvIdZyJ2k8U1BCs3+ncZ8yYwe7duxk2bBgLFy7klltuKfuYpkCqBL+fjO3Glhu/r4vV8uibqP1EQQ3BHjp0iCeffJIZM2b4ImddXR2rVq1i8+bN/PrXv+a0004r+5imQKoEv5+M7caWmyCuSxjRY0kmaj9REEOwL774IsOGDaO1tZXTTz/dL1F9R3J55iuVMWPGaHt7e9RiRELa0djYmLusaTXf9I1kM3/+XB59NHdZ2ZtvrmPs2OuLrnv/0ksvceaZZ/osaTLI9dlF5GlVHZPd1yyQKsEshuKoxrxGfRHXlCpBDadW08N1mmI/s1kghpGD5cuX88lPfpLly5dz2WWXRS1O5GRasNOmHbFgV6yIhwW7d+9eFi68naVL72bHjt2ccspAZs68mlmzritJrq1bt3L88cczcODAsiOVkoKqsnv3bjo7Oxma5VTKZ4GYAjEqij179nDFFVewbNkyGhsbSz5OS0sLGzdupKWlhba2Nh8lTCZBDBPFmYMHD7J9+3a6urqiFiVU6urqaG5u5phjjum13hQIpkCqgVIthwkTJvDII48cfl9bW8uBAwcOv6ZpbW3NOUmr0hk8uIm5c3cxbNjR2zZtggULmti27fXwBTNCwXwgRuwIws9QalGqMFPLJ5GoQ2WNeGIKxIgMP+on+FWUKsi8Rpn47YgOy7EddaisEU9MgRiR4UcJWz8thyDzGoH/OZvCzAFlmQeMXJgCMUIjiBK2flsOQaaW9ztnU5g5oPwMlY1rOLBRArmKhFRqs4JS0VKo+iBlViH0qyjVuHHjNJVK6ahRo3Tt2rU6atQoTaVSvlSZa24epEuW9C4MlW6LF6ODBzdFery+8KuKpVVYTB7EsaCUiEwUkZdFZLOI3JBj+9dF5Fm3vSIiHRnbejK2rQlXcqMUgvQz+GU5BJla3m9HdNiObT9SqkSdOdfwl8gUiIjU4NQ7/wgwHJgmIsMz+6jqv6rqSFUdCfwn8OOMzX9Pb1PVC0MT3CiLoPwMfmVEDTK1vN+O6CQ6tv3MnGtDYdETpQVyDrBZVbeo6gFgJTC5QP9pwIpQJDMCJQg/QxKKUvntiE6iY9svqynKIlLGEaJUIG8H/pjxfru77ihE5B3AUCBzSnCdiLSLyJMiMiXfSUTkSrdf+86dO/2Q2yiTIOon3HPPPTz++ON0dnYC0RelyjXHxe+cTUlMqe+X1WRDYfEgSgWSK8FMvmnxU4HVqtqTse5UdWZGfgJYJCLvzLWjqi5W1TGqOqapqak8iRNAkGa9X8cux1rIN/nQjzklfpJLHr8TWvp5vLCSR/plNUVdRMpwyeVZD6MB5wI/z3h/I3Bjnr7PAB8scKxlwMV9nbPSo7CCjHCJS/TMvffeq4AuX7681/px48YpUFS0VEdHh06ZMkU7Ojr8FrMkeaIk33X1m8zf0eLF6Lp1TsRYsb+jVEp0/frcEWjr1qE1NalAP0e1QQyjsJ4CTheRoSJSi2NlHBVNJSL/AJwE/Cpj3Uki0t9dHgT8I/BiKFKXSZAWQpBmfVyGDNLDXF/4whfKnlPip9USxByXMPFjUmeaQtaMX1ZTEgMIKpJcWiWsBnwUeAV4FbjJXTcfuDCjz1eAW7L2+yDwAvCc+zrDy/mitkCCfooPcl5A2HMO0rS2tvaa21FbW6uA9uvXr+B8EjzMKfHTSghyjksQ5Luu6dd0a21tLfrYYVgz8+bN0fHj67Strfdvsa3N+T/NmzcnsHNXI+SxQCJVIGG3qBVI0D/6IM36qIYMvNyYvd6sg7xp9iVrnJSHarAKL4zhO7+GwvyQY968OdrcPEhTKdHm5kFFT65MAvkUiKUyCZGgHX9BmvVRDRn0Nfmwf//+1NbW9lqXb05J0Bl3g86l5Sd+TuqMYvguDhU2LZTYcmGFStAzh0uNcPESgRPlnINCN+bPf/7z1NbWHq4aJyJ555SEkXE3yFxafuOXwosqFb6XmfFJ9TkmBVMgIRL0U3yp8wK8OJOjnnOQ78b88MMPs2/fPo477jgAjjvuuIJzSoK2EoKY4xIkfii8sFLhF0vQFoKFEpsCCZWgn+JLNeu9ROBEPWSQfWOur69n7969vPTSSxw6dKjXU++hQ4fYsGFD3mGTIK2EJMyIz8QvhRfH4bugLQQrsoU50cMkLo6/oJ3JQTB58mS98847taenR1VV161bp8ccc0xJTuAgM+7GnWynb11drV5wwfm6Z88eVVXt7u7WO+64QydPnlz0sZcvX64NDQ2aSqX02GOP1VQqpQ0NDYHPLclH0JGDUUUmRgEWhRW9AlH1JyV2uRPgkhZymo9So56ylVE5N80kEXQYedwUc9CRg9UUSmwKJCYKxA/8iLNPUshpIfyqA1INBH3DC0sxew2dDdpCiMuIQhjkUyDmA0kgfswajuOYdSkkKerJC0HmpCrk9L3wwi6+9rVbyjpvkKnw0xTjGI+rz7GSMAWSAIKKs6+Em2/Sop76IsikkIWcvjt2QFfXgdgko8xHMY7xMCIH/SiylWRMgSSAoOLsK+Hmm7Sop77wMydVNoXCyNNGQty/+2JCZ81CCIFc41qV2pLsAwnCZ1ENzuRCAQdBZuP1SpgRcZk+kLPP7v0bEiGw8/qJZeGNBswHkmyC8FmEMWYdNYWGhOJQQ8SLdXnsscfS1dVVtl8kc0hn3Djo3//ItrSfIOjZ4+ViWXjjhSmQEPArnUIl+CzCptCQUJDDRV7xMov7mmuu4Ze//GXZii5zSGfVqiYOHpSjhoIyzxvF7PG+SGIZ34oml1lSqS2KISw/Y+/jFmcfR7wOCRXaFsWwTaFwZC/ZbUsdjktaGHQ1hc7GCWwIKxr8TKdQaQ7jIPAyJFRoW1TDNpnWZXpIsauri3/6p3/yFHVX6nBc0qxac4zHjFxapVJbFBZItaQ7iINDOk2hgIP+/ftr//79YzeBMtO6vO2221REisoUUGoNDrNqDS9gFkg0VEvCtTg4pNMUCjhYvXo1q1evjt0Eykzr8rrrrmPt2rUcc8wxOfvW19dzxhln0NLSUvbcILNq8xNkKvhKIa8CEZGzROQXIrJVRL4tIo0Z236Vb79iEJGJIvKyiGwWkRtybL9CRHaKyLNum5mxbbqIbHLbdD/kCYIgokbi+MOOg0M6k0JDM3EctsmOiJswYQI//vGP8yq6O+64w5e5QXGMxAtyNr5XrFiUNwpZIP8F3AK8D9gG/EJE0s/SdXn38oiI1ADfAj4CDAemicjwHF3vU9WRblvq7jsAmAu8HzgHmCsiJ5UrUxD4HTUSlx+2n7Pjg7hhFJokmZQJlIUUXVxrcPhBHKxZKxbljUIK5HhVfUhVd6nqLcC/AmtF5H0447Dlcg6wWVW3qOoBYCUw2eO+FwDrVPUNVX0TWAdM9EEm3/E7nUK5P2y/btZ+zo4P4oZRaGgmKcM2fSm6Sslnlk0crFkrFuWRXI4Rx2fC88AJWetGApuAXfn289qAi4GlGe8vB76Z1ecK4DVXltXAYHf9vwGzM/p9Gfi3POe5EmgH2k899VRfHUte8SOFe5pynfJ+ZPJN49fs+FIdwJWOl0wBcavBUQpxrE9jM957Q7Hp3N0b+rk51g8Bvp9vP68NuCSHAvnPrD4Dgf7u8lVAm7t8XQ4Fcm1f50xyKpM05f6w/b5ZlzKPII43jKRSCVFUcahPkx1FWC3Rk17Jp0DyDmGp6nJVPcpZrqq/V9VP5duvCLYDgzPeNwM7ss61W1X3u2+XAKO97lupFOuUDyqTb5pSHNJBJYesRpIyHFeIOPhzsodRbca7R3JplTAa0A/YAgwFaoHngLOy+pycsXwR8KS7PADYCpzktq3AgL7OWQkWSLFFgYJ+uiv1CbhSCloZ/hHlrPhsy9xmvPeGOFYkBD4KvAK8CtzkrpsPXOgufw34natcNgBnZOz7aWCz2z7l5XyVoEBK+WEHebMuJ6Nv0tJoGMESpj/H6zDqaacN9cV3mXRKViDAB7ysS0KrBAWiWppTPo4360pwABv+EaY/Jw5+lySRT4F4mYn+7RzrvuVhPyMgSqmCFsfJc0mZj5FNHCa6VSJh+nPi4HepCHJpFUfhcA7wReCPwBcy2mzg+Xz7xblVigVSCnGM1klqQSs/Q6GNaImjZR5HKMECOQ4YhOPsbspoB3BCcI0EEcdonTim0fBCHCa6Gf4QR8s8UeTSKpkNOC1jWYDj+tonrq2aLRCjdGzeSuUSR8s8jlCGD+QrInKCiNTjRERtFZFZ/qsyw/BG2D4Im7dSucTRMk8UubRKZgOecV8/ASzCmbNhPhAjMqLwQdi8FSMI0hGVzc2DNJUSbW4eFMtQYcqwQGpFpB9OosP71Ul8eMhvRWYYXonCB1GpiQuN6IhLZu1y8KJAluKkcz8JeFRETgXi/8kqiGoPGw06HYtXzOFq+EklpIzvU4Go6tdV9RRV/bBrymwHxgcvmpEmDvURoiQuPoikzlsx4kklpIzvU4GISJOIfEdEHnJXnYHjDzFCIklho0FYS3GZ9GUOV8NPKqHctZchrGXAoxzJfrsJuDYogeJEVKVj4zJkUwpBWUtx8EEkdd6KEU+CKHcdNl4UyFtU9Ye4jnNVPQj0BCpVDIjSwRWXIZtSCNJaMh+EUUlUQsp4Lwrkb24NcmcmoVPStjNQqWJAKQ4uvyyWuAzZeCFMa8l8EEYl4Xe560jIFdub2YAxwC+BDpyhrM3AyL72i2MrZh5IsRXJMtOsL1mCrl+PLllSXv2AJOTpCTOraVJzZxlGPvwsdx0kFDsPREQ+4CqYdqAFGIuTXHG4qj4bhDKLE8U6uIIIyUvCkE2Y1pL5IKqXuIaylzvqUEpm7ThRaAjrcBp3VT2gqs+p6rPqTCSseIp1cAURkpeUIZs4OLiNyiaOoeyVMBGwXLz4QKqSYh1cQYTkJSlsNAnWkpFc4hjKXgkTActFNPsOmd4g0gE8lm9HVb2w7JOLTATuAmqApap6S9b2WcBMoBvYCXxaVf/gbusBXnC7bvMiz5gxY7S9vd2TbOmni8bGV5k6tYuhQx3LY+VKx8G1ceOTvczMwYObmDt3F8OGHX2sTZtgwYImtm173dO5k0hLSwuPPfYYI0aM4NZbb+VLX/oSzz33HGPHjqWtrS1q8YyEMWHCBB555JHD72trazlw4MDh1zStra2sX78+ChGr6j8vIk+r6pjs9YUskJ3AnQVauQLV4FQ2/AgwHJgmIsOzuj0DjFHV9wKrgdsytv1dVUe6rWxllk1DQwMbNz7J2LHXs2BBExMnpliwoImxY68/SnlAZYTklUOSrCUj/iQhlL0SJgKWSyEL5DeqenZgJxY5F/iKql7gvr8RQFW/lqf/KOCbqvqP7vu9qlqUp6kYC6RYirVYksKePXu44oorWLZsGY2NjVGLY1QRGzZsYNKkSezbt++obXEIZTcLpLAF8vvgxAHg7TjlctNsd9flYwbwcMb7OhFpF5EnRWRKEAIWQ7EWS9iUGsUSR+elUR3EPTij2kcdoIACUdWPBXxuybEupzkkIpfhzEfJ9Eqd6mrETwCLROSdefa90lU07Tt37ixX5oLEOSSvVEUQR+elUT3EOTijIiYClkmUUVjbOZJfC6AZ2JHdSUQmADcBF6rq/vR6Vd3hvm4BNgKjcp1EVRer6hhVHdPU1OSf9AnDqyJIch4uo/KIcyh73EcdQiHX7MIwGtAP2AIMxaly+BxwVlafUcCrwOlZ608C+rvLg3ASPA7v65zVVJGw1DreYc4sN4y+sOwD8YA8M9G93uw/BizEib66yMs+Ho/7UeAVV0nc5K6bj2NtAKwH/gI867Y17voP4oTwPue+zvByvmpSIOUogriXb+3o6NApU6ZoR0dHpHIYRrVQsgLBmZG+FviU234GfKuv/eLYqkmBqJanCOKchyuKmuhGvLGHimDJp0C8+EDGAheo6vdV9fuu1TDOw35GxJQTxRJn56U59o1sLFowGrwokJeBUzPeDwaeD0Ycw29KVQRxcl6aY9/oC3uoiAYvCmQg8JKIbBSRjcCLQJOIrBGRNYFKZ5RNqYogTjPLkzAr2QgXe6iIB3lnoh/uIDK20HZVfdRXiQIkyJnocWXKlCmcd955XHPNNaRSKXp6eli0aBGPP/54otKgx31WshEuhX4Paex34R/5ZqL3qUAqiWpUIJXEQw89xCWXXEJXV9fhdXV1daxatYpJkyZFKJkRBfZQER5FpzIRkV+4r50i8teM1ikifw1SWMPIRZwd+0b4xD3VSTVQKJXJ/3Bfj1fVEzLa8apqKVaN0ImTY9+IB/ZQkZ9yqyV6wVMqExGpEZFTROTUdPNNAsPwSJwc+0Y8sIeK3IRVLbFPBSIi/4IzG3wd8FO3PeTL2Q2jCKwmupFNpT5UlGs9hFUt0UsU1mbg/aqa+Ooo5kQ3DCPuZNYWmjbtSG2hFSu81xbyu1ZJKfVA0vwRKK6IhGEYhlESflgPYVVLLBSFNcutSb4F2CgiN6bXuesNwzAMn1my5NtMm9aFZFVMEoGpU7tYuvTuPo9xyikD2bo197atW53tflDIAjnebdtw/B+1GeuO9+XsRmIptcKhYRiF8cN6CKtaYqEw3nmFmi9nr0LCCK0Lg3KT15kCMozc+GE9hFUt0UsU1joROTHj/Uki8nNfzl5lhBVaFwblJq+z7KmGkRs/rIewqiV6caI3qerhWTmq+ibwFl/OXmX4HVoX5lO838nrLHtqdWCWZvH4ZT00NDQwZ848tm17ne7uHrZte505c+b5WmrXiwLpyZw4KCLvwCkwZBSJH86xTMJ8ii83I65lT61OzNL0RubQdmPjCfz5z38GzmHevEGxrrXuRYHcBPxCRJaLyHLgMeDGYMWqTPwOrQvzKb6lpYWHHnqolxLJpK/kdZaSvToxS7Nvcg1tf+Uru4Ff87a3vZWOjj2BWA9+0KcCUdWfAWcD97lttKr64gMRkYki8rKIbBaRG3Js7y8i97nb/1tEhmRsu9Fd/7KIXOCHPEFTrnMs6qf4cpLXlauAwIZDkkDUv9EkEtas8SDwlAsL+CBOGdtxwAf8OLGI1ADfAj4CDAemicjwrG4zgDdVdRjwdeBWd9/hwFTgLGAi8G33eLGmXOdYHJ7iy0leV272VBsOiT9x+I0mDb+HtsPESxTWLcAXcSoRvgh8UUS+5sO5zwE2q+oWVT0ArAQmZ/WZDNzjLq8GWkVE3PUrVXW/qm4FNrvHizXlOsf8eIovl3KT15WjgGw4JP5E8RtNemh8WLPGA0FVCzac+uepjPc1wPN97efhuBcDSzPeXw58M6vPb4HmjPevAoOAbwKXZaz/LnBxnvNcCbQD7aeeeqpGTWdnp86bN0cHD27SmpqUDh7cpPPmzdHOzk7Px3jwwQe1rq5OcYIZFNC6ujp98MEHA5TcYfLkyXrnnXdqT0+Pqqp2d3frHXfcoZMnT/a0/7hx4zSVSumoUaN07dq1OmrUKE2lUtrS0nJU39bW1l6fsba2ttdrurW2tvr6GY3yCes32tnZqaNHn6Xjx9fpkiXo+vXokiXo+PF1Onr0WUX9r6KiuXmQLlmCbthwdFu8GB08uClqERVo1xz3V69DWCdmLDcWoZ8KITnWZUd35evjZV9npepiVR2jqmOampqKFNF//Aiti7IGQrkZcYvJnmrDIcklrN9okv0HacKaNR4IubSK9n6Cnwb8AViGM5y0FZja134ejnsu8POM9zcCN2b1+TlwrrvcD9iFozx69c3sV6iNHj3af9UcAcU8xceVtCXW3DxIUynR5uZBOS2xtrY2ra+v7/Ukm2719fW6YcOGaD6AUZCwfqNJeHrvi0wravFidN06R/Y4WVGUYoG4/oZf4DjOf+y2c1V1pQ+66yngdBEZKiK1OE7xNVl91gDT3eWLgTb3wye7TlsAABsySURBVKwBprpRWkOB04Ff+yBTbMkc5924cSPHH1/HhRdO4txzz01cDYRiZuRb2dJkEladjkT7D1zCmjUeBF7qgTytqqMDObnIR4FFOH6V76nqV0VkPo62WyMidcByYBTwBo7ls8Xd9ybg00A3cI2qPtzX+ZJaD8SP+gBxYv78uTz66G3Mnt078kTVCSgYO/Z65sw5km7tBz/4AVdffTX79u2jf//+7N+/n/r6eu6++24uu+yyCD6BERf8rnth5KaceiBPisj7ApAJVf1/qvouVX2nqn7VXTdHVde4y12qeomqDlPVc9LKw932VXe/f/CiPKLCjwiRShjnzaTYsEUrW2rkI67+g6RHhnnFiwXyIvAuHD/I33B8EKqq7w1ePH8J2wLxy3KotKesmpoUa9cqNTlm7nR3w8SJKbq7ew6vmzJlCueddx7XXHMNqVSKnp4eFi1axOOPP27lbKuczP/Y1KlH/mMrV0ZnnVfaiAHkt0C8KJB35Fqvqn/wSbbQCFuBFDtUk49ib7hxp9IUohEte/fuZeHC21m69G527NjNKacMZObMq5k167pIbtR+/e/jRDlDWCcDb6jqH1yl8QbwNr8FrET8mmEaVnWxsIjrsIORTMLIOlsMSZ5ZXixeFMjdQObA3d/cdUYf+BUhUmk33LCK3RhGFFRCZJhXvCgQ0YxxLlU9hDMnw+gDvyyHoG+4YTv8khy2aMSfqJNuVtqIQSG8KJAtIvIFETnGbV8EtvS5l+Gb5RDkDTeqKolxG3YwKoeok25W2ohBIbw40d8CfAMYjzMD+BGceReJ83JGGYUVlwiRbCrR4Rcn9uzZwxVXXMGyZctobPQrC5BRiJaWFjZu3EhLSwttbW2hnz8J//tiyedELysdSdJaFKlM/EieGCSVkAoiztx7770K6PLly6MWpWKJY9LNuP/vi4U8qUzyWiAicr2q3iYi/0mORIWq+gW/tFtYJHUmepBUWohwufhtMUT9NBwngrLGNmzYwKRJk9i3b1/ePl7TyJvFmJtSwnhfcl/bgadzNKMCiMLhF7WTsxDljp9bRb78BOWb8LMGSdT+k6SRV4Go6oPu6z25WngiGkEShcMvzn/ScotWWQr6/ARZEMyvpJtWtKw48ioQEVlTqIUppBEcUczJKOZPGrS14rfFEIeqkXEhbGuslBokZjGWSS7HiOsX2Qn8BrgOOA8Ym9ny7RfnFud6IF7rYwR57qAcfuU4OYN2QheqN5JupdQdibJqZFwI6trmo5QaJGHLGOX/vBzI40QvpEBqgIk4RaSeAW4GzsrXPwktrgqkEspyFqKcP+m4ceMUCLRYVhBFq5YvX64NDQ2aSqX02GOP1VQqpQ0NDbGIxuro6NApU6ZoR0dH4OcKsyBYqeWWw5Ixyf/zohVIr07QH7jCtUr+xcs+cWxxVSDz5s3R8ePrtK2tdxhtW5vz45o3b07UIpaN1z9pVCGZflsMca4aGXZocRKssTBkTPL/PJ8C6asiYX8R+RjwA+DzOBMKf1xoH6N4qiH5mlcnZ1ROaL9reIdVka8UwnYUh1UfHUr3mYUhYyX+zws50e8BngDOBuap6vtUdYGq/ik06aqEakm+5uVPGpUT2u+iVffffz+zZs0ilXL+YjU1NVx77bWR1C+J2lEcZkGwUiP8wpCxEv/nhSyQy3EKSX0ReEJE/uq2ThH5azknFZEBIrJORDa5ryfl6DNSRH4lIr8TkedF5OMZ25aJyFYRedZtI8uRx2+KTU6YtORrpSZf9PonjaIOepwthnKJOrQ4zGtbqnUVhoxJ+597Ite4VtANuA24wV2+Abg1R593Aae7y6cArwEnuu+XARcXe94wfCClOMqSMjba0dGhkyZN0pEjzyjJEViMk9MvJ3SYDuM4E6YzO0zimMYkH0n5n+eCcpzofjfgZeBkd/lk4GUP+zyXoVBiq0BK+ZFkKp3Fi9F165w8VHGLzkg7X4cPPybwP4FfTmjLRXWEJDiziyXsMNxySMr/PBf5FIiXdO5B8FZVfQ3AfX1Loc4icg5QC7yasfqr7tDW10Wkf4F9rxSRdhFp37lzpx+yF6QUR1lS6mOkhwV6eg4G7gj0a0jBZhYfIUxndlgkaeJmUv7nRZFLq/jRgPXAb3O0yUBHVt83CxznZByL5QNZ6wQnvPgeYI4XmcKwQFIp0fXrc2e3XbcOralJBS6DX+QbHujXr/cT3tlnx+fzJWlII2ziHFpcLpVoXcUJwrZAVHWCqr47R3sA+IuInAzgvuasLSIiJwA/BWar6pMZx37N/Vz7ge8D5wT1OYolCY4yr07wfM7X7u4jffr3h8svd5bj8PmidhjHmUoOFKhE6yoJRDWEtQaY7i5PBx7I7iAitcBPgHtVdVXWtrTyEWAKjmUTC+JejayYCoR9DQ/07w+33AIjR8bn8yVpSCNs4hRa7DdhhgobR4hKgdwCnC8im4Dz3feIyBgRWer2uRQnB9cVOcJ1/4+IvAC8AAzCSbMSC6JITlgMCxfeTmPjq8ye3cWwYVBTA8OGwezZXTQ2vsrChbf36p8vpDaVgs98Bt797nh9PogmDNiIlkq2rmJNrnGtSm1hpTKJczWyUioQ5gqpra2t1QEDjo/d50sT51xUhpE0iFkUVkXT0NDAnDnz2Lbtdbq7e9i27XXmzJkXiyiLUmbD5hoe6O7uZsSIMbH7fGlsSMMwgscUSJVRipM/icMDSZTZMJJG3prolYjVRIf58+fy6KO3MXt277kqqo4fY+zY65kzZ150AhqGETtKqYluVCBxd/KXS6l5ugzDD6rt92cWSBWyd+9eFi68naVL72bHjt2ccspAZs68mlmzrouVH6NY0iHKjY2vMm1aF0OHOsNyK1Y4yjGxs32NRFDJvz+zQIzDxNnJXw59hSj/x38sCKS+etB1241kUGyIfCVgCsSoGPrKQ/ad79xdUq2Ivii1BoXfmCKLlkosGNUXpkAMTyRhbLevEOU33ugE/E+sGJeEjXFRZNVKJRaM6gtTIAkjiht5MelPoiQ7RPnaa6GlxWnnn39kfbmV+KKu8JePuCiyNEl46PCTJOTB8xtTIAkiqht5UsZ2s/OQXXaZk68rm3ITK8YlYWNcFRkk56HDT+KeBy8ITIEkiKhu5EkZ280OUX7Pe+Dzn3fyduWi1MSKcUnYGBdFloukPHT4SaWHyOfCwngTxODBTcydu4thw47etmkTLFjQxLZtOTPjl0VNTYq1a5WamqO3dXfDxIkpurt7fD9vKfQOUd7FiSceS1dXN3/724Fe/erq6li1ahWTJk0q+VwPPfQQl1xyCV1dXb4etxg2bNjApEmT2Ldv31Hbosw8HNVvNWoqNUTewngrgKicdEka202HKL/44hZGjhzOiBGHmDr1AMce61hMaWukpqam7FoRcahBEdfMw9XoUIbKDZHPhymQBBHVjTyJY7uZQyhPPw1dXfDOdzr1SxoahH37/la2szkuCRvjoMiySdJDh1E6pkASRFQ38iSO7Wb6bY47Dq66Cr7zHXjf++COO5QTTjiu7MSKcUnYGBdFlkkSHzqM4jEfSILITJUwdeqRVAkrVwafKiFpY7tJ8tuUy5QpUzjvvPO45pprSKVS9PT0sGjRIh5//PHIqg1G+Vs1/CefD8QUSMJI2o08KqrViRsn7LdaOcRKgYjIAOA+YAjwe+BSVX0zR78enLK1ANtU9UJ3/VBgJTAA+A1wuaoeyN4/m0pQIIY3kpi2fs+ePVxxxRUsW7aMxsbGqMUxjMPELQrrBuARVT0deMR9n4u/q+pIt12Ysf5W4Ovu/m8CM4IV10gaSfTbVHsqEsvllTyiUiCTgXvc5XuAKV53FBEBxgOrS9nfqA4aGhrYuPFJxo69ngULmpg4McWCBU2MHXt9bMff45aKxC+8KoYgFWiQyqnaUrb0Ileh9KAb0JH1/s08/bqBduBJYIq7bhCwOaPPYOC3Xs47evToUmvKG4bvtLa2KnC41dbW9npNt9bW1qhFLYt7771XAV2+fHnBfuPGjVNAW1paIpOhWDo7O3X06LN0/Pg6XbIEXb8eXbIEHT++TkePPks7Ozt9PV9UAO2a454amAUiIutF5Lc52uQiDnOqOuNunwAWicg7AcnRL68jR0SuFJF2EWnfuXNnkZ/CMIIjzqlI/CSfZRVmLq+grLtqTNnSi1xaJegGvAyc7C6fDLzsYZ9lwMU4CmQX0M9dfy7wcy/nNQvEiBttbW1aX1/fy+JIt/r6et2wYUPUIvaio6NDp0yZoh0dHXn7eLWszj777LyfvdxrEJZ119w8SJcsQTdsOLotXowOHtxU1vHjAmFbIH2wBpjuLk8HHsjuICIniUh/d3kQ8I/Ai+6H2YCjTPLubxhJIK6pSPLhxU/h1bK68847A0tKGYR1l8vX8dpru3jb23L3r+SULWmiUiC3AOeLyCbgfPc9IjJGRJa6fc4E2kXkORyFcYuqvuhu+xIwS0Q2AwOB74YqvWH4SBxTkeTDy1BQMdmKg1KgfmdMzpee/v3vhy9+Ef7+96P3qYaULZEoEFXdraqtqnq6+/qGu75dVWe6y0+o6ntUdYT7+t2M/beo6jmqOkxVL1HV/VF8DqPyiCKiJjMVycqVK3nLW97C3r17ufzyy0OP6Mn+/HV1tSX5KYpRDEEpUD+VUz5fx803w8knw6pVvftXS8oWy4VlGC5RFUFK59TauHEj8+f/O2ee+SYXXwwf/CB5zx9EWGquz/+///fBXvVUihkK6ksxpJXVjBmfYu/evdTUCJdc8jHe/e53+5bLyy/lVKgmzvTp8KMfkZj5Rn5iCsQwXKKKqLn//vuZNWsWixbdSWPjq3z5y/v5/Ofhq1/Nf/4g5kzk+vyTJsHtt5dWlKtQksdMZXXmmd1cdRV885s9bN/+I/r162bBggW+JKX0K9FkX+np9+6VxMw38hNTIIbhEnXlxWLOH0RYar7zn302fO5zR/fvayioULbiTGW1aBF8/OPwrnc5yvLEE7fQ3b3fl0SQfmVM7is9/dvfPqhqaoBkYskUDcMl6gy+hc4/axY888yR97W1tRw4cODwa5rW1lbWr1/v+/l/9jO49VZIpVL079+f/fv3U19fz913381ll11W9LmSluwyibnV/CRuubAMI3ZEXQSp0PlbWuh14wpi0mGh8//kJ86rXzVHklaxMIm51cLAFIgRS6KIhoq6CFKh8z/7bB3Tp18eyJwJL+d/440UF1xwvm/Fs6JW1sWSxNxqYWBDWEbsyCxGNG3akWJEK1YEW4wo6iJIXs6/ceNGLrnkErq6ug7vV1dXx6pVq5g0aVLg5/fr81f7kFDSsCEsIzFEFQ0V9VOml/MHOekwzM9vQ0KVgVkgRuxImoM1TFpaWnjssccYMWIEt956K1/60pd47rnnGDt2LG1tbVGLVxRWsTA5xKoiYVSYAkkGUUdDxZk41j83Kh9TIJgCSQpmgRhGvDAfiJEYoo6GMgzDG6ZAjNhhDlbDSAamQIzYEXU0lGEY3jAfiGEYhlEQ84EYhmEYvmIKxDCMRBBFehujMKZADCME7OZXHlEV+zIKE4kCEZEBIrJORDa5ryfl6NMiIs9mtC4RmeJuWyYiWzO2jQz/UxiGN+zmVz5RpbcxChOVBXID8Iiqng484r7vhapuUNWRqjoSGA/sA9ZmdLkuvV1Vnw1FasMogTjc/JJuAUVd7MvITVQKZDJwj7t8DzClj/4XAw+r6r5ApTKMAIj65lcJFlDS6odUC1EpkLeq6msA7utb+ug/FViRte6rIvK8iHxdRPrn21FErhSRdhFp37lzZ3lSG0YJRH3zi4MFVC5Jqx9SLQSmQERkvYj8NkebXORxTgbeA/w8Y/WNwBnA+4ABwJfy7a+qi1V1jKqOaWpqKuGTGEZ5RH3zi9oC8gNLbxNPAlMgqjpBVd+doz0A/MVVDGkFUSgz3qXAT1T1YMaxX1OH/cD3gXOC+hyGUS5R3/yitoD8wNLbxJOohrDWANPd5enAAwX6TiNr+CpD+QiO/+S3AchoGL4Q9c0vagvIDyy9TTyJJJWJiAwE/i9wKrANuERV3xCRMcBVqjrT7TcE+CUwWFUPZezfBjQBAjzr7tOnJ9BSmRhREWXxJCsfa5SL1QPBFIhRnURd691IPpYLyzCqFBv+MYLCLBDDMAyjIGaBGIZhGL5iCsQwDMMoCVMghmEYRkmYAjEMwzBKoqqc6CKyE/hDiKccBOwK8XzFYvKVh8lXHiZfeYQp3ztU9ahcUFWlQMJGRNpzRS7EBZOvPEy+8jD5yiMO8tkQlmEYhlESpkAMwzCMkjAFEiyLoxagD0y+8jD5ysPkK4/I5TMfiGEYhlESZoEYhmEYJWEKxDAMwygJUyBlIiIDRGSdiGxyX0/K0adFRJ7NaF0iMsXdtkxEtmZsGxm2fG6/ngwZ1mSsHyoi/+3uf5+I1IYtn4iMFJFficjvROR5Efl4xrZArp+ITBSRl0Vks4jckGN7f/d6bHavz5CMbTe6618WkQv8kKdI2WaJyIvutXpERN6RsS3n9xyBjFeIyM4MWWZmbJvu/h42icj07H1Dku/rGbK9IiIdGdsCvYYi8j0ReV1EchbKE4dvuLI/LyJnZ2wL/Nr1QlWtldGA24Ab3OUbgFv76D8AeAOod98vAy6OWj5gb571/xeY6i7/F3B12PIB7wJOd5dPAV4DTgzq+gE1wKvAaUAt8BwwPKvP54D/cpenAve5y8Pd/v2Boe5xakKWrSXj93V1WrZC33ME1+8K4Js59h0AbHFfT3KXTwpbvqz+/wJ8L6xrCJwHnA38Ns/2jwIP4xTU+wDw32Fdu+xmFkj5TAbucZfvwSmxW4iLgYdVdV+gUh2hWPkOIyICjAdWl7K/R/qUT1VfUdVN7vIO4HWcipRBcQ6wWVW3qOoBYKUrZyaZcq8GWt3rNRlYqar7VXUrsNk9XmiyqeqGjN/Xk0Czj+f3RcYCXACsU9U3VPVNYB0wMWL5jiqrHSSq+hjOQ2Y+JgP3qsOTwInilPkO49r1whRI+bxVVV8DcF/f0kf/qRz9Y/yqa4p+XUT6RyRfnYi0i8iT6eE1YCDQoard7vvtwNsjkg8AETkH56nx1YzVfl+/twN/zHif63Mf7uNenz0418vLvkHLlskMnKfVNLm+Z7/xKuP/cr+31SIyuMh9w5APd/hvKNCWsTqMa1iIfPKHce160S/Ig1cKIrIeeFuOTTcVeZyTgfcAP89YfSPwZ5yb4mLgS8D8COQ7VVV3iMhpQJuIvAD8NUe/ouO+fb5+y4HpqnrIXV329ct1qhzrsj93vj5e9i0Hz8cXkcuAMcDYjNVHfc+q+mqu/QOW8UFgharuF5GrcKy58R73DUO+NFOB1arak7EujGtYiKh+e0dhCsQDqjoh3zYR+YuInKyqr7k3uNcLHOpS4CeqejDj2K+5i/tF5PvAv0Uhnzs0hKpuEZGNwCjgRzjmcT/3KbsZ2BGFfCJyAvBTYLZrtqePXfb1y8F2YHDG+1yfO91nu4j0Axpxhh287Bu0bIjIBBwFPVZV96fX5/me/b759Smjqu7OeLsEuDVj33FZ+24MW74MpgKfz1wR0jUsRD75w7h2vbAhrPJZA6SjHaYDDxToe9RYqnvTTPsbpgA5Iy+ClE9ETkoP/YjIIOAfgRfV8cxtwPHb5N0/BPlqgZ/gjPuuytoWxPV7CjhdnAi0WpybSHa0TabcFwNt7vVaA0wVJ0prKHA68GsfZPIsm4iMAr4DXKiqr2esz/k9+yhbMTKenPH2QuAld/nnwIddWU8CPkxviz0U+VwZ/wHHGf2rjHVhXcNCrAE+6UZjfQDY4z5IhXHtehOkh74aGs649yPAJvd1gLt+DLA0o98Q4E9AKmv/NuAFnBvfD4CGsOUDPujK8Jz7OiNj/9NwboCbgVVA/wjkuww4CDyb0UYGef1wIl1ewXmyvMldNx/npgxQ516Pze71OS1j35vc/V4GPhLAb64v2dYDf8m4Vmv6+p4jkPFrwO9cWTYAZ2Ts+2n3um4GPhWFfO77rwC3ZO0X+DXEech8zf3Nb8fxY10FXOVuF+BbruwvAGPCvHaZzVKZGIZhGCVhQ1iGYRhGSZgCMQzDMErCFIhhGIZREqZADMMwjJIwBWIYhmGUhCkQoyoQERWR5Rnv+4mTDfYh9/2FkiMrq4/n/4qI5JzkKCJPFHGcn7hZYDeLyB45khX2g0XKM96dQ5Br21niZD/eLyLXFHNco7qwmehGtfA34N0icqyq/h04H2deDgCquoYck8ly4U5aFD2STqUsVNXzzV9VL3JlGAf8m6pOKvG044FdOMkWs9mFk4H24hzbDOMwZoEY1cTDwP90l3tlBRCnPsU33eW3uk/6z7ntgyIyREReEpFvA78BBovINBF5QUR+KyK3Zhxrooj8xt33kYzzDxeRjSKyRUS+kNF/r/s6TkQec8/9ooj8l4h4/o+KyPtE5FEReVpEHhaRt7rr/9U93nMi8gMReScwE7gul/Wiqn9R1XagO8dpDOMwZoEY1cRKYI47bPVe4HvAh3L0+wbwqKpeJCI1QANOSot/wJnd+zkROQUnf9No4E1grTiZWX+Jk9vpPFXdKiIDMo57Bk6tjuOBl0Xkbs3Ii+ZyDk5NkT8APwM+xpF0+nlx02vchTOTepeI/DOwALgSuB54h6oeEJETVbVDRJYCu1R1UV/HNox8mAIxqgZVfV6cyoHTgP9XoOt44JPuPj3AHje30B/0SCLH9wEbVXUngIj8H5xCQD3AY+rUAkFVM+s6/FSdxIb7ReR14K04qSoy+bWqbnGPuQL4H3hQIMCZwFnAemeEjZqMY/8O+IGIPADc7+FYhuEJUyBGtbEGuAMna+nAIvf9W8ZyrtTZ6fX58gPtz1juIff/L3tfr7mGBHheVXNZVBfgpHSfDMwWkXd7PKZhFMR8IEa18T1gvqq+UKDPIzilYBGRGnFSyWfz38BYERnkDnNNAx7Fydw61s3ES9YQlhfOcbPEpoCPA7/wuN+LwNvFKbiFiNS60VQ1QLOqtgHX4VRyrAc6cYbSDKNkTIEYVYWqblfVu/ro9kWgRZyiWk/jDA1lH+c1nGJWG3Ays/5GVR9wh7SuBH4sIs8B9xUp4q+AW3CyC2/FSWPfJ+7Q2MXAQve8zwDvx7Fyfigiz+M4/29V1U6ctPmXisgz2U50EWkWke3AF4CviMh2Eakv8nMYVYBl4zWMmOBDaK5hhIpZIIZhGEZJmAViGIZhlIRZIIZhGEZJmAIxDMMwSsIUiGEYhlESpkAMwzCMkjAFYhiGYZTE/wc8v4mmwk08UgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plotData(X, y)\n", + "# Labels and Legend\n", + "pyplot.xlabel('Microchip Test 1')\n", + "pyplot.ylabel('Microchip Test 2')\n", + "\n", + "# Specified in plot order\n", + "pyplot.legend(['y = 1', 'y = 0'], loc='upper right')\n", + "pass" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Note that mapFeature also adds a column of ones for us, so the intercept\n", + "# term is handled\n", + "X = utils.mapFeature(X[:, 0], X[:, 1])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def costFunctionReg(theta, X, y, lambda_):\n", + " \"\"\"\n", + " Compute cost and gradient for logistic regression with regularization.\n", + " \n", + " Parameters\n", + " ----------\n", + " theta : array_like\n", + " Logistic regression parameters. A vector with shape (n, ). n is \n", + " the number of features including any intercept. If we have mapped\n", + " our initial features into polynomial features, then n is the total \n", + " number of polynomial features. \n", + " \n", + " X : array_like\n", + " The data set with shape (m x n). m is the number of examples, and\n", + " n is the number of features (after feature mapping).\n", + " \n", + " y : array_like\n", + " The data labels. A vector with shape (m, ).\n", + " \n", + " lambda_ : float\n", + " The regularization parameter. \n", + " \n", + " Returns\n", + " -------\n", + " J : float\n", + " The computed value for the regularized cost function. \n", + " \n", + " grad : array_like\n", + " A vector of shape (n, ) which is the gradient of the cost\n", + " function with respect to theta, at the current values of theta.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the cost `J` of a particular choice of theta.\n", + " Compute the partial derivatives and set `grad` to the partial\n", + " derivatives of the cost w.r.t. each parameter in theta.\n", + " \"\"\"\n", + " # Initialize some useful values\n", + " m = y.size # number of training examples\n", + "\n", + " # You need to return the following variables correctly \n", + " J = 0\n", + " grad = np.zeros(theta.shape)\n", + "\n", + " # ===================== YOUR CODE HERE ======================\n", + " z=theta.dot(X.transpose())\n", + " h=sigmoid(z)\n", + " \n", + " for i in range(m):\n", + " J=J+((-1*(y[i]*math.log(h[i])+(1-y[i])*math.log(1-h[i])))/m)\n", + " \n", + " for i in range(1,theta.shape[0]):\n", + " J=J+(lambda_*theta[i]*theta[i])/(2*m)\n", + " \n", + " \n", + " for i in range(theta.shape[0]):\n", + " grad[i]=(((h-y).dot(X[:,i]))/m) \n", + " \n", + " for i in range(1,theta.shape[0]):\n", + " grad[i]=grad[i]+(lambda_*theta[i])/m\n", + " \n", + " # =============================================================\n", + " return J, grad" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost at initial theta (zeros): 0.693\n", + "Expected cost (approx) : 0.693\n", + "\n", + "Gradient at initial theta (zeros) - first five values only:\n", + "\t[0.0085, 0.0188, 0.0001, 0.0503, 0.0115]\n", + "Expected gradients (approx) - first five values only:\n", + "\t[0.0085, 0.0188, 0.0001, 0.0503, 0.0115]\n", + "\n", + "------------------------------\n", + "\n", + "Cost at test theta : 3.16\n", + "Expected cost (approx): 3.16\n", + "\n", + "Gradient at initial theta (zeros) - first five values only:\n", + "\t[0.3460, 0.1614, 0.1948, 0.2269, 0.0922]\n", + "Expected gradients (approx) - first five values only:\n", + "\t[0.3460, 0.1614, 0.1948, 0.2269, 0.0922]\n" + ] + } + ], + "source": [ + "# Initialize fitting parameters\n", + "initial_theta = np.zeros(X.shape[1])\n", + "\n", + "# Set regularization parameter lambda to 1\n", + "# DO NOT use `lambda` as a variable name in python\n", + "# because it is a python keyword\n", + "lambda_ = 1\n", + "\n", + "# Compute and display initial cost and gradient for regularized logistic\n", + "# regression\n", + "cost, grad = costFunctionReg(initial_theta, X, y, lambda_)\n", + "\n", + "print('Cost at initial theta (zeros): {:.3f}'.format(cost))\n", + "print('Expected cost (approx) : 0.693\\n')\n", + "\n", + "print('Gradient at initial theta (zeros) - first five values only:')\n", + "print('\\t[{:.4f}, {:.4f}, {:.4f}, {:.4f}, {:.4f}]'.format(*grad[:5]))\n", + "print('Expected gradients (approx) - first five values only:')\n", + "print('\\t[0.0085, 0.0188, 0.0001, 0.0503, 0.0115]\\n')\n", + "\n", + "\n", + "# Compute and display cost and gradient\n", + "# with all-ones theta and lambda = 10\n", + "test_theta = np.ones(X.shape[1])\n", + "cost, grad = costFunctionReg(test_theta, X, y, 10)\n", + "\n", + "print('------------------------------\\n')\n", + "print('Cost at test theta : {:.2f}'.format(cost))\n", + "print('Expected cost (approx): 3.16\\n')\n", + "\n", + "print('Gradient at initial theta (zeros) - first five values only:')\n", + "print('\\t[{:.4f}, {:.4f}, {:.4f}, {:.4f}, {:.4f}]'.format(*grad[:5]))\n", + "print('Expected gradients (approx) - first five values only:')\n", + "print('\\t[0.3460, 0.1614, 0.1948, 0.2269, 0.0922]')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def predict(theta, X):\n", + " \"\"\"\n", + " Predict whether the label is 0 or 1 using learned logistic regression.\n", + " Computes the predictions for X using a threshold at 0.5 \n", + " (i.e., if sigmoid(theta.T*x) >= 0.5, predict 1)\n", + " \n", + " Parameters\n", + " ----------\n", + " theta : array_like\n", + " Parameters for logistic regression. A vector of shape (n+1, ).\n", + " \n", + " X : array_like\n", + " The data to use for computing predictions. The rows is the number \n", + " of points to compute predictions, and columns is the number of\n", + " features.\n", + "\n", + " Returns\n", + " -------\n", + " p : array_like\n", + " Predictions and 0 or 1 for each row in X. \n", + " \n", + " Instructions\n", + " ------------\n", + " Complete the following code to make predictions using your learned \n", + " logistic regression parameters.You should set p to a vector of 0's and 1's \n", + " \"\"\"\n", + " m = X.shape[0] # Number of training examples\n", + "\n", + " # You need to return the following variables correctly\n", + " p = np.zeros(m)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " for i in range(m):\n", + " if sigmoid(theta.dot(X.transpose()))[i]>=0.5 :\n", + " p[i]=1\n", + " else :\n", + " p[i]=0\n", + "\n", + " \n", + " # ============================================================\n", + " return p" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train Accuracy: 83.1 %\n", + "Expected accuracy (with lambda = 1): 83.1 % (approx)\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3hU1daH3z1pk0ZCQieAIKKgoEgTewEbKlzBQlOQK6IoqFwbCAkgonJR8VoQPxWkWS5K1StgR0ApSu+EEnpLzySTzP7+mJkwSabPmZbs93nmmcycsvcJ5KyzV/ktIaVEoVAoFApv0QV7AgqFQqEIb5QhUSgUCoVPKEOiUCgUCp9QhkShUCgUPqEMiUKhUCh8QhkShUKhUPiEMiSKsEYIcUAI0c0P571RCJHlwf6DhBCrtJ6HQhEOKEOiUIQpQoj7hRCrhRCFQoif3di/nxDioBCiQAixUAiRYrMtRQjxjWXbQSFEP79OXlGtUIZEoQhfzgJvA6+52lEIcSnwITAQqA8UAu/b7PIeUGLZ1h/4wHKMQuESZUgU1QYhRGchxBohRLYQ4pgQ4l0hRLTNdimEeEIIsUcIkSeEmCiEuNByTK4Q4kvb/S3HjBZCnLa40PrbfJ8qhFhsOe5P4MJKx00TQhy2bN8ghLhO6+uVUq6UUn4JHHVj9/7AEinlr1LKfGAscK8QIlEIEQ/0BsZKKfOllKuAxZiNjkLhEmVIFNWJMuAZoA7QFbgFeKLSPrcDHYCrgOeBGZhvsk2Ay4C+Nvs2sJyrMfAwMEMIcbFl23uAAWgIPGJ52bIOuAJIAeYBXwkh9PYmLYR40WL87L48/B044lJgk/WDlHIf5hVIK8urTEq522b/TZZjFAqXKEOiqDZIKTdIKddKKUullAcwu3JuqLTb61LKXCnlNmArsFxKuV9KmQN8B7SvtP9YKWWxlPIXYBlwvxAiAvMT/DgpZYGUciswq9Jc5kgpz1jmMhWIAS7GDlLK16SUyY5evv1WykkAcip9lwMkutimULhEGRJFtUEI0UoIsVQIcVwIkQu8inlFYcsJm5+L7HxOsPl8TkpZYPP5INAIqAtEAocrbbOdyyghxA4hRI5lVZFkZy6BJB+oVem7WkCei20KhUuUIVFUJz4AdgIXSSlrAaMB4cP5alviB1aaYo5HnAJKMbvDbLcBYImHvADcD9S2rCpyHM3FEofJd/TyYf62bAMutxmzBeZV0m7LK1IIcZHN/pdbjlEoXKIMiaI6kQjkAvlCiEuAxzU453ghRLTFONwFfCWlLAO+BjKEEHFCiDaYYyi28yjFbHAihRDjqPrEX46U8lUpZYKjl6PjhBARlrhLJKATQuiFEFEOdp8L3C2EuM5iHCcAX0sp8yyrrq+BCUKIeCHENUBPYLZ7vyJFTUcZEkV14l9AP8wumY+AL3w833HgHOZVyFxgmJRyp2Xbk5jdYMeBmcCnNsd9jzneshuzy8tARTeYVgzE7I77ALjO8vNH1o2WFc11AJaY0DDLdZzEbOxsExGeAGIt2+YDj1uOUShcIlRjK4VCoVD4glqRKBQKhcIngmpIhBCfCCFOCiG2Oth+oyXr5W/La1yg56hQKBQK50QGefyZwLvAZ072+U1KeVdgpqNQKBQKTwnqikRK+StmvSCFQqFQhCnBXpG4Q1chxCbMmTP/spdJIoQYCgwFiI2L7dCsZbMAT1GhUCjCm52bd56WUtb15thQNyQbgWZSynwhxJ3AQuCiyjtJKWdg1kyi9eWt5azlsyrvolAoFAondGnQ5aDrvewT0llbFk2kfMvP3wJRQohgykwoFAqFohIhbUiEEA2EEMLyc2fM8z0T3FkpFAqFwpaguraEEPOBG4E6lram6UAUgJRyOtAHeFwIUYq5avdBqSooFQqFIqQIqiGRUvZ1sf1dzOnBCoVCoS1lEJUbhSj1Rdcz/JCREmMtI0Rod85QD7YrFAqFX4jKjaJucl2SU5KxeNCrPVJKss9mcyr7FMbaRs3OG9IxEoVCofAXolTUKCMCIITlmjVehSlDolAoaiw1yYhY8cc1K0OiUCgUCp9QhkShUChckJ+fz+RXJnFJi2bU0idySYtmTH5lEvn5WjWw1IZVv63ims7XkBSbxDcLvgnYuCrYrlAoFE7Iz8/njm43UTs5k/R0A82bQ2bmGebNe4tvly7ku5U/kZDgsJFlQGnSpAkf/t+HTHtrWkDHVSsShUKhcMJ/3p5G7eRMXn7ZQMuWEBEBLVvC2LEGkpMy+c/b3t20J6RP4L3/vFf+OWNsBu+/+75Pc212QTMua3cZOl1gb+3KkCgUCoUTZn0yg759DVSOUQsBffsamPXpR/YPdMHDgx9m3ux5AJhMJhZ8tYAH+j5QZb/uN3Wna8euVV4//fCTV+P6A+XaUigUCiccPXqW5s3tb2veHI4d9U61qdkFzUhJTWHTX5s4efIk7S5vR2pqapX9Vvy0wqvzBxJlSBQKhcIJjRqlkJl5hpYtq27LzISGjare/N3l4cEPM2f2HE4cP8FDgx6yu0/3m7qTn1c1qP/q669y0y03eT22lihDolAoFE54+JGhzJv3FmPHVnRvSQnz5+t5ePCjXp/7nl73MGn8JIylRj6d/andfcJhRaJiJAqFQuGEp54eSXZOcyZO1LNnD5SWwp49MHGinuyc5jz19Eivzx0dHc11N17Hvb3vJSLCd/GrDes30Kp5K75Z8A0jh4+k4+UdfT6nO6gViUKhUDghISGB71b+xH/ensaEiR9x7OgZGjZK5eHBj/LU0yN9Sv01mUys+2Mds+fP1mSuHTp2YHfmbk3O5QnKkCgUCoULEhISeOnlMbz08hjNzrlj+w7u+8d93N3zblpeZCcAE0YoQ6JQKBRBoHWb1mzdtTXY09AEFSNRKBQKhU8oQ6JQKBQKn1CGRKFQKBQ+oQyJQqFQuElOTg4P9nmQnJycYE8lpFCGRKFQKNzk2yXfsnTxUr5b+l2wp2KX4uJiHur3EO1at+PGa27k4IGDARlXGRKFQqFwk89mfmZ+n/VZkGdin1mfziK5djKbd2xm+IjhjB09NiDjKkOiUCgUDrjr9rtIiE4of/2x9g8A1q5eW+H7u26/y+Nz+0NGftmSZfQf2B+Af/T+Bz//9DNSSp/O6Q7KkCgUCoUDnnvxOWLjYss/l5SUVHgHiI2L5fmXnvf43P6QkT965ChpaWkAREZGkpSUxJkz3qkTe4IqSFQoFAoH3HDjDfx34X/p06sPRYVFVbbHxsWyYNECrr/heo/P7Q8ZeXurD1G5kYofUIZEEVYUFhQyf/ocFs9bwMljOdRrmMQ9/XrTd9gA4uLjgj09RTXkhhtv4LO5nzGw70AMBkP593q9ns/mfuaVEbGitYx847TGZGVl0TitMaWlpeTk5JCSkuL1/NxFGRJF2FBYUMjwe4dQPzWLiRkllt7Z2cydN5vh9/7Ee19/rIyJwi/kZOcQERmBTqcjJiaG4uJiIiIjyMn2LQ1Yaxn5O++6k7mz59Llqi58s+AbbrjxhoCsSFSMRBE2zJ8+h/qpWYx9uaRC7+xxY0uol5LF/Olzgj1FtyksKOTjqTPo2eE2uja6ip4dbuPjqTMoLCgM9tQUdpj16SwKCwpp27YtXyz4grZt21JYUOhz9pbWMvIPD36Ys2fO0q51O96d9i4TJk3w+ZzuoAyJImxYPG8B/fqW2O2d3a9vCUvmLQjOxDzEurLas2E2EzOyWb5cMjEjm93rZzP83iHKmIQgtZJq8errr/LbH79xc7eb+XXtr0x6bRKJiYk+ndcqI//QYPtuLU/R6/XM+XwOm3ds5pfVv9C8hYMewRqjDIkibDh5LMdp7+yTx8Oj2rg6raxqCl8s+IKnnn4Knc58y4yIiGDEMyP4YsEXXp9zx/Yd5sLBm28Mexl5ZUgUYUO9hklkZtrflpkJ9RokBXZCXlJdVlYK37DKyE9+Y3Kwp+IzypAowoZ7+vVm7rxoKmc4Sgnz5kdzd7/ewZmYh1SXlVV1IBDFeqGGP65ZGRJF2NB32ABOnk1jwsToCr2zJ0yM5uTZNPoOGxDsKbpFdVlZhTsyUpJ9NrtGGRMpLdccqe01q/RfRdgQFx/He19/zPzpc0gfv4CTx3Oo1yCJu/v1Jj2M6kjMK6vZjBtb0b0VbiurcMdYy8ip7FOcPn062FMJKDJSYqxl1PScorpZ49aXt5azls8K9jQUCodYs7bqpWTRr6+1HsZsRE6eTVP1MIqg0KVBlw1Syo7eHKtcW9UUVacQur8D68qqVceBpI9P5vbbBenjk2nVcaAyIoqwJKgrEiHEJ8BdwEkp5WV2tgtgGnAnUAgMklJudHZOtSKpWAFu+8Q7d154PvF6I4tS3X4HCoW/CecVyUzgdifb7wAusryGAh8EYE5hTyjUKeTn5vP8oOfJz62qEeQJ3hbvhcLvQKGoKQTVkEgpfwXOOtmlJ/CZNLMWSBZCNAzM7MKXUKhT+PX7X/nlf7/w2/LffDqPtwYhFH4HCkVNIdgrElc0Bg7bfM6yfFcBIcRQIcR6IcT67LPZAZtcqBIKdQpL5i+p8O4t3hqEUPgdKBQ1hVBP/7UnW1klqCOlnAHMAHOMxN+TCnXMdQrZtLSjuuCvOoUn73uSdb+tK/8cFRUFwOY/N9OlQZfy7ztd14l3v3rX7fN6axCC8TtQKGoqob4iyQKa2HxOA44GaS5hQzAqwAeNHIQ+Vl/+2Wg0VngH0MfqGfz0YI/O623xXqB+B6GaGaZQBJJQNySLgYeEmauAHCnlsWBPKtTxpQLc2xtjx2s7MnX21ArGxBZ9rJ4357xJh2s6eHQt3hoEd34HvhoBpeKrUJgJdvrvfOBGoA5wAkgHogCklNMt6b/vYs7sKgQGSynXOztnTU7/tU2TPXE0m8RaMegiBLk5xdS3VID7O2V21fJVvPToS5QUn+9pHR0TzeSPJnPtrdd6dU3eFu9Zfx9L5lWsgrcaUl+v9eOpM9izYTZjX65aoT5hYjStOg5kyKihHl+zQhEMfEn/VZXt1QQtjIAWN8bv/vsdr7/wOsVFxURFR2EsMRITG8MLr7/AHX3u8PraHBkEb2tBtLjWnh1uY2KG/TjMnj2QPj6ZhRu+92p+oYxqd1w9Cec6EoVGaFE3oUXK7OJ5izEUGmjZpiVTZk2hZZuWGAoNPmVvxcXHMWTUUBZu+J7VR9aycMP3DBk11KeblhbXWhMzw5Q7T2EPZUiqCaFyY0xITGBE+ghmLZ9Flxu6MPP7mTw17iniE+LduYyAocW11kQVX1XoqbCHMiTVhFC5MU6ZNYV+w/pV6CTX//H+TJk1xeWxgUSLa60u/VE8QRV6KuyhDEk1Qd0YPUOLa60u/VE8oSa68xSuUYakmqBujJ6hxbXWRBXfmujOU7hGZW1VE7TqceGPDClXmKQJY5mRMllGqamUMlMZZSbLz7IMgUAndAhhfrd9xUTEEB0ZjU7oyM/NZ8KICYx7ZxwJtRJC8lq1IJhZUx9PncHu9fabcqmU5/BGpf/aUFMNCQT3xmiSJs4VneNM4RmyDdnmV1HF9/ySfIqMRRSWFprfjYUUGgspLi0+fyIDsBDoBdivbbRLdEQ0YrOg+Ktikvslk9IlhfjoeBKiE4iPji9/JUQnkBidSJI+iWR9cvl7sj4ZfZQHAwaJYMvjq6Zc1RdlSGyoyYYkEGQXZbPv7D4O5RzicM7h8vejuUcpKStxfQIHRIpIIkQEpk0S44IS9PfFEntFLDoRAUhMSKQ0YcKElBITJkzSRKnJiFFaZFhmAgeAC4BBns8hJjKGunF1aZDYgPoJ9WmY0JAGiQ1okNCg/D0qIsrra9SCUCiCDNeVnMI5ypDYoAyJdpwuOM3O0zvZdXoXu07tYtfpXRzPP25/ZwNELIqg7gP1SUpMJiEygYSoWiREJpIYmUhCZCKxkXHodbHERMSg1+mJidATo4shSmd2TQFMfXESu7fs4OJ2bXh28min83trzGR2/r2t/HNEZARlpWXl71YatUnjpue6U1RWRFFZEYWl+eSX5lNQlk++MY/80jzyS/Mplc77WAsEDRMb0iSpCWlJaTSpZX5PS0ojrVZaQIxMTS2CVPgfXwxJqKv/KgKElJLMc5lsPLqRjUc3sun4Jk4Xnq6yX5SIIi2uGQ30Damnb0B9fQPq6RtwYPV+5uz4mDvy7uGqTu5LoVQ1Bub/knu37+axHucD3pdccSnPTHqpwrF33t+T/Tv2lMuxWI2HrRGJjonmwYEPcXG9Ni6vv9hkILvkHMdyj7J2yS/s/20beWdKiEuJgPbRFHQq4ihHOZp3lD+y/qhwvA4dTZObckHtC0jTp3F0eRZbvt3AmRP5msYwVNaUIhRRhqSGIqXkUM4h1h9Zz8ajG9lwdAPnis5V2EcfEUvTuAvMr3jze319w/LVgy1frjQXoq1e8StX3ey+IalqDEorvIPZGNz5QM8qx158eRueTP8X747/dwVtL9vjnsz4Fxe3c25EAIQQ6CNiSUYw67V3aNLoBFMnGy0xgDJmzynl8ILG9B07jFxdNicMJzhVfIKThuOcLD7O6eLTHMg+wIETB9DPgfbN4dUJWI7PZubsT+m/+GuenP4clzW5jHrx9RCVizHcQMnjK0IR5dqqYew/u59lu5bxc+bPZOVmVdhWKyqJixNb0yqxDa0SL6GevoFdowH2VxJlpaXl71bsrSQqs2vTdp+MweY//2LG5Hcwlpx3TUVFRzH0pRG069ze6diVWTZ/ATlZS0kfZ6wSg8gYH0Vyk7vo0bdqKnWJqYQThmN8N/8bYs9sZEK6qcrxY9Lhj0gw3QC1YmrRqk4r2tRrQ/uG7bm8weXER7uu/vcla0ppZCmcoVxbCqcYSg38uO9HvtnxDZuPby7/Pj4ygda1LrMYj9bU1zd0+ynZl5VEZS6+vA2PvviUXWPw6ItPuVxRFOYXoNNFIHSlREZGUVpqRKfTUZhf4Na12LJ6+UomTzLardwe0N/ImLEr7RqSaF00TeKacXDVLiZPMtk9fvBA2Dw6AnmzntziXNYfWc/6I+v57K/PEOhoU681Vza6kisbXenQsPQdNoDh9/7EhIn2s6bSHdS/2GZ7TcwoKV8pzZ03m+H3/qSyrRQ+oQxJNeZ43nHmbZ7Hwm2LKDYZAIjWxXBV6jV0Sr2aCxMuIkJEeHVuLd1K4Jsx+H35L5QUF5PWvCn3PvIgX3/yOVmZhzx2swGcOZ3nNAZx5lS+T8cXnTXxfvvpnCs5y6HCA+zP38PuvJ0cKNjPtpPb2HZyG7P/no0OHe0atuOqtKvo0qQLl9S9BJ3QlRdBzp8+h/TxFbOm0p2sLGw1sqxGzqqRNWGiWSPLWbaXWs0onKEMSTXkcM5hPvvrM5buXIoJEwAXxLfguro30zHlKvQR2tRL+LqSsMUXYxAbH0vvIX25peft6HQ6Lnn7Un5Y9B17tu32+JpS6ySSmZnnMAaRWtd5oaM7xwshSIlJJSUmlStqmxt9GcoM7Mvfze7cHezK286Bgkz+PvY3fx/7m+nrppOkT6JzWme6pHWha5OuDBk11KM038XzFjAxw7FGVvr4BU5dYmo1o3CGMiRhir0nxOv+cTPn2ufyw+EfkEgEgs4pV9O9wZ00jb/A4bkMRQZ+WLiM1ctXcuZ0Hql1Ern61m7c0quHw46H5fPQyK0UHRNNwyaNeebVl4hPTPDIGDwx9tkKn3UROrrf24Pu9/ZweWxRQSEz3/yQQc8+Rmx8HFff2o3Zc5aSkV41RjJnbhRdu3dzej5vj9dH6Lk0qR2XJrUDoLC0gJ2529meu5ntOVs4YzjNir0rWLF3BQBt6rbhuguu4/oLrufClAtduiR9yfbydTWjqP4ora0wxFFPiKxNX7MqYyUUw9V1rmd82ykMufAJl0Zk2ugMcrKWMnlSHiuWw+RJeWQfXsq00RkYigxO51K+krigKU+Me4a0C5pSUlzC6hW/OjymqKCQDya+RZFN74pON3Tl6KEstqz7GzhvDJ4Y+4xbx3vLpj828vfaDWz6YyMAt/TqQdax+mSMj6qgwZUxPoqsY/W5pZdz4+Tr8dZrE8WCK1M6MeCCIUxq9xYT2k7hwaYP0TbpCiJFJNtPbefDdR/S/6v+PPDFA3y64VOO5TnuQu2LRpZS/FW4QhmSAOFrf3BbHPWEmDQeOjTXcUtmdx5uPpT6+gYuz/XDwmU0aXSC9HHGCufKSDeS1vAEPyxc5vR4q1tp9LSJtGnfltFvT6T3Iw+ij4t1eEzlmzeYDRLg1AA5O95bKo+rj9Uz8tUMkpvcxZixidx2m2DM2ESSm9zFyFczXK7QfD3e3rUJIaivb8hN9W/lyVb/4q32H/JEy2e4ps4NJEbW4mD2Qaavm06vub0YvmQ4K/euxFhWsbjSF1FPVbuicIVK/w0AWusjuapuHjM2kVc++cCtc40Z/DiTJ9n36Xt6LnexVq/b4kn6sCfV75XRMm3ZH3h6bWWmUrbnbuWPM6v469x6SmVpucpAn5f7cF/H+2iS1MQnjSxVTV8zUOm/IY7WPmZXT4iuMots8TVLyR0cVa/b4ix92Jfq98pombasBb5eW4QukrbJV9A2+QoKSwv448xqvv9+Ced2nOWL/37BF3u+oHPjzvRq04tpX33IVx997lG2F1hXM/ZrV/zVp0ZliYUXyrUVALT0Me84uYOYZJz6u11lFtlizjLS5lyOuPP+nkTHRJd/tr1pO8I2fdjR8d7WrDyZ/q8K53M0biDQ8triIuO5qX536m6vD0CtrUlEiij+PPIno1eMpt+ifsR1S+SLPxaz+shaFm74niGjhrq8MQe6T43qCx9+ODQkQohLhRCrhBCZQoj3hRBJNtvWBGZ61QOtfMxbTmzhsYWPUXy55NPPhF1/t73MIGfBaXOWUZTb5/IGVzfvylROH9b65m9NW46Kriiy6E3asq9ocW1vjZnMYz0GlL/27dgDQEFmAaXpRsgAMuDU+6d4e83b9Jnfh0U7FlFqcm3Qwb0GXoGIAaq+8KGLsxXJdOA1oBNwCFglhLDeDkO/cUMIoUVXuS0ntvDEouEUm4q5/M5OHDvRyO3MIGfBaV+zjNzF0c3bHsYSI++Nn8pjPQbw1pjJTo/39uZ/Pm1ZEBUdjdAJr6vhfcXXa3N3VdOz332kxTblZMFJXv3lVfp+0ZeVe1dikiaXc4yLj2PIqKEs3PB9ldWM1isIlSUWfjgzJIlSyqVSytNSyteAZ4DlQohOQPWK0PsZX9vgHjh3gOGLnqTEVEynlKt4tPWTPP3qeLczg5xlRPmaZeQJtjdve3GSylR26Wh58/cmbVlrDEUGls1fwJjBj/PehKnmok5hNiCeXJu7q5o7r+7JmEtfYUiLJ6gbU49DOYcYs3IMgxYMYsORDV5fh9YrCJUlFn44zNoSQmwGrpVS5tp8dwXwFVBbSlknMFP0jFDO2vImY+bIiSP0698Pw10GLm/QgcdajnApaxKqmUlTX5zEnq07y6vX5703k1PHTtjdV+h0PDPpxQpP45WPt1a/t2rb2uPsrfcnvslFl11SXg1vKjOVF0Daq13RGmv9TpNGJxjQ38i778LmzRAXD4lJdYiIjuXogSyPrs0T8coyUym/n/6FZUcXkm00qz53u7AbI7qOoH5CfY+uReusLpUlFhx8ydpytiKZAlxq+4WU8m+gO7DEm8FqKu74mO0hpeS5d57DsNVA6oE6DGnxuFvaWFoGcLWkcs3JhA+ncHX366tUZUdFR/HE2GequHS8qVlxxBNjn6X7P+5EpzP/CTgrgPQHlet3EhJg2DCYOweMhjO07dDO42vzZMUWoYvk+nq3MLHdVO5p3JtIEcXKfSvpM7cPi3csxvqA6U7sQ+sVhK8reEXgUXUkIcz3e75n3MBxcABaXHYRL7ye7vaxvkqzB4q1P65i3nszKSkpLpdYiY6Opt/wwR4LLgaCypIq3uKofmf5cpg8GRJr6fn3/P/z6Jy+rNjOFp/mi0Nz+Dt7PQDXNbuOpzs+zdgBz7msf9J6BaH6wgcHf61IFEHgyfuepEuDLnRp0IVx142Dw+bvD+7MrJCZYw1COyKUMpOcEQqxCk/QqqreUf3Od9+Z3/NynUvT2MOXFVtKTB2GtRzJkBZPEKPT89vB3+j79APUqX3IZexD6xWEtyt4RfBQBYkhxqCRg9iyfst5jStL11hv3FJa9unwF86Uex09/Wu1KvAG28QFX1ZMVpXgDz6AjTY2yTYHwdNiS1/EK8EsxdI59WouSryYWZkfkfnXVga+jkvFYG97pDjDmiWmxCDDA5eGRAhxlZRyravvFNrQ8dqOPPnOk/z7iX+Dsep2T9xSWvbp8BfObn5rf1xV/vRvO1/bVYG/r8PdyvOLLruEf73+stvntaoE9+9vZNs2KC42f2+vVjPQ8aza0amMaPU8T2Q/5Fbsw9seKYrqgzuurfftfPee1hOpjnhbpPW77nfoA7qoiv88nrqltAxOBwNHacueCDz6ijuJCwAXtrmoyrHOCkGt9TuLFkcxfDjExNgfP1jxLJ3QuVQ9sK1/clZnoqj+OEv/7Qx0Bf6FOYPLSi3gfillO/9Pz3NCJdjurVDjweyD3P/5/eg264j8NgpjSUlYBKG1wFHachWEACkDls7sLHFBCIGU0q7I4tofV/Hp1OkMHjXM7r+ZtQ/MmhUrOX0yr0qMwdu+81qxbP4Csg/b763iqj+8IvzwV7A9HqiD2f1V1+ZVAtznzWA1CW+LtL7c8iUACVtqYSwuCWoQWsu+H+7gtiaX5Y4bqHRmZ1X51tRlq6vLNhnC1cpJH6unR9/evPLJBwx6dhgxen1IVNpbcaR6MCYdDp5M1VxjSxG+ODQkUsqfpJRjgWuklGMtP48D3pNS7grYDMMUb2Qe8orzWLR9MQANkxoG3S2lZd8Pd/BUk8tKINw/5YkLlf5BTSazvEhlo7fz723lmlf2jExlQiF7rfKDgz3Vg2dHR/JHJBzseYI1x72X3NNSm0sRfNyJkWQIIWoJIeKAbUCmEOJZVwe5gxDidiHELiHEXiHEi3a2DxJCnBJC/G15/VOLcQOBN0Vay/cuxyhLuDixDc+OH0P3f9xJSXEJy+YvYOw/h7Pg0/kc2QTQGc4AACAASURBVL+bZfMXuOxcqAWBjEVYcZa23KNvr6ClM9smLvQe3Becd7YFPCsEDYV4lr0HB9tV0wdLZjNl5idcf193TNEmxqwYw59Zf3o8jlL3rX64Y0jaWmRSegHLgTRgkK8DCyEiMAft7wDaAH2FEPbuBl9IKa+wvDyr0Aoi3gg1rj1sToTrnHo14H0bXG9dUo5UZN15ovZl3Mo4qtDOy84NmtCi7Y3+1j49ePzlZ8qr4q1ERUfR86H7vFLyDXalPbj34KATOh5s+hC3NrgLieS5b58nKyfLo3GUum/1wx1DEi2EiAR6AgullCWAa7lQ13QG9kop91vO+blljGqBp0VaUko2Hd8EwCW1zDcab9vgeuuS8lVaRStXmCM3z7pf1wbN/VP5Rm8oLCo3ZrZGLaVualgUgoL3Dw5CCP6Rdj9tk9pjMBXx3P+eo6DEfWOu1H2rH+4Ykv/DLCNfG/hFCNEU8L1tHjSmvG4bgCzLd5XpLYTYLIT4rxCiib0TCSGGCiHWCyHWZ5/N1mBqvuNpM6CD2QfJMeSQHFWb1Oi6AKxevpIB/Y12/+AG9DeyZsVKu2N765LytTeGVq4wR26eqOiooLt/rDiLaYSSRL0zfHlw0AkdQ1o8TgN9I/af28+EnyY4laPPz83n+UHPk5+br9R9qyEea20JIXRApGUV4f3AQtwH3Cal/Kfl80Cgs5TyKZt9UoF8KWWxEGIY5rTjm52dN1TSf+F8u9Al8yoWadlrF7poxyJe/eVVOtTuzNCWIwAYdvcAViw3r0QqU1oKt90m+GDJbM3Vft1VkQ1VleFA4Ew9uKigUDOVYn/jqybbCcMxJm0bS7HJwGOdHuORDo/Y3e/br75l/FPjyXg3g+mT31bqviGIX7W2hBB1hRAfCiGWWr66BOjnzWCVyAJsVxhpwFHbHaSUZ6SUlppfPgI6aDBuwPCkSGv/2f0ANItvUf6du21wtVb7dfeJOlRVhgOBs5hGKATO3cVXTbb6+oYMvdD87Ddj3UdsPbHV7n5L5i8pf1fqvtUPd1xbM4FfOH/T3wOM0mDsdcBFQojmQoho4EFgse0OQoiGNh/vAXZoMG5Icjz/OACpMefbvLjbBlfrVrTupqKGWv/zUCEUAuee4Ksr7rLky+lW/w4kJjJ+zKDIWFRBfLRLgy5sWbcFgM1/bmbGlI/5+acSbr4ZHn/c/z3gFf7HHUNST0o5D0uAXUpppFxK0HuklKXAk8D3mA3El1LKbUKICUKIeyy7jRBCbBNCbAJGoEG2WKhiNSQp0ecNiSdtcLVU+/XkiTocVIYDXVgZbmhRw9Ir7T4axzbhcM5hpq2ZxqCRgyp01zQajRXeASIjIzl5Ol6p+1YD3FH/LRBCpGBpr2tptZunxeBSym+Bbyt9N87m55eA6uVcd8CJPHOnwNTo1PLvrAVhPyxcxpixKzlzKp/Uugl07d6N3k/1qNIGVyu1X09VZENdZTiQIo/hiDMFZneJ0kXzSIvHeXX7WL7Z/g3X3nEtU2dPZdTAUXbT1PWxet6c8yYdrgkrb7XCAe6sSP6FuSNiCyHEL8B84Cnnhyg8wVhm5JzhHAIdiVEV60sqF4S98skH9Ojb224v9WBVR4dCVbYzglFYGU5o5YpLi2tKz8Zm9aQ3fnuDdl3bMenDSVVcn9Ex0Uz6cJIyItUIhysSq1S8lHK9EOImoDXmet7tvmZsKSpSUmb+dUbrotEJ73uNafFkGU7jOsJd6ffqmE0WbLo3uJM/zvzOkfzDLN21lNjcWCIiI9AZdURFR2EsMRIRGUFeriZODUWI4OyuVS4fL6UskVJuklL+rYyI9pSazFlO7vRjd0awgrzejOvPuEVNziYLNjqho0ejXgDM2jiLRXMXYSg00LJNS6bMmkLLNi0xFBrKs7i0ROl3BQ/VajcE0MqQhBP+FIRU2WTBpX3tTjTUN+Z4/nHyRT4j0kcwa/ksutzQhZnfz+SpcU8RnxCv6ZhKvyu4ODMkLYQQix29AjbDGkBlQ1ITsoz8HbcIh2yy6ortqiS/dz73D72/fLUaERFB/8f7M2XWFGen8Bil3xVcnGVtnQKmBmoiNZlInfmfoUyas6qrY5ZRMOIWoZ5NVp3pkNKFxUf+y7G8Y6w+tJrrL7jer+MtnreAiRmO9bus/eUV/sHZiiRPSvmLo1fAZlgDSIg2V6gXlRUipQy5LCMtVkjBiFuEejZZdUYndFxf7xYAvt72td/HU/pdwcXZiuRAoCYRylj1shbPW8DJYznUa5jEPQ70srxlVN9R8BuUUsowBoZclpEWKyRr3MIXXSdPCbVssppG1zrX8U3Wl6w5vJYjuUdoXMueJqs2mNs22NfvctS2QaEdzjok3hvIiYQigQrgDRo5CGxc+aGWZaTVCinQcYtwkyqpbiREJtIp5SpAsnD7Qr+OpfS7govK2nKCJwE8X1IPO17bkfqP1a9gTGwJdJaRrw2unBEuEus1Ha0SPqzurWW7l1Fm8llZySGetm1QaIsyJE5wtwGPFiuXFu1bQB+IiKqYAhyMLCN/xjNU3CI80Co9u0V8S1Kj63Km8AybT2x2+zhPH8zi4uN47+uPadVxIOnjk5V+V4Bxy5AIIe4VQrwphJgqhPiHvycVKrgbwNMi9bBxrcZgAKETQX9a92cdRjhJrNdktHJnCiHokNIZgB/3/ejWMd4+mHnStkGhLe70I3kfGAZsAbYCjwkh3vP3xEIBd/uua9E6tHGtxvAXlJaUhsTTur/iGSpuEZr40515ZW2zIflp/09OuyhaUTUh4Yc7K5IbMHcy/FRK+SlwJ3CjX2cVIrgbwNMi9bBxrcYQA/XvaRgyT+sqnlFz8Kc784L4FqREp3Kq8JTDxle2qJ7u4Yc7hmQX0NTmcxPAfWdnGONuAM/dlYszmtduDn2huLMhYE/rrgKqKp5Rc/CnO1MIQbvkKwH4M+tPl/urmpDwwx1DkgrsEEL8LIT4GdgO1K0JUinuBvC0SD1MS0ojLiqObOM5cozZXs3X00wbVwFVFc+oWfgzPfuSWuZjNxzZ4HJfLR7MFIHFncZW41zvUn2xBvCcySv0HTaA4ff+xISJWfTrW0Lz5ub/8PPmm1cu6W6kHuqEjovrXMxfx/7iUEEmbZPbezxXTwsHbQOq9vb3tMGVIvzxl6xMq0RzF4pNxzdhKDWgj6zaT8eK+cFsNuPGVnRvqZqQ0MWlIVFyKK6xrlzmT59D+vgFnDyeQ70GSdzdrzfpHlTAX1b/Mv469hf78vd4ZUhcGQbVp0PhinJ3ZvOm3PvIg3z9yedkZR5y+H/KXeIjE2ga14xDhQfYcnwLndI6OdxXiwczRWBx1thqlZTyWiFEHpY2u9ZNgJRS1vL77MIId1Yurri8weXMZjY7c7e7tb+nhuHO+3uyf8eecomSYFbQFxUUMvPNDxn07GPEqvTMkMGfsjIXJV7CocIDbDq+yakh0erBTBE4HBoSKeW1lvfEwE2nZtOhcQciRASZBfvIN+aREOX8V++pYQiG3pUjqqPCcXXAHXemtw8BTeMuAGDPmT0u99XiwUwRONwtSIwQQjQSQjS1vvw9sZpIXFQcHRp3ACRbcza53N+bTJtQ6dMRagrHCvfxtuq9cVwTADLPOYikK8IWlzESIcRTQDpwArBWE0mgnR/nVWO5uunV/Jn1J1tzNnFVHddP6lbDMGPyOxhLjOXfOzMMwejToeIz1QdXsThH1Nc3BASHsw9TWlZKZIQ7uT6KcMCdf8mRwMVSyjP+nowCrml6DW+vfpst2X9Taiotb3rlDE8Ng78Cqs4IpfiMwjO0egiI1kVTJ6YOp4tPkZWbxQW1L/DbnBWBxR3X1mFAVQAFiKbJTWlRuwUGUxE7cre4dYynhYPBqA9RfdTDFy2r3lOi6wBwsuCkxrNUBBNnWVvWqNt+4GchxDKg2LpdSvmmn+dWY7m15a1MXzedP8+scSsN2NNMm2DVh3jjhlMEHy2TNJKjagNwuvC05vNUBA9nK5JEy+sQsAKItvlOZXL5ke4tuwPw17n1lJQVu9g7vIQQlX5XeKJVkkZSVDIApwtC35D40mOopuEs/Xd8ICeiOE9aUhqX1ruUbSe3sTnnLzqmXBXsKWlGMOIzCm3QIkkjKdpsSE4VnPLXNCvgbatsq5R9/dQsJmZYiyKzmTtvNsPv/Un1OKmEOzLyK4QQyTafawshvvfvtBS3XXQbAKtPV6/0WKXfFb5oIeKZGGmuY842eKcn5wm+NJxTUvae4U6wva6UsvxfXUp5DqjnvykpAG6/6HYiRCTbcrZwujgwT2+BIJzccIqKaPEQoI8w71tUWuSvaZbjizFQUvae4Y4hKbMtQBRCNKOiZIrCDyTpk+jeshsg+f3Uz8GejkKhyUNATEQMAEVG/xsSX4yBkrL3DHcMyRhglRBithBiNvAroCrGPMSbwF2v1r0A+P30L5TJsoDM01Mpem+PUdRM9Dqz6m8gDIkvxkBJ2XuGS0MipfwfcCXwheXVQUqpYiQe4K2v9oqGV9AsuRk5xmw2nXPdx0ELvJG/8FYyQ1HziNaZVySFRv8/dPhiDLToMVSTcEtrC7gac3vdG4Hqk0IUILz11Qoh6HNpHwC+P7AsIE/93mhgKd2s0CQUV4rC4meSAfCO+2IM3O2OqjDjjtbWa0AnYK7lq5FCiGuklMq95SaL5y1gYoZjX236+AUOVU7vuuQu3l3zHgc27oO1aK6W6438hdLNCg9CUWFZWu7qAuFiT++xpvwumvtfTh4roed6uPlmGDIEjh93r6+JkrL3DHdWJHcC3aWUn0gpPwFuB1SLPA/wxVcbFxXHfW37wF/mz1o/9Xsjf+GLZEYoPiVXV0J5pegvQ2LrRn5lfA4rVsCbb8KpU3D//TA2PalKq2xHWKXsF274ntVH1rJww/cMGTVUGRE7uCu/mQyctfysWZRJCHE7MA2IAP5PSvlape0xwGdAB+AM8ICU8oBW4wcKs682m5Ytq25z5Kt98r4nWffbuvNfRJjf9m7fpelTvzfyF75IZoTiU3J1IRxWilaXlqi8PNcIWzeydYiWLeGVV8xuqVYd+6geJ37AnRXJZOAvIcRMIcQsYAPwqq8DCyEigPeAO4A2QF8hROU7zxDgnJSyJfAW8Lqv4wYDb3y1g0YOQh9r09fakrRVVno+e0srtVxv5C+8lcwI5afkcEdLcUVHGIoMLJu/gDGDH2fY3QMYM/hxls1fgKHI4NbxpSazxpo7qtbeoOo/goPTf01hfmxYhTnA3glzm90XpJTHNRi7M7BXSrnfMtbnQE/Ats9sTyDD8vN/gXeFEELKyrfk0MabHtQdr+3I1NlTGTVwlN0/Uq3Vcr2Rv3DnmHB4Sq4u+LsDpqHIwLTRGTRpdILJk4yW/8d5zJ6zlGmj1zHy1YyKDz92KDKZ034TohO8moMrVP1HcHC6IrHcsBdKKY9JKRdLKRdpZEQAGmOWqLeSZfnO7j5SylLMcvaplU8khBgqhFgvhFiffdb/0gueYg3cteo4kPTxydx+uyB9fLJLX23Hazsy6cNJVaTXRaTgny8M11Qt1xv5C3eOCcRTsuI8/uyA+cPCZTRpdIL0ccYK2YcZ6UbSGp7gh4XLXJ7DWtEeHx3v9Tycoeo/goM7rq21QohOfhjbnpO08krDnX2QUs6QUnaUUnZMTkm2c0jw8TZwl5ebR0RkBDqdjhh9DAiQOsmW439rOj9v5C+sxzz72hgyd+6mMO8MUkoyd+4qd3eoPiSBx18Ky6uXr2RAf6Ndt9GA/kbWrFjp8hwGP69IVP1HcHDHkNwErBFC7BNCbBZCbBFCbNZg7Cygic3nNOCoo32EEJGYA/1nqQFYK+EnPTuRooIidDq45e6bqN+iPpTA7yt+pahUu8wnb+Qvnhj7LNfdfjP/eXkCOVlLee3VfFauhPfeKyP78FKmjc4oNyah0Ce+pqCFuKI9zpzOc+o2OnMq3+U5CkvNxsxfKxJV/xEc3Il43eGnsdcBFwkhmgNHgAeBfpX2WQw8DKwB+gA/hkt8xFv5auuxVgnrNq3L6NoV2rc3Mf/zH0mJb4y8px4nd51k8dEFPNB0YICuyD627g7bLJmMdCMZ483ujh59ewelT3xNxdNGZ+6SWieRzMw8h9mHqXVdrzKyjecAqBNXx+Px3fmbUvUfwUG4ui8LIa4Ctkkp8yyfE4E2Uso/fB5ciDuBtzEnt34ipZwkhJgArJdSLhZC6IHZQHvMK5EHrcF5R7S+vLWctXyWr1PzCVtDYBtcnzvP/FTkKof946kz2LNhdoUURjAvzydMjCa1zZ18XXcRAKPbTKRp/AV+viLHjBn8OJMn2b+57NkDY8Ym8sonHzD1xUns2bqzSh+SVm1b8+zk0YGfuMJjls1fQPbhpWSkG6v8v8wYH0Vyk7vo0de56+j/9r3HurNrSL8pnTsvvtPtsX39m1K4pkuDLhuklB29OdYd19YHgO2atcDync9IKb+VUraSUl4opZxk+W6clHKx5WeDlPI+KWVLKWVnV0YkVPC1l4GrFMbVC3/mgbYPIJHMO/gpJmny49U4x113h+pDEv7c0qsHWcfqkzE+qoLbKGN8FFnH6nNLL9d1ytYVSb0EzzpRqP4goY07hqRCuq2U0oT7hYw1El9z2d1JYXy006MkRCSSWbCP3079pNHMPcfs7rC/zdbdofqQhD/6WD0jX80gucldjBmbyG23CcaMTSS5yV1upf4CnCsxhzjrxtf1aGxVHxLauGMQ9gshRnB+FfIEEBYrg2Dhay67O5XwCdEJjL75JUavGM1/D8+jbdLlpMTY9zsbigz8sHAZq5ev5MzpPFLrJHL1rd24pVcPt/74nXH1rd2YPce+u2PO3Ci6du/m0/kVoYU+Vk+Pvr3LXVhFBYXMfPNDpMn1qrjUVMqZ4tOAoH5CfY/GVfUhoY07K5JhmNV/j2DOouoCKI0BJ/iay+5uCuPNLW7mxuY3UmIqZvaBj+26uKxFZDlZS5k8KY8Vy2HypLwKWVW+oIW7QxG+eNJC4GTxCSQmGiU2RB/p2QOMqg8JbdzpR3JSSvmglLKelLK+lLKflPJkICYXrviay+5uCqMQguevex69LpbtuVtYfrxqQZgWRWTO0MLdEQooMUnv8ETy5kihuf64RUoLj8dR9SGhjcOsLSHE81LKN4QQ/8F+EeAIf0/OG0Ipa6tein1JFHcyTKypjkvmVUxhtJc+vOrgKkZ9NwqBjlGXjOaixEvKt7mbVVXTWfvjKj6dOp3Bo4YpMUkn2JO8KSstLX+3Yk/yZsHhz1l+fClDOgxhaCfPnBpa/E0pnOOvrK0dlvf1mIUaK78UDvBWEqXyOdythL+22bUMvGIgEhMf7HmbcyVnyrdpUUQW6mixmqjuYpJarbh8kbzJLNgLBlg7ZS35uZ79v9Pib0rhPxwG26WUSyzvwX28D1OshiBQktXDOg9jx6kdrD+ynul7p/GvS14mShetSRGZM6zB1kHPPkZskP6YvZGmr2liklrJ93srDFlcZmBf3h7YBdt+3cZvy3/jjj6e1ToH+m9K4T4OVyRCiMXOXoGcpMI1kbpIJnWbRMPEhhwo2M/cA58ipbRkVUXZ9S1rkVXlbrDVnzEIb1YTNU1MUssVlzeSN3vzd2OijLit5oeNJfOX+DwPRejgLP23K2bl3fnAH9gXUFT4gC8yKvZIjk3mjdve4JEFj7DmzG80jb+AW3r1YNrodWSMP8GA/sZy3/Kcueasqt5P+ZZVZXuDcvakq2VDKy1WE/6WXA82/l5xuSt5U3kehkhzluDmPzfTpUGX8u87XdeJd7961/N5aPw3pPAOZzGSBsBo4DLMXQy7A6ellL9IKX8JxOSqM7YtQSdmZLN8uWRiRja7189m+L1DKPTyyb1VnVZk3JIBwJeH5rKvZLemWVVvjZnMYz0GlL/27dgDnL9BWV9vjZlc4Tgtn4i1Wk2EipikP1Zr/l5xuSsMWXkeplJzirrRaCz/Th+rZ/DTgz2eg7/+hhSe49CQSCnLpJT/k1I+jLmx1V7gZyHEUwGbXTXGn5IP3Vp2Y/CVg5GYmL53GqflSXr07c0rn3zAB0tm88onH9Cjb2+vUnPdvUEV5hV4ZXDcQUtpen9JrnuCJ7UY7uJv+f7Y+FjuGdCblLqpNG91oUPJm4svb8OAl4ZAlP3z6GP1vDnnTTpc08HjOSjZlNDBaR2JECJGCHEvMAcYDrwDfB2IiVV3/C35MLTTULpd2I0SUzFv7nyVE4ZjPp3Pirs3qD5D+vn1iVir1YS/JNc9wV8ZY/5ccT0x9llS6tVh0x8b2fTHRqeSN9lp56AP6KIq3m6iY6KZ9OEkr4wIKNmUUMJhjMTSn/0y4DtgvJRya8BmFca467P1t+SDTugYd9M4sg3ZrD+ynik7JvJC63Tq6h1LU7grpWK9Qc2Y/A7GkvMuiso3KH/HILSQpveX5LozApkx5k/5fnfjYxvP/QkGiIyMpLSslKjoKIwlRiIiI8jLzfN6fCWbEjo4W5EMBFoBI4HVQohcyytPCJEbmOmFF574bAMh+RATGcO/b/837Ru2J680lzd2TOCU4USV/YoKCnk3YypvvTDObSkVd1xCvj4Ru4odaLGaCIaYZCAzxrRccXkTHztdfIoDBfsRfwmMBiMt27RkyqwptGzTEkOhwafsLSWbEjo4i5HopJSJllctm1eilLJWICcZLnjisw2U5ENsVCxv3vkm7Rq0I7c0h9d2ZHC8qGIjyk1/bGTLur/QR7kvpeLuDcqXGISr2EG4StMHsv2wlr8jbwzgmtO/AVAnpQ4j0kcwa/ksutzQhZnfz+SpcU8Rn+B9p0QlmxI6uGxsFW4EUyKlZ4fbmJhhX7V3zx5IH5/Mwg3fA4GXfCgoKeBf3/2Ljcc2EhcRz7OXjKZJXDMApr44id1bdnDxxTB9uv25V5ZSeX/im1x02SXlLiFTmancJWT7NO9LQ6vyebVrUy2bX23+8y+77sGhL42gXef2QZyZY3Zt2u62u7JMljF609NkG8/x3t3v0bGxV+obDlGyKdrii0SK6iuiIZ74bP3dEtRerObOB3uia65j/dT1vJI5pnxfq49+3z646abz57jySpg61b6UyhNjn63w2eoS6n5vxboUT2IQNa3aPBzbD7sbHwPYmv032cZzNE1qSodG3gXUnaHa6oYOypBoiDt9RGzxl+SDbVvSiRnWJ7Vs5s6bT8HKxlza61K2vbsNLPcBq2vCxkNBTAwMHHh+7t5KqbhrcMDsOtm/Y0/5025NqDYvKS6uslpzFbwONu4awF9P/QhArza9EJVTqzRCyaaEBu70I1G4Saj4bJ3FauqnHKGrrjMdnuvgMLc/JgZeew2uuCKwDaoCGTsIBcI1xuNOfOyE4RhbczYTISLp0Ur1pKnuKEOiIe72EfE3rvLrl33+Df958j/c8NwNVdakOh08+ihcdllwGlSFSrV5IAjX9sPuGMD/HVsCSHpcfCfJscnBm6wiICjXloaEis/WnVhNhC6CmxrdxJqoNZSUlUAEUAZCF8Gsz6J4//1iUusm0LV7N3o/5XtLXk8Ix9hBTcKVu/J08SnWnl6FQPBw+4eDMUVFgFGGRGNCwWfrbqxm8bzFGA1Gml3cjLzr8zi7+CxlJ8pISkvj31MmBXjW5wnX2IHCzPfHlmLCxO0X3U5aUlqwp6MIAMq1VQ1xN1aTkJjAiPQRfP7j53w++nO6TOwC3SGr7CD/O7bYbg94f2IoMrBs/gIO7NqNlJLCvDNk7tzNs5PHhEXsQAEnDMf5/fTPoOFqpLCgkI+nzqBnh9vo2ugqena4jY+nzlCijCGEqiOphnibX19mKmPGuhnM/GsmAC0TLuah5o9SX9/A73M2FBmYNjqDJo0qyt3PnmOO0Qwd8zyffzArqA20FM4pM5Xyxs4JHCjYT49WPRh38zifz2mbgWj7f3nuPFUrojX+arWrCFO8bUsaoYvg8S6PM/WOqcRHJLA3fxcTtr7EiuPf+n118sPCZTRp5Liy/osPZ2mikOvPBls1nSVHv+ZAwX4aJDTgmWu0SRhQCr/hgTIk1RRPer5X5tpm1/LNwK+5/aLbKZVG/nt4HlN2TKwiraIlq5evZEB/o91MswH9jWxd97d5Px8Vcv0h2e6MmmK4duft5LtjSxAIMm7JIDEmUZPzKoXf8EAF20OYQHV/czTOC8NeoHvL7qSvyGB/wR4mbBvNPY17073+HUTotP2vc+Z0XoVMs1GjYGOFe30Z4HuVu7uKtVqhZWdIT3BXyVkLCksL+GT/B4Bk0JWDad9QO3kXpfAbHihDEqI4rk6fzfB7f9LMN+zOOAsHfsPbq99m6a6lfJP1BX+eWU2fJv1ok9RWgys1k1onkczMvPJMswEDYNs2KC6uuJ+nVe7Bll0JtOGCivGmyZOs8aY8Zs9ZyrTR67zqjOkIkzTx8f73OVdyhjZ12/DPDv/U5LxWPFWLUAQH5doKUQLlG3ZnnMSYRMbeNJZpPabRuFZjjhQdZtru15m263UOFx7UZB5X39qN2XOiyjPN2reHyZPNVfb2cLfKPZCS7eB9K2ItcRVvqqzk7AsLDs9na84mYiPieKX7K0RGaPtsGipqEQrnKEMSogTKN+zJOFc1uYr598/nyS5PEqPTsz13C69se5mZ+z/kXMkZn+ZxS68eZB2rT8b4qHJVgIQE7Lo1PKlyD7TsSqANlz1cxZvWrFipyTi/n/qFlSe+Q4eON3tMpXGtxpqc15ZQUYtQOEcZkhAlUL5hT8eJiYxhYPuBLHloMQ+2fRAdOtac+Y2XN4/im6wvKCr1Lqisj9Uz8tUMkpvcxeiXE7n1VnOcJC4O9HrzTdCiJOJxlXsgZVdCQS+scrzJFntKzt6wN28Xcw58AsAL17/AlY2u9Pmc9vA2A1ERWJQhCVEC1f3N23GS9Ek8c80zfNX3S7pd2I1SWcr/ji3hxU0jqF+K8AAAFNxJREFUWZj1FTnGbI/noo/V06Nvb66+tRvX3xDFokVgMpnjJBdeaBaSjE+AYkOxx9lbvjTY8pRg64WZ4032t/mi5GxlR+5W3tk9BRNlPND2AXq16eXT+VzhSwaiIjAoQxKiBMo37Os4aUlpTOo+iY//8THtG7bHYCriu2OLeGnTSD7L/IijRVkez8nWNRMfD8OGwYcfQqdOMPXfEJ8Q7XGVu5YtZ90hkIarMpXjTVZ8VXKWUvLjieVM2/UGxSYDNza/kRFdR2gwY0W4owxJiBIo37BW41xW/zKm95zOR70+4sbmN1ImTfx++hfGb32R/+yews7cbbiromDrmnnlFbj//vNurQsvhKJCo8cKuYGWbA+04bLFXrzJVyXnUlMpcw5+wheHPkNi4uH2D/Nq91eJ1DgNXBGeBEUiRQiRAnwBXAAcAO6XUp6zs18ZsMXy8ZCU8h5X565OEinW+o4l8yoqCfurjkTLcQ7nHGb+5vks2r6YUmnuoJUW25Tr691M59SriY1wfN4xgx9n8qQ8hy2LK7f9DRRFBYXMfPNDt2Ra3G1F7C+sdSRrVqzkzKn8ciXnynUk7lxTrjGHD/dOY2/+biJFJONuHsdtF93m92tQBBZfJFKCZUjeAM5KKV8TQrwI1JZSvmBnv3wppUcO3epkSKoDOYYcFmxbwJyNcykoMwd5o0Q0Xepcw9V1rqdFfMsq3fOWzV9A9uGlZKRXzDyS0vxUndzkLnr0DXza59ofV/Hp1OkMHjUsbFSIXRkKV9d0qCCTD/a+zdmSMyREJvKfe96hTT3HMZ783HwmjJjAuHfGkVDL+1hMoIpxFecJR62tnoD1bj8L8G+0ThE0kvRJPNLhEf73yHdM7DaRKxtdiVGWsOrUT7yxYzzjtjzHsqMLOV18svwYf7hmtMC2uDBccCUJ4+iaissMLDnyNZO3Z3C25AyX1ruUL/p+7tSIAPz6/a/88r9f+G35b17P2Voku2fDbCZmZLN8uWRiRja7189m+L1DlOpvCBKsFUm2lDLZ5vM5KWVtO/uVAn8DpcBrUsqFDs43FBgK0CCtQYdF6xf5Z+IKTThw7gCLdy7mf3v+x5nC8/UnTeMuoENKZ66s3ZlaMtkt14w/sVcVX1ZaWv5uxV9V8Vow9cVJ7N6yg4vbteHZyaPdvqaIFhGUPWSWpel9aW9Gdh1JTKSD6lAbHr/3cTau3kiHazrw/oL3vZrzx1NnsGfDbMa+XFJlRTphYjStOg5UPdr9QEi6toQQKwF7+uNjgFluGpJGUsqjQogWwI/ALVLKfc7GVa6t8KHUVMqfWX/y3e7v+Hnfz5TIkvJtTeKacWXtzlxZuxMNYhsFZX67Nm3n3fH/pqS4xOE+wegj78xd5a6hcEoU0A9ad27NiK4jnNaIPHnfk6z7bd35Q6OiMBqN5e9WOl3XiXe/etfheWxdWSeOZpOaCnffDffdB7E2+RB79kD6+GQWbvjevWtRuI0vhsRvKRdSSoc5hkKIE0KIhlLKY0KIhsBJe/tJKY9a3vcLIX4G2gNODYkifIjURXJ106u5uunVGG408MfhP/hx/4/8uO8nDhce5HDhQRYd+Yr6+oZclnQ5bZOvoGXCxUTpolyfXAOsxYWOjEkwjAg4F4K88/6e7N+xp3y+9irrI6PMf/alRjuGJQpShqTwdP+n6d6yOzrh3Ps9aOQgtqzfgqHIAFBuPGyNiD5Wz+CnBzs8h329N5gzB559Ft5887wxUUKNoUmwXFtTgDM2wfYUKeXzlfapDRRKKYuFEHWANUBPKeV2Z+dWK5Lwp6SshD+z/uSHfT/ww94fKTYZyrdFiihaJV7CJbUupXWtS0mLa0aJocSvSreb//yLGZPfwVhirPB9raRYbrz7dr+425yp9743fmoFd1VlnK2krMYvrzCXT177gDJj2fmNkXDX2Lt4fsjzbrmxrKxftZ5RA0eVGxNb9LF63pzzJh2u6eDweGeurPHjoUULeOgh83dqReI/QtK15XRQIVKBL4GmwCHgPinlWSFER2CYlPKfQoirgQ8BE+akgLellB+7OrcyJNWLUlMpW05sYfWh1aw+uJq9Z/dW2B5VEkXsPB3tmhl5eICpSmdFLZRu1/64innvfUqxoRidznyD0+uhXz/Ys7fiOJ6kCDuicrfI99+Hv/46v92dWI094xcVHcXtI+7hRNNjbPj5D8qWloERiABhEuj1el544wXu6HOHx3NetXwVLz36UgXjFR0TzeSPJnPtrc4z3Hp2uI2JGfYVfvfsgXHjYP58FSPxN2GXtSWlPCOlvEVKeZHl/azl+/VSyn9afl4tpWwrpbzc8u7SiCiqH5G6SNo3bM/wLsOZe/9cvn3oWybcMoG7L7mbRomNKFtj5NKmxUxIN1VRum3U4BhffzmXUpObsQEH/L78F4oNxSQkmGVaLrwQDAbYsKGqoq4WjbMqq/cOHFhRBdkdIUjbyvrI6EgQYMTIkn0L+PPYasp+LIMSQEJyrThS6qRgKDKwZP4Sr+acl5tHRGQEOp2OGH0MOp2OiMgI8nLzXB7rUu/tpBJqDHVUZbsirEiNS+W2i27j5Rtf5pv+31BnVy0eGYhdpduHBpTxxw8/MWLjECZtG8vsAx/zy8kf2J+/1yNxydj4WOLio5k61SzTMn26WbYlPr6qoq4WKcKV1Xs9kdQ3SROHCg6wZOnXFBcbkPUkpQ+UQn2gBKI3RdNwQW1SIwT33QfLl8OU1wu5rE0u9RrU9nr1tnjeYgyFBlq2acmUWVNo2aYlhkL3DJMrvbfoaJRQY4gTFNeWP1GurZpF10ZXsXy5JCKi6rbSUrj1NpDj7B+bHFWbBrGNqB/TgHr6htTX1yc1pi4p0anoIypKpwy7ewArllNlnMqdHLVIEXY01po1kJEBJTahj8ioSG568laiW0dzpDCLPfk7KSjNh/lAM+AqaFm3JR0bdKRsdRl/Lv6DFs2Oa55a+9zDz9G+a3seHPogOp2OsrIyPp/xOX+v/Zsps6Y4PfbjqTPYvX4248aqdN9gEpJZWwoF+L9C2VUHvQYNk5nzyAL2nN7DztM72XlqJ/vO7iPzbCbZxnNkG8+xk21Vjo2NiKN2dIrllUpiSjSZmSVVxhkwALZuPX9z16L/SOVukVby821WXlFAKZSKUlYc+BZsRJobJDSg8/jOdErrRMfGHUmJTTFvuA56fnmb0/4z6eMXeHXTrmwsIiIi6P94f/o/3t/lsX2HDWD4vT8xYWIW/fqez9qaN9/sykpXrqyQR61IFH7DNq3T9gYxd575BqGFm8Lbp9kyUxnH84+TeS6TwzmHOZxzmKO5RzmSe4QTBScoLq3Y41f3C3QphUnjqTLOkyNh+zbMaSGV0EXpuPjxNiRdZC6bEpw/2ISJ4rJiik0GSkzF5T/nr8zhipLiKmM9/TRs2gQkAP8AVvD/7d19kF3zHcfx9ycSQqmIVAhpQxtPoVOEkCqhD+KhiQRto+NpGEOlWh0M4yEe/igz1ZZRDylK80QbRVTUQ4S0ldCQ5kmGBDVdzEbUY7CEb/84Z7M36+7u2b17z33Yz2vmzj333nN+53d/9+x+z/mdc74/aIR+u/bj6KuOZshWQxi2zTAGbzn4c2lnmnV0BDd6tHjy1QVFly2nvPLKWdtq7qqtcnIgqR553KHcHKy26V98b7YrwSoieLfpXRrfb2T12tU0vt9IwxsNPHLx/ew8aO0GV4f9YQos+g98NAK4lyQHQ7PewHHALp38Uk3QdyrsNQROOYH167rgQljXa1POmXY+uw3ejUFfGMTMW2dm6j5q1tEVUr60tudyICngQFI98vqnVcksyUdOGMdRJ49l7oNzuXnSzTR91ETvPr1Z98k6+mzShyN/cSR7fm9PgM+l0e+lXvTt05fN+mxG394bPvf6pBf33Dqz27+Tz0dYWxxICjiQVI9q7UYphzPHn8mi+YsYOmwoEy+ZyPVXXs/K5SvZe+TeXc45VQ7lOIKz+uCT7VaVOjoR3l3DBVeDzbfYnLMnnb3+qqXhBw5ff9VSNWkeA33GTVOZdPmGRzuTfD7CushHJFY27kYxqx01d2e79Qx5DRdsZpXlri0rG3ejmPUM7toys6I83G3P4pPtZtatio8R8jbTpk/hrPFzfXWXbcDnSMxSH6z9gFuvmczYfQ7jgEH7M3afw7j1msk9cozwGTdNZeDWDVxy8ccbZFW+9JKP2aZ/AzNumlrpKloVcSAxo2UPfOUzU7jysrd5+OHgysve5oWFUzhr/KndHkyqPWjNmn53uzm57p9+d2UqZlXJgcSMfPfA8w5aXdHhGCEe7tYKOJCYke8eeC10G3U0Rkg93UxqpXMgMSPfPfBa6DYac/wxTJu+Ma0v6oxI0ql8//hjKlMxq0oOJGbkuwdeC91GvpnUOsOBxIx898Broduo+WbSnYefwKTL+zF6tDzcrbXJNySakW9WXOcgs2rkXFtmJcpzD9zdRlZvfERiVgEeWtaqjQe2KuBAYmbWee7aMjOzinEgMTOzkjiQmJlZSRxIzMysJA4kZmZWEgcSMzMriQOJmZmVxIHEzMxK4kBiZmYlcSAxM7OSOJCYmVlJKhJIJB0nabmkzyS1mdtF0mhJz0taJemCPOtoZmbZVOqIZBkwHpjX1gySNgJ+BxwO7A5MkLR7PtUzM7OseldipRGxAkCtB63e0H7Aqoh4KZ33TmAs8FzZK2hmZplVJJBktD3w34LXDcCIYjNKOh1oHlKuacS2I5aVuW61YgCwptKVqBJuixZuixZuixa7dHXBsgUSSY8C2xb56KKIuC9LEUXeKzp4SkRMBian613Y1Zz69cZt0cJt0cJt0cJt0ULSwq4uW7ZAEhHfKbGIBmBwwesdgNdKLNPMzLpZNV/++y9gqKQdJW0M/AiYVeE6mZlZK5W6/HecpAbgAOABSQ+l7w+SNBsgItYBE4GHgBXAnyJieYbiJ5ep2rXIbdHCbdHCbdHCbdGiy21Rd2O2m5lZvqq5a8vMzGqAA4mZmZWk5gOJ0620kNRf0iOSVqbPW7Ux36eS/p0+6uoCho5+Z0mbSLor/fwpSUPyr2U+MrTFyZLeKNgWTqtEPctN0m2SVksqen+ZEtel7bRE0t551zEvGdpilKR3CraJS7OUW/OBBKdbKXQBMCcihgJz0tfFfBgR30gfY/KrXnll/J1PBd6KiK8BvwGuzreW+ejENn9XwbZwS66VzM/twOh2Pj8cGJo+TgduzKFOlXI77bcFwN8LtokrshRa84EkIlZExPMdzLY+3UpEfAw0p1upN2OBO9LpO4CjK1iXSsjyOxe20Uzg2+ogV0+N6inbfIciYh7wv3ZmGQv8MRILgH6StsundvnK0BZdUvOBJKNi6Va2r1BdymlgRLwOkD5v08Z8fSUtlLRAUj0Fmyy/8/p50kvM3wG2zqV2+cq6zR+TdufMlDS4yOc9QU/5/5DVAZIWS3pQ0rAsC1Rzrq318ky3Uu3aa4tOFPPliHhN0k7AY5KWRsSL3VPDisryO9fNttCBLN/zfmBGRDRJOoPkSO3Qstes+vSUbSKLZ4GvRMT7ko4A7iXp8mtXTQQSp1tp0V5bSGqUtF1EvJ4emq9uo4zX0ueXJD0O7AXUQyDJ8js3z9MgqTewJWU41K8CHbZFRLxZ8PL31On5ogzq5v9DqSLi3YLp2ZJukDQgItpNbNlTurZ6SrqVWcBJ6fRJwOeO1iRtJWmTdHoA8E3qJzV/lt+5sI2OBR6L+rwrt8O2aHUeYAxJBomeaBZwYnr11v7AO81dxD2NpG2bzxlK2o8kRrzZ/lJARNT0AxhHskfRBDQCD6XvDwJmF8x3BPACyZ73RZWud5naYmuSq7VWps/90/eHA7ek0yOBpcDi9PnUSte7m9vgc78zcAUwJp3uC/wZWAU8DexU6TpXsC1+CSxPt4W5wK6VrnOZ2mEG8DrwSfq/4lTgDOCM9HORXOH2Yvo3MbzSda5gW0ws2CYWACOzlOsUKWZmVpKe0rVlZmZl4kBiZmYlcSAxM7OSOJCYmVlJHEjMzKwkDiRWVySFpCkFr3unGW7/mr4eU87sz5Iuk3RuG5892Yly7kmzr65qlY11ZCfrc2h6b0Sxz4ZJmi+pSdLPO1OuWaGauLPdrBPWAntI2jQiPgS+C7za/GFEzCLjzajpjVmKiM+6o2IRkTkIRMS4tA6jgHMj4qgurvZQYA3JPQGtrQF+SnJjplmX+YjE6tGDwJHp9ASSm7CA9WNwXJ9OD0z3/Benj5GShkhaIekGkrxDgyVNkLRU0jJJVxeUNVrSs+mycwrWv7ukxyW9JOnsgvnfT59HSZqXrvs5STdJyvy3KGlfSU9IeiZNrDcwff+ctLzFkqZK+ipwGnBesaOZiGiMiIXAuqzrNivGRyRWj+4ELk27s74O3AZ8q8h81wFPRMS4dPyOzYGtgF2AUyLiJ5IGkeSg2gd4C3g4zZj8T5L8VAdFxMuS+heUuytwCLAF8LykGyPik1br3o9knJBXgL+RjKkzs6Mvlqa3uZbk7vQ1kn4MXEkyjsb5JAn3PpbULyLelnQLsCYifttR2WZd5UBidSciligZ+XACMLudWQ8FTkyX+RR4R8mokq9EMi4FwL7A4xHxBoCkacBBwKfAvIh4OV2+MPHjAxHRBDRJWg0MJElHUejpiHgpLXMGcCAZAgmwGzAMeDRNibRRQdnLgamS7iPJ2mqWCwcSq1ezgF8Bo+j8eCNrC6bbGvRKtJ1qvKlg+lOK/521XjZrriIBSyKi2BHWYcDBJAM1XSxpj4xlmpXE50isXt0GXBERS9uZZw5wJiRD00r6YpF5ngIOljQg7f6aADwBzE/f3zFdvn+RZduzX5qZtxfwQ+AfGZd7Dtg+zcyKpI3Tq682AnaIiMeA84AvAZsB75F0sZmVjQOJ1aWIaIiIazuY7WfAIZKWAs+QdBm1Lud14EKS7LiLgWcj4r60q+t04C+SFgN3dbKK84GrgGXAy8A9WRZKu8yOBX6drncRMILkqGe6pCUkFwlcHRHvkQwl8ANJi1qfbJe0g6QG4GzgMkkNkjbr5Pcwc/Zfs7x1wyW9ZlXFRyRmZlYSH5GYmVlJfERiZmYlcSAxM7OSOJCYmVlJHEjMzKwkDiRmZlaS/wNOJwTY3qIGUgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Initialize fitting parameters\n", + "initial_theta = np.zeros(X.shape[1])\n", + "\n", + "# Set regularization parameter lambda to 1 (you should vary this)\n", + "lambda_ = 1\n", + "\n", + "# set options for optimize.minimize\n", + "options= {'maxiter': 100}\n", + "\n", + "res = optimize.minimize(costFunctionReg,\n", + " initial_theta,\n", + " (X, y, lambda_),\n", + " jac=True,\n", + " method='TNC',\n", + " options=options)\n", + "\n", + "# the fun property of OptimizeResult object returns\n", + "# the value of costFunction at optimized theta\n", + "cost = res.fun\n", + "\n", + "# the optimized theta is in the x property of the result\n", + "theta = res.x\n", + "\n", + "utils.plotDecisionBoundary(plotData, theta, X, y)\n", + "pyplot.xlabel('Microchip Test 1')\n", + "pyplot.ylabel('Microchip Test 2')\n", + "pyplot.legend(['y = 1', 'y = 0'])\n", + "pyplot.grid(False)\n", + "pyplot.title('lambda = %0.2f' % lambda_)\n", + "\n", + "# Compute accuracy on our training set\n", + "p = predict(theta, X)\n", + "\n", + "print('Train Accuracy: %.1f %%' % (np.mean(p == y) * 100))\n", + "print('Expected accuracy (with lambda = 1): 83.1 % (approx)\\n')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 6b14d88a2050aa313524176b45209fd86e18f108 Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Wed, 22 Apr 2020 10:57:41 +0530 Subject: [PATCH 4/9] Week 4 Assignment --- IntroToNeuralNetworks.ipynb | 666 ++++++++++++++++++++++++++++++++++++ 1 file changed, 666 insertions(+) create mode 100644 IntroToNeuralNetworks.ipynb diff --git a/IntroToNeuralNetworks.ipynb b/IntroToNeuralNetworks.ipynb new file mode 100644 index 000000000..7b861aa55 --- /dev/null +++ b/IntroToNeuralNetworks.ipynb @@ -0,0 +1,666 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "\n", + "# Optimization module in scipy\n", + "from scipy import optimize\n", + "\n", + "# will be used to load MATLAB mat datafile format\n", + "from scipy.io import loadmat\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils\n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [], + "source": [ + "# 20x20 Input Images of Digits\n", + "input_layer_size = 400\n", + "\n", + "# 10 labels, from 1 to 10 (note that we have mapped \"0\" to label 10)\n", + "num_labels = 10\n", + "\n", + "# training data stored in arrays X, y\n", + "data = loadmat('ex3data1.mat')\n", + "X, y = data['X'], data['y'].ravel()\n", + "\n", + "# set the zero digit to 0, rather than its mapped 10 in this dataset\n", + "# This is an artifact due to the fact that this dataset was used in \n", + "# MATLAB where there is no index 0\n", + "y[y == 10] = 0\n", + "\n", + "m = y.size" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAItCAYAAAAwm9DjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOyddbwV5bv2L86RMLHB+qEYKDYGIRa2YmChYncnKhbYid1d2NitoIKBid1iB9iYhOec95/3utc17Bl2rVmz9vL6/sP9uTdr1jzzPPOsmTtb/d///R+MMcYYY2qR/yr6BIwxxhhj8sIPOsYYY4ypWfygY4wxxpiaxQ86xhhjjKlZ/KBjjDHGmJplhun9cdKkSTWZktWuXbtWADB16tSaHF/r1q1bAcDkyZNrcnxt27b9V4yvqPXJTMxWrVqFrnXr1iH/7//+LwDgf/7nf5p0fK7PWt9fpkyZUpPja9OmjcfXgvm3jE+xRccYY4wxNct0LTpF81//lf4cxjfOaq0BxDdhfSNWmej58y3ZFEN9c6W6tPVXrWuxKfC++/vvv0N35ZVXhrzCCisAALp3717ZEzMJ6luzSrXvL1l7fRrVvv+b6sMWHWOMMcbULIVYdPj2oU/xaW/Mf/75Z+gmT54ccvv27TM/UxQ6Fp7LX3/9FTqV+feZZpopdDPPPHOdvxc9plpH50zjTSZNmgQAmDJlSuj++eefkNu1awcAmGWWWVKPVe1vz/XBsTz44IOhO+igg0I+7rjjALQsi47eS2n7z3//93/X+YzOo85/fdaTPEj7Tl2fv//+e8g877Zt24ZuttlmC7nIfSVrz/75559D1mtNeM+prDqdq5Z+/7V0eF/p/VWfxU7nPI/5s0XHGGOMMTWLH3SMMcYYU7NUzHWlpuGpU6cCACZMmBC6L774IuS33noLAHDPPffU0QHATTfdBADo06dPPifbQNQMq66pYcOGAQDuv//+0I0YMSJkmuZWWWWV0B1zzDEhb7DBBgCSKb215MZKC9bOciPxWpXLXaDHUXO/Bts++eSTAIAPP/wwdD/++GPISy21FADg0EMPDd2WW24Z8owzzpg495aAXv9PP/0UAHDiiSeGbptttgn5sMMOA1BdruP6mGGG0lbH/efjjz8One4vv/76KwBg+eWXD53eq0WMVb/ziSeeAADceuutobvvvvtCphtggQUWCN29994b8rLLLgug6eUBmoPeEyNHjgx5hx12CPm3336r87kuXbqE3KtXLwDApptuGjr9LWBIQEu6/1oiWfc/kxi+/fbb0L399tt1/i/3SQBYffXVQ2ZIQDnXpy06xhhjjKlZ/KBjjDHGmJolV9eVmsMffvjhkIcPHw4gaS7+6quvQv7jjz8AAHPNNVfoNtpoo5Bnn3328p9sE9DxPfvssyGfcsopAIA11lgjdJdddlnINKOPHj06dLvvvnvINE1369YtdEWYmZsKr4uaNjWqnvLrr78euueeey5kXQs0aTc0w6cx7hS9pq+99lrI48aNA5B0V2iGC/+vZiLR3QMAgwYNApB0l1Sja0evlY7vvPPOAwBMnDgxdCeddFLIc8wxB4DqykRKc1Po3++8886Qb775ZgDp5nQAWG+99QAAXbt2TT1WpeZS9xfdK/fdd18ApXkAgCWWWCJkrsXPP/88dA888EDIrINUyT2FY9H7bMcddwxZ3chp+/s333wTMkMXOI8AsO2224Z8+umnAwDmn3/+0FW7G6sxNZHS9tc0d38eZIUbqBv45JNPBpCc648++qjO5/TzBx54YMgMCZhvvvnKddq26BhjjDGmdim7RUef+FiPBAAuvPDCkGn90LeQnXbaKWQGPmoA2qyzzhoynwSLfkvWJ2cNpnrllVcAJC1SGljMwGy12OjbCYO49O/VRFodEr0WP/zwA4BkMO9dd90VMoMo1eKx4oorhrzJJpuEvNxyy9U5/vTQektt2rSp83ddM6zHBAA33HBDyFy3WttI1/Vpp50GADjzzDND9+KLL4bM+k/6Zlr0Wq0PDVblXO2///6hW3TRRUPm22MRVhxdc++9917Ip556asgMVv3ll19Cd8YZZ4S82267AQDOPffc0C288MIhp9XU0TfmSo1b18xiiy0WMpMcFlxwwdCdffbZIfO6zD333KFbd911Qy7SOqwB0nqf6714+OGH1/mcXnPO9XXXXRc6Dcwm11xzTciNqbzcUPScuJc1xvKXZfGmRyPr/3J/1aBtva5zzjlng8+hoaStefVI8J4CgO+++w5Aso7TMsssE7Ja58jVV18dMu9bTRBJq1PXGGzRMcYYY0zN4gcdY4wxxtQsZXddqdmXQZ1AMvBv7bXXBpA0TXXu3DlkmlbVxFqNDRT1PLQmAF0eaWXngVKdAQZ9AsAiiywS8tJLL13+k20mOq88fw1AU9fHQw89BAB44403Qrf44ouHzDosWvtCTZtarp4m3YbOeX2uqyzUzMq5ZL0VIGkmZ2sENaeqmzFt/qsJnrfWuTj++ONDZjDukUceWeczQDHj4v2jrQLU3a1riS7DCy64IHQ33nhjyFtvvXXimED9rtEi3HRZ+wtlddfp+uT6O/roo0OnruEi6+d06NAhdJqgoeuL41MdaxsBwPfffw8guSfptWIdnTzmTM9JXUyPPvoogKS7tD53mZ6/1unSJI20Y7300ksAksHmeq8yGFi/o7n3LK+lNvq96qqrQv76669D5l6udbg0DGCzzTYDkGyBpOenYSrlwhYdY4wxxtQsftAxxhhjTM1SNtcVTVvaCkGj3rUmB0s8jx8/PnTaAoJuHM2jz2oRUCRZNQXoPlFznJoZ2f1ZTZRqZmc2RdG1HzQTQM3krEmitS/UDLnhhhsCSJo21TXJ+desK53TtO7FDSWrS3Na7Qm9vuryYv0HdXeoa47HOOGEE0Kn7SCYYVf0/GXB8xo6dGjoNOuFWWXqLil6LDTBq7v0nXfeCVnbCVCvpvP+/fuHzPWlYyrCNVUfek7a4oH1mzTrRu8fZsDsvffeodOszyLnUu9J7T6ueo6L2atAcv959dVXAST3XP2tYJ0hdQ01d8ycC92bLr744pDPOuusOt+T9TvV0GysLNc79brnqkspD9cyj6nnxFY4QHLc1DP7EUhei+233x5AssWTrk+GtpRz/mzRMcYYY0zN4gcdY4wxxtQsZXNd0cyk5ftvueWWkNVM+cwzzwBIdvRWkyDdD1o4SrvbzjvvvACKz2pRc5q6Nh5//HEASXfd008/HTLNjMxOAkrmOqCU7VPE+NQcrO7EK664ImSWkD/kkENCp52eaUbOOn9et+a4qLLIynRjpgbnBgAmTJgQ8rvvvhsy/w8L/wFJNxsLsWkmWVq2VzV191YzMF1zd999d+i0oB5dx5p1VjRcM1okTzP1+vXrF3LPnj0BlLLHgGTxUs5P0e64+tDze/LJJ0Pmus0qaMl2Kuq6YqYjUGqnom0/ikDPWd1wbL3y5Zdfhk7XL/eo//znP6HTgoGNLTLaVPScuVeoi16LUKrLp76sIt53L7/8cuh0f+G+qZmGBx98cMh5tJ7hcXQe1F2vv29s9/TBBx+ETtuVsB2E7v+6PtnuqZx7pi06xhhjjKlZymbR4dOzlv3XwGQNNuITuVoB1JLAmjvHHnts6NjIDSi9iWpZ9DysA2noedJKAJQaOQKlEtjawmLZZZcNmcF02vRstdVWq/MdRdYrAZI1S/SNmE/cffv2DZ1e/2oJFte3D7Z40Hox+nd9y2IzwE6dOoVOA+cZWL7nnnuGThuAsqaFlt0vei71jZA1V/jmCyQtInyj1HlMe0vMsp7lAc9FGzWqRXjMmDEhs86RNsrVsTJIWWvLVKN1R/eao446KmQG8+sbs+4lXJ9au0z3ZVpntfZT0RZHvf7ca7Jqp3Gv2WWXXUK38sorh5zH/pNm0Rg4cGDIDLDVti9qcdO51N/CtL9z3910001Dp8kstCRrAotakvK0xOo86fi0hQObWvM+BIBPPvmkzrH22GOPkHV955HMYYuOMcYYY2oWP+gYY4wxpmYpewsIddew1DqQbGvAOivavVxhrYxLL700dFrTZJ999gGQdGdpHYU8zdBqQtXu5BrkysA0beugcCzaAqJHjx4hs/5A0S4g7VhNdxVQqhmhbRO0ey3dHNVkDt9mm20AJN1xumY233zzkNn9V02z6rpjd2gtu3/bbbeFzDpJak5O6/6dB3rN1cz+xBNP1JE1gF4DU3n+GgzJ2i0AsOWWW9Y5ft7QNabjUzeBdsLm/qJtA9RlyftLg7E33njjkKvFjaVjVTfqmWeeCSDpotB2Huxurd3n1Y3Fru26f+bR3bs+9DrrXLJm0LBhw0L3wgsvhMz7T++5rl27hkyXTx7JAFn7f1qCTH1ti/T89P67+eabASTd5RoawDpXlXJXZaHzp791DHZ/4IEHQpc2fiZ1APnX7LJFxxhjjDE1ix90jDHGGFOztJqeSW/SpEkNtvfRDJfVqiHNNJr13TSJaydYraMzatQoAOkdiaf93jTatWvXCgCmTp3a4PHx/NWEqLLWCSJZWSnUa6bAmmuuGfLZZ58NILs7b320bt26FQBMnjy5wR+i6VPbOqhpUTPMdt55ZwClLroAcMQRR9SRs0q8N5e2bds2enycv6xrqubS+s6Vx1Bzs9YUYobXfvvtFzq6+/Rcsr6L42vM+iS6zvT+2W677ULeYIMNACTrYGgGCVu3ZLmD6VrQTMLGuOO4PhuzvzSFLNcFXQOa1ak1rZiN1VQTOveXKVOmNHp91ufuULJa0PBeVnfyXXfdFTLdtFrnrDGuqzZt2jR6fI2B95def7rjgFIdNnWn6rVgVpm6oxuz/+Q9PqKZjKwtAwBrrbUWgGQdL96zQKnrO13sQOPWarnGp3vpp59+GvI666wDIHn+BxxwQMjcP7TO3OjRo0NeYIEFADT9/uP4FFt0jDHGGFOzlC0YmdYNrZ2jTccaExjGY2k1xQEDBoTMpz8N1sqjjocek8GofJoGkvUQ2EgOSA/Gra/miAZO8kk272BPfYtjI0QNUGTQIpCsX3LHHXcASAY7nnzyySHT0jF48ODQNdU6VS54TcsR6Mb1qQF0WlPn/vvvBwA8//zzodM3UrWUlDswWdeWBgPq97PmhwYoa82LSy65BECyDpBW2VWrXzWT1bST9Ve0GrQGtq600kp1Pp8HahHmG71W29Zqumn3jN6/eizWNHnqqadCp3sVg8nVopD3WHn9s34HVE67Jzp06BAy16/u/2pR5r7Tu3fv0GngcNFJErwGWtuKAcZA6TdUf/90L6WlvVK14xRdc7oP6O/fjz/+CCD5+6AWHTazfuyxx0KnDT61ynO5sEXHGGOMMTWLH3SMMcYYU7M0y3Wl7giani688MLQnXDCCSGztgVQMt1lBYCmBSNriWmadJmvP+3nm4OaVtWEmhYgfOCBB4ZcXyM1/RwDe9X0pyZrPVaeqBmSdSrodgGSJciXWmqpkGly1aZ69ZnZi6a5rk39PGWt7XHVVVeFzHnVBpTaYiKP68O5ZPsRIFmHSk37/L/HHHNM6Fg7BygFsTIoGUgGlrNmSTXN8x9//BEyWyTU5y7XpsEMUAZKtZbat28/3c83Bb23WQ8GKNXx6d+/f+g0WFoTA4gGc15//fUhDxkyBEAyGJTuHgDYbLPNAFR2/tjIWN01ek+oa62+8+KxtIG0Xlc2PdXro9ev6HXL+09beDzyyCMh8/w4T0Dl6nBlkfabfdFFF4WswcQLLbQQgGSyg/7WsB2E7inqpssDW3SMMcYYU7P4QccYY4wxNUuzfCRqGqY5SsvGa3fSNdZYI2S6Qfr06RM6NWN+9tlnAID3338/dGPHjg2Zpa9pIgPyMUdqWW1+v5r7s7KiaKbT66NmZHZ3pQkWKLUo0OPmbaJUM2TPnj3r6LQOx2yzzRYyx6JuEn4eKNWUqWRWRxpp3bt1HhrzeW0dwZokl19+eei0zhDrQOhaoTsFyGdeeX3V3aQtOrQOB11aWodD6+zwHr711ltDx47fQMmlUy2tEoDkXLB7fFamY5rrUd2wzBbNY0/RuV944YVDXn/99QEkXf/6/VtttVXII0eOBAA8/fTToWMmC1DKENUWJn379g2Ze63WgcoD3R8fffRRAMA555wTOt3zdHxE3R3avZtu4jR3D1BqN8T7cNq/F0FauwetY6S/NcwwU9equnmKdF3pb5a63pR+/foBSO7/WqeLzwoarqFhErm49st+RGOMMcaYKqFZFh19suTbvz6ZjhgxImR9e2IzQQ1m0rdDHkPfODp27BgyK19qbYU83i71jWSeeeYBkHzyXG655ULWpoAMrNI6B1qZlPUttNqz1qmp1Juyfk+3bt0AAC+++GLotA6M6vl0rxY1rULKwL+i3/j1jZBvwXvttVfosipbp1nkNIiSQY5ZdZ4YpM4Ku0D+b2F8C9L7RAOQtWki15paaTTwn/UtWOEZSL4dFz2vaTz88MMhs06OWml0X2JlddaDAoBrr702ZK4F/Uy56nTp26pasY866igAyXoiGuCuVeBpsdH9US2urLKu1bi16WXelhyi64QWRe7dADBo0KCQ2agUSL/WOhesM6PH13VPS6re00WvWd2LxowZAyBZu0n3FwYhV/s9p2hNMVrfWCEZKDXqBkqWRtZzApL3gpt6GmOMMcY0Aj/oGGOMMaZmKVtTz7SmdL/99lvI3377bchDhw4FkCxR3qtXr9JJ/X/TZZcuXULHACegZIZtTFsJpaFNPfX4PH+t5zNu3LiQNRiQ5dzV9aXnz9LkGgDa1AZtaTSlqSfJahSYVq5dx6fnnLeZtaFNPXUsbLFBFxaQDKbT+kE0s+rn1bW47bbbAki6MZdZZhk9PwBNd1c1p6lnVoC8ngv/T1YJfs57YxqdNoZyNfXU+dHAb9b00ABsDSanm0rbdqjrRGtCNYWmNPUkF198cchaB0lrxjCwXRsZs9EuACyxxBIAkm0PynlPNqUpJNeU1g7S2k2PP/54yDxXnV89f7rMdX61BQF/H+prnptFuZpeZrk7zzvvPADA8ccfHzp1szJIWZs+Fz1/HIu6PbUthbZGShv38ssvHzLnSn8T1fXV3L3GTT2NMcYY86/CDzrGGGOMqVnK5rpKQ02HaZ3AtaaJdjonakJWk3xzM1ga6rpS+P2aqaOZACpzfDpmraOi2QCknKbJ5riuWgINdV0paZlUuo50LXL+FC1RzwwB1emxmmt6bY7rqiVQLteVovcfWydoHSB1jdPlqFmPOpdprpPG0BzXla4dbRGjLgOuZc20UtM/12JeLuTmuHb0N0FrsmgLjzT0uvB3QesEac2o5nb1LpfrSsfKTDGgtO6efPLJ0GkGErMdm+p6q49yjU/3SbYdAYDXXnsNQDKrTuuspbVoycM1p9iiY4wxxpiaxQ86xhhjjKlZcm2TnWWOoulRzY31meaKKHud9v1qTtTzV3eUmpRJWgZL0WXJ/02krUU1nWrBqrT5S8tQaq6J3JQPdT2de+65iX+zyMoqK1dxwKag361FHtPQc1bXXTWj11z3THW9NRQdfzXei3p+2g6BxQ31t0SzkhgmUe1FAjXchJnUWaTtn5Ucny06xhhjjKlZcrXoZNGSLRpZ59wSx/JvJ6uOjGnZVPubcEOplXFkUev3n45Jrf8bbbQRgGTbEm262lJoSevTFh1jjDHG1Cx+0DHGGGNMzTLdOjrGGGOMMS0ZW3SMMcYYU7NMNxi5uZUTq5VyVYasVji+Wq+sW+vzV+uVrctZGbmaaE5l5JYA1+c///xTk+ObYYYZKr5/pjXVzWqazFInTS2DkEdl8mqC959ii44xxhhjapZC0ssbSn1PrNUUX6Tn2tDzrqbzJ1rESmlJqYTGGFPt6P6v1puJEycCAB5//PHQLbXUUiEvu+yyAFrunszfx7x6XaVhi44xxhhjapaqtujoU97kyZND5pNwU8qGlxN9Ip0wYULIt9xyCwDgueeeC932228fMotDaQntootn0ZKjHWm1rLy2SGipbxLNQS1dLOeubUmKblFizLTo/qQtMoje39VoXa5VeK21LcQ333wT8v777w8gWVDw8MMPD/m0004DkG19r0Z0LXLdacf69u3bh8zromuyub85LedKGWOMMcY0Ej/oGGOMMaZmKdR1paY75aeffgIAvP3226F79dVXQ15sscUAAJtttlnoinD9qOnwqquuCvmMM84AkDQXjxo1KuTNN98cALD11luHbsMNN6xz3LzHoeZEmhEPOuig0Ok1v+eee0Lu0qULgOrsGFxOdH4ZIAgATz31FACge/fuoZtvvvlCLtINoHOq91dap+6sjt31BQtWo+syLQFAdTqX1Ov6rSXXDcf6119/he6+++4LmX2X1l133dDpXlVL16JaSLvXNEzgzDPPDPmhhx4CAOywww6hU9cVA5erfZ6yEnSuueYaAMAll1wSuptvvjnkDz/8EACw/vrrh26uueYKuSnjtkXHGGOMMTWLH3SMMcYYU7NUzHWVZga//fbbQ6cR5nSjfPrpp6FT02rHjh0BJLMG1I2lJvs8zXt67M8++yzkWWaZpc7f1dx/2223AUiO+cILLwy5f//+AJLXLI9xaO2GRx99NHFu037/3nvvHfKNN94IAOjUqVPoajHrSK/PV199FfK2224LANhxxx1Dd91111XuxFJIc1ece+65IW+yySYh0/Wr98l3330X8tdff11Ht9pqq4XMedc5L9qMrm4o7gvvv/9+6PRe++GHHwAAQ4YMCd3cc88dcjW65hoD5+Kuu+4K3Z577hlymzZtAACPPfZY6NZYY42Q87yXs9yleq/x/2TNQ311yngvZLle08bX1CrDDSXNjfP888+HjnsqAKywwgoAgJNPPjl0/M0DSms973NuLuouHjt2bMgM7ejVq1fohg8fHvJ5550HALj66qtDt+uuu4bclJAJW3SMMcYYU7PkatHRJ059CjvnnHMAJAPkevfuHfIee+wBIFm7Rd8uDznkEADAmDFjQtevX79ynXaD0bcEffr8/PPPASSDqTWY9frrrweQDPY9+OCDQ/79998BAHvttVd5T3ga9M2GtX203o9a3F544YWQGRh3ww03hI5WLKDlvxGTtP4zQKnmw0cffRS6n3/+OWQGzuV9HdLe6B544IGQL7roopCvvfbakNu1a1fn8xoYyZpVWrtqlVVWCfnyyy8HACyyyCKhq5RFJ+ucV1xxxZBpXaXlAgAWXHDBkGmdU4swx9RSUescrVeDBg0K3RxzzBEy1zLXQV6kWW/UMq/rS+vIsD6anrOO7++//waQ/E3Re+37778HkLRuqkVErXeVQtct94pTTz01dDq+E088EQCw8MILh0736mq35PD8OE8AcOCBB4b8yy+/AEhaVKdMmRLysGHDAAAffPBB6Jqb+GKLjjHGGGNqFj/oGGOMMaZmqZjr6r333guZLiu6cIBSozKgZPLMcn2tt956AIDlllsudBrMVkRgrH4/gz2XWGKJ0KlpdYMNNgAAHHPMMaG79957Q6ZJc6eddgqdmpnL5SbQ48w888wAgKOOOip0I0aMCJm1jYCSG0sDcNX1xnkrOkC1qaTVWVE3K+dCA5S1AR/nrZIuPJ7rZZddlvp3NSP/+eefALLvE65ldf28/PLLIZ9wwgkAkgGU6toroo7VFltsEfICCywAAFhppZVCt/TSS4fMYMhbb701dOpGYZ2Zal+/Wfvjk08+CSBZYl/3j0UXXRQA0LVr19DlsVb1/LjWXnzxxdDp/nLHHXeEPP/88wNI1vnROlV0+dMFoscHSq131B12yimnhKwuvXKT5e7W8+O+qaENW265Zcirr756nePW1zS66HCBtMQZ1ssBgNdffz1k7h9LLrlk6PT+Y5023XP07035LbRFxxhjjDE1ix90jDHGGFOzVMx19e6774b866+/AgDmnHPO1M+llajX+i4dOnQAUKo3AxRvuktrQZF1TswA0dom6rqim0HrLNBdB+TjmuMx1d2mrkWtY8D5Gzx4cOhobgZKdWaqqc5KU9Bzfuutt0JO6xo8++yzp36u0mimoroz1Nw7zzzzAEjWsdB7kVkhTzzxROg0w4mm5SKyP/TaagZPWgaLupNVZoagZnq0xPWp61DdICNHjgSQzOTR+T///PMBlNzVQD77p54faxpp7SnWMwKS9w/X2pVXXhm6tJo4enxmqgKluV5++eVDp/tnnvXJsu4JtnUASvWtdP3qXqqdvInef3RJ6ud1LnWtVwr9ToY2qLtwm222CfmII46o8xm9bhyXZiqr651ZeYBdV8YYY4wxftAxxhhjTO2Sq+tKzUqdO3cOmWY4LcuuJcpZyEuLn6np74ILLgCQNMe2pBYEPNcssxv/rkXo8obnouZgZocBwIABA0Km6VWvP8t267HYpR1oWd2RaUbVIpXjx48PmabzffbZJ3R5uxbrg2ZgZhQBwOjRo0NeaKGFQu7WrRuApLtR55Ld2bVFgLo2eKwiMq2yUDM4z1XPSd1ULCjI7COglGk17eeqEV53dWdod2tmA84000yhY5FVoNRiIG/UHcHimnptNdNo5513DpmhCVnuNO4luj7PPvvsOt+rLRRWXXXVkNNc6uVyw+o98fHHH4c8cODAkJktpt3JmSkIlNayfl6zYR988EEAyft3v/32C1mL89HNk8ea1rF++eWXIe+7776J7waAww47LOS0rEbNqqJrji52AJhtttlCdvdyY4wxxhihYhYdfaJmHv1ZZ50VOn3KZulufSPV+iB80ivaipNV24ByVlM5PgmnBbUCpSfhlVdeOXSVesvU79Fg1qOPPjpktjjQFgOvvfZayGxd0aNHj9D95z//CbnoeasPztubb74ZOrb10L9vvPHGodOaM5UaX1qJfa0tpXKa9UU/r4F/bBfx22+/hU6DHVknKu+ms40h7ft1zGqd476iVsii63DVh15rWrw1WFfrlJCePXuGfOihh4bMseadwKHXkfeKtg1ZfPHFQ9YWMmno+Pn2r7XZtJ0H9x+tw5M1p+UOqNc1p3Vg2JYCKCV86JyodY776lVXXRW6b7/9NmSOT+ecbZWAZOAvr3e57lICaVAAACAASURBVM+s2k1sW6HnqnV0tEUL50KD5dV7wXtVa+vp/23KurVFxxhjjDE1ix90jDHGGFOzVMx1paZh1lkZPnx46DRYi8FoWhZcg7Wa28m0Oeg4NMBRg6lYZ0b/Pu+884bMYCyt/ZBWH6RTp06pf68U+p3a8Xf//fcHAIwbNy50N998c8iseaAtLm666aaQq7FFhJqc2SJBA+DV9E3Tqc550WOp7/vT7hkNENd2Fgx21L9r92dNLGjo9xeBmtk//PDDkNlOYP311w9d0XW46kPnYsyYMQCS7gLdl1inS90Z+vkiXKv8fg2E1r/XFyCs42N9sUcffTR03bt3D5mBuxoMq+s/j/pP3D++/vrr0LELN5B0zbE+2TLLLBO6K664IuTTTz8dALDbbruFjrVngJKbbrPNNgudXlfdq/OsE6QtVHSsDHPo27dv6NLuL9Wl1dlT12tz58wWHWOMMcbULH7QMcYYY0zNUrEWECozg0UzWdR0SdObdjct2rTM81d3zSWXXBKydsp95513ACSzVrQjLd1YGjWvplm6RN54443QaQaNRqBXymWgpl+2GTjttNNCp25Iuuw0a05rIm266aYAqqsOi8K1ppkAOn7OX1qp9qJpzHXU/6tjpV4zWdQ0PsccczT6u4pA52zo0KEh0/WWlfVYLeieqW7wp59+GkB2HRK2a9EMpyL2z6Z22U7LWn322WdDPu644wAk99c11lgjZK5P/U3Ju10JM4XpdgJK9aiAUqYUUGpN8dJLL4VOP8fxMUQASNacY1aW/haxthmQrDlTLjclf59YgwpItl3R/eGggw4CkLy/dN55LA3d0JpHzErj78S0n28K1X2nG2OMMcY0g4pZdLQpIisnagPJI488MmQ2nVOLidZxqRR6/qxzoBUqH3nkkZDVyqIy0cBWkvVGyWCsY489NnS33357yNoArwj4lqCVK4cMGRIy53LChAmh0/NnxeWmNGfLC51rNiDUOh06V6ussgqAZFBu0effGDhWbZSnNTv4xqVjYoIAUAosrdYxc3w//vhj6EaNGhUyrY9aDbnIBIcsdM29+uqrId9www0AkvuMBhuvttpqdf6uFqFqRNcSx60WRU1mGDt2LABgnXXWCd3uu++eeqw80T3jk08+AZBMoNFq5FpFnckOtNwAyTpVnCsNRr7vvvtCpnVfv0sb9JbLipNWu4ldCYBkbSo9l7Q6d7qWaX2k5QdIJgvQU6C/c7boGGOMMcZk4AcdY4wxxtQsZXddqYmKLgAgmVPP/HgtYa5m5McffxxAMre+6GA61hnRAFttmpcW7KYmVG0RoCZZklZfQgPs0poWZn1vpdDxadlxXiN17Wk59GeeeQZAsoVC0eh1/OKLLwAkG3kyABso1ezQNduSoEtD65Coa5XXQmvnaDAlP190gkAWvFe0RYnWLOnTpw+A6mz1kMWFF14YMl1yumb1/uNekrbPVCs6Fs4LXXQAcPfdd4fcu3dvAMlronXK6Ias5N7I3yy6pYDknq6Bt2eeeSaAZDiHMnjwYABJ1+MBBxwQ8qBBgwCUWvEASddrWmuYpqC/5TxXdXHrOTHAGijtC/qbpdflpJNOApB0d2nNNbr5yumCtEXHGGOMMTWLH3SMMcYYU7OUzXVFM5d2YdUS5Go6pklZ65CoGZxdbVkvAkiaYekGqmTWB6Pi1YXx008/1TknoGRGVHOiujnYAoP1LoBkJ1+a/PS79PjV4jLQ89AWHTRpau0LdQOxPoSaLrWEe6VcCmkdkQHglVdeAZA03er63XrrrQFUf8drRcdCN6x2F1Y4Fs0qm3/++UOuxmwrHR/dBOqOUzdpu3btAFRnppWuyeeeey5kdf3SpaH/d4899giZe0217BMNQe+lDz74AEDS9ajzu8suuwBIrs9K1cxJyw4DSu403ed1/nT9MatKM+WUnXbaCUAyK6lLly4hc/6z1m9zxp/mQgSAG2+8EUD6Pg+U7img9AygmVSaVf3kk08CKM3jtH/ndSnn+rVFxxhjjDE1S9ksOnwSfPvtt0PH5oBAMoiJTfX0iU2tI6y+qMG4+qRcqTeVtDoiW265Zei0kZnW7OBTr1ppzjjjjJC7du0KINnoLe0tWcdZ7W9n+vS/9tprA0hWtn7xxRdDZn0dWk4AoEePHnmfYh307YWVTYHSG4f+XRussnJ3tQd76vnr2+fIkSMBAI899ljo1HrI+1OrCesbWzWuRR3fm2++CaAUVA4ABx98cMjVaH2jRUMrrGtlXN1fOK9aObZbt24hV6PFLQ1dn2lVcrUOF2urAcCAAQMAFDNOPWe9D1ZeeWUAwNlnnx06tcLpmuNc65xpMO+KK64IIFlbJ63pabmCjhW9j7799tuQuSdq0Ltad7TmGBs8X3zxxaHT/YP14bSRd977iy06xhhjjKlZ/KBjjDHGmJqlbK4rmptGjBgROrYyAJKBSWzmqeau448/vs4x1VxZBGmBZyeccELo+vfvH7I2O2NrCzXtsdGcHqsagyGbSpoZde+99w6duobYzLTIGkDTosHedC0yaBdItitpKa4BRd1svP+yajsx8FGbQrYk2AxX6wDR3Vjt6D2hAbrq2qH7/Lzzzgud1lypRtdiGjrWH374IWQmoahrX5sa83NF1xPTfYBzpXseWx1loeevx6Je78m08eU95jQXr9be0v1Ra6ZxLNtvv33oNHCZ+0tWbbg8sEXHGGOMMTWLH3SMMcYYU7OUzXVFc5VmN+y5554hq5mN0eTsAg0A999/f8jMANGo82oxx84222whr7rqqiFr1hDPNStrqiW6PhoDx6qmy8033zxkds3OyiqoFDon2s6DWR1qTt9qq61SP1fN6D2nbtKPP/4YQNKdqCy99NIAknU+WtKapUlcuytPnDgxZHUjVwtcU9ol/vTTTw9Z2x2wvoqOo6W7wXV9cS9YaqmlQqcZrLxWRbu+075f97Hm7mlFjE/PWV2/o0aNApCsN6b7oGZo0o2qv5WaNc3vqOQ+aouOMcYYY2oWP+gYY4wxpmYpe/dydQFkFcSjPOOMM4ZOzXT8ezW6CFpSEb+i0TnVtUDXZFqmQVGoyXajjTYCkCzb3hLnXa+vmo6PPvpoAMlMMnUjsihYJbMimoueX9++fQEk51QLklUjnCu9ZzbccMOQuSb1/7Z0d1UWHN96660XOl2/pjJo8cA555yz0Z/X/afotWqLjjHGGGNqlrJbdNKCyhryf03tkWbFawlUu/WioWRdfzYoXWGFFVL/zrevlnQd0hrMalNEfaOs5rXYUu+Z5qLzt9BCCwFIJgCodaElrctaoaVfc1t0jDHGGFOz+EHHGGOMMTVLq3+TedQYY4wx/y6mG6MzefLkmnwKatu2bSug9sf3zz//1OT4ZphhhlYAMGXKlJocX5s2bf4V67PWxzd16tSaHF/r1q3/Ffefx9cy4fgUu66MMcYYU7OUPevKpKP1MdJKe7ekbAuef1aJ8pYeoV8faeOv9TG3JOrr9Ey5muo4NQaet2Yipf29GtFza+qeWHTrB9M8OH+6fvO+F23RMcYYY0zNYotOjrC5GQBMmjQp5F9//RVA8ik2raJ0Nb2Z6VjYDPK3334LnVaeZcVrrazb0tG3j2+++QZAqcIwAJxyyikhL7LIIgCq10rAsWTND9ed1sGqprWYRpp1YOrUqaHTsbCprN5zWnm3WueNcHy6p0yZMiVk7h9FWz7S1ozuI3rOnBOgtJfonOj9x3m1laflkGb9/uWXX0KX9vtRzj3HFh1jjDHG1Cx+0DHGGGNMzVI1ris1bdFMmRVsR7IaLRZhZk8zzb333nuhGzp0aMg33XQTgKTrYKmllgr5jDPOAACsv/76oSvadfDSSy+FfP755wMAhg8fHjptEHnxxRcDANZaa63QFX3+TUHX35dffhnyHnvsASBpem/Tpk3lTqwJ6FjoOv3oo49C9+OPP4a8+OKLAwA6d+6c+vlqmcusYNZ33nkHAHDVVVeFTs3kI0eOBFBq/gkA55xzTsjt27cHUL0uLO4bl1xySejuvffekB9++GEAwBxzzBG6IsaSNj8//PBD6PSajx49OuSePXsCAFZaaaXQ0R2ser3ndHxFurHSfsemlUlWAC711XKfNZWs+/Ppp58GAPTr1y906vofOHAggOT+2lxs0THGGGNMzeIHHWOMMcbULIW4rtLMeL///nvIL7/8MoCkOVaj8mkGU9eOymqyra+DernQ73n88ccBAIccckjounXrFjJN58yOAICzzz47ZLpGXn311dB16NAh5EqZNG+44YaQjzzyyJB5/eniAIAvvvgiZLoMevToETqNqq92kyzHp+6cfffdN2S68XR+FlxwwZArtebqQ12jb7zxRshcl19//XXounTpEjKzebbddtvQ7b333rmdZ1NRc7juHzvvvDMA4JNPPgndcsstF/J+++1X51h//vlnyHRdVRN6z3D/VNfjTz/9FDLnT+df12QRrh26Zk4//fTQXXPNNSFrhtW7774LALjiiitCN9tss4U8YMAAAMCpp54aOt1f+F15jzPNTTV58uTQaejCQw89FDKzVldYYYXQ9enTJ+S55567zvGr1Y06PfT89brccsstAJJZg8y0ygtbdIwxxhhTs1TMopMWDDlixIjQXXjhhSG/9dZbAJJWnDnnnDNkPr2rxWeNNdYI+fLLLw+ZlpA8rAj//PNPyLTCAKWn92uvvTZ0m266acgMotOaEgcccEDIjzzyCADg9ddfD93GG28cch4WAz5965wcc8wxIWtNkosuuggAsMoqq4ROA4/59F7tlpsseC1GjRoVOpUZWK4B2NVixdG3qD/++CPk3XbbLeTll18eAHD77beHTt+ouRZPOumk0G2wwQYhMzC06DHrWPXtkJacbbbZJnS6J7Ru3RpA9vqsxrdnHSuDNH/++efQLbPMMiHTkvPBBx+EbtFFFw2Z466kxePTTz8FANx5552h0zpGc801V8gLLLAAgJLlA0iO5cYbbwQAdOrUKXQHHnhg6vdWClrUDjrooNA9+uijIev4uP6uvvrq0KnFaq+99gKQHNOss84actH3XUPReRg/fnzIY8aMAVCaZwBYc801Q85jfLboGGOMMaZm8YOOMcYYY2qWXF1XabUtAOCoo44CkHQHqBmrf//+AIBll102dL179w6ZrQd23HHH0DHAF0i6XK688koASTdRc9AxqetKg4XvvvtuAMDaa6+degya5vRYGoxFN0I56wjUB83199xzT+jUND548OCQt99+ewDAbbfdFrqJEyeGzDoXLSkAWV2r3333HQDgvPPOC13Hjh1DXnfddet8plrcHXpOGmw888wzh8zAdx2TBvPy/2bVqUpralr0/KYFhqq7Rl1zpOjaW41BA4vff/99AMk99frrrw/5qaeeApCsI8QEiWmPlSc6J9wfNClDww222GKLkOnmUdfVySefHPJdd90FoLTPAsBOO+0U8uyzzw4gnznVa6f3F929zz33XOi0RYy6UflbxFYyQDLxg2PVYHrWLgNKbqxq2XOmhfOu56cuS9Yk0zpJmsyRx7zZomOMMcaYmsUPOsYYY4ypWcruulIXkZb1VtMizZhbbrll6I4//viQF1tsMQDJEt+fffZZyMy2UnO7ur40A6q+DIvGosdRczjbNgCla9CY70zrFD3PPPOkfm+eaA0irZ2iNYFosmX21bSfo0k6q45HNaJmdpr5Wc8JALbeeuuQudaqcUy6TjSr5fvvvw/5tddeA5DM5NPaMazp8corr4RO1zpde6x3AgDrrLNOyEVfF84lszuBZAsPZhAuvPDCoatGN2QWrFmldZ7mnXfekJnhpK4VdS3TNZT3nqLXkXWM1IWhWYFvv/12yAw3UHfWQgstFDLPmyEMQDLrLk90T9M6WpwT3TN0faWFTmhbi5VXXjlkhmyo60v/zjpQ1eQ6Vnhe6np87LHHQuY13GWXXUKXd1aZLTrGGGOMqVn8oGOMMcaYmqVsrqs0c5Vm5ahp8dxzzwWQzJrSDB2aWdnldNpj0bWwww47hG7PPfcMWUtr54maDtU02VAzopp2tTs4s620IF2lTJPMiAOSmWA6Pyzd/uabb4bu0EMPDbl79+4Aqt8FoOi5qkuAaIl2FveqZFZcQ9Fx/Oc//wlZO3UfdthhAJKm9aWXXjrkzTffHACw6qqrhk4zJO+77z4AwBFHHFGmsy4vdFdrJsull14aMrMlNZPw4IMPDrlaslp0f9F9lS5jbduhGXR0o2hWaNFj4ZyoC3HQoEEh615PdM/Xa8GQhqzu2HmibhXuc0DpntB7Sq+5zkUaGqax++67A0gWnB03blydcyiyS/u0pLWrYHYcAIwdOzZkhmSouztvbNExxhhjTM1SNosOg/kmTJgQOrYyAIANN9ww5F133RVAeolwoPTGok3d9EmZ9U369esXOn0iTgvszZvGfA/HrVauhx9+OGS+XWuAaN7j4DllNTTUt5O0OhzatC2tqV41BculoePj27Na6bQ1BuvodO7cOXRFB+Cmodf8hBNOCJkBk9ttt13o2GgPKLVb0bYszzzzTMgsXd+zZ8/Q1ffGWgSrrbZayNrOgvOqSQvaFFgtWZVG50zvM7bFAYDnn38eAHDzzTeHTi2un3/+eZ3P69+5V2dZefJsl3PssceGTu8pDUZlsLRaVtPOVe/PtEbROo4s6w//T0PHrPe5WtF4zMbsA3rOOldMHNBGs7169QqZv3XVZFFOa7A7bNiw0On+MHDgQADZ1q88sEXHGGOMMTWLH3SMMcYYU7OUzXVF09N8880XuvXWWy9kDUKje0vbNhx33HEh0/yn5nbWDgBK7hU1NxbhOlBznZoe08yoaaa5F198MWQN9kxrW1G0C07HxGBVdmkHkoFzLL2v3XeLGEtj0PHRjK46ltUHgE022QRAsjaEBv4WHfhJ9DzojgJKJmV1/W622WYh8/7SOk7aYoBd64t21+n4ZplllpDpMteO3toCg/PKel1AKUECKLnm1J2S95zyntA1p3XCGEAOlO6/jTbaKPVYaXWCdH/icfU+1PszrV1GU9DvHD58OIDkPqffqa5F1s+54447QnfKKaeEzPPWFh/a/TutO7vOn7p8ONamBPbWtybS2pKorHWA2P0cAIYMGQIg+Vuqc51naECWiy9trFnXjIHlWmdI3dxsIaTXJO+9xBYdY4wxxtQsftAxxhhjTM1SNtcVTWca3b/pppuGrHUqaDJ/7733QqclrmmmVHNXfWa0vKGZTU2EWmJeu9ayJo6a5pZccsmQ6dLTjrQskQ6UTNPVlLWk15wmce2OvPPOO4fMrDhtQbDbbruFXO62HE1Fr6+as7ku9fw1A4nj1rYl1113Xchprstqgm4czbDTTtj8u7qrtAQ/XSNFo+tHaz6xvolmeug506WirnXtjv3LL78ASF6fvPccrkU9Z11z2lpg/vnnr/N31s4BgGeffbbO8fX+5HVTd57Wz1KXX3PuUb0PnnjiCQBJd43WUdOaaDyvDTbYIHTaYodzyewyAPj7779D5n2rc3b//feH/MADD4RMl5m6npuDjlmzatk2BQA+/PBDAMmsJJ3f8ePHAwDWWmut0Gknc7rptOO3ugl13A2dv7T1py060rJxdf/UsTIbUN1Ruv7oRq+k67u6d2RjjDHGmGZQ9qaeij6969Mh35j1iZRWAABYccUVASSf+IoO8GRNh7POOit0fEsBkm//fGL96KOPQqdPv6eddhqAZKNSDfxkxVB9i6lkTZ364FxoMODpp58ecv/+/QEk3xK1JgQbhFZTZU9dXwzW1GBJWtmA0rxqU1O1iKSt3yLQt0u9/9isVedEGwgyGF5rYmnT3GpBx6fJDpwLbVqqc5EWDKqfp0VHmy7mDe8FtSzyzR4AFl988ZDZrJMV4oFkAPG3334LADjggANCxwB6oGSRVYtOHvtLWrCzWgzY/BdIegK++uorAKV1CCSvC+eP45z2/7JZpNbhGTp0aMhqPVl++eUBNL/KNy0q+p3aCHnMmDEhc3/RYHOdPzb1VFgtGSh5EnT/Peigg0JWS1iaJ6KhpNVLy0LvJTZoVSsrExiKwhYdY4wxxtQsftAxxhhjTM1S9hYQasJX076amRlMpU3ROnXqFDLNzEW4aNSdomZWNq18/fXXQ6futt69e4dMk7AGQLKOBFAyrWoA3k477RRyhw4dACRrgxTtrlJ4jdTdo+Nns0R1h+i1Yk2Irl27hq5oN49+P10DigbO03Wl60PN0NXiktPzUNM9z//BBx8M3dxzzx0ya508+eSToevWrVtu59lUdHya7MD9RZsGqmuZLiFtMaOuubQ6XXnD71JzvwYba7Atg/nV3aHtdugm2X///UOnNYPSwgCyAljLtZbTklV0T2SALlCqw/Lxxx+HTn8/eE7adkbrILH+jjZC1cQRddnpHtsceE46Dq0DpC2KiDafVjcjk3X0Wn3zzTchswXIJZdcEjpt56JBznS517e/cn7UXaV1pNLuBV0bGgDPwGttSq2hGUX8ltmiY4wxxpiaxQ86xhhjjKlZyua6omlMzcGMvgaSpjW6bDQr57bbbgt53333LddpNRo1q6m5lPo111wzdH379g1ZTYOUtdz54YcfHjLNiRdffHHoZp999jqfLzrTTNFroWZUQncbUCrhftNNN4WOtYWAZLnzakFNtqwZox2jBwwYEDJdW9r9WrMKinbDpaGdrpkVp5k86mZlTSt1x1U7Wofr0ksvBQDcfvvtqX9niX1dx+ecc07IdKNX0zyq6417kbpOH3300ZB79OgBINlCQMdSn+sgD9crz1/vM81EGj16dJ3PaNajuqboZqWLHAA+/fTTkLWmUNqx9F7mHq7Xkq7BxsBrqpl62267bcjqhqKbX38/1LUz7TGBZGgHv0PX9FZbbRWy1vTSbNHG0hgXk/7WcS9hiAaQbEFj15UxxhhjTBlplkUnrTKiNqpcaaWVQtanb75Jah0PrcPCispajbWItyt9C9h1110BJOsZDBw4MGQNrOabpNa52GeffULmtdC3tGqpNqvo/GpNIAZ+amC2PrHzumkdkHnnnTdktV4VSVZlXVY81sqrulZZ0VUb0eobWzVZ4ohe87FjxwLItqwx8Fors1YjOn8ajHznnXcCSDbC1HuNtU5o2QKSiQFpwfZFU99bsAbm0uJRdIVu3bNZG0wtT7o/6F7DKvFaB0ktFrzXdM+95ZZbQmaQvVqZtbaMHovWm+bONcfasWPH0KlFW6FVK6vaf9pcp9WU02BfbTqsa6FSa1gtdWmB9UVji44xxhhjahY/6BhjjDGmZilbMDJrFowbNy5022+/fcgaTMUS6/fdd1/otES9BoYViZoL+/TpAyBZalwDGLUmBIPE7rrrrtCpG4BmvmoyjaehplU1Of/www8AkoFu7777bsh0jajrkaZrAOjSpQuA6gr21LmgSVjN4erGZJCnBi1W41yqCVwbkNKNqkH/Otd0PzNot1rR8WnNj1tvvRVAcs1pfRO2cVE3tLq2qnEu60Nd32xQqeuziABQ/U4G29KtCCRr/+iez3nRFkH6d+4brJcEJGsG8XdHa+RoHZvGBGY3hyzXIb+zqeuMn9dxaB0spVJrWQOvb7jhBgDAyJEjQ8fQD6BxrSXKhS06xhhjjKlZ/KBjjDHGmJql1fRMd5MnT56uXU/N3SxRrrnzr776asjrrbdeyKxz8MYbb4TumGOOCZmdWPMqpd+2bdtWQP3jU9LOhZlmQNJ0zNLsWZk4eZuROb5//vmnbF+k3YM5VjUH6/i5FrREvUbgN9d0OcMMM7T6/+eU64XMOk/OZV7z2KZNm0avzzSysjro2tF6G5qVxXL0ae5WoPnjbsr9Vx86VsraNkEzUThW/Uw53agc39SpU3NdnzoPmhVIN6vuP+WkdevWDbr/0lpJqAs4K9OUay1rTnisrFYVaX9vTFsL3n957y9FUa7xZd0/EydOBJB03bGtSiXg+BRbdIwxxhhTs/hBxxhjjDE1S7NcVwrNVF999VXoNGslreDRuuuuGzotoU/TZV6ugXKZztPMpUDpvIvqOJ6H66o+03DW/yXljP6vlOuqKMrlulJ0ThpaSC4vd2seriuFY81yUeR9f1bKdaXUd8+VMwygoa6rNBriQuL/ySt0oT7sumo8afuLznUlMxntujLGGGPMv4qyWXSIvi1q4FkaaY0wK0Heb5RFk4dFp5qwRadl82+5/ypp0akkzbHotARs0WnZ2KJjjDHGmH8VftAxxhhjTM0yXdeVMcYYY0xLxhYdY4wxxtQs040WdjBdy4TBWJ6/fEgrf1DO9Ml/S7DgpEmTanJ87dq1+1fMn8fXMvm33H+KLTrGGGOMqVmmn/9tjAGQtN689NJLAIBOnTqFbt555039v6bypBUMrGTBsnJRX0G9WkdLlWT1rTLFkVUwt6FU8p60RccYY4wxNYstOgXAN5W0thEq+82lWHR+HnjggZD32WcfAMD1118fuo033jhkz1vl0bf/jz76CABwxRVXhO7YY48Nea655gJQ/fOU1cKhvhYsLR2O+9dffw1dmzZtQp5pppkqfk7/drjmfv7559Bdd911If/xxx91PqNFgP/zn/+EvOaaawIAFl544dC1a9cu9XPlwhYdY4wxxtQsftAxxhhjTM1i11WOqLlZ+379/fffAIDx48eHrn379iHPNttsdT5fi2bqrI7aRXW9nRY9v1deeSXkFVZYAQCw9tprh67o+al1d0YaumYmTpwY8v777w8AWGCBBUKnro9q5oUXXgj58ccfD7l169Yhb7755gBK6xDIr9N8pWDJBgB48cUXAQCbbbZZ6DbddNOQ6ZLUOW1JY+a9qus3bf9TF061jG/GGWcMecEFFwz5rrvuCpluKL3/XnvttZAvuOACAEDPnj1Dp67lRRddFEB5935bdIwxxhhTs/hBxxhjePFTjQAAIABJREFUjDE1SyGuqzTTnTJ16lQASXOd/t+m5OznTZobZvLkyaG75pprQh4xYgQA4M033wzd3HPPHfLNN98MAOjcuXPo8ohEbwxp42uquTzt+rz88sshL7LIIiHT/FlJ0y3N6F999VXobrrpppAvv/xyAEkzbhEutrRMHHUBZNWRoVwt5vDGoGOiCxgABg4cGPI333wDALjxxhtDN/vss4f8zz//NPq78r5WvCd47gBw5plnpp4LMwCPOeaY0PXr16/O/22J8wuU1qeuZXXz8/ehbdu2oav2sepYmE126623hm7kyJEhr7zyygBK2Z0AMMccc4RcxF7D66vZUdttt13Iffv2DZljzcqk+vjjjwEAO+ywQ+jobgaA2267DUByzM2dX1t0jDHGGFOzVMyio8G4fJPXp/Rnn302ZD7R/fLLL6GjFQSonsDCrGDaL774AgBw5JFHhu6hhx4KeYsttgAAnHXWWaG79tprQ2ZgFi07QPKNoFJvLzq+CRMmhMw6Jd27dw9dfYGBadaFRx55JHRDhgwJea211gr5oosuyjxmOdHzmzJlCgDg5JNPDt1WW20V8oYbbljn8zo/eVpM9Hu+/fbbkBm4ykA+oFQvJkvWe7IlVg6+8847Q9Z75eyzzwaQDJasz4qj1zXtM1nB8uVmo402CnnAgAEh61j5RrzXXnuFTq0bDNwt2grcVOaZZx4AwKyzzhq6LEtlNaPnzN8EANh6660BAEsssUTodH8599xzAQDPP/986IYPHx6yBqYXid4Hs8wyy3T/rnvNMsssAwAYNmxY6GjFAoBnnnkGALDlllumHqsp2KJjjDHGmJrFDzrGGGOMqVnK7rpSEy9dAADw6KOPhkwz86uvvho6DcZ95513ACRdGNXirlLUhJpmmnzjjTdCd/HFF4e85557Akiam9UNcc8995T/ZJuAml5HjRoVMk3qquvdu3fINJlnmZhphj3wwANDpyXCDz/88OacdoPJakrHwPGxY8eG7uGHHw6ZpmMNhn3//fdD7tKlC4BksHLerjeuGQ1w1+9X19Vqq60GANhvv/1CpwHg1ejG4r7y448/hu6yyy4LeaWVVgp5xx13BJB9zdOCdd9+++2QGRiq9+S+++4bch7XisdhDS2g5MIAkg1kL730UgCloFwgWYeE57f00kuX/Twrwbhx4wAAP/30U+j0XmPNpGpsBaG/fxpYroHFBxxwAABg++23D52OhfVldE+luxIouX6qaU7r29/SWhzpnqR/Z5uJcu6ZtugYY4wxpmbxg44xxhhjapayua5oDlYTv2Ydqenx4IMPBpDMOpp33nlDpplPTcTqRqnGbAI1szHzRU3PdBcApbFMmjQpdOrGKzKqXk2v2j1Y3Wl0M6rpUeFa0KyVW265JeRDDz0UQCm7AgCuvvrqkHXe85xrHStr4wDAiSeeCCDZnbdDhw51Pv/JJ5+ErG6gBx98EEDSHF0uM6xej44dO4Z8xx13AEi6M5Tvv/8+5MceewwAsPPOO4fuqquuCnmppZYCUJ2m8fvvvz90dHEDpbLyQGl96vpT1+Rvv/0GIHl/aid6XmPN+lQ3PLO6gFI2SbnmV6+53l+DBw8OmfVFuE4B4IMPPgj5ueeeA1BycbQE9Potu+yyAEouYCC5P9JlqZmamtVTZE0d3VN0z9Ssol133RVAcq51rdJl9/vvv4fuyy+/DHm55Zar8/lqJy2k5fbbbw+dzp/ua2X7/rIf0RhjjDGmSvCDjjHGGGNqlrK5rmgu1OwANa326tUr5IUWWghA0pysZrrPP/8cALDNNtvUOX41oaZDzRpiaW8116WZGT/88MOQteDZvffeCyDpwsrbTEl3ms4DswOApMvguOOOAwAsvvjiqefHY913332hO+yww0KmS0c73nbr1i3khpbobwrqAv30009D1rVKk/gmm2wSOl1/dG2ou0uLCNLNlec4pj0nZlhpppWi5dTpJtY51eKdXbt2Let5lgNec7Y/AJJ7jZag51rU/UXdxJxrdsEGSpmQQCkbhi4GAPjjjz9CrtRepPeUZmiuuuqqdc5DXasrrrhiBc6uvOhY6bpefvnlQ6fdr+l6rEZ0HG+99VbILBKr6PyxYztQCt3466+/QrfYYoulfkc1o79/GrrC1ibqblY35HrrrQfAWVfGGGOMMQ2i7HV0GEgGlIKmgORTKN/ONADpu+++C/mFF14AkHyirxb0KTWr0SifRLNKYP/5558ASkHZQNIisPrqq9f53jzeIvWcaX0444wzQqdlx7VpIOvfaG0jnV/Wj9DaQTp+tnWolBUHKI1Vg3VPO+20kPUteI899gCQ3VSWgZ9qEdEGfUVQ31ueXn/WotE6MVkNdotEz4nBmFrbiPVGgPQGgPr5J554ImQGme+9996h08DkSy65BADw9ddfhy6tRUQl0bVI65LOuQZwshFuSyVt/8xqt1NtZNUOU4sGz1/Hp3Xk2CJJrbPazqQavRtp80PPDAAMGjQoZNbUO+qoo0KnFv9yB/gDtugYY4wxpobxg44xxhhjapayu66aWvdETXs0vaZ1RK0kaeY4DWpU07/qWX9D63AwABso1Q9gF3Cg1LEVAOacc04AydodWd2TG2veS+siDpQCxM4///zQLbzwwiGraZ+BkVrb4pVXXgmZpn9ti7DLLruEzO7KlQyq4/VjDRkgGSyt59+uXTsAyWur6/P4448HkAwQ1DpJaW64cs1fY9C51nL67IStOm09UC3o+dNlpS0gtE6MulH5ObYKAIBTTjmlzudUp6493ovt27cP3W677Zb6XeVewzpmPScNwNX6TkRbQDBIO6v7emOoxsDXanZdKZtttlnIGgbAmjrqYnz22WdDZhjHkksuGbpKtpNpKDoPGhLAOk7a9kLX0TnnnAMgGeyfdx2klrFijDHGGGOagB90jDHGGFOzlN111RjUnDVixIiQmU2hrqtKmevUHKem388++wxAsm0FTXRAMmqe5nV24Z0Wuvfmm2++0LF2DgDstNNOAJK1MbQdw8wzzxxyYyPUNXskrbu6/p3ZYQAwcODAkFlrZ/To0aFT0yXr/6hrQVsk0DVUyVYePD9mfAHJTIC0OhV6LdS1xaxArX2k7gzOhbqGtP4LXXdAKVsoF3OtrOWTTz45ZF4DbdGi2ZI8l6wMkix9GuVyfbAdgo5JzflpbuYbb7wxdNqug/WPNFProYceCpmuq4MOOih0rF0D5OvOURep7h/aIiWtxYi6PugmV9dzY85Zr/Hss89eR1cp9Jx1fn/44Yc6f68WdE/bYIMNQtYWHXRpqWtK9/RDDjkEQLKOTrWge6JmVaVl67IeDpDcf9giScn7990WHWOMMcbULIVadNRi8vjjj4fMirRaDTTvt3++sWgAMCsAA6UGbUsssUTo1AqjVVrZbFCtGKwtAwBHHHFEne8aOnRoyGxap1YifftkMClQCphs6BOx/r9ZZ501ZDZy1LdIrZI8cuTIkBm42rt379BpYDLrQDAoGUjWzKmUJSfN8qDzoAHgOpb5558fQDKYnAF0QMmKplY2rZLMwFG9Znpd9U2ue/fuAPJ5o9Fj7rvvviHTEqfj41syUAqGz3qL5/zp+lVZrRKs/9GU8aVVfs5C55rym2++GTptFLvRRhsBSFbG5ls0UGomqbU90upklRNaJ3SennrqqZD1XuS+yPsMKO0ZADBs2DAAJWtMY74fSL61DxgwAEDyWqj1Mk/UyqG/BayJ9PHHH4dOrcfVEqyrAbZ6/VglWYPl9fxPOukkAMl7Mu/1Vx/8fq1mz/MEkmOh10ObButccv/IqpNUH2k1+erDFh1jjDHG1Cx+0DHGGGNMzVKo6yqrTgndKGo6z9vdQdOZmogvvfTSkAcPHgwgWa9CTccaTM2aG9roUwOXO3fuDCA5fm1gygZv2tRz3XXXDVlrnjTWjKnXUQNw2c6ApfaBZACd/l+6ATQYmY0QAWD33XcHkAzgLML0mtaCg2Z9IBmMrDUv6FLV+VXXDM2wF154Yeg0cJ5BoNtuu23o6C4BkkHmeQZU6rHV5crA6GuuuSZ0Wo6d10pN7zp/dHm9/fbbodN2LRtvvHHIrJ/UXNcVj8+9Ydrv16abdL1pW49Ro0aFfNNNNwEoBfUCyfue9ZXUdVypFiVq4lfXhbqL6HKmiw1IbzqraP0hHkv3Ef2MusnZjkZrCuUN163eM7fddlvIvC/VNazB9NVClmuGe6n+vmkdNiaJVFMLpKeffhpAqf0PkFx/Oj8MNtYWKlozril7nq5PrT/U0Gtki44xxhhjahY/6BhjjDGmZmk1PZPy1KlTc/Ex0Iyn7iqNOqd7QTNhymk6bt26dSsAmDJlSoyPmQY///xz/L+uXbuGzKwMNZGqG+T5558PeccddwSQ7E6uNXPSTHdZXdGJmu7qM/21adOmFdC4+eOcZJ2HrhN+v2aVPfLIIyHTjaemzbznr6GoCVnXn7oJOO4rr7wydJoVeP311wNIuib1WrG+iboemzJ/TRlfQ+Ba1/PQDDKazl9//fXUz9Oltfbaa4dO3XHzzDNPnc/o+uH4Jk2a1ODx8frqPOy1114haydzZgp9+OGHoTv99NNDZn0S1uYBkjWRdFxNoV27do2eP45Pa1vp/aXuJGa16J6Shq51de1x/ljPCkjOj+rp5lI3Zt7rk+etbS/WWmutkJktp3Vabr311pD1XJtC3uMjmt2m7YS4/rS2U1qdr6YyvftPz+m1114LmZnQmqmpmYzqJv7+++8BJMfEthZAaa3pnllfJp/WadN7nddIrwnvP8UWHWOMMcbULIUEI/NJTgME9Y2F1p1KVr7kd2kw4JAhQ0Jm5VGtkKtWqPPOOy/kjh07Akg+sepY0qxo+sZfyYrBhOeUdR46lvHjxwMoBU0DwHbbbRcyg9GKGEd96LXXyrJaRZZvNRpUm1ZzKKsRHWV9C6kmOC/6xs8AXgDo06cPgORbtJJm/Uuz+E2rbw485vrrrx+6K664ImStzMrAarXSaWAx3z7V4qrWY55zJeuVcHwaXKkNaHWuGls7C0iOnzTk80VcC36X3nNrrrlmyAxs1cq8utfQklot9XQagiarsGaQBt0WkcCh13+dddYBkKzWrBY3tY7S0qNW3pVWWqnOd+n+q7XF6htrVmPq6WGLjjHGGGNqFj/oGGOMMaZmKcR1RdOTBjup6Zzl3oswl2oAqZZj33PPPet8JivoLc0N1NJRNwVL02sJdm2gSNdPtY8/y+zJ8+7Vq1fo0gLjq3189VFf7ZWssuz8XN61Zab33QCw4YYbhqwBihMmTACQDIBUMzpN69pWoloaROr4tM6N0tLXXUPRPYdtE4BSMkBLvw56/uq6WmGFFQAkf4sqhd4H2nzz2muvrfN3rS2mbq60RtP1/Zbnff/ZomOMMcaYmsUPOsYYY4ypWQpxXdFkp1HzbIsAlKLOizaNK1pfIO3/tqQI/+bC+jGaaaVR89XiBmguOo5aGVNjaElrWrM26QZfeumlQ5c2l9U+py3p+ueBzo+6kceNGwcguw5LS7lu6rq69957Q95///0BJEMjil6rdKOpOzurDlMRv9v1YYuOMcYYY2oWP+gYY4wxpmapmOtKXT80PQ4fPjx0t9xyS8jVYnqslvOoBtQc2aNHj8S/QHJ+fd1MpUkz7bf0rBxTQjOQ0oofFu3aaQrqBho6dGjIq622WhGn0yBa6t5ui44xxhhjapaKWXT0iZvN6LQRpgYj+02suklrOtpSn/SNMdVPLSZ+6D6qiR38rdTfwayaVqZh2KJjjDHGmJrFDzrGGGOMqVla1YoZ0BhjjDFmWqYbozN16tSafApq3bp1KwCYMmVKTY6vTZs2Hl8zYKEu9aFr1lneGR4c319//VWT8zfTTDO1AoBJkybV5PjatWvXCgAmT55ck+Nr27btv2L+vH/mixZETNtrm7rPcnyKXVfGGGOMqVkKaQFhTDWgmQya4fDAAw8AAN56663QbbXVViF36dIFQMus3WGMqTy611DOyqRiOEktZZqljX/UqFGhe+GFF0LefffdAQDzzDNP6Jq719qiY4wxxpiaxRadHGCVYH2KTXs6t0WgWNQv/MEHH4S83377AQDGjx8fuuWXXz5kbWDakkmrhwS0nHWp95dW5q7vjZlUMu7KNJ6s+eW61TmrxkaSWevvyy+/BADccMMNoWOjZADYYIMNAAAdO3ZMPVZLse5knfNdd90FADjooINC17Nnz5D79esHIGnRaS626BhjjDGmZvGDjjHGGGNqlkJdV2o6TwtWUjRYtEjTXZY5Vfniiy8AAFOnTg1d27ZtQ55zzjkBALPOOmvodHw0yVa7iTLL9dGUz2eZedPKoZfrO7///vuQDzjggJB///13ACUXFgD06dOnzjm1VHgNPv/88zo6oGRGr8Zx6nnqmnj//ffryBMmTEj93FxzzQUAWG+99ULXvn37kKtlf6n2+z8vuK9OnDgxdJoY8N133wFIupCXXnrpOp8vupWQrrmffvop5L59+wIAPvvss9DpvLNF0qmnnhq6rbfeus7/rfb1ob+PY8aMCfnAAw8EAGy00Uahu/baa+t8rpz7jy06xhhjjKlZ/KBjjDHGmJqlYq4rNc1NnjwZAPDRRx+F7r333guZZi6Nut5pp51Cpmm9kqa7NNfKyJEjQ77jjjtC5vlrJoC6rhZffHEAwMILLxy6nXfeOeSlllqqzndWaqwN+R7+n6+//jp0f/zxR8j1ubR4Xa6//vrQqRvpr7/+Cnm33XYDAGy22Wb1nldD0HN7/vnnQ37jjTdCXmSRRQAAgwYNCt1MM80UctEm8eZy5513AgB22WWX0Gn3ZJqRq8mNkuZuGzJkSMhjx44NeZ111gEALLTQQqFr06ZNyPfeey8A4PXXXw/d6aefHnIRY03LxFTTf9HXP290rJzj4447LnRPPvlkyH/++ScAYN555w0d5xwo7Rm9evUKXaXcsLq/6J6oY/nqq68AALPMMkvo9PyY7XnGGWeETt08/Fy1rgnO5bhx40K37777hszQjTPPPDN0rVu3DjmP/dUWHWOMMcbULLladPSNUIPJGPj54Ycfhk6tHwzi1WDed999N+Srr74aADDzzDOHLu+nW/blGD16dOh23HHHkKdMmRIyA8d69OgRurfffjvkYcOGAQAeeeSR0LG2AADcfPPNAIDVV189dHnUidD5oXVG3yL0yTrNoqXX4scffwyZbzX6eZ1Lvl2rjgF4ANCtW7eQO3fuDKD588vzV8vRbbfdlvp/Wd+hQ4cOoavGwNz60LdLtZjuuuuuAJIWnZdeeinkgw8+GAAwdOjQ0KlFslJvkmnnv/3224euf//+IZ9//vkhzz777HU+r311evfuDaC0jwDFvB3r+fHt98QTTwzdrbfeGnJaskJj0Ps37f4sAj2nN998M2RaF9XKQyskACy66KIAgPvuuy90KnNd33///aHr2rVryHneyzqn+vtGKyJQWot333136JjAAgBHHXUUgOSe+vHHH4e80korAaiuPUnnir8leq+q9f/BBx8EACy44IKh09+CPLBFxxhjjDE1ix90jDHGGFOzVMx1ddppp4X82muvAUgGCKrpmGYwDVB6+umnQ2Z9jMUWWyx0eZhh1dzNwMXBgwen/v2kk04KmcFwGlT722+/hUyX26RJk0KndRZ4rdS0vsACC4RcLpOlmhvpLtMA4awAMX6/jj+tQaYGW6+xxhohL7HEEgCSwYJaAl3dWFwX+v1Z9YumB89P19FDDz0Uspq26RJRM3S1Bv41FG2gd+SRRwJI3pOsHQSUAv+19sXaa68dchGuK7oh1LW68cYbp36O61PXpN5/55xzDoBkAHbRgddc0+rOPuyww0I+5phjQp577rkB1H+eev0YwAuU3CBMetDvzxs9J60jM2DAgJAZRH7JJZeEjnsGUBr3IYccEjo2ggRKIQWnnHJK6G666aaQdd8q91zr8WabbbaQ9beO56ehDequ51p/5plnQldNbiqic6mup3PPPRdA0l2ugcfdu3cHUNm2HbboGGOMMaZm8YOOMcYYY2qWitXR+fnnn0Nu164dgFL0PJDMoCIaaa4R6D/88AOApOuqXKg57tdffw35+OOPB5CsvbLDDjuErCXITzjhBADAY489FrpPPvkkZJpOtXsrxwQA1113HYCk60rNsOUyY6q5XmsaEc4TkJwrug/U3aTnRFlbXLDsPpDumkz7fDmhSVnXkZqZ55hjjpDVtJ0G10hjXFtFZLjodVTX1UUXXQQgaTrWmh5bbrklgGRHd3VdVQo9f7Zr0C7yes3TXN+s1wWU7kmgVMdqk002Sf18EXAtqTtba3O9+OKLIdPloVmZK6+8csh0kzz77LOhu+qqq0J+5ZVXACQzWbVTdh73H/cavQ+uvPLKkDUbkuPWPVXnMu081XXCbEndczUrtr77uzlkua4OPfTQkNlaRvc/trUASi1M1IWvrvWis+XS0LXKeaWLHAD23nvvOp/JaqeUVlOqufenLTrGGGOMqVn8oGOMMcaYmiVX15Wam7Sg17fffgugVLgLSJr5GI2/7rrrhk5dX2y9sOqqq5b5jJMmNC0RTzOwumO0SJUW/KNpUYus6VgZdb/tttuGTt1cLGSnmRJ5QzOiujM0U0qj5mn6V9NiWkEynf80M2Qlo+45Jw888EDoNBNCS6xz3vSc1U31yy+/ACiVcgeAv//+O2RmMKm7r1OnTs0bQDPRtch7LWt+6EbQzxSBnhOLpGWh7gjuFSeffHLounTpEvJee+0FoP6y85V0Z3Gs6oK5/fbbQ9a19OWXXwIA7rnnntA99dRTIdMNou4edQPRTT7jjDOGLu+x8vh6H62//voha0E9uj7Uta9ucs6VZlAeccQRIbP43mqrrRY6DQ3QbNByj1vXrLYw0vPjd6qbUluQ0GW8yiqrhE7XapHo7yNdbECpyCFQyqrSrDjda4lmQurvH8MI1lprrdClFaxtDLboGGOMMaZmqZhFZ7nllguZAYX69KsN0BjsyuZmQPKJjk96+nRZrgAtPWc2HwNKT+dqZdEAzRVXXLHOMdJqxwClEvX6FqpvGbQaaQlxWhGApPWrOYGDOla+8eqTt9ZB0NL0tMToG6MGk2+66aYAgC222CJ0RbQQ0DXDIGQtRa5/T2saqm+f+vYxcOBAAMCIESNClxZMrQG+WhOEgbXTfq7c6Pj0XBiM2qdPn9Bp4D0DlzUAvmjS1oy+EWuwLt8kNcBemwoyGFStPDonbOqqa1qvZbnmTMfEBpVq+dM50Qal888/P4DkG3/aXqqNaHX/YB2ytLfsvNEx6/6ollZa4vr16xe6FVZYoc4x9P7T63bZZZcBSK5v1h4CKleTRseaVgdMrUza7oNJNtq0tlJ1jrLg+leL4zXXXBOyri+2kNEEFL3mtMSdeuqpoXvhhRdCbt++PYBkI9dll1029VgNxRYdY4wxxtQsftAxxhhjTM1SsTo6aa4lNcdpYBmDcdVEpZ1QWS47DxOkBsgus8wyIT/88MMAkuZe7b6qbo7p6YDSeev5a30XmuTV3JpH4KB+P2unnHfeeaHTOhRa54JuNq1posHiBx54IIBkMKUGhtKNmXc9CHU3MHBYr7NCd6J+Ts20amZl4Lm6HjVInS49db0ee+yxIWtgLd2jedYuAZLBkGwnoOuTbVmAUuCnBrBWS52ZiRMnho7rDEjW3GI7FnUX633NYF0NJr/gggtCZn2ZrbbaKnQHHHBAyOW6F/WzPKa60LQdxIYbbhhyfXsNTf+6Pl999dWQP//8cwDFu0P0+3Wt8V7beeedQ6fdyxmYq3VmtMUDW1vUlwxRSXSsDH/QBA91M1544YUAksHaulcWcf5cX3rPsAs5kHQTcq3qOd94440hs7WJhnswQQcozaUG26vr0q4rY4wxxhjBDzrGGGOMqVkq5rpS0szQl19+ecgs161ZT/vvv3/INPPl7fpQEyFrx2T9PY2s80tzjWgnbV6XLNeVljNvDnr+dMNpF3btLty3b9+Ql1xySQBJ07HWkWE2hHYU1joR7JCedyZW2vx17tw5dFoCX7u2H3744QCAd955J3SaFUH3pV4TZvIAJTeIZoWoG1BNvrvsskuDx9NY1MSrdVhY00o7Rv/0008hM9tB3SFFl53nXKqJX03/mlXGOhxZJm6azNW1x9o6QGmuzj777NDp/qRdxXmM5q5fHkezL3VNaoYjr0HW+NJK6H/zzTchs7VLlmu9Uuj1f+ONN0LmvcR6QUByrskVV1wRsmaocfxFr1m9vjp/bCek88tMVQBYc8016xwrrU6ZktUOpdz7qmbifvrppyFriwfei+zCDiR/v5lNN3jw4NANHTo0ZI5Ps5qb69q3RccYY4wxNUshFh0GBuobE6sdA6X6FfoUzwBkoJgn9bTKno15ytQncgYJqpWAAdhAyZLDAGEgnzGnBUPus88+odPxpTXCU4uUVu6kpUMDDNVixQaDGkyaBzo+BhurBUXfzM8999yQWblb3xLVisY1oG832oCVgZ8652qJSLMO5o2uH9ZhUeuB1pxhHQwN0FXrXaXqkCicS11nWltGz6m5Fbe5bnV96Bunrvty16LRAFwN1tRx1/eWznWn10TXKoPNG9OUtlxoUK42HdVxc6098cQToaMVGShZvG+44YbQqfW1Z8+e5TvhRpJ1TXX90DrI+xBIWoR5r7LCOpC0uHIv1dpeOmatwp9Wpb45ZP0O6VqjRVSbeupvAROL1KKjdZRYZblXr16px28KtugYY4wxpmbxg44xxhhjapaKua7UjM9mmGzeNi0MXOrfv3/q54toIUCTnZoQ6ysrrmZMNafTtaEBumoOZ7uFrBLveZB2TdXMXN/31/d5DcbT0ueVRuuRaCPBMWPGhMwgQT1/lbkuNFhb67jw/2qANmvXAECPHj1CLsJlQDcGg1KB5PmzZonJ7BK3AAAgAElEQVS6rtKCQSsJr7kmMOj9pXWMmnN8APjrr78AJN3JLMsP5NNgkfdXhw4dQtexY8c6fwfqXzP8u84521oApTo6epy83Vg8/rhx40KnTTv1mtKlr+es88MWJrqPaB2sIkhLMFF3DNtSAKUkDN3f1fXG30W60IGkG52uIf1N0WNp/SWGgZRrTnVOtMWDNrgePXo0gFJzVSDppttjjz0AJH8TtOk3/67hEnZdGWOMMcZk4AcdY4wxxtQsubqu1ByqJudLL70UQNK0r6ZHdpLWOivNzaRoCmr6HT58OIBk7QM1R2qdEprZaAIHkiXMTzjhBABJc+SgQYNCZk2CxriO8qCh2R1Acq7ZLkJNy2lZZ5WE148ZJ0Ap+wtIlvinaVzRrvUci9Y20rlip3sta05zLND0zL3moNef9S00k0VdP2uttRYA4OKLL67IuTWEtBL0N998c8jaaZ37Rn11rHTOdH+hS/n5558Pnbo585y/ctZA0TnXdT927FgAyeuTd02dtExbtuIASm1VgGStK6J7JX8/eJ8ByUyjIvZKXj/t4q3uXnaUB0puOs00vvvuu0NmJp/uk7o+ue+om5O/mUA+9cl4HP2d09o42jqIv+t0mwHJrFVm5arrUruT81qWcx5t0THGGGNMzVKxV2t9umUwrj6xaeAxn+6KrmypT8NsEMi3IaAUNAwk6yAwYFktBgzQAkpBWFonR5+O+cRf9PgVfTtMC7bVwLmBAwcCAD744IPQaQAurRtFWDb0e7QOi1rcWDFZg+WGDRsWMt+0dP7UusO3Zw0mzTqHSqFrmfU5tPaGBoOyvom+JRaRDKDwmmmjTkUrs7IpolZWTwvm1fWp1itaYrWyq1q8ipi/pqDzpIGhXNc6p3mgx2fNFw3Q1ea2WmeFTY11T9Fg1eeeew5Asmmw3mtF7JtcE7rmNt5445A18YQ1tTp16hS67t27h8x7cZ111gmdViFmg0v9u1p31FJZ7gbQWjfq6KOPDlmb0bIB9sorrxw6bfpJS09WsHEuwfBlP6IxxhhjTJXgBx1jjDHG1Cytpmcmmjp1aqNtSOqOGD9+fMirr756yAxC0xLPt9xyS8gMMsvLRNy6detWADBlypTpjk9Nr5SHDBkSOg2s0wAwXgN1fajpm60PNBhLg7Gba3pt06ZNg8aXRlYwpAaTP/XUU4l/gWQA71tvvQWg1FwRSNZMosunqQHmzRlfFmlzXV8jvSxzK+WmmmA5vr/+H3tnHW5F2X7/5XV9FezGLkQsLMTA7uYVO14DEwxMMLCwMMAWAwUVO7DADnjtwBa7we5CwH9+//zWvddwZtics/fs2WezPv94Xw+eveeZ55nZM/e6Y+LEqs1P3cRs3PrTTz/FGMuyA8CwYcMS/x9Q3RYQs80220wAMGnSpGbPT9dEa5ZoMD+DiLUEvUpeTCxQOfKAAw4Im60ftFFoc+bctm3bmQBg8uTJtdf4kN5oVM/PSy+9BAAYPXp0jDWnjk6bNm2avX48fyrhaNsUlbF4/3/00UdjTCUh1ndKa35ZDbh+Lbm/ZCXgaGA75R8N7NXAakp3Wqemmo08q3X/zLo/pgUTp10/eUngnJ9ij44xxhhjGhY/6BhjjDGmYam6dKWodKNR5SxBz+hsIFmaP++o+emVrhS66XROL7/8ctjqmuS8NGule/fuYbN7tUbHV3POLXFN8lhYHh4Adtlll7C///77sClJtmvXLsbUtcwIe5UONCui0podeUhX9UQe0pWec0rH2pbinXfeCZvSFbM7gOruz0qkKyWrxQprsmhHepWGO3fuDADo1atXjKW1G2ipRFe0dMXzolmRmqGz7bbbAgBOPfXUGGuOjNAS6YrnVNdJ5W7NcKP0rXLWMcccEzZb7+QV2lCJdKXo/kyrHZYl7ZTbf5VKPjPK/VOxR8cYY4wxDYsfdIwxxhjTsOQqXanrbtSoUWGzoN5uu+0WY1pwLe+CZC2Rrki5TJzpgS7JvKPOK5XmtCw5O+YCpQyzbt26xZgWrJp77rl5HDFWzYJQM4rrtZrSlZKWVZa2Jnntz2pJV0radZmViZJWKK+arRfqRbrStiUaOjB8+HAAyY7XmsFWjpZIVyQtu7G55F2wsVrSVb0yo9w/FXt0jDHGGNOw5OrR0c/WEvN8km/OW0Q1qcSj0xqo1hN72popGqCadwlvZUZ5I8nLo1M0eXh06omiPTq8VvX61BYQrInUUi96JR6d1oA9Oq0be3SMMcYYM0PhBx1jjDHGNCzTlK6MMcYYY1oz9ugYY4wxpmFpWq5RKCqYLm8YTFdpsHW9MqMEWzsYsnUyowRDNnoweaP/PjT6/vznn38acn6zzjqrg5GNMcYYM+MwTY+OMca0VrKK09HOKhJY73GL5QrtTW8hvtY053qkXOFJUz/Yo2OMMcaYhqVuPDraToGdtLNK1LMDrp+ei4Hrot3Xm1PO3etn8iStNYu2Q/jjjz8AJAvmsW1Ja4CFANM6XgPAxIkTAQCTJk1K/XfaOue07tp5o8ek38/7gnY6b85nTf051STrN6ml7Swamazzk9aCJq2Fi+5vLX7ZkvNuj44xxhhjGhY/6BhjjDGmYSlEukpzN/30009hf/rppwCS/VmWWGKJsNdee20ASekk7462eaAudj0neXc3bwl6rOxR9vrrr8fY+PHjm/yNHv/8888fNrsmt23bNvX/Naa56P6kNHXbbbfF2MMPPxz2Bx980OTvR40aFfbyyy8PIFsaqtW9Rr9zypQpYV9zzTUASvdJIHktvfjiiwCAcePGxZhKQ5QBjjvuuBg7/vjjw27Tpk3Y1b4us+Y0duzYsOeaay4AwAorrBBjKl2kfVbav6dJmC2F35W2DgCwww47AACWXXbZGGvpPuFxl5tfvcI9kyZHAcCvv/4KAPj5559j7Icffgj7m2++AQB06NAhxlZZZZWwWyIT2qNjjDHGmIbFDzrGGGOMaVhyla6yXEx06X3//fcxdtVVV4V9/fXXAwB++eWXGFPpY6+99gIA9O/fP8Y0g6Be3Hw6f5XZeHzfffddjH3yySdh03W+wAILxFgR0o66G7/66quwTzjhBADAc889F2O6ljPPPDOAksQFAAsvvHDYTz75JIDyrum8yXINp2V7qOufdtFyaZprWPdJNV3n+llFyoxZ7vDff/897AMPPBAA8MQTT8TYZZddFna3bt0AADfeeGOM3XrrrWGfeeaZAIB//vknxuhuB5J7Oe28Vwudn0pvAwcOBFCS6IDk/uX+TJOrgFI21v/+978YO+qoo8LOU1LOuqfsuOOOYR988MEAgAEDBsSYHn/a78rNN98cdteuXQEAK620Uow1J4MrDR73W2+9FWOnn3562IsvvjiApHTVks8HgI8//hhAUtpZZ511wq5HmT8tE0rX6b777gub193nn38eY7qX+bu4xhprxNjdd98dNs81MP33OHt0jDHGGNOwVN2jk/UWqE90tF977bUYmzBhQth8+tY3C32ip8dHA5j0jU09IUV6CvQt4u233w77wQcfBAAMGTIkxn777bewt956awDAHXfcEWPqEcrziV7XT99i9Y3vqaeeAgAst9xyMbb//vuHveGGGwIABg8eHGPPPPNM2Pfeey8A4MQTT6zWYU83uiefffbZsNWj+OqrrwJIBmWut956YR966KEAgM6dO8cYvVh5o29+uv8ZYNupU6cYm2+++VI/I+0tSPcXa8689957MUYvIwDMMcccAIp/s9Sg4j59+oTN9Rs+fHiMqceAng4du/jii8Pmdfvnn3/GGL0MQNITtNBCCwHI51yox1cDX3l8q622WozpupeDf7/RRhvFmNYUynNd1cv05ptvhq3JKOq9T4P3KNYLAoAzzjgj7Pvvvz/x/1UTDQDXa7HSOkR6/fH4r7322hi7/PLLw952222b/H3R12LauVbv17HHHhv2vPPOCwBYZpllYuz5558Pe/311wdQUg6A0j0HaNlc7dExxhhjTMPiBx1jjDHGNCxVk67oulK3OF3IQFKmYJ48XVQAsO+++4a95pprAki6Ni+55JKw6ebT2hf6veqGZuBg3oGj6sZkrQUGDQLJwOmNN94YQFLuufTSS8OmJFF0ALJKFy+88ELYm2yyCYDkMbdv3z5syjiTJ0+OsTFjxoS96KKLAsgup54nI0aMCFvlDspRQEmm02D4gw46KGxKb7q/O3bsGHaee01d5Oru3X333QEA22+/fYypi3uXXXYJe8EFF2zyuQyABIALL7wQQDIA8Lzzzgu7Z8+eLTr2SuA1rxLH4YcfHra6yRmYuuWWW8aY7i8GyXMfAklplt/Fei4AMM8884St+7pa8givO23bcOWVV4atMv/qq68OICkNr7zyyk0+s1zTTh3LKrFfLTg/lejvuuuusFWaYJ20rOuI55whAEBSZuS65TEPTcBQ0toWtRR+loZzjB49Ouytttoq8f/VAzrvb7/9FgBw9NFHxxjXFAD69esHoBSCAiRr5lCmUzlW92dWfatpYY+OMcYYYxoWP+gYY4wxpmGpmnSVVmdgt912a/LvQCmDQN3ps802W9jMdll11VVjTDMkPvvsMwDJTCt1Y3bp0iVsLW1ebdR1+NdffzX5zltuuSXGzj///LAPO+wwAMkWCiq3ffjhhwCStWm0dkCtZJ4styDbcSy11FKp/y9d+yNHjowxdU3S9ap7Iu/sOLo7mTEGlOqtAMApp5wSNqU3SqxAcq2ZFafSRxEyY1r336effjrG1NYMjhVXXBFA0gX8xhtvhE3pVDPJZplllrC5bnmvWdqeOvXUU2OMrQ6AUu0bANhmm22afFba+mimkdZ0mtbfAMl9oddAJXCuvLcByRYWeqy9e/cGkMy60po/tPWemtYup5YZqfx+bevzwAMPhM0WCkBJ5sg6Pq6L3jP1Ps97TR7z+/rrr8PW/akyd9q/N+f+sNlmmwFI3l9UxqK8WWkmUjXRuVKeVBm2b9++YVOG0zACzXqlZFVpx3LFHh1jjDHGNCx+0DHGGGNMw1KRdKUuJJZwVhe5luA+7bTTwma2VZZrj27qRRZZJMYWW2yxsFm8TMu2q2tWMzOqjR6zRvqra47R5Cqt0d0MlOQ9zURTGYGu9znnnDPGinBN6jnVef/4448Akq5JdaNSMtGsOJWumDlUyzmxSJrKgZppk1YuX9dXM21Y5r1WRdYU3SeUEIFSVpjKvdpWhGsGJGUqotIB9+f7778fY5pVRukqKyumWudC9x+LO2oRwF133TVsvb7SMkDLHafa5bpeq2TGdgMtQb+HxQGZkQIk21osueSSYVMmueeee2JMs+ZeeuklAMCmm24aY+3atQubhT41qyXv/ctrSjM59Z6iWbWUTLPaNvDv9PfhP//5T9g8r5W2fUjj5JNPDvvll18Omxm2ep3o3kjbazp/lR4fffRRAMkWOpp1x6KFzL6rNzgvLbj6yiuvhM3fRb1+df24VyqVqxR7dIwxxhjTsFTNo8OnWy2PrgGCbAsAlN60mvPGldZUUD0eGriUFhhWLfQtc9y4cWFru4bjjjsOAHDIIYfEmDbQYzl5LSeuTdsGDRoEoFQqG8jn7SQNPc+rrLJK2BrgySBj9Vjp0znfelhPCEjWoeG8atkUk3vmo48+ijFtoaAeHb5dn3POOamf9dhjjwFI1nFhKwD9rjzQfaDBqFwLbZuiXih9O2RrDw021sBV1snRpovqUeC6ZjX6VE9FOe/I1Oj/r14orsXSSy8dY3p/Ue9atYJQ04K9p7YrQc8f7x9aG0nfiMePHx/2EUccASB5zmefffYmf6eB92zrAZQ8OWw1ACQ95nlclzxnWV5qTSbh/PQ8615lM0i9fpU8rj9+pl5zWqeJ98Qjjzwyxnr16hX2TjvtFLbWZCJDhw4Nm4G5aYoJUKpJpsdSRE2yrO9h4oJ6qc4+++yw+buiCSB63XP/VbOFhz06xhhjjGlY/KBjjDHGmIal2dKVupjUHcraONrl+YADDgi7XDnycqgbi8eg9SzUXd2cTr6VoNKMnhfWCWArCyDpemYQL9tTAMDVV18dNmWQ6ZGrOO9qufmy3OEaOM36Pypd3XnnnWGz5sN///vfGNtnn33CpvxXy2BkulPZvgJIyo3a6VsDIwnbIgClwFdti6E1oWpVn0RlVNq6Z1SOU9c/S+RrsLW2e2CZe5Uw1M3MOhkqbWkwugZ577HHHk0+a1roPtb7C+uvaLB1XnWMeAwq/WkQex7w+NXdr+dC6/xwrfU+p+1k2P1bj1/bRbD1gspFKsPmAeeidYf0nqn76/HHHweQ/C3ZYostwmZ9IbYaAPJpy6Fw/6o0rAk2XJOHH3449d/ZlgQode3OqmOVtpf1+uW1qm2T9P5VRJ01/U4mA2ltubnnnjvsAQMGAEgGk+s9M4/1s0fHGGOMMQ2LH3SMMcYY07A0W7rKKnvNTBV14VfqTlPX5sSJE8N+9913ASQ74WrX5o022qii750W6m7UmglaB4BdrTVrRGUudo/WFhEaQV9OsqpVhL26E9V1zk7Z2p1dZUTWzFHXrbpea5ltRbiXmNEBJN392q6kW7duAJLudJWBKHkNGTIkxli2HSi5afN2ITfn83X/MTNS67Botg8zsHSfvf32203+nfsAADbYYIOw9bpo7jlIKyUPlKQJlUA106qaWYncK5qhp7VzVMasBJ3rfvvtByCZVaaZcFqTjHtR76+aocVzrntWsya5f2vZAoLfpdl7w4YNC/ukk04Km9liTz75ZIz1798/bM5V56wy6rrrrlulo25K1v3/iiuuAJBs1aNyMNv6AMn6VCRNhma9OCBZE4uhAdqOYoEFFkg9xmqTlV2pMjOzIfX3j3KqfkYtQxfs0THGGGNMw1KRR0frGPCJWivg6lt8c7wUfFLUJz6tDMkgLH0K1qZgWv+l2k+3+nlaO0Xf7vl2rB4DffvisWpgbHOOU88Lz3EeT8d6fvWN4vbbbweQfOPU4y/CY1MOnp+VV145xjQYU/cqPTJpjSyBUuBmjx49YkyDsVk/o5ZvzOVIu770XPz8889hs7Ekm38CySrkrAOigZlZHrvm7gU9z9rgkvcavb9Uc8/rXmdF4ssvvzzGNPCZlbErPQb9W94f1COupO0l/Xv9d85F36g1GJY1lfT6zRseq36nJiuw0S9QCszVpqbqPeH9RytH616u1f1HzzmD8c8444wY69OnT9is/QOU5qfXpB5z+/btASSDrU844YSweS6vvPLKGFPvOpMNpv7cSkjb53r8Wj+Pv9XqhWO1ZwC46aabACRVDL3X5vFbZo+OMcYYYxoWP+gYY4wxpmGpqAWEwmBHNpQDgO7du4edlhufFVTLYCsNVlObAV8XXXRRjGmwXq2CnNTNrnU2zj//fADJYMARI0aEzSCzrBL6zaHac80KNj/11FPD5vpoYK9KW6yDodIQ214UjZ4vlSPS/p+sFiRsZ8J6GECpLQQA7L333gCStWWKaMqq36nSDANf9d+1XP0HH3wAILlm2kCU50L/vlrBwPqZ+p2UdnSfaR2ZcgH6afcfPScqw7NmlNZE0XYJWsK/knUtJ9eX++y0svlAaf20hQlrIwElaWTbbbdN/fs8yfoeDaaljKUB1BqYznY6Kmfp/b9W7XIUzkv3lNaOWWONNVLtNLiu2iJIpWFKjw899FCMaZhEWrulSuFezUoWuPfee8Nmg+BDDz00xrR+En8ftSm0Sld5YI+OMcYYYxoWP+gYY4wxpmFptnSl7lTteEs3skZX00UOJLMl6E7TTI8bbrghbNZ50Ej1tddeO2y2m9A6A+quzFMmUDlK3ehaU4Q1hdTdnZYVUIScUQ51hz/99NNhP/LII2HTtdy3b98Y06wzuvzV9VqPNOf86//brl07AEnXusp07A6e1am5aHgsWvuCbT2A0h7X7sy1yqrTTBatKdO1a1cAwMUXXxxj6g7X6yvNDa7HTNe/ZlWxLQJQylbSrB9+P1BZOxu9vnifAEptR7RemLY90HL5/E79+1GjRoU9duxYAKW2GVPDbCfNGi16f6btKT0mve+yDplKJ0UfP6m01RFQOhdak0e7ojPbStuF1Equ0/2r14zWCTrvvPMAJO9/utcorWqLCM0UywN7dIwxxhjTsFTk0dGmj3zLZVVgANh8883D1iqWfGLVRmx8CwZKQaJjxoyJMc25Z8AX38xqAZ9k33nnnRjbaaedmhwTAIwcORJAsqmnvqnWy9tHGmlB4VPDtR46dGiM0csGlIJwdf0bCQbk6Vs+K6MCpTcWrQJbj+j1o95Vzk/fomuFvtlrNdVzzz0XQLLeijZ91HEGZmrT3GeeeSZsVt7VxAltkNivXz8AyTfqaiQOAMk3Yu4ToFRbS4NONcBT14LHom/x2qCV9yKtEKw1a3bdddcmx1KPta8UDYKlrb8/jQT3l+6FAw88MGwmPqjHXX8/82iKmfbZWsdI4e86m3sCyTp3vG9qsHbe2KNjjDHGmIbFDzrGGGOMaVia7ZtWF6cGG/Xu3RsAMHr06BjTYEe16ZKbd955Y0wDlxnY27lz5xjLqmmSJ+qmo5v/kEMOiTEN9tOaBl26dEn8TWtC57zWWmuFrW5itgNQ17muJeuQaIuLepbrWkpao7rWhEoXKr1yXYuek34/kxnuu+++GNO2MCqZM2BZA6y1qSkTG7RthwZeUybKo4WH3ru0xQbrGLE8PpA8Zr2X8DMoIQPJZAjWHNI6JmnBzPUuV2X91jAJ5YknnogxDeJma5Ki92+l6Py1dcZ2220HIBmAv/rqq4edZ+sZ/WzdcxqYzPu/7k9tkEsZS+eU91rZo2OMMcaYhsUPOsYYY4xpWGaalsto8uTJ0/QnpXVfZeduIFnnQd1wzIbQEu4qfdCNXo2aBGm0adNmJgD4999/p3t+dB1rps0ee+wR9rHHHhs2Xd9FuU5nnnnmmQBgypQpzT4AlTO0e+7w4cPDZs0OrY1w/PHHh03JSz+rmswyyywzAcCkSZMKOcHcF1rHQ6UP7uvrr78+xppzLtq2bdvi9ZseePzqhlaZgy083n777RijHAJULnlw/ZozPx6zSmyKlpPntapyhkKXucoh1cyK5PwmTpzY7PuLZrKUOw7NxNJ2IzxHeq6qKVPNNttsMwHlfx+qic7lzTffBADcc889MdajR4+wKXO2VMLh70Ne11+lcF66f/T8lNs33J///PPPdM8v7TP1nqYyMjupa2iD1lzj70NW25ZKs8ZmnXXWJh9gj44xxhhjGhY/6BhjjDGmYalIukp8UEp30ywXVNp35iVTpTG90pXCY1IXOaP7gaQbr+ho/0qkqyyaI73knc1RtHSVhrYTYAaeluXX4l/lyFu6SuO9994LmwW/Vl111RhTmaRa0k6l88u6v6Tdi5S8s46mV7pSyh1zOcrdU6tJEdKVknYvquZa1rt0lbZHmrPWLZGu0r5nen7rp/UZ1ZSrFEtXxhhjjJmhqJpHpzXREo8OyQqgqify8OjUE/Xo0dEGe7Q1gLc5FOHRSQvyzaseR7U8OvVKSzw6rYmiPTp5U+8enUqpxKPTGrBHxxhjjDEzFH7QMcYYY0zDMk3pyhhjjDGmNTPNXleNrsE2+vwaXWOupxidasIYnUbfn55f62RGub+0JIazNcAYzkbfn4qlK2OMMcY0LM3uXm6MaQyy6mCk1bTQOiWWu2tDuTXJygCt967kpinl1rqWdeZaQrk6OEXfX+zRMcYYY0zDUjOPTtoTXVZTsjT0KY/1PVrTm4vOlZU9tcJnWoNUbYpWK7KezNOONataMo+/mo0STWWkXWs69tdffzWxdX1nn332sGeZZZbcjnNGR9dEr/+DDz44bFauPuaYY2JszTXXDJvrk1cdJFMZvP50fbQOF68/Np8FkpXJWWW96Gr8ab9Zamf9+99//93ks+aee+6wOa9q/r7bo2OMMcaYhsUPOsYYY4xpWHKVrrJkkF9//RUA8Mcff8TYu+++G3aaNLXIIouE3alTJwDAHHPMEWP1FCxZrsHpDz/8AAD44osvYuzzzz8Pu0uXLgCA9u3bx1jewWg8vqygxh9//DFsHv+XX34ZY23atAl7ySWXBAAss8wyMVbNppBm+shybb/55psAko0877rrrrAfffTRJn9/wQUXhH3YYYcBKL4dih5fmrSadU9oLZK3nt9FF1007I4dOwJIrsmss84a9sCBAwEAiy++eIzV0/2xUsoFvtbj/PT8//zzzwCAl156KcauuOKKsJ9++mkASTly2WWXDXvDDTcEABx00EExpvfXPNFzTwkVAK699tqw+Vumx6TSOJseK2eccUbY++67L4Dkb0ql16w9OsYYY4xpWPygY4wxxpiGJdfu5epOfv7558Omm0qlqw8++CBsZhvosWlU9lprrQUAOOmkk2Js9dVXD1uj1dPml0fl0rSsKnXXDRs2LOybb74ZQEnCm/o46XJWF59mvZRz401v5dK0qHh1Qb7wwgthT5gwIeyvvvoKQMkFCyTXul27dgCAQw45JMY0Q4RZBy11MedRGTlNZiyX1ZB1/JW6WSupjKzzmDhxYthDhw4N+7LLLgOQXFN1Ey+00EIAgO233z7GdC1XXnllAC2XU1ty/XFemon0ySefhH3PPfeEPX78eADA+uuvH2MbbLBB2JRUdX2rKWdV6/6StZa8v+lY7969m/y/N9xwQ4yptFXpXCupjJyVaaoZSGnSf9pa6V5I+9xK7y+VVkbWY3r//ffD7tWrF4BkuEKHDh3C3nzzzQEAc845Z4z9/vvvYT/44IOJ/wLAwgsvHHa5eVdSGVmzo/k7AACbbLJJ2N98802T41AZdeeddwaQPH4NjTjxxBMBAH369Imx5sjkroxsjDHGmBmKXD06+vT39ddfh7300ksDyK7HwSBjPTYNzOUbiwbzrrTSSmE//vjjYfOpWN9i8njj0s9/4oknAAADBgyIMWrSQ+4AACAASURBVH37/O9//wsAOOKII2Lsl19+CZtPvFtttVWMDR48OOxygb0t8ejwjWqnnXaKMQalAqU1A4A999wTANC1a9cY41M8UPIY6FvIAw88EDaD7FpaJ6haHh09jxpYR0/bTz/9lPp3c801V5O/1zdSvr20tI5JJR4d1tgAgIcffjhsBvgBwL///gsA6Ny5c+q/b7vttgBKnjkg/Y26pW/M03v96f78888/AQD7779/jI0ZMybsSZMmhc37jnox9F509NFHA0h6Gdu2bRt2pcGseXiM07yLOif17jBYnEHLAHDyySc3+ftK1685Hh2upa4T9yEAzDfffE2OT+ek1yLv70OGDImxQYMGhc1g3UrvLy3x6KTtWQDo1q1b2PSE6D19yy23DJvrqmuudXZ69OgBAOjfv3+MrbjiimGX89hV4tHRY9I14W8aUEpy4DoAQL9+/cJebbXVAADHHXdcjKmSQHWGQdlAcq/bo2OMMcYYI/hBxxhjjDENS67J9+pimnfeecM+9thjASSlKw2moutKXf9aR4CMHDky7LPOOitsdfNRZqgWWTUc7r777rAPPfRQAElpQKWbtddeG0DSjXv44YeHTRmFLspawHmpNLDeeuuFvfXWW4fNYHBlypQpYb/99tsASkHXQClAFCjVCSoaSowAcO+994bNwMG33norxlSmYk0TDRZUNzuD6PbYY48YK7q2h34/g4nVnaw1O3jdqWtapR2dd9rn5wGvifnnnz/GVlhhhbC7d+8eNveX3l9uueWWsM8777wmn3/CCSeEXa5OSxGoHJEWmK1rQhnhlFNOiTGVCWrVwiPtPGqAtNZu2nHHHcNm6MJjjz0WY2+88UbYvH9+9tlnMaY1oTbeeONKDrsidM4q3WvgLn8fdthhhxgr10JBbUp+Gg6ioRt5osep1+L1118fNgOLl1tuuRhTaZI18zRBST93jTXWAJDdYqgl2KNjjDHGmIbFDzrGGGOMaVhyla7UHaWu73PPPRdAdvfytE7m+lmUEZj9AwCvvfZa2OqarbZLXY/5+++/D/vMM88Mm27YSy65JMZYm0SP6eKLL46xZ555JuxHHnkEALDRRhvFmGYoVGtO+jmcFzO+pkbdiHSZ6zq98847YVMG0qwdzZorogQ/j//222+PMc26UelpnnnmAZA8fnVDf/vttwCSmWYKZUitE6V1aPJs4aH75OWXXw5bx+ny1jpUWvOJ50qlY826O/744wEAm222WZO/AfLZn3STa6aKyqVaO4uZZ3qtqjTHc6GZHnvvvXfYSy21FID6ahWhc+H9T8+57s+bbroJALDOOus0+Zui4Fp++OGHMabShdaU4X1Fs0615grDGDRDVEMjipSJ9bs160/Xj9elttBZYoklwub+1XvSiBEjwmYLHu7Tqb+3Vuh3su0PUKpTpdKq/j7zXqhtn3T+lPb096WlGazEHh1jjDHGNCx+0DHGGGNMw1Izf6a6udKkKf13upazsh/opu3bt2+Mqetau5pX26Wnx/7UU0+FrQX/WAhQO66r640yj0aqa9YHs53U9Vcr12TWOU+TuVQ6uOqqq8L++++/AQAHH3xwjGlWQK0kAZ0L2x1klRXXrJVdd90VQNJ1rK5zSgb697pWbFeiBb1UOtGstZYWNZsaHtPHH38cY7fddlvYWkjwt99+A5Askrj88suHzetLj+25554Lmxkw2tZE20Uo1d63Kktr2wr9nrRzqi1kmHWmmVgvvvhi2JRZi5audH/ptTZq1CgAyYJ0zz77bNiUIc8///wY0/tWkfPS795rr73C1vsHZTZda5XeOG+dP+USoPgMR6Jte3hPAUrXzaabbhpjGvrAbCW9vm699dawKWNpVlPRe1W/n/eVq6++OsYYrgKUrk/9fdTu7aussgqAyuUqxR4dY4wxxjQsVfPopOW8ZzX9m94nbn1K1DcSBoPqE/8BBxwQtr69VvtJV49d63jo29cdd9wBIPkWrw0we/bsCaAU9Aokm/JxrkU8pad5bvSYgJLH7brrrosxrRPEt680Lx1QehPP+81Lj59NY/VtX+ekb4x8u9dg47TAV/X4bLPNNmGffvrpAIDXX389xhZYYIGwq7Wuad43bYuiwY56Tey+++4Akl5ErYnBNzI9Vxo4P3z4cADJRpo6/2rWv5gWWfunXB2ctDfFar49Vousedx3330Akh4p/X/pCdAAz3qZX1ZtNPXCE11fvWZ4L6HnuJ7ICkbmPQEAPvroIwDA6NGjY0wTI9Kun2uuuSZseoLqxXMFJO+f9P7qnNP2sjb61N/KSlvMpGGPjjHGGGMaFj/oGGOMMaZhqUi6UncV3Yjq7tb2CyoT8P/JkqZoa9nvTz/9NGy6xE499dQY03YL6h6ttntPP5tdWIFkkOuFF14IIBksx7LYQKn+jnYH1xLZRbqZ0zqaA8kgVwbGaTC1riUDP/XfVbphsLZ+Vx5uWD0m1iRieXEgWbsobd7qWtdgara44H+BZM0SBtNpgG9aifdKSTtnGlStAbisTQGUrp9y9ab0+lZp+M477wSQbLVSKxmypde23l/SpAH993ppAaH7RNeKkrHKidrJm60f9JrTFi5FSh5aT42tHIDkXlOZmKStiUpzRdfpSkPPs16X7FSuySx6LXGPa2hEp06dwua5qCfpSs85A8O17Yi2q2BXcq3zpdIcf9dbEu6ShT06xhhjjGlY/KBjjDHGmIZluqWrNHcZo8cBYNCgQQCS9WTU3a9uVLZu0LYIWgKckpVKV1o6nBke3bp1i7E85SpFP1td4OzIDgCLLbYYgGRWi7aLYNfoenS3qgufrSiAUqYYUGptoG7o3XbbLWy2QNAS+1oTYpdddgFQOk9A/nIds460e/ILL7wQtrrGeVwqXakMyTpH+u/MZAJKWUu1dC1z/6ic+uSTT4bdoUOHsCkTlKvho/tbbZ6rWko8bBeQlWmUhp5/zXAcN24cgKQcpN2lmU1XdNsEJe2+o20P2JYDKLUu0e70KtnyvltLiZzH/+uvv8aYth1Jy/bMygD97rvvACTrsOj6Finp6HFqVpjWiWEdHK2ntccee4TNTuzaroYd6QHg8ccfB1Db+2c59PuZTaVZVypHvv/++wCAI488MsZeffXVsLlHVHq3dGWMMcYYk0GzPTpaD2XgwIFh8+lT34I02FafdPlWrbU7tGYJ6+ToEyufYgFgwQUXBFA/1T6BZJ0SvmnpG7O+cbCKqdbWUY9XEW8kaW/HbB4HJIPpWAVXG1UyABco1ZnRz/zpp5/C5htzLT0CPKf6FqhemLT/V70YWp+GlYW19sOiiy4adrWqHbcE3YfqUW1Ogzyui15T6pHkPUCv9WqtpX6O3mvuvvtuAKVARiDpkSlXu0c9ctx/eq608iz3NysoA8XcX7KC9WnrOur69ujRA0Ay2FM9mfQ0550MoPC7Tj755BjjfRwo75HXY6VqoJW99d+L/C3QdVAvxWWXXRY2K6ZrZWj1XvD+oU1N1aND9UPvOdUiq3YamR7lhOdfP0u9/0wc0vsna0MBJe/qqquu2qxjnxb26BhjjDGmYfGDjjHGGGMalmZH22nZ+zFjxoTNctfqQs5quseaOFqbRf9foq5rNhoESi67ouUqnetnn30Wdq9evQAAXbp0ibH99tsvbAYJatMzDdwqgjR3+D777BO2BhvT5a9rpufizTffBJBshNmxY8ewKeMVIdG1tJ6Nup7phtXaOfWyFxloCyQbJWrTwIUXXhhA8ph1LShJaYDuiSeeGDZd6wwqB5Ju7krWNe04gFKyg8rl5eSytD0JADvvvDOA0nkAktIV65cULVfp8ZerKaJjvD41WF5btDCxQIOZ8whmTTtOvQ8o5c61nhf+BqkMXY+oXK81f/bff38AyUbUOn/eVzWcQWVa3n+qKf2nydWffPJJ2Ly+NYEmS/pMOy79Lb///vsBlOpxAaUEDwBYeumlm3xmpdijY4wxxpiGxQ86xhhjjGlYmp11pS5ObWuQ5q5Sd7a66eg6VtecurH4HVpzYZNNNgmb2T6UiIBkBHqeLmed56RJk8I+6aSTwp599tkBAIMHD44xdcPTJacyQ72g7kJdP85p6v+HMBMJAC644IImY9rdmtJV0XJPFpQMtMWD1qSha3mzzTar7YFNRdo1x4xFINmCQ8cpQ66++uoxpjIJ563dybWO1brrrgsgmRVSzXLtaaRlgGSRVudHZXJmE7IUP5CsP6Ru9lrB+ek9VaXtfffdN2yVQYjel1lziF3mgdKaAaUwg6Kl43JktaNhyIRmghbdtoPfr78Jr7/+eth6L2SdHM1U1d8HZpWpTKtzVcm1WvD619ppRx11VNjsLs/2PUDynq6/v8xw1Ky/m2++OWxmHWvNPW3hxNZR1fx9sEfHGGOMMQ3LdHt0+HSlAWwa7MgGc/rmpQGs6pHRN0ly2mmnhc2nYw2GopcAKL1xaW2dAw88sMmx5oG+OehTugY7MthvwoQJMcZqwUDJu6VzLrp2Dtdtet7M+f/qm6/uBQY+6lukNoVksGTR1Tyz4HnRat1a2bN79+4AknUgili/tLXSa+vggw8OWysKs5kp3+ynhg0GtbKrehF4LaqXr57WMm0tWE1X/32LLbaIsaKPn8eknm/1su29995h8+1fA1T1+FlxWJMJtAot/65ePapp6LHyvtMcL1/ecP00QWO77bYLm41YAWDHHXcEkKzjpb8l9Hiod09//1j5uprrx+PX2lFLLbVU2GPHjgWQrMA9YMCAsLWBN+8fWrtK58cgefUYsfaTHouDkY0xxhhjpgM/6BhjjDGmYZlu6YpuJJU7sqQpoiW+NdgqzeWW1kCP9SyAZGBd2ufUqux+WilyICnjDB06FEDStafBjmx2qY0Wa+VGzgrwY+CcSpMMQJsatq644447Ykyb1rFpoAbT0d0KFNsiYXrgWmq7AQ0y5PzSAsyLgvtHAxU1cFDdyJR8VZrS/cf6JJTogFLtD6DUILI1SR9pLQLqSfrgMamcqO0StA7XK6+8AiApp2qDZMoPuhd0f7aWdUurDQSUgsivvPLKGKNcApTko6KDrbVpJ1uYACVpX++Z8803X9gbbLABAOCggw6KMQ38TwszqBR+lspVWluKgcXa1kkDl1XmT0sGYCNvAOjbty+AZIsaJY/9aY+OMcYYYxoWP+gYY4wxpmFpdgsIdZdpVkBaOW51QbUkq6Ee3a16TIsvvnjYXbt2Dfujjz4CkIwq7927d9iUh7JK8OeJuhNVQmL3+fHjx8dYuawc7TivNUlYU0gzgIrOaimHylCvvfYaAGDkyJGp/y+zrTTDoojaK2nomqr0q1kflKyyMuwoE2gGkGb45JEVkTfaHZol9OtJuiJZpfSXXHLJsJdZZplp/h3vK0XcX/JCzwXvr5rpWo+/D3p/2HzzzcPmb8Upp5wSY/pbyusuq0VEHmuZdk3rb/pOO+0EANh2221jTEMz9L6TVtNI6wClSYt57097dIwxxhjTsPhBxxhjjDENS7OlK0XdTfUuTVQLdSFqVpJGqKeR5louOitA5Qh2h27OMamLMq2TbWtynevxM4Pg66+/jrENN9wwbGZF1OOez5KWKdcA2ZJk2mekjdX7WqahxdlY/FCLo9XjnLLur/W47/JG7yWUxFUO0v1dL+j6qbRD6SbrmPl3Ra+zfj/vj/qbodJcOdLuH7W85uzRMcYYY0zDUpFHZ0ankTxaLQnmq8e34JaSFoSnHruOHTuGvdhiiwFI1jGpR1q7F6ZSdM7qxWLgvO75eglmNeno/XXttdcGACy//PIxluZRrldaYzB/azxmxR4dY4wxxjQsftAxxhhjTMMyU2t1RRljjDHGlMMeHWOMMcY0LNMMRp4yZUpDuntmmWWWmQDg33//bcj5zTzzzDPE/Bp9fzb6/Bp9fzb6/CZNmlS1+amykFaxOi3VOS/atm07EwBMnjy5IdevTZs2M8T9RbFHxxhjjDENS12nl2c9uTuuqFi0EB1ppFRm7ruWzoPnpzWlLOu1lra+abSmgpAK55p1f2lN69YoqBfn1VdfBZDs9bTiiivW/JhM9Ui7p9TyOrNHxxhjjDENS117dLQjtNp80m9Nb5GNxMSJEwEkdXMtDc7ibK2poKKWaOdeK9cqIevv2R18rrnmirG84wpagr5l6VqxK/RVV10VY/p2ffTRRwMotVKY1mfVC3r+uRd///33GNNy9rPPPnuTv6/HOZVDvSRp8y9iTlmxOBMmTAj7kUceAQAceeSRtTuwOoLXkl5T5Twiev+pF/SYR4wYEfZPP/0EADj44INT/9889qU9OsYYY4xpWPygY4wxxpiGpS6lK7o0r7nmmhijuwsAzjrrLAD132tIaU29WIges0qHhx12GADg9ddfj7E11lgj7O7duwMA1l133RhbdNFFw66XYE91l77yyithX3bZZQCAG264IcZUzuD6/d//lS6fDz74IOxDDz0UAPDUU0/F2Mwzz1ytw64YznvSpEkxptfaGWecAQDYa6+9YmyZZZYJ+9RTTwUAnHLKKTGmwaL1sr91fXX/Dh48GABw+umnx5j2MuvduzcA4L///W/qZ9U7vG5VDvr+++/DXmWVVQAk92+t1kzvKSodnnPOOWH36tULADD//PPHmEoz9SgDtwSdh9r8rfv0009j7Msvvwyb52LZZZeNMfb/mpoirkVeK2+99VaMHXPMMWH36dMHQG3XsfVcvcYYY4wxzcQPOsYYY4xpWOpGulI31j///AOgJCEAwH777VfzYypHluuRqESjrnP+v+oOT6tjUnRtGj2msWPHhv3EE08AANq1axdjzz33XNj33HMPAGDjjTeOsZtuuinsBRdcEED9SBwA8Oyzz4Y9fvx4AMDkyZNjbI455gibx61r+vDDD4fN+dWT3KHHQslXpRuV6ehaPvHEE2NMM9B++OEHAMlMu3paS871r7/+irEBAwaETelK5ZCPPvoobLrZO3XqFGNrrrlm2PUivWbB+Q8ZMiTGVEYdNWoUAGCeeeaJsbzXL03uffHFF8NWaXfVVVcFUNtqyLWEc+HvHAAMGzYs7JtvvhkA8Mknn8SY3ouIyukXXHBB2Cq58nzX8vrk/rv//vtjjPdEANhzzz0BJLPu8s7KrZ87sTHGGGNMlakbj46+cX733XcAkk/x22+/fdhF1mTRNxLWkwGSgdGsQ8J6EAAwcuTIsDt06AAg6RFZaqmlwt5jjz2ajKX1f8kbPf8vvfRS2Ax8u/HGG2NM38jeffddAMBBBx0UY1dffXXYDGYtovaKnscnn3wy7GuvvTbsSy65BAAw77zzxpi+xfO8/PHHHzGmHqtjjz0WQDHBnkqWx/G1114DkDxmvmUBwEknnQQg6bFR78cCCywAIDmnor0cupd+/PFHACXPFADceuutYXfp0gUAcMghh8SY1gTq2bMngKSXToM9i55rGmmJAxoMqh4BrmUtvST8Lt1H9CwBwFprrRU217LRPToXX3xxjJ177rlhM4njyiuvjLFNN900bN7Dtthiixi77bbbwt59993D1ntQnuj6MMmBvwNA8lpbaKGFANT2d9weHWOMMcY0LH7QMcYYY0zDUqh0lVaWHCjJHFrbYvXVV0/9f2sFj5UN54Bkifyvv/46bAbZabCZuhC1PgJRGYDBvBqg1rlz57DznL+uicpxDzzwQNiUnrLqXND1uuuuu8aY1kEqsraDHgclGiBZM2bHHXec5mfxHD300EMx9tlnn4W9/vrrJ74TKHbPAsnAXNahUtjWAShJVlnHXC/tPPT8/vnnn2GfcMIJAJLSk7aw2GqrrQAk3elaU4jSstZW0n8vWpJMQ88FJYPnn38+xvRanHPOOQHU9ti5F3WdtLbPeuutFzaPK0t6Ldd0N+3fi14nXZ+ff/4ZAPDMM8/E2EYbbRT2nXfeCSApneue475U6bxbt25hq+RcK9KaslIiB4Dzzjuv5sek2KNjjDHGmIbFDzrGGGOMaVgKla7UnaflyindXH755TFWdNQ9awKwPDmQdB0ussgiYTODQOU2dZ1zLswuA0ruSgB4//33AQB33HFHjOln1QrNLtE6KpRBVNpKqxmj3bu/+OKLsCl91DKTjMc3fPjwGFt88cXD1nYG5VzjaXWetGYQ210U7S7Xa0alx9GjRwMotXoASnINUJ9ZRSSrLYnW/GE2j2bSKZQcf/311xhTmYCSrO5ZlaF1Xxe5xnrN/f3332GzZpDKRNttt13YvBfp+asVer40q3S++eab5t99++23YVOS1BY0+vvBDLl99903xpZccsmw0zIoawll/q+++irGmAkIlGrOaIuMW265JWxet5tsskmM6f5XmSvPa1nPnWYgM5tMj699+/Zh876vf6/H6e7lxhhjjDHNwA86xhhjjGlYCpWu1EX1+OOPh02X3QYbbJD6/+aJuoN/+eWXsAcOHAggKUGpdLH55puHTTd4VrEmuu4+//zzGNOCT0QzudTNrMX5qn1e9PNUWlIZgNJMVosDZp2x8B6QPFe1cp3r8Y0bNw5AMhOH2TlAUo7QDLK0z2ILBJU+mImmn1VEdlJa4TwgvSCZyrBpGWJZbv0iix/qd1933XVhX3/99WHTtb/TTjs1+XsA2GGHHQAkr0/NSuP61lMLjzR0Tpohxj2umTybbbZZ2Gn7uwiyWuBwXfSeqDIrW0SoNMJ7EgBcdNFFAIARI0bEmBYHVZmsVntZpZmFF14YALDLLrvE2N133x02M5Q0K0vbZRx//PEAkpmSGlpQK+k5rcgvUPot10xWzVbm/tO2EIsttljY/H2o5trU95VsjDHGGFMBhXh0+PSuwazaToBNybRpWRFvkfqd9D7wbRhIPrGmlcMv92StAaL6lvWf//wHAHDYYYfFWJs2bcKuladAn9g1cJDz0rewb775Jmw2i9QAzw033DDsWh2/eqTY9E69YfpGWO6Y9N8ZGKgeKQ0mJGmNaoFknYtqeQ3SPB5Dhw4NWwNrGbjIVg5AskVA2rWm3g8ecy2Dlvmd2tagf//+YetaHnnkkQCygx05F90fGsxLTx09B0DSk1svQea6/y699NKwude0ThBr5wDFenT03Ome02BW7lsNsB00aFDYbFei90Rd3y233BIAsPXWW8fY008/HTZb7AC1Oxdp1/kyyywTtnrv6R3u2rVrjGnT4eWXXx5A9v7Ok6zaXOecc07Y3JdsTgokG3zyWNWjo8HibKGjXshKrzl7dIwxxhjTsPhBxxhjjDENS6HS1QcffBBjDBYFSvVzsron1wp119PNPT35/pxfVglzlmjX7rUqjdDlqmXRi5CrsrqLU/5h0CaQ7FT+ySefAAAeffTRGFM3ZRF1WvidDAQEkq5/3Wv8f1Xa0GA71jdSGVPnx7ViF3sgeS6OO+64sOl+r9Q1myYHf/TRR2HPM888YS+99NIAgBtuuCHG7rrrrrA//vhjAMlzQjkZKAVB1jIAkudUJRpFxznX5lwzWhOLLnntDl30vUjhvmQ9JCAZZE/phkHXQPG1kbi/dc+wFQKQTObg/UWvmTXWWCNszkWvX72/so6OhhZoTZpaofdPbSHC604TBPT6ZzuHm266KcbmmGOOsLn/imjhod+pCSZa54eB4UzgAYDlllsubK7b3HPPHWMaTM/zox3tVXptybzt0THGGGNMw+IHHWOMMcY0LIVIV3TpPffcczGmnbDZTqFIiQNIustY00frHahrUTteM0ND3ZVvv/122Oeffz6ApLtc3XhpdUzydlPyuzR76p133glb61TQtax1KrRTLWUEdVcWnTVHaUnbiqjM06dPn7B53Hr+VQZi1+WVV145xrTOBzuka9l6zYBRGaRa54XHqpkQWmJe9zKlU3X977333mFTehw2bFiMnX322WGzPktWnatqzUld/6w5de+998bYfvvtF3bHjh3DLnff4LlKy6TT8U033XS6PzNv9Fwwq0rXR1vQHHDAAQCSMlHRmWJp0pVmlbLtD1DK1llnnXViTO+lad3N9fx8+umnAJJy1TbbbBN2nmEAehx6f+/bt2/YlGbYqgMA3nvvvbA5L80QLaIml5LWff6FF14IW4+PMvfOO+8cY2lhELp+moH21FNPAUhKm5W2XbFHxxhjjDENS808OhrYyTfdK6+8Msb22WefsNu1awegvt6ievfuDSDZfPOII44I+6qrrgqb3oMvv/wyxvTtnk+kgwcPjjENxuKbdi3fwvhd+pZ44YUXhq3BrETfmA4//PCwWeci7fNriQaNnnXWWQCStTeuuOKKsB977LGw0xoM6hsl63/wzQNINhjkm4xWS9YGonmSFUyuHg8Gjuu50OuT502D8dVj9dtvvwGo7ZrS46L3BK183Jy3X85Lrzn19PH8aLXWIu5FWckMDz74IABgzJgxMda9e/ewNQiZFO3R4fHreVx22WXD1vsL64tpgHJaMoOeE00W4H15pZVWijGt05IVxFwJvH7Ui6pNRdU7To+OBvhrzSBWNC96zRQei9a20/XReyFrruk1qd5zklXHir+V+u+uo2OMMcYYk4EfdIwxxhjTsNRMulIX4dixYwGU6nUAycClekHdrHTHaVnrQw89NGwNxk1Dg+GOOuooAMkS1xqsrM0iawVljvbt28eYti1IayqqgYW33npr2HRpbrXVVjGm57IIGYAuV0pYALDtttuGra0FeC5UAlGZlcHmbL4HlNp2ACU3vEpHec+Zrl11F6scoPuTzWqXWGKJGNO58jM0mHKhhRYKm3V48kDPmbqz2ZRRA9y1RUMaWbIEXeMqF6hMxTpHaY1Oa4kevwaBsv6KBp4fc8wxYfO6LDqAtRwqR+i9hAkf+vugwbyUpDRx4pRTTmny+aeddlrYedQ+0vXhXmXDTSBZR+uRRx4Jm/XR9J6gn8XrVqWbouFa6TWhoRvPP/982LpXic6P89I10ZAQ3qu1RU2l2KNjjDHGlb0M0AAAIABJREFUmIbFDzrGGGOMaVhyla7UXaVZK3RTaUdrjcCvp2hzwmNiDRGg5E4Hkt2h2RpBI/016yWtRL3amu1Sa7Tj74EHHhi2uolZ/0JrH/Tq1avJ32ltFsp1QEkmSOv4nhf8fHW96lpq9+u0mjSajcaaDtoFWbtbcy1rKdHxXOpxaAsDbRFAyaZnz54xptIB65Box2Gto7PCCisAmL52KJWQVptHr5Ms1z/R7tjM5AGASy65BAAwfvz4GLvxxhvDZpuQoqUfnb9mCLIOkmbCdejQIeyij3ta6JxUmtB2KuzkrXtZM5h4/9TflO233z5sytMq3er3VivTSj+HWVWPP/54jGlbEq05xX2r66RZuV26dAGQlK6KzkAmeh41a1PDOK6++moAyXANbb3DMIHbb789xvT65LWoGV6V7ml7dIwxxhjTsNTMo6OBjawDceSRR8aYPh3Ws0dHYYDy1HZa4FZz3n7pMahlZWQen9aQ0dpA+v30OOn8Ro0aFfa1114LIBmsq5VPTz75ZADJejvqUagVWR41op61VVZZJWxW8a6nyqVpe05rU73//vthcy3uu+++GNO5MkhZg3V79OiR+Z3VRK8TrYbatWtXAEnPxplnnhm21kyZMGECgGQVc/XesObMbbfdFmMahF/k27OuH4PGgeSx0nuhga+thbT7CJBscMmaRvvvv3+MqfeHVbLVY0MvI1C6LmtVTR4o1fHRAFvWgwOSdWSY5HHdddfF2EsvvRQ2629Vy/OUF3qdqHecHQPUS5fmUVOVQxsMsyltNa9De3SMMcYY07D4QccYY4wxDctM03LvTZkypSLfn7phGWAGAOuvvz6ApNyh0kDeMsAss8wyEwD8+++/hWhkaeXQ+/Xr1+TfVfppjht25plnrsr8slynaceSVnNES+xr08yXX34ZAHDxxRfHmNZkSGsAp3B+le7PcuhxDB8+POyBAwcCAF588cUY08C5Sl3m3J/VvP7Udc4GpdqiRBuNLr/88gCSbSuqKaNO7/Wn38my+GzPACRbIGidJwbmap0drXNEu5rBjkpLrr+0a0333OjRo8Nm4D/lPKC20innN2nSpIo2gu4j3asMws2aE89VHo1kAaBt27YzAcDkyZOn+aF6zGzKqbXRNAB3tdVWC5vSqjYK1jpdbBCdl4Tapk2bqt8/9VywGafW7tLaOpQcO3XqFGN6rirdy7y/JI6vok80xhhjjKlj/KBjjDHGmIYlV+lKUTfcxIkTASRdx7WMMC9auiLq7mPtAQDo378/AODZZ5+NMY1QL+fSrJZ01VK4ljo/rUnDcumaaaV7oRy1kq4UrdnB45933nljTOdaKdWSrpS0ruZZx5xWB6ia0kBLrj8eK+8dQLJFyVSfn/gvkMzqJHlJAy25/jg/vU5Uulp00UXDprRRVHZqtaSremV6pSuF9zzKUgAwePDgsEeMGBE2W0CccMIJMbbiiiu29HCbTR7SlcK9rHWA0qTvrJpYlWLpyhhjjDEzFH7QMcYYY0zDUjPpSqFrq6jCXPUiXWnBuRdeeCHso48+GgBwyy23xJiWeK936SoNlUnSsiaasxeKkK7U9ZqWNVdN8pCu6olKrr/mSIR5ZeWUo1rXX9ZcORdLV/nQEumKtFTCruVvYd7SVdFYujLGGGPMDEUh3SPrpUFZ0Wi5cK35MXLkSAClVgNA6z9nrf34i/IOmCStfR81hxlpro2C16w+sUfHGGOMMQ2LH3SMMcYY07BMMxjZGGOMMaY1M80YnZZEnbcGGHXu+bVOZpSsgXrKmqsm9ZgVWE04v0a//ho966rR92fR90/NZNXigsxc0xjW5sQ+OevKGGOMMTMUhWRdGWNMUZSrddIomTNptZ+A1jm/tLk4E7J1kuaxeeWVV8J+/vnnAQD77LNPjLVr1y7sluxfe3SMMcYY07DYo5Mj+haSVhk46y1Lm52Z2sN1+b//+78mY0pLNeR6Ia3RJ1D+jbk17k9dnz///BNAslFr27Ztw55jjjkA1LbRcDVhvAPnCSTnyma0uuZ6fupl3hq3MW7cuLAHDRoEIPnGv+mmm4Zt7079oXttypQpAErNqwHgmmuuCZvem7322qt631+1TzLGGGOMqTP8oGOMMcaYhqVQ6SorvSzNdaru8nqXCTiXiRMnxtiXX34Z9i+//AIA+O6772Ksffv2Ya+00koAkk0/690dq65Jzj9L7qjHuejx81hfeumlGNP1m2WWWQAA6667bowttNBCTf6+aPSaSmug+v3338fY559/HvZff/0FAJhzzjljbOGFFw57ySWXbPKZ9c4FF1wQ9k033QQguabLLbdc2AcffDAA4KijjqrR0VWXTz/9FACw5557xtiHH34Y9kknnQQgOb9ZZ521RkdXHl6Luid79uwZ9ttvvw0AeOutt2LsiSeeCJvSXGvan82B13XaPQuon99HPT6V+QcMGAAAuOiii2Jst912C5vX6iKLLBJjlc7JHh1jjDHGNCx+0DHGGGNMwzLNFhB5VfakS+vvv/+OsUceeSTsMWPGAEi6Hvv06RP2MsssA6Dl7qy8KwezDsB5550XY++9917Y//zzD4CSBAAAl112WdjrrLMOgGTWj7r+GLUOlGQUlfvynl9aHZLXXnst7GuvvRYAsPTSS8fYgQceGDZlnpa6lqtVGVnnoVkpl156KQDgwgsvjDHNYCE77rhj2BdffHHYSy21FICWS1gtqYzM9dd5vPrqq2E/9dRTYX/yyScAktIAx4CS5KpyhkpzZ511FgCge/fu03t4CSqpjKx7JqtODK8bnf/GG2/c5N/1+vr333/D5jWl52yVVVYJu9x9p1qVkXV/pmXA6XH8+uuvYX/11VcAgHfffTfG9FzcfPPNAIAXX3wxxiiXT/25aeRRGVll1i+++AIAsN9++8XYH3/8EfbAgQMBAA888ECMHXrooWFzrVr6+1CryshZ+7fcffHZZ58FAAwbNizGDjnkkLDXX3/9sNPOQd6VkTkX3b933nln2D169AAAbLjhhjF26623hs2sK/3Naw6ujGyMMcaYGYqaBSPzLQkAvvnmGwCloD+g9JQKAJMnTwaQ7cW44oorACRrXxQRgKVPrOqx4Zv+CiusEGPnnntu2AxiXXzxxWNsttlmC5tz1TcyfSLWv9Nz2FzS3hyyamjoXOmJGz58eIzdc889Ya+88soAgDZt2sTYscceG/Zpp50GoHlvkdVC56ceRfU43X///QCAnXfeOcYOOOCAsF9//XUAwNlnnx1ja665Ztgnn3xyk+/KOzCS36Vv7ltttVXYei2leTT0jZq2vkVrYDL3Qi3nR7K8nPSSAsDXX38NoOSZA9Lnp8esn8vrb/To0TG26qqrVnzs0yKtdtGPP/4Y9uyzzx42vTc6Nt9884U9//zzA0gGy6t39fbbb0/8f1N/b63Q/aOB8UcffTQAYPz48TF21113hb322msDABZccMEYW3755cOul2BcJS1ZQ73EH330Udjca+oRvuWWW8Lmbwk9XwCw//77p35Xkb+LOidVZDp06AAgvXYO0HJPzjSPqeqfaIwxxhhTJ/hBxxhjjDENS67SlbqLP/jgg7AvueQSAKWgY6BUdh0oSR8qB2mQZT3WR2AAMlCS6W688cYY45yAkjtRAyBVcqBrWV2TvXv3Drtr165hp7m8p4W6NeniB0qBp+oC189kbRWgVH9D3c2UEwFgxRVXBJCUKykHAaXzosHatSo7rxKFBsA//PDDYe+www4AgKuuuirG1E2+2WabAQBeeOGFGNNgbEpiKi3Uas/SLQwAp59+etgaeMz9lVWnidei/v1OO+0UdpF1dCgbAsCbb74ZtspMrH/07bffxpjKqOXgXnzwwQdjbMsttwxbJelqnQPKZS+//HKMPfPMM2Gvt956YXfu3BlA8vpKSxDQOl4auEvJSuXyIlBZhQHuQGldVRpfa621wqa0oXJivfwmZLX10Xvlo48+CgB48sknY0xrdm2//fYAgAUWWCDG5pprrrApSR5++OExRjkPKKaOl+4//lYcf/zxMabrQxlOa8flfcz26BhjjDGmYfGDjjHGGGMalqpLV+rC+uGHH8JWNxtd/l26dImxNOnjhhtuiDG1KRNtvvnm1TrsilHXG8vJL7bYYjGm0hslI63Toq7lfffdFwBw/fXXx9g888wTtrpEm+uyzco6SpOOdOzyyy8Pe8KECQCA2267Lca0zkqaNKfngvPX6Hp1w+fphtY5sd4IkJRxWCJfs1J0LkSPX9sJMFtJ5di84TnXdWD2FwD89ttvYaeV0FdJj27wI444IsZUhks7F3mg9xK2TdHaKipNMVMTKM1FszKbs6couWsmqEqbmuFTCSrts/aU1u657rrrwtasN8pwWdkpnKtmet5xxx1hn3nmmQCKkVb1+lO5f8SIEWEzQ1PrrKRJG/UiVwGlvarX2XHHHRc25SqgtJdVDmftNABYYoklACS7d+u1ShlL/12l2SIyWNUeMmQIgKQ0p3VyVlttNQCV/Y41F3t0jDHGGNOw+EHHGGOMMQ1L1aUrdcdq1oJGlRN1rdNdB5QykP73v//FmHbfPfLIIwEA77zzToyp670Il+ayyy4bNjPMNKtHs3LYtVULemnBPUoH6g6sVlS6ugu1SJNKR+Tnn38OW+dCmVE7WuvnslCUSltDhw4Nm9JcEd3Z9XtUTtP5cy/p/6syCguZaUFHzcopsntyVhE/zabjXuvfv3+MaUG2N954A0Aya7BXr17VPtRU9PhZWBQoyRkqEer+ScuqUjlL5Tb+XdqeV7JaMFQL/XxmW6m7/5xzzgl7m222CZtZb5php5IJ28mo3K/X39Zbb13xsTcXrqsWfmUXeSApuTKrU+/paTJHPRYGzCpyq5myLOSpLWS0Uzf3hWbdaadvypxFyFWK/taPHTs2bEqjhx12WIz95z//afL3WZm2uVxrVf9EY4wxxpg6Idc6Ouox0Kdzoo0Q9emXwZJZXgwGbqXVjigK9c4wWFEbrSn9+vUDABxzzDExpm/cfCvI48lWP1MDHPl0rU/ZWoJe/46B0VqbRT1SfHv8+OOPU/+eTef0jaBWtR/0jYv1coBkzRH1LhLdnwzM/v3332NM31hYnySPUuYtRc8vm47qW6I29aT3VT0C2mokz+tO94kGqI4cORJAsvaL/r9pHhtt9MjaR0ApyFiDffX8pLWIyONa1P3BtigMVAWAq6++OmxNTODbvyZzfPfdd2E/99xzAIABAwbE2Lbbbht2mkekVnWs9DrSFghaJ4e1ktS7pbAmmSajpN3LagnPJb25QHL99F7HPZx1nPSOaLCxzpWe6CI8xnrtayPZnj17hk3vFT07QPJY6anVc6I1g5pbG256qJ8nBWOMMcaYKuMHHWOMMcY0LFWXrtQdqwGa6toaPHgwgGSwlda8oOtZXauLLrpo2AyMzDtYsBzqeqTcBpSCVVUO4ZyBkqSlx1yEzJHmOtVzzqBHIBn4xq7jGsypn8VO0ipXaqdy7fRda/ScqwzSo0ePJv+vzumhhx4Km60htGOwBngWUYK9OXCvqVzKAFagdN1q2xZth8H6OnlLBFrniftS10/vGfvss0/YlNk0WFePlTKO7kntpMwgcw121poz1UKvNR6rSsBae0UDwynp3HvvvTGme47nSNvKaCdwSh9FSDwqMWrHeU0s4bWma60tECgZ6/rsuuuuYZ966qkAstvZ5ImeU5XT0mRQXX9d9xNPPBEAsN1228WYysy8F9fyNy9NTtLQE00WGjRoEIBknSsN42CLD71+mWAElFpHsC0RUHmwtT06xhhjjGlY/KBjjDHGmIal6tJVlmtZu9OussoqAJJ1crTmDl3r6rq69NJLw2ZUd9FR59r9m7UfgFJmgbZtUBmL1GMdCD2nev5ZuwEolW5Xd766aZnNouXs1TXJmhlFSzxZ+4drrLWP6E4GSjKDlnjXc1X0vKYXnb/KAHRTq7TwyiuvhE1pSOecx7WoWRlpdVi0o7rWnOF9R+VgPT5+Fus5AcC4cePCZtaLtnrQrBe9B1RyDafVyVK5t1u3bmFrO5LHHnsMQLLFiGZVscS+tm1h7RaglOG15557tvjYm0s5mfynn34Ku3v37gCS0rBm5TDDTNvmaIsLnsPzzz9/mt+fN1l7g/taf/8OOuigsDl/SkBA8l5bxO8G97zWVtPjV2nx/vvvBwDcd999MdaxY8ewKYN/8cUXMXb22WeHvfrqqwNIZsVWij06xhhjjGlYcq2jo0+e+qbCJ3WtrMunQKAUsKZN3TbZZJOw+XZWdACyPrFqHRJ6p7RyrtZU2G233QAkA6zr0Qug55eNSoHS07meCw0y5Pw7deoUY7vvvnvq59YL+pb+119/ASi9+QLJKr233347gORbSj2uXzn0+tQq1vTk6DnR67fI+lUaAK9vlE8//XTYDDLWOl56zNy3WmVZ15ffocGU6t3Tdc8T9ahpMgO9p1qnRJud0tO2xx57xFjfvn3DZmVzDXade+65w86zfpcmAGg1ZK0MTO99VgA4FYGll146xnhNAqXAXjbnBYoJTFbUO8m9quujyQxca/XYFe395zWjtcO0jpqO816i90+trM7r6+67744x9b7qvq8W9ugYY4wxpmHxg44xxhhjGpZcpStFZQ66uTSYLK2Eu7oe1WVdhEzA4580aVKMsREfkJTh2JRTgxkvuOCCsFkfQwPQ6h0952ntIoYMGRI263vo+qrLul5kHj1+dQ0PHz4cQLLO0ymnnBI2Xf5Fu5OVNHd8mlyjvPXWW2HffPPNTf5OrzltcVKrOh4aeMz7g85D2yXssssuYfNa1EaYGjhNtMWEfhZlBk0mqJVcpWum0gDbOgClwGtty6FwX2odrBNOOCFsBnFriwXK6UC+12dWULC2g+BaqHSje42SY58+fWJM78ucd9EtWFSuYqNjoJTEoNKh/j5QRqyX+yRQOv+aYKQB8t9//33YlOQ0AF6TGbjvtA6P7mUNwq8W9ugYY4wxpmHxg44xxhhjGpaaSVfqkmV3ZM300KyO8847D0BJAgKKlwnoclV36G+//Ra2ZgDQTa5uPq3D8d577wFIynVFt7NoDjzWLGmHLmXtrlz0+qWhbnRmWgHAsGHDACQzUY4++uiwuVfLdX/Oe876naxDou78TTfdNOyNN944bEo2d955Z4xp1gT3pco1mjWXR3fhNLTODeenHdX1/GqLEnZVvummm2JMZQDuX/0bZfLkyQBKXd6ntvW8V/scpK0pkMxA0vsGSdtrOmeVFv744w8AyXtu3vA8ab0m7S6v0sbee+/d5N+1UzalcXY5B5LdzykDadZdre6peh/X2mma9UZJlL9zQDL0oZ4kK8Lzp/Vy2rdvH7ZmGI8aNQpAsoUJ9xxQksQPPPDAGOvXr1/Y/P2s5nmwR8cYY4wxDUuuj/T6dKvej8MOOwxA8s1E67Swyqf+fdGBZXyi1QBNDfYbOXJk2BMmTAAALL744jGmf8cgy3r33CgaWPfVV18BSAaQ6Rv/scceC6B6FWRrgb498O1R9+cbb7wR9qqrrgoge/04rsGUecPv1Hoy2vRRg8FZpyIrGJtvnAMHDowxDTys1RunXl88Fg0Q1mtOa+IwsFXnp/PnOD03QPKNmt4bDZbUyrx57mU9txoArk0fea1pZVmtTE60DhCrPQPAzjvvDKB4j+s666wTtu5bemS0Wq7Odd555wUAHH744TF2zDHHhM36PLWcU1rlbq1zpMHk9HTUex01JS0Ymc19gWTNO3rH9fdPPcq81vQ3UX8r8jgX9ugYY4wxpmHxg44xxhhjGpaZpiWfTJ48uSJtReUOrdmxwQYbNPl3bWCmQUqkmjJPmzZtZgJaNj89ZpUztGbAGmusAaAkcQDJpnN0iWvtimq6WSuZn6Kuf3Xzs/6PygUPPfRQ2Azizct1zPlNmTKlavNTabR///4ASqXygWQdFgbJ615QlzX3tzYCbU5TwVlmmWUmAPj333+bPT8tq37IIYeErTIcj1vn3Llz57B5Lap0Uk1mnnnmZs8vTW7S2jdjxowJm812dX56f6F0p414tRw/Xe4qVzXn/sP5VfP6U3c+A7J1f6oM9fjjjwMoNT8GgL322ivsLbfcEkB2nZpy8PqbNGlS1W7KKl3wWnr//fdjTFvscH3Y/BFIyiCV/la0bdu2xdff9ddfH7buOW2HwCD7ouR87s9K759pTXez0LmmrU81f995/1Ts0THGGGNMw+IHHWOMMcY0LDWTrp599tmwN9tsMwDACiusEGPqeman2bylj0rnp9x1111hn3/++QCAJZZYoskYUGoNoeenXqQ5Rd2Rl112WdjMhtDu0SrT5Z0hVy3pStG5UtrQOjNDhw4Nm+XmNVOQmSxAqX6NdkxuDi2RrtKyPh555JGwn3rqqbBZC4PZjUCpIzRQymzKKxOkJdIVr4+sthZ6/aRdSypz8d81g0vru5CW3n+qJV3pPNLmqnVa9Pi5f1VuVWmn0jpIeUhXaej9Ma3OWF73memVrvSYxo0bByApgaq0qFlHtapDlUW1pKt6xdKVMcYYY2Yo/KBjjDHGmIYlV+kqK2vn2muvBZBsi9CpU6ew845Gz0O6UjdmOXjO83JdVmt+ug433nhj2IstthiAZKZZLVtY5CFdKWnd2cuV/U/795bu40qyrpSW7Mmp7TxoiXRVKWnnIq/7TLWkq3JkZbqkSSN5SON5S1dFMb3SlZ5/FmfUthTbb7996t8VXSjW0pUxxhhjTAORq0cn8UXy9MvAOQ12rGUJ7Dw8OvVEHvPTYMe8gwHLkbdHp2iq5dGpV4rw6NSSWnl0isIenabQY1hPbYuysEfHGGOMMaaB8IOOMcYYYxqWaUpXxhhjjDGtGXt0jDHGGNOw/N+0/rHRgwUbPRir0dev0YMhG31+vv5aJzPK/dPB5K0T3l8Ue3SMMcYY07BM06NjTEtIK7hXy4J0xgDlCybmXZi0KHz91R9pxR3LFXzU/ek1qwx7dIwxxhjTsNijY6qCvp3wTYStPgDgq6++CvvMM88EkOyoXE9vLJyLegTSCoHV0zGX4//+r3SpZ71JEq5fLYt45sG7774b9tlnnx32ySefDCDZsb3cOal3dH+y3c6///4bY23atAmbe6E17d/WSNb9I219pkyZEjavv7nmmivGtJN7a1k3vabKtWDJe0726BhjjDGmYfGDjjHGGGMalqpJV+Vcv63F3WZahrom77nnHgDA+eefH2N33nln2PXiOs/qTk6X6hdffBFj33zzTdhrrrkmgKQcUC8yj66DusbffPPNsDkvdYfr/7vSSisBAFZcccXU7yh63dLQ9eNaXHzxxTF27733hv3EE08AAF566aUY69ixY9j1HqTMuer6ffLJJ2FTGv7ggw9irGvXrmGffvrpAID55psvxup9zq0Fvf7+/vvvsB944IGwn376aQDJ9WH3cwD4559/AAB33HFHjG288cZh18u9Jou0YOovv/yyyb8vscQSTcaAfO4v9ugYY4wxpmHxg44xxhhjGpaqSVfMRFEXlLpWNeuDZLmoOF7u3+sddWOqG4/nSkk7P/WOru/7778f9rHHHgsAOOGEE2JsvfXWC7tI12tWJgAzIQDgoYceAgD0798/xiZMmBD2zjvvDAA46qijYmzVVVcNu4j5cV7jxo2LscGDB4c9cuTIsH/44YdpftbSSy8NADjnnHNirFu3bmFTsqvldcj56Xfq+um68vpq3759jM0222xhc611z6p0VY+kSXOU4ABgyJAhYd9///0AgFlnnTXG3njjjbDXWGMNAMD++++fz8FOJ1nXIu+VWVk5vO/o3xQt5/BYfv/99xhjdh+QlLl32mknAEDbtm1jTKVxZgi+8847MabSVWuBEhwA7LnnnmEvt9xyAIDrrrsuxvRcWLoyxhhjjGkGzXYj6FP0n3/+GTafUv/6668Y45svkHwinXfeeQEA88wzT4xpTRW+iehTsFLvHh2+qWgA1tVXXx323XffDSAZAPq///0v7GWWWQZA/QYI8o1q/PjxMXbQQQeFvfnmmwMAevbsGWNFzyUtWH7s2LFhX3jhhWFzLdQLsOCCC4Y9YsQIAMBHH30UY4888kjY3L9571Od0+effw4A6NWrV4y99tprYWvNmIMPPhgA8Ouvv8bY448/HvbPP/8MADjssMNi7MEHHwz7kksuAQAssMACMZbH+ur8+MZ7++23x9iBBx4Y9tdffx02PVFPPfVUjKn3kce62GKLVfmIq0ualwooBflrsLV6JHfZZZcmY7o/eV8q4prUOenx6bX05JNPAkgG66oXcpNNNgGQ/H3RtSyiJhK/Uz2/DOoHktclf+v0t1SvxRtvvBEA8N133+VyrHnDc6HPB7w/AaXf/1ruP3t0jDHGGNOw+EHHGGOMMQ1Ls6Urdcer3ER3+OjRo2Ps3HPPDbtfv36lL/3/gbcMSgKSNR0YDKmu8V133TXsddddd5rHlSdZAXRawvuGG24AkJSrOnfuHDZdzhqsq8GiDOYtWu5RdK4TJ04EkAzW1WBqShsaDKlzSQsszb0E+P8/fg36O/zww8PWOjMbbrghAGDgwIExpi7pI444AgDw22+/xdgff/wRNiWvWkpXlNN0HpSTgeS1yOtL5ZBPP/00bO7Pu+66K8ZGjRoV9pJLLgkguf4qDVUL3XNvvfUWgGSAtMox6hr/8ccfAQAzzzzzND+/3hMAdH1vueWWsLkv9Z7ToUOHsI877jgAyXOle3HTTTcFkFyzWgXz6ne++uqrYW+xxRZh876x++67x9hSSy0Vdt++fQEAV155ZYxpzZm11loLQG0DlHl/09pTyy+/fNhpgdN6T9RgXIYuaG2deietDg7rqQHJMI087hXlsEfHGGOMMQ2LH3SMMcYY07BUTbpinrxKTCeddFLYmrXBTtZac+D5558P+7333gOQjESVE28mAAANrUlEQVT//vvvw2YdiLxz7xW629QFpyXkVYbisah01aVLl7B53IMGDYoxzVarx07KekwsZ/7YY4/F2MMPPxw2JUc9V5pBQNftQgstFGPlZIaWkOZOVQlGa84su+yyYV9wwQUAgLXXXjvGVJr66aefAADt2rWLsSLcseqap/SkErDuSZU2KHmoO12zstZZZx0AyUwzzXoZPnw4AODII4+MsYUXXjjsal2Lun6UObKuvzRpQP8+TaZ68cUXw1599dWrcMSVo8esLQQuu+yysLl+2tbhtNNOC/u+++4DkJT2tOYT17cIaVz37GqrrRb2tddeGzb3ov67ynTMsNPfDM3gLSIrl9+ZVUcuTabXPau/hbzXqPRY7+hcGB6g0jfDHQBgq622ApDManX3cmOMMcaYFuIHHWOMMcY0LBWlHaS5m9RdpyXYjznmmGn+vZaLpszx7rvvxpi68ShpLbrooi057OlGXbt03WtH7ptuuilszeChZDfXXHOlfhazXVT6y8P1XynqjlSZp0+fPgCAQw89NMZU+uDxM1MGADbbbLOwKdNdccUVMcZMJiC9RUal0GX+6KOPpv77brvtFjYlKy1oNmzYsLC5bpSwgJIcC5QkubylAZVjKL2wfcXUx6TSTFrWm0oDO+64I4DkNXnKKaeETfmollkts88+O4DkMavre4455gibWUVahE73b9rf17tcrDCz55prrokxylVASRJXOTatHUERbRN0/eacc86we/To0eT/1d8SXT/Kz8xuBZIZvEW2g5iee3fauqr0T+mK2Y3T+7lFor8VzID84osvYkyvNYY21LKFhz06xhhjjGlYqlZIIu2JszlPaRpYzMBJDYZkbQig9CadRwl3fUvWOg8s4c23xan/nbUPgNKTarn5a50gfeOul/o5uqZaU4Zv19r2Qd++GEQ5YMCAGNO3E5ZG1xL9Ws5fPV3VepPhWuia6VqnNRDU79a15PpqgPJzzz0X9pprrgkgPRi6muhn0qOmnhl63oCkx4PBqNpiRYN8Oa4e1WeffTZs1uHRN/I80HO+1157AUi2Sll55ZXD3meffcLm270eP9siAKUWF88880yMac0hzqvIoFYgWYdKW+gwCFePX2vKzD333ACSbU00cL7oBpikXB2ttBYnQOleoo1m693jkYZeq+rR4X01qw5ZvZDVooT3Ct1zG220UdjaAJk4GNkYY4wxpoX4QccYY4wxDUvd1EBX1xXddBrMpDVX6BLLw92lbl3tPsuaFOy8CpSXPhR187GmgAaz5lFHpiWoBPXCCy+Erd2tr7/+egDAEkssEWMqfZx11llNPkuDgC+66CIAJQkMSEqXebjWKTdpALtKT2yhAJT2l3bf1dYmaXUwNNiuVuieY52m/fbbL8aGDh0aNqUfoBTMqsGqGnhNyUdrV6lrmq0fNNg+b2lu8cUXBwAMHjw4xrQ2jEqjdPmrHLzeeuuFzcDde++9N8ZYBwwAtt56awD5BMU3B71nnHnmmWFvs802AEqtYoDkXqDMxXolrRU9/yqdM7FBpdfWJF3xvqHSKmsDAcl2GKQe56f3P5VR2YZGg8XHjh0bNn8rslqw5HHd2aNjjDHGmIbFDzrGGGOMaVjqRrpKQzMsNKuJ5b7zdpera5TSSlYmTnOgJPLLL7+kfm8RUGbSUv+9e/cOW92pdB2r3DFkyJCwKQ2MGTMmxj788MOwX375ZQDArbfeGmO1auHB9gVAskWCtrM48cQTmxxTx44dw2abhVdeeSXGOCegJB/V0rXOTDWtd6NrxjkBpZokb7/9doyp9EGXtEonKq3yXNSyDgaPTzO9tN2MusF5LHp8mtXHddPu0Pfff3/YG2ywAYDatphJIysDi/XJdP10rq+//joA4NJLL40xrWPGz6rHTB6gNJfPPvssxvRao8yoe7Je50J0fXjf1HsR5UggvYVOvaD3BL3/n3HGGWEzA7RTp04xpvf6L7/8EkBSrtM6cp07d27yXZVef/boGGOMMaZhqUuPDp/ktAGjBiMXUcW04idKeaJnZWBtdFb02yPRADk2igSSwbp8I9TKrGyECQA333wzgGQj1xtvvDFsvmkutdRSMZbHG5meR+6ZFVZYIcY0WE4bsHLeGkytDWqfeOIJAMmaPOrR+fHHHwEkA2TzfuPkXDVYft111w1bg6UZ7Kd1qDbZZJOwWZ/mnXfeiTGtuHzeeecBSL6R1iowmTVigGTtnLSaLLp+6t3aYYcdACQDm7XBJyuvZ61fll1t9Ph1r9H7qPWmtPI4PVpax0rPT9++fQEkvWBFe5QVzlsDkDVwfo899gBQn9WslawGnwzMVS9xz549w+Zvha5v2j6r1T7MQvcMa2sBpYrk/fr1i7G77747bF7Dr732WoxpU9Pbb78dQDLZpVKPsT06xhhjjGlY/KBjjDHGmIalbqSrtCAnSgBAsoQ0gzzrPQBNUTffnXfeCSDpjmPbC6CYefE71Z3IoEwgKXNQ0lC5qnv37mGzXPvll18eY/r/rrXWWonvrAU8/1qjQWWeU089NWwtzU5U+nn66aeb/HvRNVeISqTcZ0CyKSKlm//X3rnz0taFUXgoXBKlyg8QicqlEBERkUj8ADoJBa1Gq8EfEK1IFBrRaIVEo9a5JDqiIlFuNF813jVWsvY5jm3tNa1vPNXMPA5zrnnZa7/jvbD4I1BcIFf3rKZtp0lagwVYCBRoX4kB3T8qA1NGU2f/29vbaL+9vQHISwMsWwJk0qrOSR1fNTCCjqM/Jf3oPUgJTccEZMEMS0tL0be7uxttSuNTU1PRp8WIKVNOTk5GX9VlIXTeXAstyspCu0C2V4vOadU0k6uYWwbISjxo7ibmaQOyvayO9yqj8vNPz2y7XB/0d+v5URmY505/Vu9H7jXNDaU5zVj66Sc/H2zRMcYYY0xt8YuOMcYYY2pLMtKVmtzv7u4A5OP0NWcGSSlSoAg1YzYajWgzQmdhYSH61MxZhRmZz1+jkhhdA+RlDlan1RIBWn2X6cAPDw+jb2RkJNqpSI7NohZ0LYr+vejnVGagtMeyBUD5lcyL0L+jOTlmZmYA5KPeimQAHbNGVdEMrTmX2oWOSaVtzRPDSu0PDw/Rd319HW3OVdfv+fk52pRcDw4Ook9N7yoJMcJQo8FaQSOhNNJNIxgZjaJyvlYqPz8/B5DPE9TX1xftsqvOfwddC97/mieIciuQzv2hcF/q/qRECgBra2vRZlSnRqKq9MP10RI0zB0HZOd6dnY2+jRCTde3zGel94tKZ3Rz0L2sn3Xb29sA8nnGVJrj599P3pO26BhjjDGmtiRp0bm4uACQfzvWmPoU3+iL0Dlplk86num3sKqtU/z7WvyQ+SoA4OTkJNr8xjU4OBh9mnmWTnZ01AR+z5oBxWuhVjZ+o2fxTyBvEaAloepsunTqAzIrB5DlD9I56Td+/g514D09PY02131+fj762rW+zZx19Xy9vr4CyDsQ6zfGoszPRWvVrFCvOnazMOjq6uo/zKI5ajlSZ+iJiYloM0uwWrHogAwA/f39AIDl5eXoW19fjzYDH6p2QFZ0LXiWdE5V7LW/oWNmW/MdqbOx3hUsaqwqhZ5PWkLUQZ4BHkCWWfjq6ir6qnbMLspjpX0azMFcbWqRVet3GfemLTrGGGOMqS1+0THGGGNMbalUulLTn5pRn56eAOQdWNXZKRXT5d/QcWrRQJopWRwyBThWHdPe3l60X15eok3pamBgIPo0zw5/V0qm8VZRcyrN0OqA+vj4GG2aaatwQFbpQ83909PT0T47OwMAbGxsRF/R+HT8mnOIkqvm8WjX/PRM6f5jIVmg/GKIOgbuAX3uKpn9K/ocVc5QZ9OtrS0A+TtxbGws2ouLiwDyafmLip6mCvedjrlIWk0Jrv/m5mb0aVkVdVPg/dFsHTg/LeSqMjRzCqm0qc8qxc9HdeOgk7wGs6hrSil/v9TfbowxxhhTIX7RMcYYY0xtSUa60hTu9DDX6sSpV6otQk2INzc30aZJube3N/pSMcfqmNXcqNXjKVnoz6ZuDm8VXR/mtKBEAOSfDytl656twpys0sb+/n60mY5ec3doBATHrbk7tHo7ZZJU9iyQRRoB7b0ruK5lPAs9U1oC4fj4GEB+npqOn9KZ/v/fdD75TFUO1KidFOFdeXR0FH2az0ZzxnxVWm22p4qkvZTOItE9p9LUysoKgPaVrQBs0THGGGNMjfGLjjHGGGNqS8efTEafn5+l2pM07ff9/X20x8fHAQCXl5fRNzw8HO1WzbCdnZ0dAPDx8VHq/HScnBMAzM3NAQB2dnaiT2WiVunq6uoAyl+/quD6NRqNSuZXlO69KMLqu3JVT0/Pj8+v2Vi/Q6syHOdX9vmrirLPH++KZnd32TJAGfenRqqxhIUmRGSSSwAYHR0FUJ4czPV7f3//8vx4pvQe13VIKRKqu7u77fen3jl8Rs0ScrYK7xfFFh1jjDHG1JZKLTr6lqcFzFj0bGhoKPrU2a7Vt792WXR0nJwTkDnzluWMbIvO76YMi05K2KLzuynj/iwKTNESEOoY30qeoq/wHYvOb6IKi047sUXHGGOMMf8r/KJjjDHGmNryR+nKGGOMMeY3Y4uOMcYYY2qLX3SMMcYYU1v8omOMMcaY2uIXHWOMMcbUFr/oGGOMMaa2+EXHGGOMMbXlP2YCRpoMW34aAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Randomly select 100 data points to display\n", + "rand_indices = np.random.choice(m, 100, replace=False)\n", + "sel = X[rand_indices, :]\n", + "\n", + "utils.displayData(sel)" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [], + "source": [ + "# test values for the parameters theta\n", + "theta_t = np.array([-2, -1, 1, 2], dtype=float)\n", + "\n", + "# test values for the inputs\n", + "X_t = np.concatenate([np.ones((5, 1)), np.arange(1, 16).reshape(5, 3, order='F')/10.0], axis=1)\n", + "\n", + "# test values for the labels\n", + "y_t = np.array([1, 0, 1, 0, 1])\n", + "\n", + "# test value for the regularization parameter\n", + "lambda_t = 3" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [], + "source": [ + "def lrCostFunction(theta, X, y, lambda_):\n", + " \"\"\"\n", + " Computes the cost of using theta as the parameter for regularized\n", + " logistic regression and the gradient of the cost w.r.t. to the parameters.\n", + " \n", + " Parameters\n", + " ----------\n", + " theta : array_like\n", + " Logistic regression parameters. A vector with shape (n, ). n is \n", + " the number of features including any intercept. \n", + " \n", + " X : array_like\n", + " The data set with shape (m x n). m is the number of examples, and\n", + " n is the number of features (including intercept).\n", + " \n", + " y : array_like\n", + " The data labels. A vector with shape (m, ).\n", + " \n", + " lambda_ : float\n", + " The regularization parameter. \n", + " \n", + " Returns\n", + " -------\n", + " J : float\n", + " The computed value for the regularized cost function. \n", + " \n", + " grad : array_like\n", + " A vector of shape (n, ) which is the gradient of the cost\n", + " function with respect to theta, at the current values of theta.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the cost of a particular choice of theta. You should set J to the cost.\n", + " Compute the partial derivatives and set grad to the partial\n", + " derivatives of the cost w.r.t. each parameter in theta\n", + " \n", + " Hint 1\n", + " ------\n", + " The computation of the cost function and gradients can be efficiently\n", + " vectorized. For example, consider the computation\n", + " \n", + " sigmoid(X * theta)\n", + " \n", + " Each row of the resulting matrix will contain the value of the prediction\n", + " for that example. You can make use of this to vectorize the cost function\n", + " and gradient computations. \n", + " \n", + " Hint 2\n", + " ------\n", + " When computing the gradient of the regularized cost function, there are\n", + " many possible vectorized solutions, but one solution looks like:\n", + " \n", + " grad = (unregularized gradient for logistic regression)\n", + " temp = theta \n", + " temp[0] = 0 # because we don't add anything for j = 0\n", + " grad = grad + YOUR_CODE_HERE (using the temp variable)\n", + " \n", + " Hint 3\n", + " ------\n", + " We have provided the implementatation of the sigmoid function within \n", + " the file `utils.py`. At the start of the notebook, we imported this file\n", + " as a module. Thus to access the sigmoid function within that file, you can\n", + " do the following: `utils.sigmoid(z)`.\n", + " \n", + " \"\"\"\n", + " #Initialize some useful values\n", + " m = y.size\n", + " \n", + " # convert labels to ints if their type is bool\n", + " if y.dtype == bool:\n", + " y = y.astype(int)\n", + " \n", + " # You need to return the following variables correctly\n", + " J = 0\n", + " grad = np.zeros(theta.shape)\n", + " \n", + " # ====================== YOUR CODE HERE ======================\n", + " \n", + " z = np.array(theta.dot(X.transpose())) \n", + " H = np.array(utils.sigmoid(z))\n", + " \n", + " J += ((-1 / m) * ((np.log(H)).dot(y.transpose()) + (np.log(1 - H)).dot((1 - y).transpose())))\n", + " J += (lambda_ / (2 * m)) * (theta[1:]).dot(theta[1:].transpose())\n", + " \n", + " grad = (1 / m) * (H - y).dot(X) \n", + " grad[1:] += ((lambda_ / m) * theta[1:])\n", + " \n", + " # =============================================================\n", + " return J, grad" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost : 2.534819\n", + "Expected cost: 2.534819\n", + "-----------------------\n", + "Gradients:\n", + " [0.146561, -0.548558, 0.724722, 1.398003]\n", + "Expected gradients:\n", + " [0.146561, -0.548558, 0.724722, 1.398003]\n" + ] + } + ], + "source": [ + "J, grad = lrCostFunction(theta_t, X_t, y_t, lambda_t)\n", + "\n", + "print('Cost : {:.6f}'.format(J))\n", + "print('Expected cost: 2.534819')\n", + "print('-----------------------')\n", + "print('Gradients:')\n", + "print(' [{:.6f}, {:.6f}, {:.6f}, {:.6f}]'.format(*grad))\n", + "print('Expected gradients:')\n", + "print(' [0.146561, -0.548558, 0.724722, 1.398003]');" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [], + "source": [ + "def oneVsAll(X, y, num_labels, lambda_):\n", + " \"\"\"\n", + " Trains num_labels logistic regression classifiers and returns\n", + " each of these classifiers in a matrix all_theta, where the i-th\n", + " row of all_theta corresponds to the classifier for label i.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The input dataset of shape (m x n). m is the number of \n", + " data points, and n is the number of features. Note that we \n", + " do not assume that the intercept term (or bias) is in X, however\n", + " we provide the code below to add the bias term to X. \n", + " \n", + " y : array_like\n", + " The data labels. A vector of shape (m, ).\n", + " \n", + " num_labels : int\n", + " Number of possible labels.\n", + " \n", + " lambda_ : float\n", + " The logistic regularization parameter.\n", + " \n", + " Returns\n", + " -------\n", + " all_theta : array_like\n", + " The trained parameters for logistic regression for each class.\n", + " This is a matrix of shape (K x n+1) where K is number of classes\n", + " (ie. `numlabels`) and n is number of features without the bias.\n", + " \n", + " Instructions\n", + " ------------\n", + " You should complete the following code to train `num_labels`\n", + " logistic regression classifiers with regularization parameter `lambda_`. \n", + " \n", + " Hint\n", + " ----\n", + " You can use y == c to obtain a vector of 1's and 0's that tell you\n", + " whether the ground truth is true/false for this class.\n", + " \n", + " Note\n", + " ----\n", + " For this assignment, we recommend using `scipy.optimize.minimize(method='CG')`\n", + " to optimize the cost function. It is okay to use a for-loop \n", + " (`for c in range(num_labels):`) to loop over the different classes.\n", + " \n", + " Example Code\n", + " ------------\n", + " \n", + " # Set Initial theta\n", + " initial_theta = np.zeros(n + 1)\n", + " \n", + " # Set options for minimize\n", + " options = {'maxiter': 50}\n", + " \n", + " # Run minimize to obtain the optimal theta. This function will \n", + " # return a class object where theta is in `res.x` and cost in `res.fun`\n", + " res = optimize.minimize(lrCostFunction, \n", + " initial_theta, \n", + " (X, (y == c), lambda_), \n", + " jac=True, \n", + " method='TNC',\n", + " options=options) \n", + " \"\"\"\n", + " # Some useful variables\n", + " m, n = X.shape\n", + " \n", + " # You need to return the following variables correctly \n", + " all_theta = np.zeros((num_labels, n + 1))\n", + "\n", + " # Add ones to the X data matrix\n", + " X = np.concatenate([np.ones((m, 1)), X], axis=1)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " \n", + " for i in range(num_labels):\n", + " initial_theta = np.zeros(n + 1)\n", + " options = {'maxiter': 50}\n", + " res = optimize.minimize(lrCostFunction, \n", + " initial_theta, \n", + " (X, (y == i), lambda_), \n", + " jac=True, \n", + " method='TNC',\n", + " options=options) \n", + " all_theta[i,:] = res.x\n", + "\n", + " # ============================================================\n", + " return all_theta" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [], + "source": [ + "lambda_ = 0.1\n", + "all_theta = oneVsAll(X, y, num_labels, lambda_)" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "def predictOneVsAll(all_theta, X):\n", + " \"\"\"\n", + " Return a vector of predictions for each example in the matrix X. \n", + " Note that X contains the examples in rows. all_theta is a matrix where\n", + " the i-th row is a trained logistic regression theta vector for the \n", + " i-th class. You should set p to a vector of values from 0..K-1 \n", + " (e.g., p = [0, 2, 0, 1] predicts classes 0, 2, 0, 1 for 4 examples) .\n", + " \n", + " Parameters\n", + " ----------\n", + " all_theta : array_like\n", + " The trained parameters for logistic regression for each class.\n", + " This is a matrix of shape (K x n+1) where K is number of classes\n", + " and n is number of features without the bias.\n", + " \n", + " X : array_like\n", + " Data points to predict their labels. This is a matrix of shape \n", + " (m x n) where m is number of data points to predict, and n is number \n", + " of features without the bias term. Note we add the bias term for X in \n", + " this function. \n", + " \n", + " Returns\n", + " -------\n", + " p : array_like\n", + " The predictions for each data point in X. This is a vector of shape (m, ).\n", + " \n", + " Instructions\n", + " ------------\n", + " Complete the following code to make predictions using your learned logistic\n", + " regression parameters (one-vs-all). You should set p to a vector of predictions\n", + " (from 0 to num_labels-1).\n", + " \n", + " Hint\n", + " ----\n", + " This code can be done all vectorized using the numpy argmax function.\n", + " In particular, the argmax function returns the index of the max element,\n", + " for more information see '?np.argmax' or search online. If your examples\n", + " are in rows, then, you can use np.argmax(A, axis=1) to obtain the index \n", + " of the max for each row.\n", + " \"\"\"\n", + " m = X.shape[0];\n", + " num_labels = all_theta.shape[0]\n", + "\n", + " # You need to return the following variables correctly \n", + " p = np.zeros(m)\n", + "\n", + " # Add ones to the X data matrix\n", + " X = np.concatenate([np.ones((m, 1)), X], axis=1)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " \n", + " for i in range(m):\n", + " p[i] = np.argmax(all_theta.dot(X.transpose())[:, i])\n", + "\n", + " # ============================================================\n", + " return p" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training Set Accuracy: 95.20%\n" + ] + } + ], + "source": [ + "pred = predictOneVsAll(all_theta, X)\n", + "print('Training Set Accuracy: {:.2f}%'.format(np.mean(pred == y) * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAItCAYAAAAwm9DjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydedwW49v/P/0erSQqWVNSEZElXyRlrQhly77Lli0ka6kIRZJdyVZKlijZQ7KvyZI1ShRapGjzPM/vj9/vc1yf6Z7pXq5rrpl7Ot7/dLyOu+u65pzznHNmjrXK//7v/8JxHMdxHCeL/J+kD8BxHMdxHCcu/EHHcRzHcZzM4g86juM4juNkFn/QcRzHcRwns/iDjuM4juM4mWWdNf1x1apVmUzJqlq1ahUA+PfffzM5vnXWWacKAKxcuTKT46tWrVoVAFixYkUmx1e9enUfXyWG48v69Zf18S1btiyT46tZs+ZaMX+KW3Qcx3Ecx8ksa7ToOI7jVFaqVKkSKofptJ4Y5bTXGCttfFH8z//8TxyHU3CixkR91N/D5i/tc+nEi1t0HMdxHMfJLG7RcRwnU/yf//P/3t/UcrFixQqTly5dCgBYtWqV6apVq2byBhtsEPgeIHmLQJj1Rse0ZMkSk0uzSG244YYAgP/6r/8q+HEWgnXW+X+3JZ2/lStXlpCXLVtmOj0/nLf111+/xHeu/r3O2oFbdBzHcRzHySz+oOM4juM4TmZJtesqKtgujcGC5QkGTNNxr4kwc/DqehIW+Jd2E7Ga7vX4y3rcUab///7v/87vwBKGcx11fji+NK1jXZ8LFiwAADzyyCOme+edd0yePn06AGDTTTc1na7pSy65BABw6KGHmi6Jseox/fvvvyY/+eSTAIBXX33VdGPHjjWZrp2aNWuarmPHjibffffdAICNNtrIdElfqzp/3333HQBg0qRJJXQA8OmnnwLIzePqn+e4L7roItNdcMEFJq+77romJz3uyoae56j9L+ychl0/ur71M3Fca27RcRzHcRwns/iDjuM4juM4maXKmsxEcVVGpslKzWBqmqUZa+HChab7/vvvTW7SpAmAoOlVo+rD3BBqJitrZeSwrIsoF0d5TKD83ijX0Oq/WV7yqYysx/H333+bPG3aNJO/+eabwL8AsP3225u80047AQC22247PSaT8zUX51MZWc/5008/bbK6Mdq0aQMg+jh5jp544gnTqbvq+OOPBxBc0+Uh7srBYdefrjXO680332y6pk2bmkyXQEVdAIUaX5Tpe/DgwQCC7qoePXqYzLFssskmpnvmmWdMHjhwIADg7bffNl2dOnVMLu26LFRlZJ2fn3/+2eTWrVsDCGYVHXjggSYffPDBAHLZY0DwWuTnwvacslCoysj6+88++6zJ11xzDQDghx9+CP0cXSbVq1cvoQNya0Gz0iZOnGjyfvvtZ7Jm3pG4KyOH1QEKcw3rnrLa/avEZ8pDRSoj8/zOmDHDdLxOAKBevXomH3bYYQCC81O7dm2TeS/466+/TNeyZUuTua9U9D7hlZEdx3Ecx1mrKFowsj6R0lLw22+/mW7kyJEm8+len8gXLVpkMt9I+OYNAOeff77Ju+66q8n51Ir4448/TJ4wYUKJ4/j6669N1sDAsGBUffvac889AQTfEvWN+eijjwYA1K9f33RxB83x7WrOnDmmO/30001+//33TaalQp/Y+ZYBAMuXLwcAnHjiiabr16+fyXXr1i3UYZcZroN58+aZ7uKLLzb59ttvN7m0wHK+SXFNAMHA1TQS9vb4008/me6uu+4yefLkyQBy9VYA4IUXXjB57733BgC0a9culmOtCHrNbbbZZgCAe++913QNGzY0mePXvUHfOGvVqgUAqFGjRjwHWwGmTp1qMt+Ix40bZzpaUYHS129aAnD1OP/55x+Tab1Xi+HGG29sctu2bQEA22yzjenuu+8+k7lH65pg7aTVf7dY6G8yWHzWrFmme/31102m9UktkrTiAcAtt9wCIGhFL9aY1Ar32muvmaz38lGjRgEIWvG1ThWvO/UYqEVyyJAhAIAGDRqYLt816xYdx3Ecx3Eyiz/oOI7jOI6TWWJ1XamZSwOLGWymwaDqEqJpSz8f9l3qOnjuuedMHj58uMl0A5Vm+qLpT/+fmkP79u0LIOiiUdO3yjxWNdfNnz/f5NGjR5f4jPLhhx8CAIYNG2Y6NePGWdNDAzCnTJli8lZbbWUyzYwnnXSS6fS8MbAzzJwMAPfccw+AoOsubnM651dN2Hr+d9ttN5NLq/nAsXCeAOCUU04p3MEWCL1mtIQ+66jwXyDohnrooYcAAFtvvbXpjjjiCJPpsk3adaXzpGbyE044AUBwzjTolOeFLlYgZ24Hci5XdV0l7e7RwHa6jNW0r/sS/2/am1rqOWUAKwBcfvnlAILB4loHaMsttwQAzJw503TqpuT4NUCW7szVfzdOwsI1AOCKK64AEExmWG+99Uzu3LkzgGAA/XvvvWdyt27dAADjx4833bbbbmtyHHPNc8ZEIAC48847Tf7ggw9MZjID6x0BQTci3ZS6P7E2FACcddZZAILz764rx3Ecx3GcCPxBx3Ecx3GczFIw11VYJsPcuXNN7t69u8nMUNp8881Nd9xxx5lM14iarj7//HOTBwwYACCYFaWma83WKu/xq7nx8MMPN5lmfHVHKWpaYwaH1rFQ0zKj7Z9//nnTqemOLrmrrrrKdJqVFYdpkt+pJlbNqurfv7/JdGPoudDzxgyBX375xXRqpj311FMBAB06dCjEoZeLsOwcIJgVF4au6y+++AJAMINL1x//b0Xr6ORDVO2Vs88+22RmSDzwwAOmYyYgkCuh/+WXX5pOTdM77rgjgGCdEzVpJ+3m4TmIuk74d81q0bHQJJ9Edk4Uuv64v2ltGM0A5b6jmajFzOAsKzo/zHQDgGuvvRZA+DUF5Npd8P8BQdc43ZSa9al1WorVokW7q7OtCAC88cYbAILutn322cdkuvS1hYfOL7Ml1fUaN2H3d3U3HnLIISbz/Ku7uE+fPibTTazXl7rJmSFZyPucW3Qcx3Ecx8ks/qDjOI7jOE5mKZjriiYtzWq58sorTdYMHmZFMPocAJo3b24yTVZqhm/RooXJdPOoaf7qq682mSX4gfzMtFo2XYsz5QtdO5pJ9fjjj5u8xRZbAAi6U+LOmqA598033zSdmh61oNWRRx4JINo1Q5fWmWeeaTrtrqxm5mLB86etLBo1amRyWHE4Na2qzKw/1S1ZssRkrkttURK3G4TXil5/55xzjsl//vmnycyK0/ErHN9NN91kOjWTMxtQS+mr6Tlpwq4VNbn/+OOPAILuPGYCArnidGnqQq9jYun86667znSalcS9Vot/aoaduoTSgo6Pbn51/ej+waxdXet6rzjjjDMAAL169SrxnUC8rjtdZ++++67JLMIJ5ArtNWvWLPSYGJKhWclDhw41mSENWiSyWFl1+ju6p+m4ea7Vta9j4f/Vz6ublVl1hZwnt+g4juM4jpNZCvZoz6evG2+80XSPPfaYyfrGceuttwIIBuuGvT3p06NaDxgwq2+RGnimT5f8XEXeqAtZh0LfOGjRuP76602ndU5OO+00AEGLQNxP7Dw/UcHWWu579uzZAILnX5++ORZti6Hjr0iweL5wHWhQNC1nQHjTUR2Trk9aBLRs/YUXXmgy62BoW4m44fpgjSYgWGdk0qRJJvONScekda74xjhmzJjQ3+L6POCAA0yXlgBXRfeBxYsXm9yzZ08AwT1j3333NTlNlhyi7Q6YpKEWHdZWAXKNF1lDDAgGLh911FEAkh9nVFPj6dOnAwi2jXnrrbdM5nWnLUrUO8BkBw1wLtZYdZ/WOmEKry+t3fXtt9+a/NVXXwEI1s7p0qWLyZdeemlhDjZPSgv21zpjuufzc5pspOPjXlzIOXOLjuM4juM4mcUfdBzHcRzHySzldl2puUpNw8zzv//++02ntV+0ZgBdVqWZu9WdwNolAPDJJ58AAP7zn/+YTkto6/empRaGmmZp0qOJGQgeP83o+pm4Ta+cS5bfBoIdq3///XeTGWTXuHFj02kdkhtuuAFAsC2H1uShG0yDxnWshULnnuePZnEgGCyowcQ0jX/22WemUzci9Xot0J0D5NxYOqY4XI86PrrmeO4B4NxzzzVZ69yEoYHLzz77LIDg9afB+GHtUJJ2gyhcyxrMqm5inisNVg3r7p40uo/tsssuJrO+kZ5/pVWrVgCA9u3bm+7RRx81mWEEUXtmnOg1ob+pwapMLGG9GCCYLMB2BwyBAILtSPi9SaxJHZMGC2uyCe+RvI8BudoxQG6s6vpS1xznLU3XXFhiht4/9Fh5jg466CDTaU2zOMblFh3HcRzHcTKLP+g4juM4jpNZyu26CjOXAznXlGbt3HLLLSZvuummJpdmJqXpWTNB7rrrLpOZ1aNls4vV3bs8qGtP21UMHDgQQNC0rp1qWa68mJks/C01kWuLAHVt0OSvtVm0zg4zfNTcrK4rji8Od5US1t1as5K0y71mvdE0rC0qdt55Z5PppmUpdyBYx4nzXsz541h1HFEtOn799VcAwIsvvmg67Vq/6667AghmgminemZLpMl0rmuJrWe0RYC2sGCLFc3KSaJdR3nQ+eNajtrnqFfXwMMPP1zi78UkrM7TI488YrLWiWGLEnXn6P7IdkHqTg77LUWvxWKNX4+D1xQAjBgxAkDw/qChAW3btgUAXHTRRaZTN1harruoOmPM8HvqqadC/855O++88+I+RMMtOo7jOI7jZJZyW3T0KVQrb7JBpdYG0No5+rmwysf6lMo3yd69e5tO64AwsJL1Elb/fv2uJIOR9S3ioYceMplvzxqApUHAtH4k8eSu50stGtp0lMG2gwYNMp2ef1Z0VovVoYceajLHGhWYGAdcc6xKDURXFuU50HOh1imuy3r16plOA3eTqNnB86/n+bbbbjN5/PjxJjPYukGDBqbTmj+sf6S1L7TpbmkUa171nGsDWVof1YqqdWRYR0itOGH7RFosw0D423PUueXftU5JEvugrgNaLLTelFYL1rlg01i1ku6///4mM9hVm7LqNff+++8DCCZIaJV+rQiexLXKsWrleQ2MZ+D/xRdfXJRjqyi6pvT6u+OOOwBE34fZYFb3z7hxi47jOI7jOJnFH3Qcx3Ecx8ks5XZdqTmS9RyAXFl8NfFrgOoee+xhMl0as2bNMt3UqVNNZoM9LWG/++67m8xg3qgA56Rr5/AcaYDZyJEjTa5duzaAYJ0TmtOBZMvpR7W90GA61llRc6W6qfr06QMgF7QLBMvVsz5E0nUu1N0Whq4jHR/Xra7JpOFYtI6OBnPOnz/fZNYvUjee1gzi/GojSHVzldauRYPUtTFtIdA502QFDdzksai7WwNXuQZ0L9OmpdTHHSxfGvr7uv7oUtRzG1YzSt3NxbrW9Jg18JiuGYY4AMEEBb1vsIWK/l3dWKzPpftrWDA5WwUBwcBsrSmVxB7ENaz3R605wzY1mmCTlgBkRdec3t/4XKBzquuXIQNaBypuN7FbdBzHcRzHySz+oOM4juM4TmYpt+tKTYR77rmnycceeyyAYKlrLfGvrg+aFNW1oeZudqXVPHuNQKfpMU0dk9WMR9Py4MGDTff999+b3KlTJwDABRdcYDqteZKmcRE1nTJafuONNzbdd999ZzJdjtpxWTuFp2V8pZlL1Qy/YMECk9lVWFuQJJ2hw3OqLia6EIHg/NElMG/ePNN1797dZJr56ULQ71f0/KgbU2vysIN2vueH5v6ff/7ZdJdffrnJ2umZ7R5mz55tOnVz0DXHekKry3STJFG7RM+puvY1a4jZVP379zedtnNgfSetndO1a1eT6TKIY82qa1FbHDDrTd0ZUSEGrG+ltXX++usvk5ltp1l3msHDbCbus0DQTZt0NiuzAS+77DLT6bXGzOW07JNKWKsHIOiG47zos0KLFi1MphuzmPc8t+g4juM4jpNZym3R0ScvNucEcm9R+pQ2ZcoUk9nIEci9tbA5GwB06dLFZFZh3WuvvUynbwo8hrDaJ2mAdUj0jUobtPFJPu3BZlHw/GudFa1cTUuBVh6uWbNmic9Xpmq0GlhJ60VUZdYkiXoz0rdf1tFRi4+uxZtvvhlA8O27tABkXd+Famaq558WNQ3gf+mll0yuW7euyaNGjQr8CwSDIbfaaisAuXoeQLApa/PmzQEk/0atc6YWU1pH1GKiY5k2bRqA4PydeeaZJvNajHvP0e+nlUX38TArOJC71vT8N2vWzGQ28GSFdSBY84v7iiarqMWrWHutjk/H0q9fPwBB66Q2QC6t8nWS6LWtVlC16HLcWqVdrfusY1TM8blFx3Ecx3GczOIPOo7jOI7jZJa8mnqqOY51YLT2hgbTabsIfoeaI7VcOYPl1MQYZkZO2l2lv691ONisji4CABgyZIjJdMklbRqvKGEl6LUOC+t7aKl1dWPStMzmdfqdlQkNcEzj8YfVVgGA++67D0DQtTNu3DiTeS2W5lpU07O6JnVe80GPn/uHBkBGtQho2rQpgKDrR10jDKLXOi26lsNc48VCj2PzzTc3WeeH83b//febTtshMPFD28po4Hycrhv9bv3Na665BgAwbNgw06k7WMMU6IZS11Tjxo1NZjKKzm/YXqrzl8Req24etqUAciENbJUABBM70uiyCkPDVEqrSRZ2Ly9mnSq36DiO4ziOk1n8QcdxHMdxnMxSZU1mslWrVpXbhqbmZjVNhZmpolxTPKa43AFVq1atAgD//vtvXjbCqDorzOrQcztixAiT2Qk6rqyjddZZpwoArFy5MhYbKOdFu+9qWXXWidCsOm2XwDoKdDEA5TPXVqtWrQoArFixIlYbr5pj2eIEyNVX+fTTT01XyLLy1atXL8j4dH2OHTvW5JNPPhlAsG0C26oA+Wd96HUb9h0VGV9Ypp9mFYXV5IjKyozbNcXxFfL607XI607deHot1qpVC0Dw/BTSTcDrr7Tx6W9yr9N6OHqd8JhV1hYBYfeKuOaP41u2bFle9z/NqurYsWMJWeusqRsubtdVzZo1C74+e/bsaTKzbXXOdK+56aabAJS+T1QUzp/iFh3HcRzHcTKLP+g4juM4jpNZyp11VRpqglLTVXnM+WnMYAlDx6pm4m7dugEApk+fbjo1Y1Z2OG41pzOTB8iNm4W9gGALEJ6rtGed6fFtttlmJk+YMAFAeEfsNKHrU1twMNvjxBNPNJ26CfIdS5ytBbSwof6Oum6yiO6fdAmxVc7q8Lwknb2j64jzp4Udo1wXlLXgXGVBx6RZcVq8kNmCxXRXxYG6JrUdCUMSNDTjjDPOMJnnyAsGOo7jOI7jFICCByNXBgoVjBwFa+qweSkQLEGu9TviIO5g5IjfNJlP+vpGp2+k+T7JFysYOQqOtZBjUgoVjKzo/PCNSt+4ivl2Fcf40kQcwchpoqzByJWVfIKR9TpSK75aImkJ1v2jmF6MOIKR1bqjew1Ri2vce40HIzuO4ziOs1bhDzqO4ziO42SWNbquHMdxHMdxKjNu0XEcx3EcJ7OsMb0868GCy5cvz+T4atSoUQXIfjB51seX9WDPrI9v6dKlmRzfeuutV5T50wBdLX9AKlq+pDQ4f1m/P2T9+lPcouM4juM4TmYpeMFAx3Ecx6koTFVevHix6R566CGT2S+rc+fOptt5551N9rhTZ3XcouM4juM4TmYpmkVH2wXQ9xpXwTUnHaiPPazceVzd2/OFb5R6/LpWORb9e1LF9yoCxxd2TSrFLPJVSDiWqCJsaWzXsbajc/XTTz8BAC699FLTse0KAGy99dYAgLZt24Z+vjKtVac4uEXHcRzHcZzM4g86juM4juNkllhdV2HmSAD4448/AAA77bST6dSMXhlNj9rrg2NRd0dp5nL9POXK6toL60777rvvmsyuyzRB62dW/1yx0N9funQpAOCff/4xnXYq//LLLwEAixYtMt0ee+xR4ruSnjNdU8r8+fMBAJ9++qnpOGalU6dOJrPjPJDs/Og86fjCOpmr600/x7GEdcx2iofOn64/drr+4IMPTHfOOeeYzO7fm2yyiekquztS739h12157iXFIuyeB4Tvf3rM1Jd2zRXymnSLjuM4juM4mcUfdBzHcRzHySyxuq7UnHXhhRea/PfffwMAxo8fb7ratWubXFnMyGq6+/bbb03u168fAODcc8813V577WUyx6fnZ9asWSazZsQll1xiunXXXbfE59MKz8vEiRNNd/zxx5vcvn17AMC4ceNMp66RYqHz9+uvv5rcs2fPEn/XueBYFi5caLr77rvP5MMPPxxAcH7jNjeHZRipa+3NN980+bbbbgMATJs2zXTLli0zmceq86c1S7j+4nCt6jhUXrFiBYDgPOnxz5gxw+S33noLQNB1pZV1u3btCgA49dRTQ/+elutLx6/rh+PS49SsxjA3X1QGWpLoMb366qsmf/TRRwCAevXqma5Pnz4m042cFhdORdH9ZfTo0SYPGTIEANCiRQvTaQbaDjvsACCZOY3aM2+++WaTlyxZAiC4px9zzDEmt2zZEgBQp04d04Wt3zB3V4WPO69PO47jOI7jpJiCW3T0KVPfEn/44QeTN9tsMwDRdVT4HfpGnPbAXLVOvfPOOwByQXNAeLCt6jTw7p577gEAnH322aZbb731Snw+TeiTPi12AwYMMN3KlStNPuusswAANWvWNF2xxqRvDhqMe+aZZ5r89ddfAwi+8T/22GMmz507F0DQCnDRRReZPGXKFADAwIEDTacWyzjeRLmWPv/8c9Odf/75Jn/zzTcmL1++HEBwzmrVqmUy50LfInX+dtxxRwBAw4YNS/x+vsevVpiRI0ea/MQTTwAAvv/++9DP69s/ZX0j1mDXiy++uMQxc00Che2blA96zvv372/yyy+/DAD47bffTKfj5/7aunVr01133XUmJ7l/6DnXuR48eLDJ3PcHDRpkOk0GqOyWHI7vww8/NN2tt95q8g033AAgeK70/zKJI4l7gt6TaTkFgPvvv7/E/9XraMyYMSZXr14dANCxY0fT7bPPPia3a9cOANCkSRPT5Zus4hYdx3Ecx3Eyiz/oOI7jOI6TWQruulLTFoPKAOD33383uUOHDgCCAbYKzcxqrtttt91MpskuCROsuivoogKCwagMvN5uu+1MV9qxLliwwOTDDjsMQNAcnUZ3VVSw5NixYwEE3SitWrUyuU2bNmv8fBzQTfPLL7+Yrm/fviZrMCvN5Fq7Q03rRN1gDJYFgAcffBBAcM7UjbX++uubnM+49Vqj61ODAqdPn26yrluuK7qggJw5GciNS2sfqRuPbi66k4DcnAIVc/1wLag7Wxs5smbKU089ZTp1fdavX99k1mmqVq2a6dgIEgBmzpwJAHjkkUdMp66rJFF34uzZs01+8cUXTda9hnBMQM71ra4/JkgAydZB0vWu7mB1re63334AgIMOOqhIRxc/eq3yXqj7y913320yr6WovYHXVxLzqL+pddD0+uP/2XvvvU3Hez6QW8u8TwDBtcB7xXvvvWc6PX8VwS06juM4juNkFn/QcRzHcRwnsxTMdRVmen7llVdMZqYHkOs6G1U7hdHcp59+uunUDMuaHsXsfk2TsrYFoIkYCLazUJMkUZNfWPd2NT3vuuuuAIKukTRmGqg5UbNh6KbRrJGTTz7ZZLqGipndwvl77bXXTKfuAD3XrIPTrFkz07G2BQBsvPHGAILzr24SfpfWCVLXz+67725yPvOqrr+3334bAPD888+bTrMytFw+50czHdS1RdfxcccdZzp1Q/Ma+Pjjj02ndaIqAs+D7gnMLgJya02z15SwcvN6fnR+aWZX11Ba0PXQqFEjk7fZZhuT//Of/5T4HDNVAOCrr74CADRt2jSOQ6wQnAu9D2idJnWdsmZO3JmKcaPrT8d92WWXAQhmRWoLGe6Len+LaudSbHTP1qxGdcezdcxVV11lOt0rGZKy5ZZbmk73J9afy9ddpaTj7DmO4ziO48SAP+g4juM4jpNZCp51pSbkxYsXm9ygQQOTGY2t5kg1UzGDRU13WnwwyXLmzz33nMnqmtMMFGaTlVYQkV2wgaCb44EHHgj8v7TB41I3nhZHZKd6dY2oG5LzHnfWgJ4/ZrVpYSt1N22++eYm9+rVq8TfNQOOGSw6v8OHDy/xvVoQTd08dE3qMVbkXOj1c8ABBwAAHn74YdPNmTPHZC0u98wzzwAIukD075dffjmAYNacurZovtYibnGg5nBSHnd12PwDOdP5VlttlcfRxY+623R9hJ0DFukEcnN58MEHx3h05YNzodm3mlWrbiq91srynVEknamq7ibN8KNr+KSTTjKdjoV7hYZraEFBvRaTRIuMaouYH3/8EUDwnqBhAnRp6Wd0zvm9hSwS7BYdx3Ecx3EyS8EsOnzi0reQQw45xOTHH3/cZDYYPProo02nT7+seRFl8SkWekzz588HEHxKjWraGRYMGRaMrGXZDzzwQJMZWJj0G0kUPH6tHaM1Dxjsec0115hOn/6LFYSsa4ZWss8++8x0Oj9bbLGFybRUhAW4Arn6LWz+CQAvvPCCyXyjVouOBr7q+PNZ13pMrIlzxRVXmE5biOh1yQaKWlNIZVqC1KKlv8UGffpGFsec5huAqp/XIG02I9RgybSzyy67lNCF7U9AzlKi6zON6JpR6xqt/1HzHxbY/Oeff5rMtV5Wy1Bc6PENGzbMZFp/NQCbbWcAYM899wQQ3J/080mie6KuP9Z+A3L1j3Rv06al3Dei6qjFkWTkFh3HcRzHcTKLP+g4juM4jpNZCh6MrCYomuCAYE2IK6+8EkAwMK1ly5YmjxgxAkDyrhv9fbpeNEByyZIloTJrgajpTuuDTJs2DUAwQPX22283ma4DDfYM6y5dTMLMjBqY/ccff5jMIEgNdk36mOfNmwcgaC5X0+tRRx1lMk3fUaZz6tklGgCOPfZYk1mnRgMs9VyEBfbmC7+HNYCAXL0fALjkkktMphtN3Y16ruiyUtdk+/btTWYnbR1fWjp+A+HtPq699lqT6SbW2k5J7zWlofNHdM40MbDbGUsAACAASURBVIBrParFTloI21+B3PURFbowa9YsAEHXHOtIATmXFV20QLBOS5xzHdWdXV3Xo0aNAhBsK8M5A3I1t9jWBQjuVWmsKaTJHLxH6vi1JhnHUtQ6eEX7JcdxHMdxnCLjDzqO4ziO42SWWOvoqOlUu7PeeOONAHL1SoBguwBmtai7J4maMjoWHtN5551nOu1IrZ2imUGg7rrtt9/e5CeffBJAsKPymDFjTL7hhhsAAOPHjzednsskzOxqOmadHM4jEGw3wDosesxJm1tLy27SrLey1ufQTKYmTZqYTJOsmuPVdBvHWuYxqVuMtXUA4I477jCZ2ZCaVaVrKmx8bCsAAHPnzgUQ7FicRtS1qlk5Xbp0ARDsfh6WTRKVNZnEWg5bM6rT8S1atAhAMpmqpaFrrk6dOibPmDHD5J9//hkA0LhxY9Opa44ZSFrHTOu0cV/VTvcXXnihyXG6TKLccdpxnrW81J2tdXbYyVvvD2lHM8h439bj1zo67Hqu6zPua8otOo7jOI7jZJaCW3QUDVDUOhAPPfQQgGC1Un17HDt2LICgxSAtwYJazbJjx44m6xP5Sy+9BAB4//33TcdqmEDujUvfiPWJmE//Gkya9FukBpbxjeqbb74xndYUYk2XMCtBWilPzY2wYLoffvihxN/PPPNM06nFJ87AXT3P+jtqceS8RlmWqNc3Lg3sZeDkDjvsUIAjLgy6f7DBrO4fHTp0MJnBnvoZXd+0jmhlaL5lA0FL7oYbbgggeYulWjwYJB9lsUoCnh+9zvbbbz+TmYAC5AKv1QqpFn9WkW/durXp1Dtw6aWXAgAWLlxYkGMvBJqswMSHsEbAQO642UGgMsDaVEDuvq4B4PRSADnr/2mnnWY63Wvi2B/douM4juM4TmbxBx3HcRzHcTJLrK4rRc1RDNIKq50AAK1atQIQdA3MnDnT5NJaLMQBv1/rGWy66aYm9+7d2+TLLrusxDHRXQcAPXr0ABCs80B3D5Abl5rDkw5A1gZ8bOehpsk+ffqYTJNs0ub88qB1OFiiXOdaZa5lnb+hQ4eazJozuiai2ikUGr0m1Nz/xhtvmKxjKSu6FtTNmiQ6Vt1fXn75ZQBBd5u6EelG/uKLL0ynwZJ0Q6s7S03vWj8oaZcQCauDlKamwDxPmmCie4a6VidNmgQgWGeN9wQgF+Sq4xsyZIjJDA048sgjTZf0XhRWE0jXrF6rDKLv27ev6dIyl1FtGzTwe7fddgMQbKB8yy23mHzOOecACDaipTsZyF1fhZwzt+g4juM4jpNZ/EHHcRzHcZzMUjTXlRJmklIzMTNUtN3C66+/bvIZZ5xR4u/FMiGXJZMozDXw3XffmXziiScCAFq0aBH6+STL6atpUusg0B0H5LJubrrpJtNpBllazPkKz6meW810YKYGkKvzoLWBvv32W5OfffZZAMDTTz9tug022MDkQYMGAQi6eIo1p7r2tDYJ246s/n/KirqumFW41157ma6YbuSw31Qz+BNPPFHi/7LsPpAzs6trSzOU2PVds0LUTaukca2n8ZiI7v1a+0Zd+8ygmjx5sunUdc7rVlskaLuc448/HgCwzTbbhP5u0nB+wtpaALmsJQ1nSOOc6j17woQJJrOTedOmTU139dVXm/zll18CCLZl2XLLLU0+4ogjALjrynEcx3Ecp0wkYtEJQ59YGzZsCCAYgKY1d/h2nJYArSj0LV7fqLt37w4g+MZfzAZnYfAtX+tx6BO3NoCkRY1B1auTlrcPfSNg5WPW4ACCVgBtqtepUycAwTcuDYzkm4w2rVXrFmtGJV37aPHixSbrWMtKVFPFKVOmAIi2jiWBrjkGM2qjQQ0gZpXyiy++2HQauMqK3lGNFNOyvis7un60ztTDDz8MILhnqkWfldnVykYrDgA0b94cQMUsl0mh+y6TGZLwWJQH3RO0KTc9AXrNaNNn1l+rW7eu6dQiF8dYK89KcBzHcRzHKSf+oOM4juM4TmZJpeuKZvA2bdqY7rbbbjOZwZDHHHNMkY6ufNB9wOZ0QDBwK6xFQtLwmJcvX266d955x2Q2KgVy9WG0DlLSrrcwwlxXGlStrjmdC7pJ1fTdtWtXk9n6g/V2gGCDwiSDyXUcWueJrQoAYPbs2QCCpuewtagB5qeffrrJbApa2ufjRudXG8gysJXNR4GgaZwm89KaCiY5j/mQdpd+GGF11tq2bWs6bYfA8UU1Wk1T4HFZ0WPmWk3aHRxG2H0aAPbff3+TWR9JG1mr65Fjvffee023xx57mOwtIBzHcRzHccqBP+g4juM4jpNZ0mcbQ848ph1fX3vtNZNZep9dYIHkzegKXR4TJ040nWbosL5AmkysYbUd1HTcpUsXkxs3bgwgne4qRdcBzd3nnXee6bQ7/F133WUys+F0/bH2kf49qgVBkkRlsmjNn5EjRwIApk6dajo9V+3atQMQdFfpd9FknZYxA8HjZ00jzeoIy5pK0/Hni46fGTxp2l/KQxbnpzQ0w2rFihUAgm0htM5TWtA1p659uqR69uxpOtYmA3J1rqK6s3vWleM4juM4TjnwBx3HcRzHcTJLlTWZiVasWJGoD0hdA5oBw2OuqGm2evXqVQBg+fLlsYyPx/rJJ5+YTsfCgnJxmWZr1KhRBQBWrVpV7vHpcUZlb/D8J+UirFq1akHGV56CYmGtP+IaP8e3cuXKvH4gai7LmpUT1e4k33FXq1atIONLKxzf0qVLYx2fZr1ocb1u3boBAN5++23T1atXz+R8XVrrrbfeWjF/cd0fSoP3jW233dZ0mlWY7/XH+0Mh9xeF7Y5efvll02noA9s9xFWEk/OnuEXHcRzHcZzMkmqLTlzEbdEhGtirxB1kl49FpzKQj0WnMlAoi05acYtO4dHA1fnz5wMItkgoZDsEt+jEC+8bcVk8CmXRUcIs5Xr/03te3Pc/t+g4juM4jrNW4Q86juM4juNkljW6rhzHcRzHcSozaywYmPUYiKzHIGXdh+7jq5xwfFm//uIaX2kxEHEXCvT9pXKztoxPcdeV4ziO4ziZJZUtIEhY7ZzVZcdx8kevtcraOiDLqPXmt99+AwA8//zzpuvYsaPJ7Fqf9XksrTZUVJ2Xtam1RBopLQMwjjplbtFxHMdxHCezpNKiwye5v/76y3T6RpPGBmdOduCboK65MIuHvhlWRiujvvH/+eefJrPBYCFrr8RN2FwVM24lDvT8a52cq6++GgDwzDPPhH6OzVgr45jLQlidmUWLFpn8zTffAADuuOOOEp8Bck0nAaBWrVolvsspPHp+eV9ftWqV6XT/5P7D5smr/70iVJ6dzHEcx3Ecp5z4g47jOI7jOJklNa4rNS2+9dZbAICTTz7ZdF27djX5pptuAhBsapcm1wFdH2p6DnMDRJX4TrppZhga2BfW2kLHUlnMwDomPdfLly8HkDOBA7lGdQDQqlUrALnmdEDQzBr2nWmC41Z3VcuWLU0eNWoUAOCAAw4wXVrmVOdMXVPff/+9ybNnzwYQbIrYoEEDk6tWrQogOgA7LfOmx/TII4+Y/NJLLwEAJkyYYLrdd9/d5CwG2+q8L1y4EEDwnDz00EMm//DDDwBy1zEA7LnnnianZS1HERZEHXb/SPs88zoDcnMCAO3btweQa1UCBMd30kknAQAGDRpkunybmrpFx3Ecx3GczOIPOo7jOI7jZJZEXVdqovvnn39Mvu+++wAAs2bNMp2awdJiWlbU9LZ48WIAwJtvvmm6J554wmSa0ffYYw/TtW7d2uSGDRuW+M4kxqy//+uvv5rMbAbNiqO5EQia0Uka50yPaerUqSYPHToUAPDZZ5+Z7ueffza5SZMmAIJzdvjhh5t88MEHAwiaW9NoZlYX5JIlS0weMGAAAGC33XYzHTMhgGTmknuFzolm1bzxxhsmc66aNWtmum222cZkurT23Xdf06nrLsk6NHrNLViwwOSBAwea/J///AdAzoUKRFdJrszoudDr76qrrgIAPP7446H/t3HjxgCAm2++2XTt2rUzmZlWQPHmWI8vzDWlx8H502ty8uTJJjdq1AhA8PpMU505rsW3337bdGFzoZly77zzjslPP/00AOC0004zXdRYy4pbdBzHcRzHySypsehoMNmTTz4JANh7771Nd+WVV5pM605anlwB4IsvvjC5Z8+eAID33nvPdPrG+PHHHwMI1nPQN+aHH34YAHDggQearlhj1TcPDVZVi81RRx0FANhhhx1Md+utt5p8xRVXAAi+cSZdk4VrTWs3DBs2LFSmRU7nhFYcAPj3338BAK+++qrpXnnlFZMZRH/dddeZLt9gumJC62oaLQNaT6ZevXoma7ICz6++Eat1ePTo0QCAu+++23Q613379gUAnHrqqaaLqrJbKMK+n/sgAMyZM8fkgw46CEDQyp32ANvywHOxYsUK011++eUm87zontqlSxeTzz77bADA5ptvbjq95oq1rqMspkxy+Pvvv003Y8YMkx988EEAuX0GAH766SeTW7RoAQAYMmSI6XbeeefQ301ir2EyEes5AcGxvPzyywCC5+TYY481md4DXf+0YlYUt+g4juM4jpNZ/EHHcRzHcZzMkojriqbJ33//3XRjxowxmW4OrVOywQYbmJykST3KtaOmVbqmbrjhBtOdcsopJT6n5srbbrvNZAZW7r///qaLqvkSJzonGgzWvXt3AECNGjVMp6b/W265BUDQtXD99debzGDApF04WttBA+MYDE4XBhB00/G4P/roI9P169fPZAbT161b13TXXHONyWrGTQtq7ub8brjhhqZLeq7omlETtgbz6/Gzfoqa+0eOHGnyL7/8AgD4448/TMdGmQAwYsQIAMAJJ5xgumrVquV1/KXB61uTMjTAer311jOZrlGt3aRrit9VmrstTQGsCvdYBqUCwAsvvGBy586dAeSSBoCga5lrJYnrTNehri+9P7AOkt4/tCZcWJ2nsDAJddeq610TI7gG4pjfqMD5888/H0AwgWWzzTYzmceyyy67mE5DI5gM8cknn5hOa+7ofaWsLlu36DiO4ziOk1n8QcdxHMdxnMySqOtKXQdfffWVyTSJpbF2jprrNPdf5UsuuQQA0KNHD9OpaZKmN80K+PLLL02mab2YcFzqwmH0PADceOONJnNe1DSspmNmuIwfP9507LgM5DKQijmnNP3qmtOsKXXD0TXA7DIg3HWx/fbbm6zZQBdffDGAYM0XzSBJS+sSdZOwdgwA7LPPPgCCaz3pDCzuGWH1RgBg4sSJJl977bUAgnWeNMNl6623BgCceOKJptN2F6yzo/tPsdAx6TFvscUWJjObUf9vWJ2WZcuWmU7nmi4vrSeThGtc0WuC1426ezSMgS4rziMQzKZMAh6/ukA16+jdd981eauttgIQnD9d1xyLzp/C/6t/Z6YZENyLmY1VqDnVdaLnvH///ibTZawupgsuuMBkbcdC6tevbzLX8syZM02ndZQ22mgjk9115TiO4zjOWo8/6DiO4ziOk1kSLRiokeRh8llnnVX0YyoNNd2p6VBNgzTNqbtD3TzM1qGLAwi6Th599FEAxS3rznFpkUM9JnVt0Fyo5nI1YzKbQE2USRTM07miG0OLNGpWhB4fzdA6prB2HDo/hx56qMksfvn666+bjpkWAHDIIYeU+K5iwrFoJouONaw7fRrRc6frlm5gnX8tqMbWEZr1of+X6zvpInxRWVPU65pU1yhdstrdm5mgQO5aPvroo02nBdv0uo1z34naS5m1qZk8WpCUrpmksxf1/HMv0SKUr732msmaNRd23Or6ZkFAupBX/y2ue9XpXqMuz0IXutRrTrMCNUOOc6lzpm48fodeX/q9PD9NmzY1Hd19q3+urLhFx3Ecx3GczJKIRYdPorNnzzadBsuxKeKOO+5ourQEI+txbLLJJiZrTQu+MapO31j4pKvj13LzderUKfFbccOn5O+//950bdu2NVmtO2FveZMmTTKZgeXawkMDH4sV2KpvPAxwHDVqlOn0LUvfPliHorRS6vpmocF0LE0/ffp007HsOQB06NDB5GK1M9E3O9aZ0WBsfaOsLOj89OnTx2TWPNLaTRrsf/zxxwMI1u4488wzTQ4LlkwTnMulS5eaTsfKOk4bb7yx6diWBchZXFWnwcDnnntuid+Kuw6LNj1ms87jjjvOdFobhmtVj0mPnxRz/6R1QxvN6v6viQ0LFy4EEKzzpOO79NJLAQRbXISNRa9ptg0Coi0l+cBrTa+jc845x2Rdi8cccwwAoFu3bqHfxWMKs6IqWicr3zp6btFxHMdxHCez+IOO4ziO4ziZpWiuKzVTsvXDAw88YDqa04Gc6TmNdXQ0kExNa9rC4eabbwYQrAOh5jZ+h7p2GIAH5EyexQyG5PnVegVatluPhYG92l32888/N5k1dzQYL4n502Omm1DnT90VRx55pMk0g5d2/qNM56zD89RTT5lOAwSTXstci1qvSddn0sdXVqLOP03mHTt2NJ3WdGLgpLZouf/++01mkgBL2QPB/atY6PjUzE83gta50nYIdCkMHDjQdGGu4/fff9902s5E3ZiFriWk55EuHCDYiZtj1XYf6hqnm04/f9ddd5ncqVOnwPcAhVvTej40AP66664DEHSn9urVy2S6o4Dcve722283nYYusGZS1P7DY9DQB53/I444wuR27dqtYTRlh8eia05bPNSsWdNk7n8MwQCCyQ6cF61zpYkRbCfEeQTynz+36DiO4ziOk1n8QcdxHMdxnMxSNNeVmvSmTZsGIGgG07LVrOmgZsKkayaEoaZRZnIAufoHGoGvpnGeC5o7gWBUeRJjpUlZ6x2wlQWQmzMgd/ytW7c2Hd11ADB58mQAwdoxxULnRGuL0I2mJnytfaNrLd+ssLDPJ+H6iILnSOs8pen4KkJYJ26awIHgumZWiLpW1XVy5ZVXAgDat29vOq3DE6dLWdehdo/XdiJ0/WtbAc2KpBtWswrD1qSOY5tttgk9hjjROizqMqcbRGvSaOuWhg0bAghm+vTs2dNktoZo3ry56eJogaCuo6+//hpAcB1p9pq6Vlmzi61KgPDWJnpNqvzdd98BCLrrNFtW25nkU0dHP8t7krqAtcWDunl32223wGdWh/ePTz/91HTqBmS2oLY9yZfKvbs5juM4juOsgVgtOvpEuHjxYpNHjBgBIBigpIG5tO6EBTCliai3BDbr1ONX+YwzzgAQDGZOumki3yj0zU5rM8ybN89k1ozROh1qHWAwo45ZxxfnXOqcaB0LvuVMmTLFdBosV5EGllEN7lirR2snJW2R1PHxTfSLL74wndbsKC0YsrKga0HnhxYDtehp5eC3334bQLDBbdzwXKvFsUuXLiZrnRlahzVoWBMHWPk4qnI538ppGQCCFlm1vhdq3YY1DR4+fLjJWkeNv9+4cWPTXXPNNSbvv//+AILzpzWrlixZAiD+e4aeJ1pptF6OWnH0WgpLdtC54veqlUut01dddRUA4NlnnzWdVq7XfS0fS5aeP9Y2+uSTT0zH5rdA0KJTu3btEr+t38X50WrKuj4ZmK1Nr/Pdi9yi4ziO4zhOZvEHHcdxHMdxMkvRXFcM1gJyQaqae6/BdjTTdu3a1XTqGkljnQ81YzLIms05gWC7iIsuughA0LWStGuD6LndaKONQmWi5kSVOe9qjtbxFSvYUc3BDOxUd5KuOXXZlbXsvX6/jp/1PdR0vd1225mcdNNMHpden+qGZBBrZWwLEYWOlbIGwz744IMmswVEEi1odB1pMPSBBx5oMmt26f6p7lYGU2tTZE0MoGt10KBBplM3URxudF4r2qhT3SBhdagGDx4c+nfW1NH9hXsqkGuKWcz7BF0vGmCsyRp6/2J9IL3mfvvttxLfqckgb775psndu3cHAPTr18902qCW4wfKfw6ikjmeeeYZAMHaRdoUVpNpiM71jBkzTOZxv/POO6Y77LDDTGYQd9T+WhHcouM4juM4TmbxBx3HcRzHcTJL0eroqBmM5jQ1R2qdFpq80u6uUjOfmlGZFaF1HrS+AqPJk860Ko2Kmgs5Vxr9r266YmXz6Jph7Q1mRwDBEu16rCw9XpqLaf78+SaPHTvWZNaEUHeA1lkqZM2esqLnnOuvWbNmptPrMy3rUuePZmw1Z0ftCbwu9frUMU2dOhVAsHv53LlzTWZXb61jk4TrSuuU3HnnnSazxcMHH3xgOm0xQjfDyy+/bDp1nfLv2mJBiXOs2upH3SB6rdBlpy1UeMwA8OKLLwIAnn/+edOxdguQu2/Evc+EZV0yOwkAJkyYEPo51nfSrCLNsKJ7Xa9Jzcaja5kuPiDnbl2d8s6lXl8//vijyV999RWA4P6p7lB1vfE7NBOOnweAOXPmAAiOSbPVOL5Czp9bdBzHcRzHySxFs+gofFLTp8e+ffuazGCrtKPHr29P48aNAxCsDaQNyvhGX9nrlJSGVmtNAj2/rPmgjWRPOeUUk1nbCMjVcdBGn/omw7fSAQMGmE6r7NISxArfQLDKZ9IWE77lqcVK3z7vueceAMHrMIk6VvqbtI7qW6Za4VRmrRYNPB89erTJtLjqG3Pv3r1NZp2SsliP4kR/c8sttzSZY9E6KlplnuuL9WYAoHPnzibXrVs38P9W/6044PdrUoZW8H311VdNpqVNr7mmTZuazJo/bdq0MZ16B+K8vjSpQvf3W2+9FUAwgFqbVur5pSVLLcLqvaD1bffddzedNupkxWdd80qhaueol4KyXhMazE8rqX5HVB0rjk/3F12fcaxFt+g4juM4jpNZ/EHHcRzHcZzMUjTXlTaYo8ygOiBX+wHImcfSHoCsgXVjxowxmYFhw4YNM53WoUlLzZy42X777ZM+hBLstddeJrOeCAAMHTrUZM6bzl9paAsFurTUtJ20m1KvJZrJNQBQAwcbNWoEIPm2K+qOYDCuugu1XojW8WDg459//mk6HQvrc2nZ+l133dVknp+k9x/9fXXH0GVx2mmnmU6blpb2+ST2H/4+3WZAsNGxtuCgm0ODdbXdQFjNliSC+nUsPXr0ABBcR9q2Q1tf0E2jbTt0fXJdq2tK3cw8hrBGtvmi36N1fjhWDXpm82ogeP+jy07drVoTj0HU2nQ1bjeqW3Qcx3Ecx8ks/qDjOI7jOE5mqbImM9GqVasKZkNS0xS7l6o7S83UcVO1atUqALBixYpyj09roEycONFkNc2xPoua2dU0GbdJvHr16lUAYOXKlUWzvev8sZaEukP0XOTrxqlWrVqFxxfljtGaR99++y2AXPYckKuNo9/Rtm1b02m5fbp+dJ7LM+Z8xlcWePxh1ySQq/MRl+uK4yvt+tPfnzlzJoCgO1G7b2uGjpbeJ+3atTN55513BhCs46HngnNV0fHz+qvI/lIZKNT+ou6YsJpVUa63uN3AFbn+uFY0K0mz+vSYmY0aVaeLY43DNQWUfXz6m9wfdHzagkT3Dx6/ZpLp9clxx3Uf5PgUt+g4juM4jpNZ/EHHcRzHcZzMUjTXlRKWVVXMDId8XFdqbtSOrOyoCwDdunUDEIw6L2aRuCRcV2rSpEvhjz/+MN2ee+5pcr5zHYdrJ6y7dUVJ0jVXUQrZKbg0yuq6CmsBUQh3Gr83rj3HXVeVm0Jdf1FrNelsvoqMT/cHouMo7bos5r3eXVeO4ziO46xVJGLRSZp8LDpKVDAd61QkVTsl6TeusLfvQlq0krB4FJO1ZXxZt3hkfXxZX58+vsqJW3Qcx3Ecx1mr8Acdx3Ecx3EyyxpdV47jOI7jOJUZt+g4juM4jpNZ1liOOOvBSlkfX9aDyf/9999Mjm+dddZZK4JZsz6+rF9///zzTybHV6tWrbVifS5fvjyT46tRo4YHIzuO4ziOs/ZQvAZTzloD08qj+ntlJS4sTQXBws55aeUNoookUtbPZ2XOlLAiaEByZSHKS9T8VZbjX5soT0HSuAta5kNpe0ZZ4Pos5vjcouM4juM4TmYpmkVHn/jY6TrqjZ/F5fzNpHLCgol//fWX6bRTNLv3pvGNpTxox3NdyzrWOFGLxDfffAMAOPvss023zz77mFy9enWTly1bBgD44osvTLfLLruYzBYmzZs3D/3dyj5vZMGCBSZXrVrV5PXWWy+JwykzXGurVq0yne6V2jXaSY6ogqmLFi0q8X91zrj+9PPFbNESRpiV9/fffzf5ww8/NJktgHTPadeuncnbb789gNxzABB/iyS36DiO4ziOk1n8QcdxHMdxnMwSq+tKTW90ZwDAu+++CyBo+qpbt67Ju+66KwBg3XXXNV1ld2Op6TGsF5SOL4lgrXxRM+S0adMAAPvuu6/pzjvvPJOvv/56AMFzUpnGynk7+eSTTdegQQOT77jjDgBBd0gROvYCAHr37m26Dh06mBx2rv/55x/TjR8/3uSTTjoJAHDGGWeYTmV+V2WaM4VrtUePHqbbYYcdTO7Tpw+A4J6VprGyr96DDz5ounfeecfk/v37AwA222wz0yW9fxay+/WadGlCXYvcEwDg6quvBhDsj9isWTOTu3btCgDYfPPNTXfEEUeYvNFGGwEIrs84CAsteeCBB0w3dOhQk+fNm2cy96Lly5ebTu/l3EsuuOAC03FMQDxr1S06juM4juNkFn/QcRzHcRwnsxTNdaVmrHPOOQcAMGPGDNPVrl3b5I4dOwIArr32WtNtt912Jidthi2NMNO+jvXJJ58EAMydO9d0hxxyiMn7778/gGAkftrNtHp8n332GYDgnGuGEiPso+qYpBE9Vs7bp59+arq99trLZJqU1XUVB3odNGnSBADQtGnTEscBhLsJNLtI3XCHHnooAODII48s8RkAOOuss0r8fhrXZ1TWypw5cwAACxcuNN3rr79uMl0GJ554ounUzZD0WHne9957b9Opa+TWW28FANx4442mK6Ybleg5nzRpEoDgmtlxxx3LfEzqGq9fOTJ5lgAAIABJREFUvz6AYFZP0nMShq4/7ukAMHPmTADB7Ctdf0OGDAEQPH8vv/yyyb169QIAtG7dusBHHA3Pr97HDjzwQJP3228/kxs3bgwAePTRR003atQok++++24AwXvC4MGDTY7DNV557jSO4ziO4zjlJFaLjj6969vjmDFjAABPPfWU6d577z2TX3jhBQDAkiVLTEcrCJB7kk/TU7w+ffNJ9b777jPdbbfdZjItHfrEP3bsWJPfeustAEDLli1NF3fgWUXQ42dtFgB48803AQB16tQx3SmnnGIy5y/u2glx8dFHHwEA/vzzT9PRogLkLHHFXJ88l2U5p2GVV3Uu69WrBwAYPXq06c4//3yTmSzAf4H0W3d0f+nZsyeA3DwCQesp9WoxOOGEE0xO+lrk+d16661Np3vFhAkTAAB9+/Y1XRLWYV1Tf/zxBwBg4MCBplOLhgbG83N6nDoXDPyn5QMADj74YJPTYvFXK9Qmm2xiMi2iuv5+/vlnk1nTivdBAHjllVdM5v1BLSZqXSnUvhq2P4RZXqJkDfDfaaedTL7uuusAAI888ojpdt99d5OPOeaYNR5LRXCLjuM4juM4mcUfdBzHcRzHySxFawGhpieWgFbT1vz5800+99xzAQBfffWV6dQ1kpYWAmqu08Bb1klQ03/nzp1Npsl54sSJpvv1119Nriwl3HX8v/zyi8mTJ08GALRp08Z0rVq1MrmyuKw0AHX27Nkm9+vXD0Cwdo7WZKHJOi0m9LKg1xLrf2yxxRam02BlupzVHF2epn5xw/P/9ttvm05dp0RdyxtvvLHJrE/z0EMPmU6v3/XXX9/kJOaY190zzzxjutdee81k7h9Jrz+9zk899VQAQRcLg8KBYLsYXndRLYKuuuoqAEHXjbqukoDHqu6qzz//3OTjjz/eZLZr0f1FQzsYDM+kACDnjgRybkB13bVo0cJkvW4LvdfqMSs6P3Tt6v3h2GOPNZn18wYMGGA6DcY+/PDDARTW3eoWHcdxHMdxMos/6DiO4ziOk1mK5rpSwlocbLjhhiYzD19Nf0mbYYma41asWGHyJZdcYvITTzwBADj99NNNR3cHkDPJXXzxxabTTsos3Z52F4/On2YQ/PbbbwCCJn41Q6Z9XJxjzarSruDs+q3ZAVpun66fNLlzKoLO76abbmoyzezlKeEfN+oymDVrFoCcCxwIXrd0KWumh9KoUSMAwbL7P/30k8nqskvSdcXsRiCYwcS5SnpOFJ4nbWvQsGHDNX5G94yPP/7YZNbp0jprSaDnl9c829sAQden7u90k2pWql5L77//PgDgwgsvNJ26dthC4Y033jAd3XkAMHz4cJNZP6lQYR7l+R69NtTlxfves88+a7qXXnrJZNYZUndcvrhFx3Ecx3GczOIPOo7jOI7jZJZEXFckquAcM5C0SFTS5b55rFosTMuua0FDZuBcccUVptOoehYU1IJQ999/v8mMRte2Amly9/BcaHfep59+usTfk56zikKT62OPPWY6dRNss802AILFz9RMmyaXQZZRd9Tff/9tMgvlacFRzVphcb2VK1eGfhddC/p3/f60zO8GG2xgsrru0nJ8Yeh1EuX241zQhQHk3DVAziXZqVMn0yW9vzADTjOh1PWmbtIbbrgBQDA7KuxcaMdvdXN169YNQDBcYNq0aSZ///33JrN1UtLnR3+fa1UzGTW0gy4t7rNAdAZeWXGLjuM4juM4mSU1Fh0NNnv11VcBAM2bNzdd0g0gGUylT8va1kFLxF9zzTUAgk/0GsxIiw0b3QHBOhIkrW9mnAutU8Ky5ECuztHRRx9d3APLA32jGjlyJIBgU0S1qHFcGqCblmD5QsB1p+uPAdhALtg8ifWpv6myWkTZYkbr5LB2FxBuHdXvYuPCunXrmq60t+9iwt/v2rWr6e68806Tk357rwi6v8+bNw9AeCsAAOjfvz+AYIBrseZEj1P3bFq09Tg0aH3EiBEmM9mmNCu9zqPKbLardWj0/sLzAwRbC8VJ1HVJwsaiDYj1vKp1slC4RcdxHMdxnMziDzqO4ziO42SWRFxXNG1psJ+W82Yn23322cd0tWrVMjkJ0zHNjOpu0o672sn5gw8+ABB07dx+++0ms12EBuuqaVzlNKNl51mWHAAOO+wwAMDee+9turSb09UMvnjxYgDBthbdu3c3mXUg8g2QSyscl5rmtTZH7969ASTjOlC0joia6zk/6k4Om58oNwRroXAdA/GW1S8EYSX4074m9frRmmQMNma9HCC4l3LfDAtwBeLtLq9rfsqUKSaznY8ek9beatKkick61orAIGU9Fl3L2k6o0OicRbWDYOC+Xie1a9c2mbV94nBRReEWHcdxHMdxMos/6DiO4ziOk1kScV3RzKamSS0BXa9ePQDB2glJw2NWF5W607RmDk13aq7TcvTfffcdgGAdHUbSA+lsAaGmUXbyZnYcEHRd7LLLLgCCrrk0EmU6Z+sRZo8Bwe7IbG0Rp4m8vIRlJUa5LsKyqsK+69577zWdZkAedNBBJb4/bjcJzeTqTrzssstMZr0QAOjVq1fgM0C4a03P2Ycffmgya3ppW5c0Eda9XN3orVq1ApBzEVQ2dthhBwDADz/8YDqda+4rG220kek6dOhgMrtf6/gLtT7D2j4AufWlfy9kHbHSspriJqyO3HvvvWfyJ598YjJr+mhtvDZt2pjM/VMzdcPccHp95usad4uO4ziO4ziZpWgWHX0K5VOh1r7QYNYLLrgAQLABXNKBdXyi1CdTtcio9YVB1rRMAUCDBg1MPu+88wAEn/gPPfRQk1l/J2mLQVSw7YMPPgggWJlz3333NfnUU08FUNgn8jjQ8WkDWdbE0GD4Aw44wOSk54XoWxCb/t10002mU4ujBkPyTVjrxOi6pnVLA+/ZqBbIBUPqmo96y+S6qcj863fytxgIDQALFy40+bnnnjO5fv36AKLniUGQah2iFQgAjjrqKABBi2wa169acdQiyWuxZs2apkt6/wxDj0mtL6xD1rNnT9N9++23JrPOkTaF5J4DAK1btwYQrNNSKOu4fg8tZ0Cuiu/XX39tOl2fFSGqdhyrtKvFRM8lLVr5Erb/33LLLabT2k1aOVwtXUTvlfxe3b/Ues7Abq1D1L59+zUeV2m4RcdxHMdxnMziDzqO4ziO42SWormu1AxHl4fWYVE3D+tXaJ590oG5NJHpOHbccUeTw0z3qqO7BwBefPFFAEDHjh1NxwBeIPmxEj1+dVOxxL6ei1NOOcXkhg0bAgg3YaYJNXuOHj3aZLoONYA86TpOYajp99ZbbwUAnHXWWaZTd6K6hmfNmgUg2NbhkEMOMZkuHXXX6flhYDLnGQA23HBDk/W65XnT81cRFi1aBACYPHmy6XR+tt12W5PDrh9dq/PnzwcQdHeomVxrJqWZKBM+3UBpbSFTGjx+XVPaFJPNjnVOP/30U5PpsovDXaffqfcsuku17c/dd99tsrq5mNCi61T3FF7X6prUptFXX301gGDtJw3GPvHEE0OPNx/4Pdo8VF1nW2+9tcl0HarrmK51IDcuHbMeJwObtQ6RutG12WdZwwjcouM4juM4TmbxBx3HcRzHcTJLrK4rNS2qGW7IkCEAgAULFphOzW007aXFRaCUpXYITcZq2hs6dKjJderUARCs06FZB2lxXSnawoJ1gHTOWFsFSE9WUhjq7tE6HePGjTO5bdu2AIKunzQSZkbfeOONTad1RmhaB3J1mrRUvLqWnnrqKQBAy5YtTffjjz+aPHPmTAC5ekqrf9ecOXNMPv/88wEEXUNlRV0vP//8M4DgnrL//vubrC4Drj/9/JIlS0xmTRY1gQ8ePNhkZkOmcf9RovafqGydygLHpeMLq+PVt29f05122mkmc33HMX/6neutt57Jp59+OoBg9qbuLyeddJLJdMM1atTIdLp/MrTh3XffNZ3WeWKLmgMPPNB0mgGlGb6FupfwWopqhaL3d7qG9T6gWYE8h5oJ2qJFC5PZiV1r1un+VZF5rdxXhOM4juM4zhqI1aKjb1SaZ//KK68ACD4RH3300SYzmCzNloHV0bHyiVPrBPGNFMhVUd55551LfCZpdBz6FsE5A4CTTz4ZQPAtWAPz0jIWJczKRssiEHzjP+aYYwDk6sUA6RyTHhOtg1oPRoPdtWbTxx9/DADYZJNNTDd+/HiTGWysb9Fak4TXpf5+lMzA5HzPH9eXBrhrbQ4NhuRew3orADBs2DCTaVHV+dc6Hmm0qIah1km9bufOnQsguH8Ws4FioQirowTk9h1tCq3W5WKh5//YY48FkLNGAMA999xjslpEuS7DkgmA3B6l1+yWW25pMi05GoyvlpZC3TfDLGpXXXWV6dRK89hjj5lMi6/OnybusAuAdj7Qml5Lly4FENx/863J5hYdx3Ecx3Eyiz/oOI7jOI6TWaqsKc9+5cqVeSXhq2lO63hstdVWAIAuXbqYbsSIESbTZBdX2fJq1apVAfIfn6KmYZomta2DunbYjE9dB4U0l3N8q1atKvP4aGZUc+SZZ55p8vTp002mG2vTTTc1XTHdjFWrVq3y/3+zzOOj6VNrTxx//PEmq2vxgw8+ABAMcC1mCf111lmnCgCsWLGizD/Ka02DgrVRrgYo7rbbbiV0Ck3DpQXblwf9rurVq5dpfGF1Ytg+BQDGjh1rsgZ2svS+Blirmf+EE04AEE/QJpAbX3muv/LAtfzll1+aju5WIBesqnWS6K4D8ncj8vr7559/YhlfWNNZdZPT5ahNTffYYw+T853LWrVqlfv6Izz3QLAdhNaMW758+Rq/g2td3bHt2rUzuXHjxgAqXmeO63P58uXlHp/e0zUAmXsmkLv+9Pg0TIMJE7q/lrYmy7P/1qhRo8QG5RYdx3Ecx3Eyiz/oOI7jOI6TWWJ1XWmktGZdDRgwAECu9gAQrGkRd9ZDoVxXYZlWQK77rnZ6HT58uMms+RDXOCviuiI6Dka/A0GTJbs6J5WJVBHXVRiagaXZPDTzJ9XxuSKuK6LzpLLCdRdVgj1uyuq6CkMzbdQNqWPhdamuK83w5N/jWr9xu66I7j96rfIcqbtK10K+c10o15Uev15/bJ2g4Q5TpkwxedCgQQCANm3amK6Qc5mP60rveTq+irj29fM6f/neN/JxXSk61qgMQBLW7iKuPcddV47jOI7jrFX4g47jOI7jOJklVtdV4IfEnEWTl/52Md0gcbiudCwsyPbWW2+ZrkePHiaz3UPcWWX5ms6jSsknXTyvUK4rnb8oN2QS5OO6qgzk47oK20eA4LXE/xPVriVuN12xXFdKmMskLtdk3FlXbH3AwnMA0LlzZ5NZXC6u6zQf11UU+WYqFpJCua7SiruuHMdxHMdZqyiaRSdNxFFHR2H9AH3L0mC7uN8oC2XRSSuFsuikFbfoVG6SsOgUk7gtOgxsjWoBEff+GYdFJ024RcdxHMdxHCdD+IOO4ziO4ziZZY2uK8dxHMdxnMrMOmv6Y9ZjdLLuo8x6jEDW12fWx1fIrDktyDZr1iwAuZ46QLBgYNwvd4yxyvr8ZT2GJev7Z9ZjHBV3XTmO4ziOk1nWaNGJm6iaGCSpOjuOsyZKW6uVxR0cVUcorOZH2PiSHqce5++//24yO1kPHDjQdN27dy/egRWJqP0z7hL7jlMISqvTFlYbq8K/ldenHcdxHMdxUkwiFh3WSdDaMmPGjDH5jjvuAJBrjgkAhxxyiMlxN/3MFz6p6hNrRZq6pZ2oytBlhRWiV/98Ws5V1PgWLVoEILgO119/fZPjrnxdEcIaBGqDzH/++cdk6vX4a9asaXKNGjUA5OpFAclbXDUGp1GjRgCCe8rJJ59scvXq1QGka37KA+dSr5PevXubvM8++wAAunTpYrq075lhRDW1pD7q+uR5qazzG0bY+NOyT5YX7hXcR4HgXqJ7aaFwi47jOI7jOJnFH3Qcx3Ecx8ksRXNdqRvnjz/+AAAMHjzYdPfee6/JNJ1fccUVptt2221Nbtq0KYB0mWN1fAsWLAAA/Prrr6bbfvvt1/iZyhTMGtY0sDzBYhzf+++/bzp1Y7Vs2dLksAawcRMWJDd58mSTzzjjDADAwoULTadu1p49ewKIds0VC50TdVO9+eabAIC3337bdE8//bTJP/zwQ4nv2mmnnUzec889AQDHHXec6XbZZReTizXWKNda27ZtAQCjR482nZr56bqqrNCNMXbsWNM9+uijJh9xxBFFP6ayUpYAeF5/umY/++wzk5ctWwYg6PrQOW3Tpg2AnIsVSP+eGoaek59++snkxYsXAwjeU/IN1i0mvG9ccsklpps6darJDz74IABg7733LthvukXHcRzHcZzM4g86juM4juNklli7l0d17+7VqxcA4J577jHdhhtuaPJWW20FAPj6669Nd9ppp5k8aNAgAMFI9PKYJuOojKxuiueffx4AcP/995vu8ccfN5nH/c0335iuQYMGJvNcVNTcGkdl5LAMCHU31q1b1+Sjjz4aQNC1GNaJuH379qZTN9AHH3xgcu3atQEE3WSFqowcldVBk/gDDzxguqFDh5b4u35GXavPPvssAGCTTTYxXXncrIWqjKzHR3cxkMtK0mOqX7++ycxwVNfr9OnTTabpvGHDhqYbN26cydttt53JYZkhhaqMrPvL33//bXLXrl0BANOmTTPdW2+9ZfI222wDIL5MsTgqI+tczpw5EwDQqVMn0+22224mjxw5EkB8rtOKVEbmtbZ06VLTzZ4922TV06U6Y8YM002aNMlk3ku4DoHg/jllyhQAuRAHoHzXXxyVkcuTocr/q667U0891eRPPvkEAPDFF1+YTtdHaSRdGZnj++2330x35JFHmkw39AsvvGC68ozPKyM7juM4jrNWEWswsj656tvx8OHDAQTfIrXmRZMmTQDk6kEAwJdffmkyn/432GCD0N9Kmnnz5gEANt10U9Pp2yefaPv27Wu6E044wWS+kSZdJyHqLeSRRx4BEAzAHTZsWOjniI7/xx9/BBC02Olca02FONG3PA12vPzyywHkgnYBYMsttzSZQXTffvut6V566SWT+aaqFp0kUIuF1plhkD97QgHBOjPt2rUDELTCfvfddyZfffXVAIDnnnvOdPr2rcHkxULHyutP15FaHCsLes1onaPLLrsMQLAatNbRYWBu0skaug/QYqtWKL1+dKx8o9c5bdasmck8F+uuu67pNFi3T58+AHL71OrfX6x7RVQvNq7LqOMIs+hwzwRy1suoysFpuhcSPSbOBa31QND6GMd9zy06juM4juNkFn/QcRzHcRwnsxTcR6BBQ59//rnJ119/vcnNmzcHANx2222mU9fFn3/+CQCoVq2a6aIagCVJlGny3XffBQAceOCBpgsrl6+1PzbffHOT02J61LnUOjI9evQAEAyADCs3r3O2YsUKk+k60WDCXXfd1WStiVHoc6HHpKZ/dd3QpdOtWzfTXXvttSZz/V555ZWmW7Jkicl//fVXAY+44ui503NKl6muX3UT8HNqTp4/f77JDILUOiVatj0J1wBrqwA517YGqKqbg8cXVXskLdefHt/EiRNLyFqHRGuqJN2OIwzudfvvv7/pWO8GCNZh2mGHHUp8XgPf1aVKzj//fJM//PBDAMHzUKz7R5iLHgAeeughkzlvpV0zuqdo4oqGbKSZ0lxrmoykyQKsU1bI2kDpe3pwHMdxHMcpEP6g4ziO4zhOZim460rNTWyFAACbbbaZybfeeiuAoLtKzYzLly8HEHQHpbHEtR4TjxnItTZgPZnV/y/HpbVjWNsDSNb0rC6277//3mS6q4CcG+Smm24ynboGwqLm1fTK+ibaVqB79+4mq8us0Jkjak6tVauWyVtvvbXJLD1+4403mk7rPDEbYs6cOaZTc3IaM3zCujvreQ7L8FFz8imnnGIy1zpLtQNBN0SxsgX1mlIz+C+//AIAOOecc0ynbmKONcxdB+SugSSyHnVMmmmlWY1bbLEFAODss882Xdg1E+WuKdb+EtaiY8CAAaH/NyxMIer46Vp+4403TKdhEsyQTOKeofOgWZsDBw40ma45dY2H3et0z9Q6UXTjpT3TKmr+hgwZAgC46qqrTNexY0eT+/XrB6DidfJCjyWvTzuO4ziO46QYf9BxHMdxHCezFNx1pa6GPfbYw+RXX33VZBYvi3JN0bRamTp661hYCCmqYBzHoq69YhXJi4JmQi3LzVYdAPDzzz+bzBYc6nrSeafJUrOqtNM12xGoGbtevXomx2la13WkBau0EzSPX7OOdHxsAfHee++ZjplYQDBDJC2EmfF1rlk2HwBefvllAMCTTz5pOnU9M2vrsMMOM526HuKcP71OtOCkFoeja4etLICgGZwFHXV8YS0ktPBhsYrv6XEyewgIupHpxmJhVSB4zvkdOiZ1gyXhWuV1p/MXVcSPY9Hu5Hr/oOtD3VXaTua6664DUFjXR2mE7XkTJkwwWV3fbJES1YKG+htuuMF0Or/M5i1PW4S4CetEr+f8tddeM5ntdDTrTN1YvG8Wch9xi47jOI7jOJml4GYEfYrTtzytuRH2xBdW30QbvYU9MaYVBrlGWWn4dqj1INQipDVP4kTfCObOnQsAuPDCC03H5pSr6xk4HFYbSL931KhRptPA3Y033hgAcPjhh5suicC6qLUaFkSn54qWBH17O/HEE01mYHLS9UzCGqkCwFNPPQUgGOCq1gNasnbffXfTaQsXBm7rd8Y9Vo5Fg/61Dpe2AGBrEm0uqg0QuZbZPBIIroURI0YACNY+UYtBseb1o48+Mlmtj6xFE1XHi605dM7UeswWJ7RcAfFfczxWPU5t2qjtRHj9sB4ZEFyf3HeOPfZY02nTXZ6rJFpg6Jpic2cgWCeNliptm6Lrl+1oNBhZ9ycGYavFTlu85DOXUbVvuCeGJTUAufsHkLPYa9sYtd6zTp5ev+r9CatzpXuyzmtpNbHs82v8q+M4juM4TiXGH3Qcx3Ecx8kssdbRUdQNRdOVuj40MIlmPDVTt2jRwmTWbElTgLKW/aeZUjteq+vj008/BRAs8a01XeIcl86PlihnR2Q1IWvtETUXsk5J48aNTafjY+Dy7bffHvp5jnX69Omm03YSSQR+qjvi119/BRBcf2pmZgsLrR100kknmUzXT9Ldo5WwTtLaHVldM1wXPA9AMJiVFPP6o+laO67rWt12221NPu+88wAEj49zBgCffPIJAGDMmDGm0/llEOjw4cNNx9pKQDxuVo5P9xGtw9K0aVOT69evDyC3jwLBdiSPPvpoie/XFhl07WmLmrAWGYWE50zdLXfffbfJ6qbac889AQTHvOmmm5pMN5bO/0YbbWQyA1vV3ReHu1HdKaydduaZZ5pO72/aQkXb5RC9FsPqXOnxMwib9xEgeP3ms+9EhYhwram7Mcp1HHYcOj6u31atWoX+nePWMetY9XMaErMm3KLjOI7jOE5m8Qcdx3Ecx3EyS8FcVzRzaSaRdtwdN26cyWwBoKbFZs2amUzXh5r+tMQ8zVVq7koCNe1p1DlrPmimg5oumc3Beh5AsE5No0aNABS4jsD/N7Oqu0xbVHz55ZcAgrVxdC7vuusuk1lzhfUsgOD8MANCx6SZZNQXy10HhGf6ffzxxybr+mQdGZ0/bdfBc6ltI7Q2SZxZOWouL0/tKf0cuwMfeeSRoX+n60rbPjz88MMm33zzzSV+v1jzx4wOIHjNqeuQdTh0/c6cOdPknXfeGQBw8MEHm65t27Yms6ZSMV2PHJ+6CDVTUV1LdKlqWwFmigHARRddBCBYu0rXN1t36PouVNaOErZW9Xd0/9B9ifWLNJxBzwv3Kv28ZpiR/v37m6z3kjjWKq8/vSdFZdWqSzzs+CjrnqntPho0aAAgl70KxDNnWqeIHde1dpi61lTmWHV/0DppvIbVhbfXXnuZzJpDuibUNcb9WX+jtPG7RcdxHMdxnMxScIuOBtCde+65JusTH5/Y69SpY7oXX3zRZL5J6VPwK6+8YjLrSGi1ySQCP/UpktVYgZylqnPnzqbToClatHr27Gk6Bmit/r2FRt8y1PLABp1aD0aPQxs4sjLyMcccYzq+JQO5OjNaWVh/i2/S2sg0zgBIILc+Ro8ebTqtxqnssssuAIJWHJ0/rsuwaq5xwTctrZCrTVXZdFXnIappJedF3wj1XPFNWoP+uGaBXB0QfUsr1vUXtU60zgjfBHVM+neOf8WKFabTueZYilm7i3OlQbXc54Bg4PTjjz8OIGgxP+igg0zu3bs3gOC50jfirbbaqsRvxWER0DdyWjHU8qmVp8OuVd2rdP5at24NIBgsTisjkLMoazKI3osKNVa9vphMoXOi16peS2HHodfyE088ASCYgMNq5EDOKlbI/SesTtUtt9xi8tSpUwO/DQTvz2rJokfirLPOMt1RRx1lMpMcXn/9ddNNnjzZZNbf0fuL1kmqiCfALTqO4ziO42QWf9BxHMdxHCezVFmT6WflypVrtAuFBUOyPQAAPPbYYybfeOONJjNYjvUsgKCbh+ZPNd1pOXSWi9YWAwzQ0mOJolq1alUAYPny5QXzl4QFZka5DhgErOZUNT2rSbAi1KhRowoArFq1qszjC2t7oOj4WP/mtNNOMx0DBPX/qjvu+OOPN/naa68FEAywLI/ptWrVqlWA8q1PNnBUc2qHDh1M7tOnj8l06dAdBARdq5xLHZ+2y9hxxx0BVNydw/Wp46PrV8v2a6O8p59+GkCwNkpYqXQgd16imgoysPOCCy4wnZ4rBiarGbs888fx/fvvv2Venzy+r776ynT77befyeomoZtAExy0hQBbzHTq1Ml0ajqnGZ7nFADatWtncmljXWeddcq0PiM+a7LWDtEGpaxpoq7hfffd12SuX12TWmL/jjvuABBsS1Cetcr5W7FihY2P+4c2itX9jfP2zjvvmE7NtHrwAAAgAElEQVRDDyriTtJzpUHq3Eu1qTLbnqz+ubDfrV69ern3T1LaPgqEt8PQwFwG2+oxawPdfN3E3D/1+gsLhg/ba9SFqM2LTzjhBJP5DKDnvyznZU2Up8E3rz/FLTqO4ziO42QWf9BxHMdxHCez5JV1pSYkmpa7detmOkaPA8E6MnRpqbtAo7ZZH0LrQGhX2IsvvhhAsCOq1lSIu2ZCGGG/o6ZlLdf+ww8/AMhlP0R9vpiUZo5X10aTJk0A5KLrgWB3aNZ80I7nm222mcmsDxFHplJUx26WxVd3hkbya1YV2wVouXM1/TNbZdKkSabT1gRhGRaFQrODdH3NmzcPQNCEr66BsO6/es3p9UPXlLb40GuNLsdidmfnb+n8aYaL1nmi6V9bnKjJnS43rcehJfQ5/8y+09+PG3Vn7LDDDiZr1uP5558PILinqmuOLindX7XOELNWCpkpx+tOz6leH2yNoO5O3VPCXBNRe6J+jmgGXZL11cqyTnh/UteUuk55re6+++6mi/v+wO/XfZD13oBczSXdRzRrWlt0cHx6LnStxZ3BGIZbdBzHcRzHySwFb+qpze+0Jou+PfOJm5YBABg5cqTJDMzSJ/dDDz3UZD49svkeEKy5oG+6SVpK9On322+/NZmN+9TKkbRFJwx98ta3JAaWa1O9c845x+Trr78eQPCJX5/oi/V2rMdP65k2D1SLIRuVqqxrWQNTOZdqPWnevLnJccwlv1MtL7169TKZNZm03oZW/t11111NZk0MtcKx9hGQs7j9X/beK1yKauv+Hj7/V8AsYs45YEIBM2BAxKzowexRTBgx4jErijmCGDBnzIqKOaEeE2YxiwFzAMEE+F58F987Zo9iV9E7dHX1bsbvhvmsTXfXqrVqVdWcc42p15dqnrQ0Wb45sP+6JmghWFUGbo6nQq9Vrh/V9Filocekidc77rgjAOCqq66KNr0WO3bsCCB5rtI2jlQSfqfqpWhRYM5bLa6qyux6/fC49fN6/FSMVs02PRdMNh84cGC0FeHlz4L3KtWG0/sXVYK1/3nDc6LnWbXhNPF4+s8AyWuuCB2qctijY4wxxpi6xQ86xhhjjKlbWqSjk4a6W//444+wNWTw559/AijpjQDJAolpBQrTXK/qbtdyAllJbiQPHZ009DiGDBkSNrUkVAdIz1tLXavN0dFJQ49fNVsYEll11VWjTZPp5p13XgD5lQVorI6OnlMWEtWkTC1Qp8mo1CTp169ftKlOE0M3dJFP//eWakak6eikfTcTkIFS4qAW4hs1alTYGnpUNz7RMDN1MBgCASobDm6Ojk45Kukab2n/WqKjk4WOO+cdQ5BAci1lGCiv6y9NR4foOOgx81rT4puPP/542FqugcnuaQmuQKlosoZQNQy26667AkiGNpsypi3R0clCz8WkSZMAJLXTNJmcml+qrVPJcGOajk49YR0dY4wxxsxU+EHHGGOMMXVLxUNXirrr0tzl6o5ryk4Oukc1tNKUz1crdKVu3JtvvjlsumbV3VpJN3OlQlc6frrr6KKLLgJQkpIHShWFgfx35TQ2dJWGSpyrrfoe3HWkczZNByJNm6YSzCh0paT9vu7e0NBxOeaaa66wqbOi41jJnSp5hK5qiTxCVwrHPWt+5l1Jfkahqyy4VmsIldosQElbDADefvttAKVwM5As/bHOOusASIahdYdQmo5L0aGrtB2sugNNd+VeffXVAJI7nSo5pg5dGWOMMcbUEX7QMcYYY0zdkmvoqlapVuhKSduJk5cgWaVCV0rabgqdO9UUV2tJ6KoxO6LKSdDnTWNDV0paRfKm7ERqrpu/OTh01bppTuiKZM3P5uyay6po3dL5m0foKo2stSjv9cehK2OMMcaYOqLiJSBMOkXLybeULLnv1kZrH4csivZCGdMYKul5ae3U61pUi9ijY4wxxpi6xQ86xhhjjKlbZpiMbIwxxhjTmrFHxxhjjDF1ywyTkZuzfbA1wO2D1dxeXk24vbze+1fv23fz3t5aFNze6v61TmaW7cn1vr7U+/1dsUfHGGOMMXVLrtvLmyII5W2HrY+s8a33bZNp4nz11Od6718aaXNZ24oSx2wJWcdvzMyGPTrGGGOMqVsq7tFJKxUAAH/++WfYrN7KKslAqWI0UHr7aC1vTllodfVy3q00Qb5afQvjuI4bNy7atBLvOeecAwBYfvnlo601iwwCybFgVXDt0zzzzDPDzzRH4r6apFVX1v7NNttsYdfqvGwq2me9Vj/77DMAwODBg6Ntgw02CLtfv34NvquWzgn7NWXKlGhr165d2LV0rDMj5dZ/U3ns0THGGGNM3eIHHWOMMcbULRULXdEd97//+7/RNnr06LDPPvvssL/88ksAQPfu3aNtq622CnvbbbcFkB7OqlXS3JE//PBD2N9++23Yv/32GwDgn3/+ibbFF1887BVXXBEA8D//UxqeWuo/j+W8886Ltpdffjls9qvWwzXlyErGPeaYYwAAjz/+eLSdeuqpYe+2224AkqHZWhq/NHSu3XzzzQCAr7/+OtpOOeWUsGu9L+Vg6FXH9NFHHw37uOOOAwB88MEH0aZrVS0m+WqawDfffAMAOPLII6Pt9NNPD3v11VcH0HrDyU3Z2FIrpK0leq/U0DD/b3NTN1pj4nze2KNjjDHGmLrFDzrGGGOMqVsqFrqi65RhGQAYOHBg2B999FHY3KFy3333RdsDDzwQ9qhRowAAG264YbSpm69WyHJhP/HEEwCA448/Pto0dMX/q31S1/NNN90EANhuu+1Sv78I9PjeeOMNAMDTTz8dbX///XfYbF9hhRWiTXe1tBZ3KncfAcB1110X9pgxYwAAv/zyS+rfd9hhBwDAnHPOGW061rUS0tPj0B06Tz31FIBkOLVWjrkpZO0AZchGw+kahp1vvvkAALfffnu0cUynp+jrMo2HHnoIQHJN7dGjR9hrrrkmgNoNXXHcdMwUhsaz1pFZZ521QVsR46TzT8/1nXfeCaB0nwOAhRZaKGyuleuss07q9zLMpedH+9exY8ewl1566QZ/rxRZ559h8Kas82l9qeQx26NjjDHGmLqlYh4dPn3NNddc0XbBBReEPe+884bNNyb1/jABGQCeffZZAMB6660XbbWYAKjH9PPPP4e93377AUi+8V944YVh77rrrgCSb/maLDj//PNX/FibQ5q2CgAMGzYMAPD9999Hm47JiSeeCAB46623ok373759ewDFv1Fm6dy0adMGAPDjjz9GG/sMlLxz6rH5+OOPw77qqqsAAMcee2yD76wl9C3q999/D5vjtuOOO1b9mCoBx1K9iDpX6b0ZPnx4tDGBHABOPvlkAKW3YaA2Ezx1/HQzAD1V2n96YYGSDpQmwBbdp7RkXV0/X3zxxbB5LdKzCgBLLLFE2IcccggA4N///ne0Fa0DpRtPnn/+eQDAyJEjo23uuecO+6effgKQXDPUS0WPia6fei/ZZpttwr7jjjsAtLzPnGu6TvTv3z9svT9cfPHFAJJjoqR5bHRjB+ftJptsEm0t9Sjbo2OMMcaYusUPOsYYY4ypWyoWuqK7UbVvevbsGXZa6Om7776r1M8XjiZzpiU7DhgwIOw0N+KVV17Z4O+15E7+8MMPw6abcdVVV422k046KWz2X5OxjzjiiLCvuOIKAMAcc8wRbbWULHjPPfcAKCWVA8kwK49V3bX6XUOHDgUAbL311tG21lprhV30uBI9ZtXMYftmm20WbbUSLs4iLfH4vffei7aDDjoo7C+++AIAcMstt0Sb6nixXIKOUy31n/3TcIiGVhly1dCWztVanH96fp988kkAwGmnnRZtiy22WNidO3cGAHz11VfRpuVoTjjhBADAaqutFm2qg1StkHnW+sIwk64PWkKH90UNzVEbCSjNX01gZjgSAPbaa68WH/v0cC7pPVu1p3RO9enTB0Cyf9SmAkr6YnfddVe0MdwIlK5FDV21FHt0jDHGGFO3+EHHGGOMMXVLxauXK+ouff3118Omy0t1dJhpruiugbTq3kWjrslrrrkm7C222AIAcNhhh6X+X7qcp06dGm0a8mO/i3Yx6zmnNgdQ2g1x6623Rhv7DJTGR8dJ3ZQMA+mupSJCAzq/VAeIoTXu/gOS1Z/pWtWdgtTGAEo6Qhr6WmONNcIuWpMmTWKeO0GA0s7JWtwppuh51BIW3KGz0047RZuGWV999VUAwFJLLRVtOldrZX1RtK9cN3Qn42OPPRY2Sz8wBAsk5y/nfdHhOO3Tn3/+GTbD4Kr9c84554TN46ce2/R/57zV0HgR6Dw644wzwn7uuecAAHfffXe0denSpcHndU3VXVW0s7TJ8thNx7miO+E0XUN3CnOHo+66/vTTT8NeZJFFACTvCXqu9PgrhT06xhhjjKlb/KBjjDHGmLql4qErzfTXnRz/+te/wmaYSv+v2nTData1ylpTfLAIF7Mep1Yn19DFtddeCyApnqi7Aigo9/nnn0fbggsuGPagQYMAJF2z1QpjqTt07NixYeuuMIqrrbvuutGmYTi6OTfaaKNoGz9+fNj77rsvgKRrXQWz8nSp63drdWoNPb755psAkvNvzz33DHvLLbcEkAyX6Oc5Vu+8807q7xYduiLqDtcwJKtba/+KDnOkodfiJ598EvYBBxwAAFh//fWjjdccULrWtP+12D+dJ2rfcMMNAJIio1qpnKEfDTczXACkl0goGj3/FKXTdAbuxAJKO0B114+G5s4991wAyZ2O1bpXaLiXpVSA0pgBpR2onTp1ijbtP20dJ53rTHPIWlPyuFfwWuG9DUiuD6ecckrYK620EoDSdQgkw3QMTWm6hl6L3O1ZybJB9ugYY4wxpm6puEdHn7wWXXTRsFXHgslKK6+8crR9+eWXYTNJWYta6tP5JZdcAiCZYJj2RJwH+pSpyab6JE/v0+jRo6NNdXQOPPBAAMDee+8dbaozw6ff/fffv1KH3Wj0yfrmm28OW8eVpQ002S/tjUm1L3r37h325ZdfDiB5/vr27TvD72opfONRz9P5558ftno0mCStHqt99tknbM4vfePUecG3Ly1kq94/LZZZRMI5z4Vqb2i5DiZB6htbrZBVtqJfv35hM7GcUvQAsPDCC4fNOV6LXhxF+0opfwA488wzASQ9jlpAmd4N9QirR5mbRIoui6C/SW0VoNQX1dHRAsK8hidNmhRt22+/fdi77LILgOqWDUrTmaFnHgC6desWNtd19UIyQR4obVZZfvnlo00Ts0ne9zw9f7ymVE9M12ndmEF9H/W46fgxOqBzkmWhgFLpJ53/9ugYY4wxxmTgBx1jjDHG1C0V902rC01d31oigP9HXVMKJbw1Afa6664Lm65Jdfep6zMP6MZT2XWtCKyVnl955RUASVlrVvQGSklaGu5gxXOg5Lrdeeedo03d0Hm4KTkWGo555plnwmYCLgCsssoqAMqHmPQ40yrxMukXSCar54mWstDxU00f6ujoMWlIj3NBXbs6luwfk66BZOikaH0kHrdWZ9f+cy5rn7T/RZB2zjUx8u233w6bIdFlllkm2vSc8ztqMXSl/dP17eijjw6bmxwuuuiiaNP5RbTsgYYJaiV0p7+v9wKGIbWUgYZ+GUZmKQQgqVPDuVzEZhWu/QDw7rvvhq3r96abbgoA+PXXX6NNN9sw9KhlH3Sse/XqVcEjbhycl5ogrXM1LXF6ueWWizYmKAMlLR4NTR5++OFhM+WhkuNnj44xxhhj6hY/6BhjjDGmbsl1W0XWPv9yOiILLLAAgKROxOabbx42dyupa1crLefpstQ+adkAVvQGSpoqWr1cNQUY/tLzoDtxJk+enPgXKGkHTX8MlYLHotpHn332Wdh6/I0tUZGlc8IddionrqGRrJBmS+Cc4I49IKljpK5/7vDT0Kv2lf2fOHFitFHWHQBOPvlkAED//v0bfAYoPmTAsR4xYkS0aZiHocmiQ2wK54ReE1qiQzVzunbtCiA5p1THiZpNutOj6ErlnB8aTjzqqKPC1krcl112GYDkmOl5+fnnnwEkrzkNo3DXo+7UKlrbKe1eodeMlgv673//CyC5K5TaT0AxISv+pmrn/PXXX2Hr+K299toAkvc0LQHBNIyDDz442qgNBADrrLMOgOz5Wyl0TLhD7/jjj482huCAZOibx6Kf17GkrW1ajiWPEiX26BhjjDGmbqm4R0ef0pSmvDHx7/r/VGWX++w1WVY9OnnqJ2j/1lxzzbBVM4f6LLvvvnu0pSVz6rHxLQwoeRLyKG6WBY9F33y10J5qyjTn7U+VS2lrocss70ml4DFr8TkdS+0TE7JVp0n/ziRmfcukFwQoaV7UkrKweskmTJgAALjtttuiTcenFuH51+vkpZdeCnvYsGFh81rTBE4mmAOlZEf1aC299NJhV2usdE5RE0j1tlRZm9pbQGncVC1Y1xcmger1q2//acnmtei9e+2116KN2kFAKRl5m222qepxzQiOpSYKq5dGN6vwWtNrLu386991TvL/VtMLx9+nNwpIatul/d+sKgKMfuj9Tddlfq6Sc9IeHWOMMcbULX7QMcYYY0zd0qLQVZrr7Ntvv039v5SFBkp77rNcxGmhq7QEVU3cq5a7Wd1pqpOiNpPJslxvdBlrstrQoUPD3mmnnQAAHTp0iLZq9U+TnlUbQTVvmPiXlWCbpnmi0uhMxtZwZN5wLDTBWllhhRXCXnbZZQEAX331VbRpmIRhENXM0HISlHsvOlyl6PXD8I+OiUq4U/Oolo6faKJpmrYRUNLfuv3226NNE29ZTJZJvQBw6aWXVv5gy6DXD4s+3nvvval/Vx2xFVdcEUAymVUTQxna1zB0z549w+b6VEmJ/Zaix8J1XcsGMQEXAC688EIAyQTYIhKQFR6/JsWrdpgWeOZ1pZps2n+WZtH1RXV2GPIpumxHOfSaZNkRoKQfpKE5LTqbR0jOHh1jjDHG1C1+0DHGGGNM3dKi0FVaaEndcSrxrK4rZqBnVR/nrgh1TapmxssvvwwgqVOSNzy+F198MdrU3aYS13SjqjtSXaus3q5lMVRThvoQ6rrO2zVLd6HqGSy44IJhH3PMMWFTa2errbZK/S7u6tFdcVrJlrutNFxUrerCSy65ZOrfX3/99bB32203AMCUKVOiTUsM8FzpTjR+BiiNm45Z0TolabRt2zZsdbmzXa/louH8oMYWkNz1ccopp4TN3UZ9+vSJNg3JUlqfIeKi0HARzz81gIBSCApIzi/uENOdVGmV5rVN1xdqvWjF9yLQ9VE1yRiy0ur0Wr2d5RRqpSwJUCotc8EFF0Sblv3REhDldk2NGjUKQLLEhZajKTJ01Vx0rGmrdlmnTp3CzuNeZ4+OMcYYY+qWiuno8OlS9SjUC6Aqj1TZ1SdyLcrJp1/dZ6+KvfSk7LHHHjM8lpaiT9xM4FS9juHDh4et3he+CVMBGEiei+effx4AsP3220cbCxECpbfWaibY8beYiAsADzzwQNiqKHz//fcDSL69aOIddTzU46VjRWXrNDXNvNHfTHsLBkreG/VCaoE6FkvUNzb1NBShc9EUeH3o8ak+RtGJqWnwmNQzox7dww47LGz27/3334829Q6wAGTfvn0bfH810d/s3LkzgKTCtr4Fp81V/XxaYrZ6L9UjQO8I9WiqSZbG2U033RQ2Ncl0fVWdqiI9OToOqjbNtVyvI9UB0sTitI01b731Vtg8F7pm6v2jlovSKnp8qulEW68/TUy2R8cYY4wxpgn4QccYY4wxdUvFQ1fqdlKJ/wcffDBsJn6OGTMm2lhoDkjX4lGX4JAhQwAktXnycOOlFaVUbQpNFtNk1bvuugtAKakMKJUFAIC7774bQFJHRkM/RYYO9Ld1/FioFCjJeau2jroeV155ZQDJZGYNQ/I3qtlPjqUmraqOkfaPYYStt9462rbccsuwmURfK2PWGPT6YPhO56SGGWvRJZ52TBqO0aKJHFcNo7dv3z5sjpuuVUX3mb+fVTakKe58fk6vOU0dYBK2FkXeYIMNmvVbjYXhFl1TH3vssbC1xANtDe0XPT5Ej0PnFJPINfT48ccfh61rBe8h+l1a1JljpeEqTe2o9bWGaP9YiBUo3d+32GKLqh2LPTrGGGOMqVv8oGOMMcaYumWWGbkEp06dWjF/YVqlaM2enzhxYthprjl13c0xxxwAkq6xprg227ZtOwsATJkyZYYfStt1dfzxx0eb7qpSdy9DNyphrmEghnm0/5V0zbZr165R/WsudD9nVarnuWju+JSD/Zs2bVqTv1THdOrUqWFPnjw5bLr8dc6llbvQeVrJHVZt2rSZBQD++eefip00PT4et+4qSwst5sWss85akf5pn9LWF+2H2nmHQSrVv5ai50fXGs51DafobsRy54f9+9///d9G94/jo7uPNPSomkfnnnsugKTOUzVDV//zP//T5PWFa4nqAWkJHR2LNH0qDVly3cmrujzXl0re39PQPmtqwIABAwAkd/0xHQXIvq80Ft7fFXt0jDHGGFO3+EHHGGOMMXVLxXZdlSNNDl9dW/PPP/8MP58WBsnbnanfT0E4Vhme/u/alzRBJ7VrSVq/ORSxa6pS6Dioa1x3iKXNr7S+1qogYBpp5Vo0XFUru1qagh5z0eUAahE9Pxoa6dChQ4O/571rlbtSBw8eHG2DBg0Ke88992xwrK1pfeG1pNdUc0kLjbdGdH3s0qVL2HPPPTeAUikWAJg0aVLYafOzpdijY4wxxpi6pWrJyLVEY5ORWyt5JyMXTUuSkVsDeSQj1xK1kqybFzNL/8olI6dt5miMF79o72JzkpFbE0UkI2sUg/pzOv704gAt92Q5GdkYY4wxMxV+0DHGGGNM3TLD0JUxxhhjTGtmhruu6j3GXO/9q/cYs8evdTKzjF+95zjWe//qfX7W+/qiOHRljDHGmLqlajo6zSFNmwaono6OaR5pOkJFk6bdVI68dUaMMcbkjz06xhhjjKlbasajoyqafOvWAmm///572HPNNReAZFG6ekcLnem5oiJs0SqaacUyVY1Vj7laxzFlypSwqcL66aefRhuLrwJJlc4ePXoAAHbfffdoUxVlqny3JmXkNPT4dXzSiurp/Eor2lo02hfOu7yK5haBjo9eVyRLpT0NjmWtq0ln9Zl9VbX9otc/U9vYo2OMMcaYusUPOsYYY4ypWwoNXalrcsKECWE/8sgjAIBnnnkm2u69996wd9llFwDAlVdemfpdrZ001/Pnn38e9rvvvhv2xhtvDACYZ555cj+u6cmS+D7ppJMAAPvuu2+0rbbaamFXy82s7nyGpkaOHBltjz32WOoxPfroowCA559/PtrOPffcsBdZZBEASdd5rZMWptI+a+iO8+uPP/6ItuWWWy7sNdZYA0AyxFVEaEj7NHny5LBff/11AMBGG20UbRp6bC1hLD2/v/76a9gvvPACgOQ1t+yyy4Y9fvx4AMnx0/6vvfbaDT5TS6EfjivLRgDA008/HfZiiy0GoNQPAJhzzjnDrsXrMu3+lHXO2X8df+1TLc5fvRbTQt/NCZNmhdaVxo51/TwdGGOMMcZMhx90jDHGGFO3VC10laaJ8/XXX0fbgQceGDZDVuquUtfkXXfdBQDo3r17tO2xxx4VPuLKktZ/dV3q3+mOu+WWW6LtoYceCnvbbbcNu9I7z/Scl9OR0WP+66+/wh4zZgyA5K4mDV3liR5nu3btwu7cuTMA4P7774+2LHcrwyC33XZbtOkOriFDhgAAFlxwwWirFdd/mtsYSIY5Xn31VQDAHXfcEW3//e9/w/7uu+8AJMOhGjrhOdxggw2irejQ1fvvvx927969ASTDlFtttVXYtez61+tPw9UDBw5s8H9feumlaNPxXWuttQAACy+8cLQ999xzYc8222wAgKeeeirallhiibCLmMtp4fpXXnkl7CuuuCLsxRdfHEByTvKaBErrTtEhLO3T999/H/aff/4JAFh++eWjTeckd61qaobuAF1ooYUAFL/m6FzVY7nxxhsBAN9++2206fzl57KuQ/5dw11vvPFG2L/99lvYTN3IWvfiO2f4V2OMMcaYVkyuHh19otUnPibTHX744dGm+ibrrbcegKTHRpMl77nnHgDAOeecE20bbrhh2Jo4WeRTvT7xTps2LWx6DOabb75o06fX//znPwBKnisAGDFiRNiaZMnz2tK3VH5+0qRJ0Tb77LOHnfbErOOrmkd8exk3blyLjqmSHHrooQCADh06RNuPP/4Y9k8//RT2W2+9BSCZ9P3www+H/eSTTwIoJb0CtZPYqQmcH374YdhXXXVV2Ez2Vy8pE8gBYKeddgKQ9AKox5TnqmgdIZ3zXbp0Cfvggw8GAAwfPjzaNttss7BnnXXWKhxd0+Ba8d5770UbN11Mb5922mkASp5TALj44osb2EyaB5LeIXqE9fycccYZYaep0OeN/iaP9YYbboi2H374Ieyrr74aQOk6BIAzzzwz7JtuuglAtne6WuiaqdcfPTrnn39+tKlO0FdffQUAOO+886JNvT877LADgOI9b+pFvP7668PmWJx88snRVm6zkJ4res/Vy3zEEUeEve6664a9ySabNOq47dExxhhjTN3iBx1jjDHG1C0VD12pa0vDMcOGDQv7wgsvBJDUeTj66KPDZphhySWXjDa689TW0IG6MZdZZpnmd6AC0A2nyXLHHnts2B07dgQADBgwINo0DDdq1CgAwJ133hltmviZRziOblB1l+6zzz5hr7TSSg1+X93BLMsBACuuuCKAUtIrUHyYg2Oy9957R5ueR52rDDNqsq7OT4bpVNvpuOOOq/ARl0fPKd3hO++8c7Tp+dfxWXXVVQEA2223XbQx3AMAn3zyCYCk67lbt25hM3RadFKv/j4TbAFgiy22AJDUcdKQHnVYij7+tLVy8ODB0aY6MZrMyePWv2voiiFxnafM3vMAACAASURBVN8rrLBC2Ntvvz2ApE6UhtY1iT/Pc6ThDM5fAOjTpw+A5AaABx54IGyuRXPPPXe0aRiO5YLmnXfeaCsiBKdli0aPHh12//79AWTr5HATim7g0NBrkaU7NMSmyfBMtwBKmxh69uwZbTrW7Kv2/5dffgn71FNPBZAMnWuYTNctHk+5e6I9OsYYY4ypW/ygY4wxxpi6JdddVwzBAMmseO72uOiii6JNQwrcFaHuKg1jMbSlrmkNY2nIhTozebsu1TVHN/kxxxwTbbrD57LLLgMAvP3229GmWfmXX345gOROsjzCVepmZRhRyyLstddeqf+XaNa/7uCha1l1MIrWtCBZx6EuWc4Z7b/uKuO4UmofSLqTiyhHwmvmoIMOija95hhOBEpjpeEe7Qtd64pqeiywwAIAamdMgeT8pOtcwzG6PlAzppaOn/NHw0m33npr2HPMMUfYXBe1z6qZw7VO56GupVyLttlmm2grokSGHv99990X9sSJEwEkQyNLL7102Dw+1dZZffXVw2aYtojQpJ7zN998M2ydi5tvvnmD/6u7yrjbVrWfdH0tInTFMJPuTuXuPyCpo8ZdmwwRA+ljoaErPVec9/qdei/t1atX2I3deWaPjjHGGGPqFj/oGGOMMaZuqVjoim64xx9/PNrUjd6+ffuwKei0/vrrR1uWuGBaG92YWv6gXLmCSqHfreEO7lQBSq47dc3peaH4ocp6n3DCCWFzV0TeglB6znn82j91l5Y7p+qGZeiKwo5AUgKdLs2iJcyz4HGpYCJ3ygGlc6Hiblo9m3M9b9e5fj9DV7vttlu0Ze10Y/vYsWOjTcN0H3zwAYDkDrxVVlkl7FoK+ZC0HVi6e0h39dQKOj4TJkwAkBQR1XBN1ueI9p+7lbTPuiuVJT7OPvvs1O8s4rrU0A6vn/nnnz/a0sp9XHLJJdH24IMPht3YnTiVhMenv6mCr5qGkBb61bWSQqsq0ll0iRWGy1QYUAUrdVfuoEGDACTXT+0r74sff/xxtJ1yyilhcy6oGKDuWtbvbWwYzx4dY4wxxtQtTfboZHk0PvroIwBJqWb1uKjEOHU49CmvKU+sfOPIemLPU7NFvTR8MwKAf//732EzMVCffvX/UuvkkEMOiba+ffuGzSdaTRDMAz1PLP2g51S9NOXOqf5fFtVTL8fTTz8dtp6rWoR90bIjqpND74nKsqtODc+VzhWd32nzvlJzVt/Gs3Q6Xn75ZQDJpGMtEUBPnuo4sZAiUPI4FlEqIAvtNzVjVDtGx7JoTSeSpkOlSe+PPvpo2KoNxs9pn3UtpvdGtU00ifT2228HACy66KLRph6VaqH9V20U6lNpiYTDDjss7COPPBJA8l6jCaq14nHUNVHPP4tS6mYUekGAkmZamhe5muh1wuO/9NJLo03nn+r8cK3Qv2vZFSYZ6zOBnguWcNINOlpAuTnJ2PboGGOMMaZu8YOOMcYYY+qWJoeusmS7KV2uUs5DhgwJW5MkG+taVNeZulYpza+usd69e4etIZ88E+s0gYwJckDJDfnFF19E23777Rf2l19+CaCU9AkkNTMY2lLtoDxcl3puKCev2gWqbXHggQeGrclgRMt58Fzo/NBk5FoJHWTB8/Laa69Fm4Z26IZ94oknok0rnVO6XRPUVbNmqaWWCjutKnxz4DlN03MCki5nlgvQ+XX88ceHTf0O3UwwYsSIsFliQedBLYWuKP2vmx00cTJNh6YI0kJXep41GfzTTz8NmyFhTSbX7+LfqScEJNdPrltaVkZ1eqqVjKy/wwRdALj77rsBJMvi6DXDxPjTTz892oqef/x9vZ413KaaVtR/03Ouc5GhYf170aErlpPR+7v2VROvOde6d+8ebUxXAYB33nkHQFKzTct1XHfddQCSqQEt1Q6yR8cYY4wxdYsfdIwxxhhTtzQ5dKXZ/VpdlOEk3VGzyy67hN2cHRr6W5999lnYI0eOBAAsssgi0da5c+fU36o06m5V2XUNTVATQKvvrrHGGmEfddRRAEp6OwCw7rrrNvitauqwUL9DtRu0YrdK6K+zzjoAkq7Lp556KmzusNJz0qVLl0oddovQPuvxT506NWzu9tCKyEpadXotO9K1a1cAwM033xxtOr6qqUT3dEvHmp/XKs9aCfurr74K+6STTgKQDCerm5iuZ901WURZi5ai1Z+1nAA1azRcUrSmE8dP1zEta6BjudZaawFIrj/aV16fqkOiu8647qiOjoZWithNp+efVcl1zdTQG0t4cKcokNRMKpKsivEMxwClnXV6f3jjjTfCZshb1yS9FquFjj3Xr2uuuSba3nrrrbC13BP/z7XXXhttHDOglFqi1d25kw4o3SsquXuu9a1exhhjjDGNpMkeHS0Op8m0TNBUL44+hernynlc+Mashc40WfLbb79t0KY6H9XSUWDSMACsuuqqYbNAqSp7qqYONQFUW6Bo7QeOiSo0a7KpvpEwMU1R5Wsm0+lTvr5RFkmWDlK/fv3CZmFFHZ+0pGH9u3pMmDiqHi09l5XyOOr3cP5oMqu+8WuyO980s3R+mDiu2h877rhj2OxL0Qmg5dDx0cRs6pioNkcRpM2Dhx9+OGzqyQBJ5d+NN964wed1rU2bq3p9DhgwAABw7rnnRpvOf/VEVKuApB7zhx9+CAA4/PDDo23YsGFh03ulHucbb7wx9buKJEvniGMxevToaNONC/R0qMdD7yVFeNmouaSea1X2P/HEE8Omd0o3c2gBVq4vWmhYNb143dqjY4wxxhjTCPygY4wxxpi6pdGhK7pJNQRFPRig5DpN01jRzyua4KjuOBZLVNflm2++GTYTnjXMom7qPF172g89F6pTwnNw2223RZsmPtIlV3S4SuE5Uw2igQMHhq3JYmnnV12zTBJUnRkNcxYZ8tDfphQ+ADz77LNhM+RULsSk36VzmYmRqi2kJSIqldib9vuXXXZZ6m/qdZlWQkX7essttwBIliNgOFL/b9EJvFnwvHTq1CnaJk6cGDZDcixVAhR/LTLZ9qyzzoo21YnZeuutw0477zoX+Pe0NqAUftBkZA1TakghT7LWUurn6JzVTS7syyuvvBJtmmy+6aabAqhe2K0xpI2FXp9MwAZK+kd5lwBqCmnXh4YI9f5GHS69/jR1gyE5hlCBZImTPMbNHh1jjDHG1C1+0DHGGGNM3dLo0FVaaINlA4BSpdGbbrop2nQnkspZE80016xsVt8dP358tGmlWurU6LHkHQ6hm1XdapTSB5IZ5qz6rLLWteRGnRFZ57GcjkPaDiB1lxctt582fuPGjZvhZ9SdnvZdOv9Ux4Pn6rTTTos2re6b57zVnURZFdOJhhu5kxEo7dBiCAAAll122bBrNWRF2G/V2dLQAEPjWgKhaDg+Oo+4u2p6mnP+NczAkKpe0xpGqVZoWdcE1ZShDpfuqtLzoiFVoveKoteacnD8tDq5llt55JFHANR+P3SepIXRNbRI7SqgtBbqruW81xR7dIwxxhhTtzRZR0fp1q1b2Hw6VY8On8yB5Fss3yRUWfbHH38Mm29fxx57bLTpPn1+vppvlnwjoiozAFxyySVhsxAdUCo611q8OI2hKW95HD9NMCsaHr++xe6www5hq04Q36TUY6lvvFQJZdIdAKy55poNfksT5NOOpaWkvfE15pqgJ0ffonUu843/5JNPjja9fotO3C0Hz6+OmRb4fOaZZwAkNUGq6R1Og2NCjR+g5CUHkpph9G6UGwdNetdijPSOr7TSStG20EILhV1E/3Xecv6pmq56pF588UUASY9rr169wq71+Ul0fFQzbssttwSQ1OGqdc0q7QuTjVUHSr1wnHfVLFpqj44xxhhj6hY/6BhjjDGmbmly6CqraNl9990HIClhrmEsTQakJo6Wbejdu3fYdCmzOCKQDANUK2SloQGWMDjuuOOibejQoWH36NEj7HoKWTUWdT3S5apFIzVZsEh0/mroVYthcq6qzoqGvKjvocm8ae7yPNyx+jsaeuJc1aRNdffrNTN27FgAwJVXXhltWjqCmlAMwU7/+daC9p+FLoFSmFJDH0VrlnAuaSkDDR1qCQsmWWvRzznnnDNszgUtMaDlWDivVfsrTecrb/T60HnLJPiXX3452jQMvtdeewFIhvM08by1rL9p4TqgdC/MKqFUi2joiuVwVNuI2kBAKeSv9/S8x8weHWOMMcbULX7QMcYYY0zdMsuM3Ov//PNPo33vdBOrO06rr6prixnY6ppT1yVt/a5KhgFmnXXWWYDy/dNjZkju/fffjzbVeahWCYrGwP5Nmzat0ANRd6vaWWVCGkubNm0aNX5pZJVt0DAU/0/W/KOtbZXUvEgbPx6rVo6//PLL9TMAkrtnNBzDEgNAqTq0VpRXHQ9WstY+VXJOt2T8moKOLysmA8BFF10EIKlzpKGflvaV4zd16tRGfxHPddo6CQBff/112HfccQeA5FyYPHly2NwBq9XrVROJ+kHN3UnXtm3bJvevHNrv7777DkByfVWdJ5YGUh2WSs5V9i+v+clj1XOulcD32GMPAECfPn2irZKhqzzuD7p+UqdKUwNUs4q7sXT+VTI0zvVFsUfHGGOMMXWLH3SMMcYYU7dULHSV+uUZ7vy09iw56TxobOgqDXWx1upOlFoJXek4q93S81at0EdRNHb8yl1H5T6XdX2mheYqSRHjlzYX87p+mxO6IlnXTHPGOmt806qbN4U8QleKrrEkLeScV2pD3qErosesQrQsnaSCjpXcCZfH/UHHjDsEb7vttmjr0qVL2BtttBGA/K4/h66MMcYYM1ORq0enVmmJR6c1UCsenbywR6d1M7OMX14ej6LJ26NTNNXy6ChpOnF56Rnlvb7Qu6MJyuq9yVszxx4dY4wxxsxU+EHHGGOMMXXLDENXxhhjjDGtGXt0jDHGGFO3zLCop5MFWydOFmzdzCzJyPU+P+u9f1OmTKnL/rVr187rSyvGycjGGGOMmamYoUenllBBojTBr1rPNdLjz1uQzRhjWitFC1qa+sMeHWOMMcbULTXt0dEn+qlTp4bNqujt27ePtjSPSdHo8Wsld1ZtraWK5zM7OlYUulLBrlot95EHvJb+3//7f9Gm54fnJS9BMzNzkFUWhlXb//rrr9S/t2vXDgAwxxxzRFuWOF1rhOdF+zSzrkWVwh4dY4wxxtQtftAxxhhjTN1Sk6Erus7/+eefaOvfv3/YrI56//33N/hMLUCX45tvvhltBx54YNibbropAODMM89s8Bmg9sNYacmCacniWdANW7QLNis0+vzzzwMoVREGgPnnnz/sWh+fxpI1Zr/99hsAYOzYsdH2008/hc3zstxyy+V9iBVD+1quOnZLq3u3hMZcU7x+mlK9XMOQJO+aQ2lon3755Zewr7rqqrBfeuklAMDLL78cbVOmTAl72WWXBQDsuuuu0bbvvvuGvfDCCwNI73NrYNq0aQBK5wEAVltttbDnmWceALW/DmVdc5yXadfc9HbFjqXi32iMMcYYUyP4QccYY4wxdcsMa10VpQxJl+OLL74YbT169Aj76quvBgDst99+0ab9KOfSy0MZWV1zv/76KwBgt912i7bRo0eHPd988wEA3nvvvWjr0KFD2C113eWhzKr9o8v7q6++irZXX301bI4bXbBA0o0+YMAAAEl3bFP6XCllZO3TN998E/bSSy8NADjnnHOi7ZhjjmnJTzWJPJRL01zHX3/9dbRp6OD1118HAHz22WfRNn78+LDPOussAMDAgQNTf6vc9ZeHMnJayEfDkR9++GHYDzzwAIDk/O3cuXPYu+++O4Dkrs7mzM+m9I/HzB1HAPDxxx+HrWvFDjvsAACYc845o03PeZrO2C233BI2dy317du3wWem/640mqOMzO/XENQJJ5wQ9pVXXhn2TjvtBADYdttto02vz4kTJwIA7rrrrmhbZJFFwub9oWPHjtHWlPFrrDKyXlNMU3jmmWeiTa+PcmHCtLVok002iTbt69prrw2g+bseK7W+ZKWL8Li++OKLaHviiSfC5rliCA4ADj/88LCXWWYZAM3XybMysjHGGGNmKmomGTlNU0HfqOedd96wN954YwDpXoZqosesv3/uuecCSHpxFlpoobD1raaW0WS+77//PuxTTz0VAPDggw9GmyaO83P6xK7JrCussAKAZLJvEehbgiYb77LLLgCSyeI777xz2EyGrHUdGb0+VJPk7rvvBgBceuml0ca3fKD0JrnSSitF20MPPRR29+7dAWTroFSLtARdoOSRuuSSS6Ltzz//DHvJJZcEAKy11loNPgMAjz32GADgxhtvjDZ6YYF8k0D1Oho8eHDY+kbM62rHHXdM/RzPi3q0tC9M1v3Xv/7V4DN5wbmonil6XgBgww03DHvIkCEAgAUWWCDadHz5Xd26dYs2euEAYNiwYYnvASrXP/0ePecXXnhh4tha8pv0hOs9Tz3+tZKEPHny5LBfeOGFsK+//noAwFtvvRVtqiPHtUjH9Nlnnw37ggsuAJCcE23atGnRsdqjY4wxxpi6xQ86xhhjjKlbKh66ytKBaEpiEf+uyZI9e/YMm4lntaTDMmHChLDputtzzz2jTZMM2S8NF9QK2qdJkyaF/Z///Cfs++67DwCw6KKLRtvee+8dNnWC1PV8+eWXh02dmqOPPjraNExWLdes/s5ss80W9vnnnw8gmUx32223hX3UUUcBAGafffbU7yoSHT9NJtYwyDvvvAMgmcy/xx57hM1k+m222SbaevfuHTaTIYsgK1x23XXXhT106FAAwIknnhht2223XdhzzTUXgOT6pGEezksN7WkYM4+x5ndqWQO9vjR01rVrVwDZoVOeI11zdC6su+66if9XDXisqo2j1/xmm20WNtcNHV/9v1yXuA4BydDGFltsASD/skCarsAE6aWWWqpi389SQUByfSpireH5//HHH6NNN2g8+eSTYfNa0hJHOpc7deoEAFh88cWj7Zprrgmb95L9998/2vT+o/fNxp4Le3SMMcYYU7f4QccYY4wxdUvFQld0g6o7VUs0qGbKiiuuCCDpmkzTEdBwkLq56LoqOlygvz/33HOH/fDDDwMAVllllWjTMA13HdVi9XItRfHUU0+FTe0RoKRppLsaqH0AlPql4QDdabbmmmsCqK2yHTpvl1hiCQDAscceG20HHHBA2AzjMAQAJHdgFEHa9afaJKoZw11F3H0DJDVbGMZS7RzVSeK82GqrrSpy7I2Bc0V3T51++ulh6/FzrvI6A5LXV1r1dQ2NHHbYYQBKuyen/3wesH8sbwMAb7zxRti6A07DWESvW/ZFdzhpuQWGDvIO7Sj8/nHjxkUbQ4hAcgcZj0t1uD744IOwuZtuxIgR0abXJ0NXeZOm3ca1Y/q/N+W7eF40NKbX74ILLggg/12fGtrkdccdtwDwyCOPhK33Muog9enTJ9rWWWedsNP6N2bMmLBfeeUVAMn539K+1s6dxhhjjDGmwvhBxxhjjDF1S4tCV2k7rFREjsJrAPDf//63weeysv4pNKQiQ8svv3zpoP/PTVu0YJu6GzXrf4MNNgCQPL60HWK1Eq7KQsMEaTuUdFeW7vBgyEpl51UQaqONNmrwndXcAVIOHheF5QDgjz/+CPujjz4CUNr9UktoCGbllVcOmxXJgVLpAO5+A5LVnxkmPuWUU6Lthx9+CJty7RpO0eszj92QnIu6+0nXh+HDh4fNXZlZ60NauQUVJ6Ug6T777BNteVyraWUXtISAhp5UfJQ7szQcrCUSGObQc6LinQwzN6XsQ0vhOWfYGkjutNG5dtBBBwEARo0aFW133nln2NyNpCUkjjjiiLAZRsm7T3qtMXVBd2I25TpICxOpyKpef9VaK/V3uObp/V3veVrC4fjjjweQnZrB+/eXX34ZbRqa4/fqDi8N6WrIs7HPAPboGGOMMaZuqVgyMt+ONFmJUvlAKQEZKD3d6xOjvp0wyUzfQljIDig9HdaqR4RPmXp8WZoQtYYe5/rrrx82C10CwOOPPw4gmaCq3g0+savHQBOTNXG7FuE50Pmrby8sh1G0R1HhXNNrSrVxVK6db89a6FLLITCJmUmPQPLt8t133wWQHH+9vivl0dHrhAnQb7/9drTdcccdYWuCLsclS9OLa416h26++eawqeOhHqu8k82ZeDty5MhoW2+99cLWJFeWg7j11lujTceCmi7qhVSdGt0kQfJeSzkWvXr1ijYmRQPAc889Fza9/7pmaLL1kUceCQA49NBDo02vT86/PPWOpv9NaktddNFF0bbllluGreVuys0lnist2qrrbxGkbRzp0qVL2DoWHCtdB3StZNFnTfbnnNX/q+dX7eaMqz06xhhjjKlb/KBjjDHGmLqlyaGrrESoiy++GEBS70CT4VTOmhLz6prWZCsmPmkJAa3+nZbMXEthLB6XhuM0mZAhBXXH1grqYtQEU5VbZzkEdfdrsjHHQr+L2gpAKWSg4190OY801HWsY8X2Wpx/ehxaTkCTjRkG0hIQGqZjsnm5ZPE8wjn6O1pxnZpcmvSoobW0EjP6eU12PO+88wAAt99+e7RpJe9yycyVQsMBn376KQDg6aefjjZWkQeA/v37h83QcceOHaNt2223DZshE5XQ1//LqtjVvOb4W5rgrwnI/fr1C5tpEHr+dS5yk4NWx1btnM033xwAMP/886d+Pg+ok0YNGCBZ9obaP0ApSTdLR46bPHT+8p4JlK67Ikp46DEzhA0kU0tYAkh1uqgtp5/T0KomLlOnTLWR9FmgOfPWHh1jjDHG1C1+0DHGGGNM3dKi2IlKODPrX91pdLECSZcsd61o6EI1Wz7//HMAyXDXoEGDwqZrSzUZ9P/WYhhBd73wvNXKcWahLkINY7EqtIajBg4cGDYrFOtOD92NlyYBXuvoWHHnj4Zuii7nkRbO1fHTHYyU2886Zn5Or091yVOTp3v37qm/1RKydmIy9KRril7zWuKA+hxjx45N/a7OnTsDSJalWW655cKmFko1Qzu8FrT/qiPDYwZKO3u23377aNMwAddS1RthOG7636gW/E3VPtKK1xqmYhhKS6xoOQCWC3j00Uej7d577w2boTtNnWC4Dqjc9Zm2A4saMnocQDKMzNIlWZo7DC1ruPWkk04K+6677gIALLbYYtGWR5hV+8fq49qntHAUUAop6uf1WuW50vVF5+fgwYMBJO85LQ2T26NjjDHGmLqlRR4dTaCimqg+mX377bdh69MpE9I0wUjf1Ii+kWji67BhwwAkC2WqR6HoJFH+vhYa1CduvknqG3UtabKkocfH41Y9HFVm5duLqpVqsmtr8eRkzR1qZqRpd1QTneccH9Ue0TcmPdY0nQuFn1PtnAsuuCBsvnFrIddKXWdZXihq+6hOydChQ8NWnZKtt94aQFLZWBPLWRRYPQq6FnFdy/ua1HPGNVGTarUQ4l577RW2nhei5y3NY66aPJw31Vwb+ZtvvvlmtF111VVh00sPADfccAOAUlI8kFSxpkdRE3RPO+20sFlskp5nIDl/1btSae+Oao/dc889YR944IFhv/DCCwCSekbfffdd2DxHemz6vUzCz3vN0d+nx1CvOT0m9kk/p+uT3v8/++wzAEkvjSbeUzOqkvcJe3SMMcYYU7f4QccYY4wxdUuTQ1fqztLQFWW5s5Ih0zQD9Lu49x4oJTOpHLqGxFj4TpOxagm6jNW1qpoOlNuvpUKWzYF6OgDwySefhM2EvG7dukVbrYfm0sgKgdINq33Sa6FaIQE9PhY9VHf5McccE/aGG244w8/r8bN/WjRR9U/YnnWt5wELlGohyKzzXO664rhpaEeTZKs1fnrOmCzLsA2QLrs//efS/i83A2iIS8ePGyM0GTbvPvOc65qux6xJrmmbFTSMxePWsgiqycONMTwPADBhwoSwNYxZ6dCVfl/Pnj3D1tAO9Zs0XKU6cQwzXn/99dGmOjUMQ1czBYD90nPH4qvT20THV3XYGFJWHSyWXQFKqRGVvGfYo2OMMcaYusUPOsYYY4ypW1q06ypNIl7dqupCVjcx27k7AEjuw2dVVHVNaqY85dr199WNV7Q+zddffw0AGDduXLRpGOuLL74AkKwYnSV3XitoCQRWvVY3u+pUUF9FP9PaQ1dqcy4WvbtPoXZM+/bto427w4D0MIheq6woDJR2MGpoQ3c9MiRSzTFtSmis3FhwrVDtnbRdV9XcSZe2U0X7kdYnHVNWPweAl156CQAwfvz4aNNyBCy3oLvm8h5Lrv86J3XXjZZz4G7dDh06pH4XP6cV26+77rqwqSOkoSNNfajWuOrvaJqF7hBOg2Op16TuOiuScnNS0Tn12GOPhc05vtRSS0WbalrlMRft0THGGGNM3VKxqpJpT3dZT3x8E1GPjnpkqMmj2h+16PHQNypqOwClAnvUCwBK2h1ASTNI3747deoUNj0GtdLP6aFKLj1TQLIAG5OQa7FQZ1NQTRoqgwIl/QjVQcqjwGU5dP4tvvjiAEpv80Dy/Ov1xaK5t956a7TdeOONYTMxVHVItP+t0TtXjnIFTIs4jqaQtvFDr0/1XnGuFLG+qDbQiiuuGLZ6h6l4nKYXBJRUrlXnST0enL9aSFO9y0X0uylrod73yKWXXhp2165dASTPTy2ttVyXXn/99WhTlW+Oha4peXv/7dExxhhjTN3iBx1jjDHG1C0VC101hbQ9+eqGp2tOXXhFhAbKoS5Q7Qv1S1h8DQCef/75sFlsTgvRadFEflfRoSsdk59//jlsHrcmqzKBHCgVcGstpR6mp1wJDybJF+0u1vnB0Kfqiagsvh4rQwP6+auvvjpsJnHqBoDWHq7ScBQ3BmjocY011gi76HFtKRwrDZczHQAoratFJJNr8VSWagCSBTqplaTXn8KQ12677RZtWkKgV69eAJIlalrTmPK61PVz9OjRYTNkp6kPAjBm3QAAIABJREFUtdQ/3jdUM+mvv/4Km/eH/v37R1ve9zp7dIwxxhhTt/hBxxhjjDF1S6GhK9VxUM0Zhm5qPfSh7jbVCaJLtU+fPtH2xx9/NPi8hoZUh6ZW3JDq7n/77bfDpiaCah9o9eFaOf6WoqEN3VVG/Yeiwzl6njkWRx99dLSNGDEibJ2fDK3usssu0aY7ODivi+5fJdH+jxkzBkBJbwVIVj9vLfNX1x+dq9xVpdpAWmKH/St695GWpdASArvuuiuA0u6q6WFITstCaJiO87a1jGMWLJUAANtss03YHN9avz71+CZNmhR2x44dASTvH3ljj44xxhhj6hY/6BhjjDGmbpllRu7Lf/75J1ffZlb15Lxdq7POOussADB16tSq9a+cCFkl3axt27atSP/0mDVrfujQoQBKuxuApLR73i5j9q+a87Oalbo5P6dNm9bo/vH4GiN2x/+j11c13fxt2rSpyvWn6PrCMLlK7DNcAiTFy5pDpa6/pqD9+/HHHwEkxSM1jN7SsWb/pkyZkkv/ys3ltErhlaRdu3ZVWV/K0ZTq9U2hOetLU+Bxf/LJJ9GmO4xZIohV2oHKinRyfUkcU8W+3RhjjDGmxijUo1MU1fLoFEUeb5T6xM3ER002q2ZiXLU8OkWR9xtX0RTh0UnbOKAJypXU6SrCo6PwjTrv/uXl0SmaWvHo5EW11hf1SKWVeMjrnmGPjjHGGGNmKvygY4wxxpi6ZYahK2OMMcaY1swMtxfUewy23nMgPH75wHwlFWnTnRAtFbosIoelmhSdw5I37F+9ry/1nsPi/rVO2D/FoStjjDHG1C2FlIAwprWhO1ioKXT55ZdHm1ZvV30IUnSIuJxORTnNJ/VYFd2XeiZrnJqiyUWK0kkyZnrSNPN0fmbZlcIeHWOMMcbULfboGJOBenG0KN0ZZ5wBABgyZEi0DRo0KOx1110XQGXVPptDlpoz7ay/a7FLokU/+UZmL0Hl4Fiotoi+2Wp7WoFghZ9jcWQAmH322Rv83eNXO+haUy/jo+vLtGnTwub8nWuuuaJN8x3TlNtbij06xhhjjKlb/KBjjDHGmLql4qErlX1Wd5y64cpJPzc2cbIxrq0iEyezipY2tmidnic9f0WHROodnl8NERxyyCFhP/TQQwCAHXbYIdoGDBgQdpGhHZ0bU6dODfvqq68O+4svvgCQlGXXvj7yyCMNvve0004Le6+99gIAtG3bNtpak5ud50ivSbV53eXdJ/3N999/HwBwww03NDhOAPj555/DfvDBBxv8XeHxb7HFFtHWr1+/sHv06AEAmG222aLNCeaVJ63siNr6dxaaBUohx/nmmy/vQ8yFtHk5bNiwsE899VQAyUK6++67b9jrr79+g+9p6fy0R8cYY4wxdYsfdIwxxhhTt8ywBERTlHXpjlMX68CBA8PefvvtG9j622mhHQ3dqNosd4Wo671du3ap35VGHsq6+ps81u+//z7annzyybBffPFFAMnQgrrpFl98cQDJ89e+ffuwy7nxrIzcMtq0aQMAGD58eLQdc8wxYfP8M4QFlMIBQLHKyOoi//rrr8PeeOONw/7uu+8AJOcR5xwA9OnTBwAwcuTIaNPr+vjjjwcAHHvssdHWFDdztZSRs7RnGCa4//77o+3NN98Me5999gEAbLrppqmfL0djlZF1/eJOPt29p2OpYSYNGc4InYd6/AyPbbPNNtHWlDCdlZEbh57zt99+O+yLL74YQHL8X3nllbBXWWUVAMAtt9wSbWm75ppL3srIvBf+/vvv0aY6Y7wv/v3339G26qqrhv34448DABZeeOFoa0qlcysjG2OMMWamokXJyGlvcSNGjIi2Z599Nmx9YuOTrHo0fvrpp7A/+OADAKWkOyD5xPvDDz8ASHo59Pv79+8f9kYbbQSgcomF+jStT+T6xnvOOecAAB577LFoW3TRRcNeZpllAAALLLBAtH322WdhX3TRRQCSXiJ+J9C0p9sZoW+MaWS9EfNclvt8FmnJnkUnQ+q5/u233wAA9913X+r/7du3LwBgnXXWibZaScbV86hegOWXXz5salp069Yt2k488cSw11xzzQbfpcnMDz/8MADg6KOPjrbmzoVKkZb4+c8//0QbrykAuOCCCwAACy64YLT9+OOPYT/66KMAgDFjxkQbr9npf6sl6JxhYibnHpB84+3du3fYfLvX49Drc+LEiQCSCeTffPNN2KNGjQIAbLnlltGm87/oa7GlpCWbF6ESrWPy+uuvh/3EE08AACZPnhxtuqZPmTIFQHL+VjIxN294rG+99Va08Z4NlMZF75/0YgGlZGzr6BhjjDHGNAI/6BhjjDGmbqmYjg5db6oDoa7tww47LOznnnsOAHDjjTdGm4am6HpVHQjVKVlhhRUAJN3lmninLulKub/4Pfqb6o5jAiNQ0ilRd78mY9H1rLLXKrvP7/r0008rcOT/P3QnqttWw2VsV3e5JlPr8S211FIAgJdeeina9HNpvzXHHHOEzZCJuiuZAAxUzzWblkAOAKeccgoA4IUXXoi2JZdcMmwmiWsCfKXCiS1Fz3mHDh3Cvvbaa8NmmJXXEZDU7KCmi46vfu9aa60FoHzSfzVJuy7PPffcaLv55pvDPvjggwEABx10ULTp+sNk5YUWWija8piTek45FgyrTU+50KD+/cMPPwSQnYzMxPO89biqOT+0Lwz/aTrE3HPPHfb888+f+rlKo+O7++67h92zZ08AwNNPPx1teq9kSKc16aWlacZpgr+uj5yrmmC9xx57hM3QVSVDjLWzUhljjDHGVBg/6BhjjDGmbqnYrivuWhg/fny0qTbHySefHDZ3beiuD90hwB0iGoJSmy6vLNdWU8pNNBa643Sn2FlnnZX6m9xtpjut0rL+Nas+rcSDhktaCr9TpbiHDh0aNt2Jer40XKVucIbcfvnll9Tf0mz66X8fKIVJjjzyyGg76qijGtGL/NDQBkOqWrH71ltvDXvZZZcFUDs7rbLQOadziTuIdEzfeOONsA844AAApRAWACyxxBJhH3jggQCS4ZJqhe6yZPV1t9Lhhx8OIBmOuummm8KmfoyGS3WtIlnV3fMIKaRVlFfSzq9eZ7qriuUeNHSjYWLK7ecxfnr8ei945513GvymjmXHjh3D5m7BO++8M9pUh4brj+pE6Q7cCRMmAEiG/hluBZJzgSH1PK5l7Z+G7hmm1PFTm/ozv/76a7TpWlQrZM1V6nSpdpyeX95LNXVDdyC7erkxxhhjTBPwg44xxhhj6pYWha40q/7ee+8FkAwxaWhKXXP7778/gGToQ8MoX375JYCSCwwAFllkkbApnkcxQCDp5spjhwT7+sknn0TbNddcE7YKQtENrqGpNNT1d91114XN37jiiiuirVKuVXVRa8XqciKAiy22WNhdu3ZtcEzqOuYOM3XXUgQSAC6//HIApRAmAOy9995h666ISruU1V363nvvhZ0mva8iep06dWpwTFmCbWkULfKl55Hh1yuvvDLaBg8eHDZDWnrN6fW5+uqrA6juTrNyux61ujyFyrSEBecsUAoN6PzTdYtCkE0Z30rRmHnCY9Gdjjo+DEPq+GnImu2VHD8eE8UogVJZCwC47bbbACTLV2hfNTTDMdb+6Vqy2mqrASjNQwDYZJNNwub4a+hSr9+sY6g0WSJ/vL40dKzzmiGrjz76KNoYLq8ltH867qxOrrvKdIcq0dQIDZ2vu+66Db4/a5waG+ayR8cYY4wxdUuTPTpZT3FPPfUUAKB79+7RpkW5evXqFTZ1SHQfvRZN5BuHPvHpGzeT6d59991oS3tizAM9Zn0L0cS5lVdeGUAy2VHh06cm06l+BvWDVPuhpW8e/LzqGWmhVSYOqnaIeuy03+pxSfu/HAv14um84Ju0SqBnyZ1XCh6fJq3qnNLEP77R77LLLqnfxXOZVogWKPUl6+9FeHd0LFhUlm9eQPo51wTdzp07h53m0cobnkt9y9fxe+2118JmYvnaa68dbVpgkB5h1dnZb7/9wmZfa0knKG0uabkd9dhQP0k3gKiOVx6eOB6TbtbQBGKuldoP9aJpsjs9HUyKB0pv+UBpXZxrrrmibdKkSWHzvCy33HLRttdee4WtXt1a0b/S4+BmjZVWWqmow2kRXBey1nH+XdckvdeljUnWd5VL4ie1cyUbY4wxxlQYP+gYY4wxpm5pcuhKXY/ffvtt2EwgPu6446JNSwyoZspWW20FoKT3ACQTxOiOUhfjEUccEfZDDz0EoKTNAADrr79+2Hm4I/mdSy+9dLSdd955YVNWHijpjzDEBiST6Xjcw4cPjzbVETjhhBMAVDbckeYu1IrWTHbLctc3pfovz5WGGTQ0xyRgzgMgWWm7UiGRNHemViR/5JFHwlbXKfWRtIRCmoS5hm5Vc4Zh2H//+9/Rpq7zIsJYOmbU0VHZeb2Wn3nmGQDAq6++Gm1XXXVV2AyJ5L0BQOG81A0MrAINlGT1gZJ+lSbza+Lx888/DwCYd955oy0ttFF0WEOvRQ0JMWSn4SoN43Bc99xzz2jLW/OJ368h7vvvvz9spiHoPNGyI2oTXavS1iU9J2nJ2FqOSDXNalH/Ss8L16K0FIHWAK+brDWB7XrPZ1kooHSvXHXVVaNN71U6fpxXen9Nwx4dY4wxxtQtftAxxhhjTN3SotAVqyADpUrXupNBdQC0XAIruaprOE1zRl386mamS09DB9VCj0ldw7pbiVn/WjFa4a4XRSu5c7eA6ixUijQ9B6USbl3OkbvvvjvaqJ0DlEKWxx57bLTpDrY8XMv8TtVB0rHU6sLU3MjSUaG+k4bjNAzGHVwXXnhhtG244YZhr7jiimHnMcZp6LXG3VS660qvJVa/1h16qhM1ceJEAMkxyzt0xfHTEMcGG2wQ9oMPPhg2Q9tZoTXaxx9/fLStt956YRcZstL1VefG+eefH7bqHxEdK4ausq4j/kZWCLUl158ev+6kSqPcnNG/p4WONXVB0wAuvvhiAMmdWnoui9a0ImV3CtXQrr809Ph1B+0LL7wAIHvXMXflXnbZZdHWp0+fsDlWWf3Xdoasyp2r2j6TxhhjjDEtoMkeHX3aVy8L365Uj0Tf4nv37h12uWSlNPSJkXa11EoVPWZ9itTE2k033bTB31VTgv+3b9++0Zb19tFa0LFgkqAmCG677bZh07unCWR595nzVtWQdXyonQOUEqPVy6EeA3pq1GOpifPsi2o7aV9b8kap5zlNxVrffLN+J017Qo+V+jOqnaOJpdR/WmONNZp07C2BfdHjHDJkSNhpytaqnKzXJxV1WZwUSM4FnsNqri9pasd33XVX2KrCzmNVNWhNLOffs+bC2LFjASS1h7TopaoI87uaM2cr6ZnVxGQW7aQeGwD06NEjbBZtLTqZPIs0FWmFc4CFsoFksnmRZBW6VS8j1wfdYKJjwecGvSY1MTmtKHTW/OO1bmVkY4wxxsy0+EHHGGOMMXVLk0NX6oJSTRl17aehbq7GukHVnaxuPIbH5pxzzkZ9TyXJcmfreaEbTsNtWuCOYarTTjst2rSvtajzUA49L9Sx+Oqrr6JNk82otVHNEB2PT/WKFC1B8vHHHwNIzjkWJQRK8zcrjMnf2HXXXaNNNXmaM748fv2s6lTRhavF/7KSTdPmsG4GeOCBBwAky5po4i+v+yKSOvXYNRlaw+gcCw396LVIzRwNB+h5LSIkzvHT4reaYKxhys022wxAMnSj689LL72U+BdIphQwWZvaZ0BSp4Q6Q0BJ06XosdYSHlxLdf7rZheuv7WSdDw97Nezzz4bbRrG+umnnwAAt9xyS7Tp/aNIssZEN54wjF8u3KQ05/mgKf/XHh1jjDHG1C1+0DHGGGNM3dLk0JWSpXPQUuge0+9Xly6r3mp116LDPerSY0jm7LPPjjbVzmGld63u3tp3Wun4jxw5EkByJ5LuuirCpUx3af/+/aONeg9AcocOd/Bo/1QniaFH1V7REiTUqVlkkUWiTc9Fc+YqwzGPPvpotGlZFIZxDz300GjTnY4qgU+Xs5Z4UDc5zwt3twDJSuAMZxR9zWWFDhmSUR0r3SG2ww475H9wzSTr2lBNknHjxgEABgwYEG3UNgJKoWMNV+lc5m4Y3elS6+vP4MGDw2Z1eq3OvtFGG4Vdq7utCMdCx0ePmSHZHXfcsboH1gh0Hmlqgs6/tNCvhua22247APmU/cnCHh1jjDHG1C0t8ujkBd++x48fH21aVJBv5VpArujEM32KpfdG1To1MZVvl7X+5lEO7TOLqwElfRnVYdECbdXqd9qc6Nq1a9ha4PPqq68OO03fYu+99w6bHh1NqlOPAs+L9rOl3g/2Rc/jUkstFfaYMWMAJJOq1aOoRUup06HJhL/99lvYVOZWj9E+++zT4Fhq6ZrTMaOK8Oeffx5tqsJK75wmYBeRgJxGlk6Jtn/xxRcASgrWQNI7w7FWnRL1ONK7p/NTN3bodxUxxryW3n333WhTnRZ6Kg866KBoK3oulkPH76+//gKQ1OHSsaCng8V3awld56iXAyTXD/4f9hNI6pRRkVy93HnfE+zRMcYYY0zd4gcdY4wxxtQthYSu6MZLc/cDpcQmLZrJBE8AOPLIIxt8Z5EJrkCp0CNQShJUnaHTTz89bCYWqruuVlznTUGPWRNXWWzvxBNPrPoxZZE2P1gKAACuuOKKGX5ewwhpYajm6kA0Fn6nhqtU24eJxY899li0aeIywx1Aadx0/DS0etxxxwEAOnbsmHosRSchEz1+hu4A4I477gBQKgUAAPvtt1/YTLytpWuOa4FusNA1Q8up9OrVC0AywbxLly5hUxNHi8dqmD9NxySrqGeR+jla4kPDrFtvvTWAZFmV1pQGwJCpXpM6PgzJabmTWgnN6Xnu1q1b2Pvuu2/YXEtVe0uTyakpVs0xs0fHGGOMMXWLH3SMMcYYU7fMMiOX2JQpUyrmL0urbq27BlSunDusNPtfqyczJNRc7Yd27drNAgDTpk1rcv+0H99//33YWon8l19+AQCMGDEi2rQ6cN4uuzZt2swCVHb80lAXuMrJ9+zZEwBwzjnnRNvOO+8cdktDHy0Zv9YAx2/q1Kkz7J+ef87LKVOmRJvuhNNrJS1ko+UQ0iT0K+k6b9u2baP6Vw4NfatO0zPPPAMgqZOkOwDzvv7Yv+bMz7Qq6kCyhAV35WiVZ7U5L7Kql7d0LDk///nnn1zvD6ojQ+0goDS+ms5QyTGdddZZK96/NB5//PGwdU3krrK8QquV6l/WrkfOVQ3HqU3yCsexf4o9OsYYY4ypW/ygY4wxxpi6pWq7rtJck6NHj442DQNxh0S/fv2iTasTFylXru42rZ7bo0ePsOly7dSpU7S1pl0BjUXPhVbnZphOy3bU0g6XeiFt156WCtDQbznSQhu1stMjCz2+PfbYI+zdd98dALDKKqtEW63sFCuHHqeGsdq3b9/g/2aFo1QIsbWg6wMFLXUn4JJLLhn2YostBqD1r6lbbrllantrmauKrjUs0ZQ1PwsRoaz6LxpjjDHGVImqJSMnfvT/nt5VAlqf6HlM6rmp5FNuS5JZ9XylJQACpTeNot44qpWMnCVXT/0PFvcEgKeffjrs+eefv8FnmoKTkVs3lUpG1mtR1xKi64f+37y9iy1JRm4N5JGMrHB8dH3V8cvbo1+tZOSimFn6p9ijY4wxxpi6xQ86xhhjjKlbZhi6MsYYY4xpzdijY4wxxpi6ZYbby+s9GdLJgq0TJpvV+/jlnUxeFEwm/+uvv+qyf7PPPvtMkUxe79dfvY9fvfdPsUfHGGOMMXVL1QQDjZke3eabteW3NYpnmdpABfeag+eeqRbl1sKiBfdaO/boGGOMMaZusUfHVAV9u6a4IkuBTG+rhP3cc89dhaNLf4vStrRK4Upe4pamcaSNyS+//BL2rbfeGvYrr7wCAJg4cWK0rb766mEfdNBBAIAVVlgh2mp9TPUtn9eaztkiy+bMrGStH0TnlIrL/vXXXw3+rqVdaLusTuOxR8cYY4wxdYsfdIwxxhhTt9RM6EpDG3TJtdbqtOVciuxruf+n7mh1Y9Z6Mlqam/ann34Km1XNn3jiiWh7/fXXw37nnXfCfvDBBwEAG2ywQcWPsxwa+vjoo48atGt9pXXXXTfsltbyyptyYbrGUnSCpB6zrhUPP/wwAODCCy+MtmnTpoXdu3dvAED37t2j7b333gt7wIABAIBrr7022hZZZJGwi+5r2u/r+sn5+cknn0Rb165dw9YaUrUI+5qVTM6/Z52TIsN0ekxTpkwJe9y4cWFPmjQJQHJ8vv/++7BHjRoFILmObr755mH3798fANChQ4doq6W1plwy9Yz+H1D+/qjf1dhnBHt0jDHGGFO3+EHHGGOMMXVL1XyY6oaia0pdUC+99FLYP/zwAwBgu+22i7a0cEjRZGXV052mbjV1Y7711lsAgK+++ira/vzzz7Dbtm0LAFhqqaWiTUM3s802W4PfKsKdrq5ldRe///77AIDrrrsu2saMGRM2Q1N6TuaYY46wNaQw++yzA0j2L4/dBhrmePfddwEAX3zxRbQx3AYAv//+e+LYAOCBBx4Ie7PNNgNQW+5knZ88rj/++CPafvvttwafyQqdMvSh4RwNhxQRZtX5d8cddwAA5plnnmi7+uqrw1500UUBJMdvoYUWCvuqq64CAHz66acNPgNUr0/6OzpWc845Z4P/q9fEyJEjAQDDhw+PtqeffjpshlxrKQSuc+bnn38GALz55pvR9s0334TNa5EhIABYZpllwj7qqKMAAHPNNVe05d1XroU6TqeddlrY99xzT9jcYZq1PnDX6cYbbxxt+++/f9jciVpL46fzj/3SNl0feNx6f9Rdt5999hkA4Kmnnoo2vVdssskmYa+33nqJ38zCHh1jjDHG1C0V9+ik6TkAySeyCRMmAEi+ZR566KFh84lu9OjR0bb22muHXeSbcpYXY+zYsWE/9NBDAJIJuJMnTw6bb2Sq07HYYouFvdJKKwFIf8sGgPHjx4fNhDR6gSpJ1ls6n8S1T6eeemrYN954I4Dk283CCy8cdufOnQEA66yzTrTtsssuYa+22mpht2vXLvGbQMsUb/Wz9BwCSe8TdSx4nABw+umnN/iOFVdcMdr4ZjH9sRaJjp/OGSbZjhgxItq+/vrrBp9Xz+Hiiy/e4P/usMMO0XbEEUeEvcYaa4TNt7o83j71O3X+Dxo0qEHb0ksvHTbH5+233462Y489Nuzll18eQHLNqdbbs74FazK8vtHTU6DzUz/HdalLly7Rph7TWvEEZCWTn3/++QCSmxXmnXfesOmpUy/xfPPNFzbPlXr0qnVN6n1O1xdd6xZYYAEAwLbbbhtt2r9nnnkGQPKaVI8Qk+mXXXbZSh12s9D7t94LjjvuOADJPu24445h877w+OOPRxvvmQDw66+/Jv4fkPQeq6aQrrszwh4dY4wxxtQtftAxxhhjTN1S8dCVhgYYAgCAE044IWzqBNCFByTddEyWU50BdSMXAd10Khs/ePDgsH/88cew6Vrcaaedok2THelSTdMOUvS3NFn2448/DvuKK64AUArxNBcei5ZfeOGFF8KmOx8A2rdvD6DkogSAu+66K2wm426xxRbRpi5GhkH4Pfr7QDJMVukwpZ5ndbfqXGUY7ayzzoo2TVyl67+WdI7YL3UnP/fcc2H369cv7L///hsAsM0220Rbr169Gnynuv41MZ6h5csvvzz181pugXMg79CBnnOGfnUuv/jii2E///zzAJLhSg19XHPNNQCSyaxFhMu1T6rDwpCbhqb0/3JjA5N6gfI6PEWgx6Fh1oEDBwIADjvssGjTsWDiqm5W0fWF4fxqjhl/S7VtrrzyyrA1jEo7q5AnN2PcfPPN0bbvvvuGzdDOySefXJFjbwq6TmtoieFiALjlllsafO7iiy9u0KZjrv1nmK9v377RpuuLpnk0di7bo2OMMcaYusUPOsYYY4ypWyoeulJ3IfUogKTOCN2MmlV/0003hX3GGWcASMqy77rrrpU+1LKkuRapgQMA3377bdiqWUGXf1ZoI01HSHdY0LV+6aWXRttyyy0X9nnnnRc2d3C11E1LN/8NN9wQbboTRUNnu+++O4Bk9rtqHnTs2BFActdOWmgqq3pvnuhv6q4FhhuB0lzVOac7XNJCV0XD+alhI93J2K1bt7AvuugiAEntkbTQZ1aJh1VXXRUAsMoqq0SbStTrDjUNX1YLngvq6QDASSedFDZDO7prjtokQLJcRJHoXNWQJI9Vryk9ZqYBtKaK5brWcodNlk4Zd+hw9y4A7LPPPmFz3Sli96NeJzqn0q6lLJ0khll1ndcwJfuaFe7Pg7SyTEOGDAl72LBhYXO3le7K1PWVO5R1TdK1hGuRpguk6dQBDl0ZY4wxxvhBxxhjjDH1S8VCV3Qtff7559Gm4Q6Vs6brSSs+r7nmmmHTTaYlEoogzS2mwmmaNa6VrNNCM+pmZL/uvffeaNOdVNzhortaVERPv6sl7ll1B7766qsAkjup1PXKnVRAKTSnmfTaf563PHdPNZesnR66g4FzWHfNMdwDlHZ7pMmaVxMdP+6EOuaYY6JNd6VoGJQ7Q3TuNCVcw75qKQINfS2xxBKN/q5qwYryQKn6s4ocauicobe777472nTXTJ5jrde27kRVIboFF1ywwee0hAw/V+tVyrNIKyGguyK5G0nL4uj9o0jBTh0/rqlAsgQHd/jp+OhcY+kL3RWp6xPvD9XsJ/ul6Rp33nlng78DpWtNQ//rr79+2AxpZV1HaaG9loZh7dExxhhjTN1SsUd+Pn2p9g33+wMlWWsAWHLJJQEknwhVJ4FPqnkUb2wuPCZN4NRkRhaSA5JJWkTfGPlGsueee0abJnCyXEKWRHqlnuT1+5n4rcXVNJlYNYO6du0KIJloWrQceXNQL5PqxFBfRRML91eBAAALl0lEQVQc9e2fbyxpXsq8SZP6B4Czzz4bQDJBXN8C1aOh+jItQd9Sqc0DJOdyEZ4ujqvKzqtHkppWmuyoHlOeS13LtKxFnn3KKgGhHjNea1meXepvqXZXa0T7p0V1WQBa19S0QsfVhOOmnjf1yOu9jmOpXvC0cjtbbrlltOn6WoR3nP37/vvvo02L3urxf/nllwCS97e999477P/85z8A0u/5eWGPjjHGGGPqFj/oGGOMMaZuqXi2mlYsVYl/rV5Nlx6l2oFkklMtQne1uug08fPAAw8MmyUE1N09adKksK+//noASW2ctMTdvN3++psssaF6B5pYronTt99+O4BkYvY555wTNpPo1J1cK8nIWajrlOHJ2267Ldr0vBxwwAEAktV31bWcpxtW599rr70WNrVFBgwYEG0aWm1xMp+EEZj4qiEqdbPr7zZ2DtM1rr+TpUNVjrRkaXWTEw0zaHV3fl4TfKtFVkX23377LWymAWifNIzAqtlaYqc1wbmgCchaDmKTTTYBkExwLafTlXcaBMdNw1E9e/YMW0M+TNbX60RDyyNHjgQAnHjiidH2+++/h52mo5P3vYLfr+UXttpqq7D1/s01SkO/uhmC81Y3vuRdosQeHWOMMcbULX7QMcYYY0zdMsuM3ERTp05tsg9Jd3SoNoy65hjGUtebVv/mbp7VV1892rQiakvDIG3btp0FAKZNm9YiH5m6KVXzYumllwaQdPONHj06bIZGKrX7ZXratGkzy/99f6P7x3CLHpNWP1bXPneN6U4CnUcsHcHseiBdZ6e5zDrrrBUZv3KoTg3LcgClEhibbrpptOkOC+oPNXeecvymTJnSoH+6q0pLHHCHgx6nuvabE07T61OhG1r7rOVctNJ9WsisXbt2swDA33//Hf3jDk1W5gaSoVG6+Zvr4taxZGhHdaC0hAl3LY0aNSraVl555bDLjevss88+C9C89VP7p+FuvZYYulI9Hb1Wf/rpJwDJ0LruwKuV9VPRfjMkyyryAPDggw+GzZD/RhttFG16r6B+lKZRNGWu8PpLG7+sa6LcOdWx5Pqga2La/z366KOjTUso8V6o4fSmjCnHrynzM60EhPZJr3Nea48++mi06VzkPUbHtEePHmG3NPTP/in26BhjjDGmbqm4jo4+pXbq1CnsWlTJbQ76RM83PyBZ7PPdd98FAJx//vnRpto6bM87AaspMIFMk13pmQKSybYscKkJqJosSEVs6u0AycS1IpVLm4LOU3175JuWegTGjRsX9lprrVWFo0vOH46bqhI3d07xjUzHidpCQKnorhbtbU4yth4/E381AXPy5MlhH3LIIQCSekZZ109a4ikTPIHSZgD1sup1TeVk3SxQretT5xwVyAHgsssuC5vem5dffjnaNLGaHrdaVKjOQvtNT4Dq5KgmEPulya7qPVfvXaXgnFIvhHo09thjDwDZCcK6MYftWRsE6PHRop6qqTR06FAApaRsIOnprdRcTSuqqvcHTXZP+8299torbNWsOvjggwEAl1xySbRtuOGGYacVvW4p9ugYY4wxpm7xg44xxhhj6paKha7S3MUt1e6oJdKSscaOHRu2ut6YeK3aMv369Qv7u+++A5B0LddKOEfHMSvcOMcccwAAdt5552gbM2ZM2CyAqe52TTajvk7R4bpy6PFpSJZJyOpaLyIcm1ZokvLrQKnUiv5dyUqsZEhWXctXXnll2NQR6tu3b+r3N3Zc00pwUIMKKIXIAGD48OEAkmFBaj8ByRIJdPOrztCgQYPC5jnS/rNPAHDSSScBSC/UmzdZ4TgNTTBJW8/VhAkTwua8bE1FPbXfHEvt87Bhw8LedtttASTPj4ar8tAh43dqgi0L6QKlMJKWktE505Trg59j8U8A6N69e9gMaWnqRKXKfeg46MYUbhLQEkGqE6eaTjx+vX5UR4+aULoBSX9L17VKYY+OMcYYY+oWP+gYY4wxpm5pPb7NAkhzI+tOjRVWWCFsdTMyZKfaQerS5G6SWqrOPm3aNAAljREA6NChQ9hanZouW93poW5UhgQYogOAP/74I2xm4Bcduso6/zx+/bu6qQ8//HAAyf7pDow8x1VDnBq6oc6Mhkt1J5TukKC0vpYN0F1j1157LYCkps2ZZ54Z9r777tvguFo6lvz8fvvtF20ajqB2yG677RZtuhNOrz/uxvnoo4+ijfMbKJ2LE044Idp22mmnsBk6+f/aO3uUWIIoCp8J/MEdmAsmgon4B4KBgaAgugHdgboAQ8UVuAYFMxEUUxFNTBSMBdcg/iQvOjWnpXpmdKame+qdLyrqPbSrq7qtPufWvXU6HRqzPnSdaYkIrtXZ2dk+Xd3fKKvUfnl5CQCYm5sLfXrCM/Z8pZ4rrkXamkDRuuf60VJAmmdLrRta92VhAkRLYPAkL9B81jVPUK/QZ+7l5SW0OVa1SPVUNXPfAcD8/DyA4t8MnsQFmu9Xtb7Vek4xl1Z0jDHGGJMtVnQ6hEXVmMEVAJaXl0Nbd6Hcsb6+voY+/WLmF2XVioYGK7JAo+aG0aKIutOnOlMWbEcODg5CW7O4VvmlXKa2aOA8v0Rubm5Cn46FAXma7VO/nlMGluvP1szBDPxmDpif16SBt5xLDSzUwHgGPlLZ+fnvpJfzyPWjuWP29vZCm1+UWgjw9vY2tFUR4NehBmjq1yMDjzVYe9DzfKliRSVAg3nriD6Lepjh8fERAHB1dRX6NEC1ioMbXBO6ZrTQ8fHxMYDiAQUNpmc2fKCpSmpunbe3t9DmfXl+fg59mgeK7+rYYYRu0bWvKtTh4SGAYqHn+/v70NY8cUdHRwCK7xxVd5aWlgDEleFUWNExxhhjTLZ4o2OMMcaYbKmNdRULtqva2lHpjYGZGmCs1o9eK9PZa1E6TW1PG6fq3Dl6zSzXoLk5NM+B5gza2toCUBy/3qvFxUUAwPr6evR3VQHlYM3XoIXytKgj86xQQgeAjY2N0N7f3wcATE5Ohr6ytZASlZkpB2shSg0s12BxBu6qdaDB8lyfsdwkQNrxleUboU3H8g0A8PT0FNoq/TPPk0rvU1NToR0rcTGI6PypDcnA5PPz89CnNmtd0PlVG3J8fBxAsQRNXSizjll2Qy1UtXYuLi5Cm9aOljiJPWt6mECtc1qvKUoI6XOu1hoLGevvUbtUn8XT01MAxaLe/JsAADs7OwCKNnVqu9iKjjHGGGOyxRsdY4wxxmRLpdaVymCas2V6ehpAMY9AFej1MXfByclJ6FNpUS2R6+trAEVpk9YCUJ9THSrDrq2tASjmQ9CTSCpTMg+EojJq7LRHXcasacl1zlgRGmhWWt/d3Q19KysroR3Ls1KFNRer2K1rcmJiouX/VWKnjupk7fCaNN8G83UAnY/pZ3uQ0XFonqTt7W0AwOrqauir2jomZbl/1Gbje1NPfdbl+hW9/7SeaLsBwObmZmhrHiCGNujzFbOh9FQV7VigGSaQeh3rPY+Vc1K7fmZmJrRZGqKsrEMV1rEVHWOMMcZkizc6xhhjjMmWRitJ8PPzsxK98O7uDkBRLtPq193KmCMjIw0A+Pr6avmDYnK4VkR+eHgIbZURmbqcJ5mAosyXWnIcHh5uAMD39/evb5SOuSy5Xrv7n1pmHhoa6mj+2qEnxdqVbeinTcX5+/j4qJ9e3wNGR0cbAPD+/p7l+MbGxhpA+vdnmR3Jdf2XivKd0On7sx1qbZydnYU27deFhYXQ189yOXz+ejl/nbxXW9HLueT8pVqfHF/ZqbDU70+OT7GiY4wxxphsqaWiozkFiKo73e7uu/kiKcsdo8SCOfsZTNeNojMI9ErRqStWdAabfik6VdErRUfRQwJVB8OnUHTqRGpFp2qs6BhjjDHmv8IbHWOMMcZkS0vryhhjjDFmkLGiY4wxxphs8UbHGGOMMdnijY4xxhhjssUbHWOMMcZkizc6xhhjjMkWb3SMMcYYky3/ADlIPvoiNSagAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# training data stored in arrays X, y\n", + "data = loadmat('ex3data1.mat')\n", + "X, y = data['X'], data['y'].ravel()\n", + "\n", + "# set the zero digit to 0, rather than its mapped 10 in this dataset\n", + "# This is an artifact due to the fact that this dataset was used in \n", + "# MATLAB where there is no index 0\n", + "y[y == 10] = 0\n", + "\n", + "# get number of examples in dataset\n", + "m = y.size\n", + "\n", + "# randomly permute examples, to be used for visualizing one \n", + "# picture at a time\n", + "indices = np.random.permutation(m)\n", + "\n", + "# Randomly select 100 data points to display\n", + "rand_indices = np.random.choice(m, 100, replace=False)\n", + "sel = X[rand_indices, :]\n", + "\n", + "utils.displayData(sel)" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup the parameters you will use for this exercise\n", + "input_layer_size = 400 # 20x20 Input Images of Digits\n", + "hidden_layer_size = 25 # 25 hidden units\n", + "num_labels = 10 # 10 labels, from 0 to 9\n", + "\n", + "# Load the .mat file, which returns a dictionary \n", + "weights = loadmat('ex3weights.mat')\n", + "\n", + "# get the model weights from the dictionary\n", + "# Theta1 has size 25 x 401\n", + "# Theta2 has size 10 x 26\n", + "Theta1, Theta2 = weights['Theta1'], weights['Theta2']\n", + "\n", + "# swap first and last columns of Theta2, due to legacy from MATLAB indexing, \n", + "# since the weight file ex3weights.mat was saved based on MATLAB indexing\n", + "Theta2 = np.roll(Theta2, 1, axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [], + "source": [ + "def predict(Theta1, Theta2, X):\n", + " \"\"\"\n", + " Predict the label of an input given a trained neural network.\n", + " \n", + " Parameters\n", + " ----------\n", + " Theta1 : array_like\n", + " Weights for the first layer in the neural network.\n", + " It has shape (2nd hidden layer size x input size)\n", + " \n", + " Theta2: array_like\n", + " Weights for the second layer in the neural network. \n", + " It has shape (output layer size x 2nd hidden layer size)\n", + " \n", + " X : array_like\n", + " The image inputs having shape (number of examples x image dimensions).\n", + " \n", + " Return \n", + " ------\n", + " p : array_like\n", + " Predictions vector containing the predicted label for each example.\n", + " It has a length equal to the number of examples.\n", + " \n", + " Instructions\n", + " ------------\n", + " Complete the following code to make predictions using your learned neural\n", + " network. You should set p to a vector containing labels \n", + " between 0 to (num_labels-1).\n", + " \n", + " Hint\n", + " ----\n", + " This code can be done all vectorized using the numpy argmax function.\n", + " In particular, the argmax function returns the index of the max element,\n", + " for more information see '?np.argmax' or search online. If your examples\n", + " are in rows, then, you can use np.argmax(A, axis=1) to obtain the index\n", + " of the max for each row.\n", + " \n", + " Note\n", + " ----\n", + " Remember, we have supplied the `sigmoid` function in the `utils.py` file. \n", + " You can use this function by calling `utils.sigmoid(z)`, where you can \n", + " replace `z` by the required input variable to sigmoid.\n", + " \"\"\"\n", + " # Make sure the input has two dimensions\n", + " if X.ndim == 1:\n", + " X = X[None] # promote to 2-dimensions\n", + " \n", + " # useful variables\n", + " m = X.shape[0]\n", + " num_labels = Theta2.shape[0]\n", + "\n", + " # You need to return the following variables correctly \n", + " p = np.zeros(X.shape[0])\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " \n", + " X = np.concatenate([np.ones((m, 1)), X], axis=1)\n", + " \n", + " A2 = utils.sigmoid((Theta1.dot(X.transpose())).transpose())\n", + " A2 = np.concatenate([np.ones((A2.shape[0], 1)), A2], axis=1)\n", + " \n", + " H = utils.sigmoid(Theta2.dot(A2.transpose()))\n", + " \n", + " for i in range(m):\n", + " p[i] = np.argmax(H[:, i])\n", + " \n", + " # =============================================================\n", + " return p" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training Set Accuracy: 97.5%\n" + ] + } + ], + "source": [ + "pred = predict(Theta1, Theta2, X)\n", + "print('Training Set Accuracy: {:.1f}%'.format(np.mean(pred == y) * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Neural Network Prediction: 8.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAGmUlEQVR4nO3dz4vNexzH8TlziCOMKZnxu+xmYzEiJRQLG1kbYu0fkEKJEjVbaRamWSDZ2IslGwtKNtgaO6WZcjIyc/e3uXPf33tn7rxm7uOxvF59m8t9+tbt0+fbmpub6wHy9C73DwDMT5wQSpwQSpwQSpwQas1Cv9jtdv2vXFhinU6nNd8/9+aEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUAvevsfq1ttb/7u53W4vyc9Q/VbP79+/F/2Z6bw5IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IZTjeytAqzXvt1X/tcnJyfL23bt35e3MzEx5OzAwUNoNDQ2Vn9nf31/eJh/18+aEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUI7vLZMmR/JmZ2fL2ydPnpS3Y2Nj5e3bt2/L2yY/75YtW0q7EydOlJ959+7d8nbPnj3lbZN/r8XgzQmhxAmhxAmhxAmhxAmhxAmhxAmhxAmhxAmhnBBaRE1O/TT53uT4+Hh5e+3atfK2r6+vvD1z5kx5u2/fvvL248ePpd3z58/Lzzx//nx5u3fv3vL2v+bNCaHECaHECaHECaHECaHECaHECaHECaHECaHECaEc31tETb71+PTp0/L2xo0b5e3BgwfL21u3bpW3+/fvL283btxY3lYvJGtywdjWrVvL22TenBBKnBBKnBBKnBBKnBBKnBBKnBBKnBBKnBBKnBCqtdCRs263Wz+Ptko1uVFvamqqvD1+/Hh5u2vXrvJ2YmKivB0YGChvm9wW+Pnz5/K2eoRw8+bN5Wfeu3evvE3Q6XTm/Y/MmxNCiRNCiRNCiRNCiRNCiRNCiRNCiRNCiRNCiRNCuX1vEc3Ozpa309PT5e2lS5fK2x07dpS3P3/+LG/HxsbK29u3b5e3mzZtKu0ePXpUfma73S5vmxxL/K95c0IocUIocUIocUIocUIocUIocUIocUIocUIocUIox/cWUZNjY4ODg+XtgwcPytvJycny9uvXr+Xt/fv3y9smH9odHR0t7YaHh8vPTD6S14Q3J4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4QSJ4RyfO9v9PbW//7asGFDeXv69Ony9s6dO+Xtq1evytsmx9wOHz5c3jb5gO/27dtLu9VyJK8Jb04IJU4IJU4IJU4IJU4IJU4IJU4IJU4IJU4IJU4ItaqO77VarUV/5ocPH8rb8fHx8vbly5fl7bp168rbAwcOlLc/fvwob7dt21be9vf3l7dNPjj8f+PNCaHECaHECaHECaHECaHECaHECaHECaHECaHECaFac3Nzf/mL3W73r38xUPUo2MOHD8vPvHnzZnk7NTVV3ja5za7JTX1nz54tb2dmZsrbCxculLcXL15c9O1qvn2v0+nMe+7UmxNCiRNCiRNCiRNCiRNCiRNCiRNCiRNCiRNCiRNCxd++1+Tjte/fvy/trl+/Xn7myZMny9tz586Vt8eOHStvm3yUd6HjmH+2Zk39j7/J78ObN2/K25GRkdKu3W6Xn9nk9yCZNyeEEieEEieEEieEEieEEieEEieEEieEEieEEieEij++18S3b99Ku76+vvIzr1y5Ut4ODw+Xt01uvlsqr1+/Lm8nJibK21OnTv2TH4c/8eaEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUOKEUPEnhJpc1jQ0NFTaDQ4Olp/Z5Pucly9fLm93795d3lZPPvX09PS8ePGivB0dHS1v165dW942+Z5o9ZKx6rdXVxNvTgglTgglTgglTgglTgglTgglTgglTgglTgglTgjVWuh4XLfbXVEfOqx+y/Px48flZ169erW8/fXrV3m7c+fO8vbLly/lbZOLw44ePVreNrno7NChQ+Vtq9Uqb1erTqcz72+CNyeEEieEEieEEieEEieEEieEEieEEieEEieEEieEWlXH96qaHLP7/v17efvs2bPy9tOnT+Xt9PR0eTsyMlLeHjlypLxdv359edvkxsQm29XK8T1YYcQJocQJocQJocQJocQJocQJocQJocQJocQJof6Xx/eW6sa3lXaTnGN2GRzfgxVGnBBKnBBKnBBKnBBKnBBKnBBKnBBKnBBKnBBqzXL/AMthqY6iOeLGYvLmhFDihFDihFDihFDihFDihFDihFDihFDihFDihFAL3r4HLB9vTgglTgglTgglTgglTgglTgj1B3PbMcKSvwSJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "if indices.size > 0:\n", + " i, indices = indices[0], indices[1:]\n", + " utils.displayData(X[i, :], figsize=(4, 4))\n", + " pred = predict(Theta1, Theta2, X[i, :])\n", + " print('Neural Network Prediction: {}'.format(*pred))\n", + "else:\n", + " print('No more images to display!')" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise multi-class-classification-and-neural-networks\n", + "\n", + "Use token from last successful submission (rohitramesh4547@gmail.com)? (Y/n): Y\n", + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Regularized Logistic Regression | 30 / 30 | Nice work!\n", + " One-vs-All Classifier Training | 20 / 20 | Nice work!\n", + " One-vs-All Classifier Prediction | 20 / 20 | Nice work!\n", + " Neural Network Prediction Function | 30 / 30 | Nice work!\n", + " --------------------------------\n", + " | 100 / 100 | \n", + "\n" + ] + } + ], + "source": [ + "grader[1] = lrCostFunction\n", + "grader.grade()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 303617c853230cee48a8293850a2238be3b69536 Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Wed, 22 Apr 2020 19:32:14 +0530 Subject: [PATCH 5/9] Delete ex1data1.txt --- ex1data1.txt | 97 ---------------------------------------------------- 1 file changed, 97 deletions(-) delete mode 100644 ex1data1.txt diff --git a/ex1data1.txt b/ex1data1.txt deleted file mode 100644 index 0f88ccb61..000000000 --- a/ex1data1.txt +++ /dev/null @@ -1,97 +0,0 @@ -6.1101,17.592 -5.5277,9.1302 -8.5186,13.662 -7.0032,11.854 -5.8598,6.8233 -8.3829,11.886 -7.4764,4.3483 -8.5781,12 -6.4862,6.5987 -5.0546,3.8166 -5.7107,3.2522 -14.164,15.505 -5.734,3.1551 -8.4084,7.2258 -5.6407,0.71618 -5.3794,3.5129 -6.3654,5.3048 -5.1301,0.56077 -6.4296,3.6518 -7.0708,5.3893 -6.1891,3.1386 -20.27,21.767 -5.4901,4.263 -6.3261,5.1875 -5.5649,3.0825 -18.945,22.638 -12.828,13.501 -10.957,7.0467 -13.176,14.692 -22.203,24.147 -5.2524,-1.22 -6.5894,5.9966 -9.2482,12.134 -5.8918,1.8495 -8.2111,6.5426 -7.9334,4.5623 -8.0959,4.1164 -5.6063,3.3928 -12.836,10.117 -6.3534,5.4974 -5.4069,0.55657 -6.8825,3.9115 -11.708,5.3854 -5.7737,2.4406 -7.8247,6.7318 -7.0931,1.0463 -5.0702,5.1337 -5.8014,1.844 -11.7,8.0043 -5.5416,1.0179 -7.5402,6.7504 -5.3077,1.8396 -7.4239,4.2885 -7.6031,4.9981 -6.3328,1.4233 -6.3589,-1.4211 -6.2742,2.4756 -5.6397,4.6042 -9.3102,3.9624 -9.4536,5.4141 -8.8254,5.1694 -5.1793,-0.74279 -21.279,17.929 -14.908,12.054 -18.959,17.054 -7.2182,4.8852 -8.2951,5.7442 -10.236,7.7754 -5.4994,1.0173 -20.341,20.992 -10.136,6.6799 -7.3345,4.0259 -6.0062,1.2784 -7.2259,3.3411 -5.0269,-2.6807 -6.5479,0.29678 -7.5386,3.8845 -5.0365,5.7014 -10.274,6.7526 -5.1077,2.0576 -5.7292,0.47953 -5.1884,0.20421 -6.3557,0.67861 -9.7687,7.5435 -6.5159,5.3436 -8.5172,4.2415 -9.1802,6.7981 -6.002,0.92695 -5.5204,0.152 -5.0594,2.8214 -5.7077,1.8451 -7.6366,4.2959 -5.8707,7.2029 -5.3054,1.9869 -8.2934,0.14454 -13.394,9.0551 -5.4369,0.61705 From 2d86b49ae5b6a7cde56d4eade6f1f6351e34e1ab Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Wed, 22 Apr 2020 19:32:29 +0530 Subject: [PATCH 6/9] Delete ex1data2.txt --- ex1data2.txt | 47 ----------------------------------------------- 1 file changed, 47 deletions(-) delete mode 100644 ex1data2.txt diff --git a/ex1data2.txt b/ex1data2.txt deleted file mode 100644 index 79e9a807e..000000000 --- a/ex1data2.txt +++ /dev/null @@ -1,47 +0,0 @@ -2104,3,399900 -1600,3,329900 -2400,3,369000 -1416,2,232000 -3000,4,539900 -1985,4,299900 -1534,3,314900 -1427,3,198999 -1380,3,212000 -1494,3,242500 -1940,4,239999 -2000,3,347000 -1890,3,329999 -4478,5,699900 -1268,3,259900 -2300,4,449900 -1320,2,299900 -1236,3,199900 -2609,4,499998 -3031,4,599000 -1767,3,252900 -1888,2,255000 -1604,3,242900 -1962,4,259900 -3890,3,573900 -1100,3,249900 -1458,3,464500 -2526,3,469000 -2200,3,475000 -2637,3,299900 -1839,2,349900 -1000,1,169900 -2040,4,314900 -3137,3,579900 -1811,4,285900 -1437,3,249900 -1239,3,229900 -2132,4,345000 -4215,4,549000 -2162,4,287000 -1664,2,368500 -2238,3,329900 -2567,4,314000 -1200,3,299000 -852,2,179900 -1852,4,299900 -1203,3,239500 From 9aa9edc22cad1c7f31b2f3ef77a3d7d820292312 Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Wed, 22 Apr 2020 19:32:46 +0530 Subject: [PATCH 7/9] Delete ex2data1.txt --- ex2data1.txt | 100 --------------------------------------------------- 1 file changed, 100 deletions(-) delete mode 100644 ex2data1.txt diff --git a/ex2data1.txt b/ex2data1.txt deleted file mode 100644 index 3a5f95245..000000000 --- a/ex2data1.txt +++ /dev/null @@ -1,100 +0,0 @@ -34.62365962451697,78.0246928153624,0 -30.28671076822607,43.89499752400101,0 -35.84740876993872,72.90219802708364,0 -60.18259938620976,86.30855209546826,1 -79.0327360507101,75.3443764369103,1 -45.08327747668339,56.3163717815305,0 -61.10666453684766,96.51142588489624,1 -75.02474556738889,46.55401354116538,1 -76.09878670226257,87.42056971926803,1 -84.43281996120035,43.53339331072109,1 -95.86155507093572,38.22527805795094,0 -75.01365838958247,30.60326323428011,0 -82.30705337399482,76.48196330235604,1 -69.36458875970939,97.71869196188608,1 -39.53833914367223,76.03681085115882,0 -53.9710521485623,89.20735013750205,1 -69.07014406283025,52.74046973016765,1 -67.94685547711617,46.67857410673128,0 -70.66150955499435,92.92713789364831,1 -76.97878372747498,47.57596364975532,1 -67.37202754570876,42.83843832029179,0 -89.67677575072079,65.79936592745237,1 -50.534788289883,48.85581152764205,0 -34.21206097786789,44.20952859866288,0 -77.9240914545704,68.9723599933059,1 -62.27101367004632,69.95445795447587,1 -80.1901807509566,44.82162893218353,1 -93.114388797442,38.80067033713209,0 -61.83020602312595,50.25610789244621,0 -38.78580379679423,64.99568095539578,0 -61.379289447425,72.80788731317097,1 -85.40451939411645,57.05198397627122,1 -52.10797973193984,63.12762376881715,0 -52.04540476831827,69.43286012045222,1 -40.23689373545111,71.16774802184875,0 -54.63510555424817,52.21388588061123,0 -33.91550010906887,98.86943574220611,0 -64.17698887494485,80.90806058670817,1 -74.78925295941542,41.57341522824434,0 -34.1836400264419,75.2377203360134,0 -83.90239366249155,56.30804621605327,1 -51.54772026906181,46.85629026349976,0 -94.44336776917852,65.56892160559052,1 -82.36875375713919,40.61825515970618,0 -51.04775177128865,45.82270145776001,0 -62.22267576120188,52.06099194836679,0 -77.19303492601364,70.45820000180959,1 -97.77159928000232,86.7278223300282,1 -62.07306379667647,96.76882412413983,1 -91.56497449807442,88.69629254546599,1 -79.94481794066932,74.16311935043758,1 -99.2725269292572,60.99903099844988,1 -90.54671411399852,43.39060180650027,1 -34.52451385320009,60.39634245837173,0 -50.2864961189907,49.80453881323059,0 -49.58667721632031,59.80895099453265,0 -97.64563396007767,68.86157272420604,1 -32.57720016809309,95.59854761387875,0 -74.24869136721598,69.82457122657193,1 -71.79646205863379,78.45356224515052,1 -75.3956114656803,85.75993667331619,1 -35.28611281526193,47.02051394723416,0 -56.25381749711624,39.26147251058019,0 -30.05882244669796,49.59297386723685,0 -44.66826172480893,66.45008614558913,0 -66.56089447242954,41.09209807936973,0 -40.45755098375164,97.53518548909936,1 -49.07256321908844,51.88321182073966,0 -80.27957401466998,92.11606081344084,1 -66.74671856944039,60.99139402740988,1 -32.72283304060323,43.30717306430063,0 -64.0393204150601,78.03168802018232,1 -72.34649422579923,96.22759296761404,1 -60.45788573918959,73.09499809758037,1 -58.84095621726802,75.85844831279042,1 -99.82785779692128,72.36925193383885,1 -47.26426910848174,88.47586499559782,1 -50.45815980285988,75.80985952982456,1 -60.45555629271532,42.50840943572217,0 -82.22666157785568,42.71987853716458,0 -88.9138964166533,69.80378889835472,1 -94.83450672430196,45.69430680250754,1 -67.31925746917527,66.58935317747915,1 -57.23870631569862,59.51428198012956,1 -80.36675600171273,90.96014789746954,1 -68.46852178591112,85.59430710452014,1 -42.0754545384731,78.84478600148043,0 -75.47770200533905,90.42453899753964,1 -78.63542434898018,96.64742716885644,1 -52.34800398794107,60.76950525602592,0 -94.09433112516793,77.15910509073893,1 -90.44855097096364,87.50879176484702,1 -55.48216114069585,35.57070347228866,0 -74.49269241843041,84.84513684930135,1 -89.84580670720979,45.35828361091658,1 -83.48916274498238,48.38028579728175,1 -42.2617008099817,87.10385094025457,1 -99.31500880510394,68.77540947206617,1 -55.34001756003703,64.9319380069486,1 -74.77589300092767,89.52981289513276,1 From eefdb5b492293425327204109c740b38f5c36288 Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Wed, 22 Apr 2020 19:32:58 +0530 Subject: [PATCH 8/9] Delete ex2data2.txt --- ex2data2.txt | 118 --------------------------------------------------- 1 file changed, 118 deletions(-) delete mode 100644 ex2data2.txt diff --git a/ex2data2.txt b/ex2data2.txt deleted file mode 100644 index a88899234..000000000 --- a/ex2data2.txt +++ /dev/null @@ -1,118 +0,0 @@ -0.051267,0.69956,1 --0.092742,0.68494,1 --0.21371,0.69225,1 --0.375,0.50219,1 --0.51325,0.46564,1 --0.52477,0.2098,1 --0.39804,0.034357,1 --0.30588,-0.19225,1 -0.016705,-0.40424,1 -0.13191,-0.51389,1 -0.38537,-0.56506,1 -0.52938,-0.5212,1 -0.63882,-0.24342,1 -0.73675,-0.18494,1 -0.54666,0.48757,1 -0.322,0.5826,1 -0.16647,0.53874,1 --0.046659,0.81652,1 --0.17339,0.69956,1 --0.47869,0.63377,1 --0.60541,0.59722,1 --0.62846,0.33406,1 --0.59389,0.005117,1 --0.42108,-0.27266,1 --0.11578,-0.39693,1 -0.20104,-0.60161,1 -0.46601,-0.53582,1 -0.67339,-0.53582,1 --0.13882,0.54605,1 --0.29435,0.77997,1 --0.26555,0.96272,1 --0.16187,0.8019,1 --0.17339,0.64839,1 --0.28283,0.47295,1 --0.36348,0.31213,1 --0.30012,0.027047,1 --0.23675,-0.21418,1 --0.06394,-0.18494,1 -0.062788,-0.16301,1 -0.22984,-0.41155,1 -0.2932,-0.2288,1 -0.48329,-0.18494,1 -0.64459,-0.14108,1 -0.46025,0.012427,1 -0.6273,0.15863,1 -0.57546,0.26827,1 -0.72523,0.44371,1 -0.22408,0.52412,1 -0.44297,0.67032,1 -0.322,0.69225,1 -0.13767,0.57529,1 --0.0063364,0.39985,1 --0.092742,0.55336,1 --0.20795,0.35599,1 --0.20795,0.17325,1 --0.43836,0.21711,1 --0.21947,-0.016813,1 --0.13882,-0.27266,1 -0.18376,0.93348,0 -0.22408,0.77997,0 -0.29896,0.61915,0 -0.50634,0.75804,0 -0.61578,0.7288,0 -0.60426,0.59722,0 -0.76555,0.50219,0 -0.92684,0.3633,0 -0.82316,0.27558,0 -0.96141,0.085526,0 -0.93836,0.012427,0 -0.86348,-0.082602,0 -0.89804,-0.20687,0 -0.85196,-0.36769,0 -0.82892,-0.5212,0 -0.79435,-0.55775,0 -0.59274,-0.7405,0 -0.51786,-0.5943,0 -0.46601,-0.41886,0 -0.35081,-0.57968,0 -0.28744,-0.76974,0 -0.085829,-0.75512,0 -0.14919,-0.57968,0 --0.13306,-0.4481,0 --0.40956,-0.41155,0 --0.39228,-0.25804,0 --0.74366,-0.25804,0 --0.69758,0.041667,0 --0.75518,0.2902,0 --0.69758,0.68494,0 --0.4038,0.70687,0 --0.38076,0.91886,0 --0.50749,0.90424,0 --0.54781,0.70687,0 -0.10311,0.77997,0 -0.057028,0.91886,0 --0.10426,0.99196,0 --0.081221,1.1089,0 -0.28744,1.087,0 -0.39689,0.82383,0 -0.63882,0.88962,0 -0.82316,0.66301,0 -0.67339,0.64108,0 -1.0709,0.10015,0 --0.046659,-0.57968,0 --0.23675,-0.63816,0 --0.15035,-0.36769,0 --0.49021,-0.3019,0 --0.46717,-0.13377,0 --0.28859,-0.060673,0 --0.61118,-0.067982,0 --0.66302,-0.21418,0 --0.59965,-0.41886,0 --0.72638,-0.082602,0 --0.83007,0.31213,0 --0.72062,0.53874,0 --0.59389,0.49488,0 --0.48445,0.99927,0 --0.0063364,0.99927,0 -0.63265,-0.030612,0 From 94b6924a174e78d121a3bb2ead02544d0160b54b Mon Sep 17 00:00:00 2001 From: rohitr45 <62831615+rohitr45@users.noreply.github.com> Date: Thu, 16 Jul 2020 17:43:11 +0530 Subject: [PATCH 9/9] Week 8 Assignment --- AnomalyDetectionAndRecommenderSystems.ipynb | 759 ++++++++++++++++++++ 1 file changed, 759 insertions(+) create mode 100644 AnomalyDetectionAndRecommenderSystems.ipynb diff --git a/AnomalyDetectionAndRecommenderSystems.ipynb b/AnomalyDetectionAndRecommenderSystems.ipynb new file mode 100644 index 000000000..928cbbec9 --- /dev/null +++ b/AnomalyDetectionAndRecommenderSystems.ipynb @@ -0,0 +1,759 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# used for manipulating directory paths\n", + "import os\n", + "\n", + "# Scientific and vector computation for python\n", + "import numpy as np\n", + "\n", + "# Plotting library\n", + "from matplotlib import pyplot\n", + "import matplotlib as mpl\n", + "\n", + "# Optimization module in scipy\n", + "from scipy import optimize\n", + "\n", + "# will be used to load MATLAB mat datafile format\n", + "from scipy.io import loadmat\n", + "\n", + "# library written for this exercise providing additional functions for assignment submission, and others\n", + "import utils\n", + "\n", + "# define the submission/grader object for this exercise\n", + "grader = utils.Grader()\n", + "\n", + "# tells matplotlib to embed plots within the notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df5RcdX3/8ecrmwRiEswPZkkEU4Sa1XWpIFurUlvWSmtt8UfLYDnfKlXbtOe72/qjpy2657ToqWdta8Vjs6FfWoKYr0oZgQKVbxH5LkT8tuoGBSYbRUHaomFnBZElRZDk/f3j/nD29+xmZ2d28nqcc8/O3Ln3zvsyZN5zPz/eVxGBmZkZwIpGB2BmZs3DScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCxXt6Qg6XhJX5F0j6T9kj6Qrn+BpC9L+pakf5K0ul4xmJnZ/NTzSuFp4DUR8VLgTOB1kl4B/BVwWUS8EPgB8M46xmBmZvNQt6QQiSfTp6vSJYDXAJ9N118NvKleMZiZ2fysrOfBJbUB+4CfBgaBB4DHI+LZdJOHgZNn2HcHsANg7dq1Z7/oRS+qZ6hmZi1n375934+Iwnz2qWtSiIjDwJmSNgA3AC+ebrMZ9r0CuAKgu7s7hoeH6xanmVkrkvQf891nSUYfRcTjwB3AK4ANkrJkdArwvaWIwczM5lbP0UeF9AoBSWuA1wIHgCHggnSzi4Eb6xWDmZnNTz2bj7YCV6f9CiuAayPiXySNANdI+kvga8CVdYzBzMzmoW5JISLuBc6aZv2DwMvr9b5mZrZwntFsZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWa5uSUHS8yUNSTogab+kd6XrL5X0XUlfT5fX1ysGMzObn5V1PPazwB9HxN2S1gP7JN2WvnZZRHykju9tZmYLULekEBEHgYPp43FJB4CT6/V+ZmZ29JakT0HSqcBZwJfTVX2S7pW0W9LGpYjBzMzmVvekIGkdcB3w7oh4ArgcOB04k+RK4m9n2G+HpGFJw2NjY/UOc0kMDg5SqVTy55VKhcHBwQZGZGY2UV2TgqRVJAnhUxFxPUBEjEbE4Yg4AvwD8PLp9o2IKyKiOyK6C4VCPcNcEoODg/T19dHT00OlUqFSqdDT00NfX58Tg5k1jXqOPhJwJXAgIj5atX5r1WZvBsr1iqGZFItFOjs7GRkZoauri66uLkZGRujs7KRYLDY6PDMzoL6jj84B3grcJ+nr6br3AxdJOhMI4CHg9+sYQ9Nob29naGiIrq4usuawQqHA0NAQ7e3tDY7OzCxRz9FHdwGa5qVb6vWeZmZ2dDyjeYlkfQhjY2MUCgUKhQJjY2N5H4OZWTNwUlgipVIp70Mol8uUy+W8j6FUKjU6PDMzoL59Clalt7cXSDqcsz6EoaEhSqVS/pqZWaMpIhodw5y6u7tjeHi40WGYmS0rkvZFRPd89nHzkZmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZrmVs70o6Xjg14FXA88DngLKwOciYn/9wzMzs6U0Y1KQdClwPnAH8GWgAhwPbAc+nCaMP46Ie+sfppmZLYXZrhS+GhGXzvDaRyW1A9sWPyQzM2uUGZNCRHxu8jpJK4B1EfFERFRIrh7MzKxFzNnRLOnTkk6QtBYYAb4p6U/qH5qZmS21WkYfdUbEE8CbgFtImozeOtdOkp4vaUjSAUn7Jb0rXb9J0m2SvpX+3XhUZ2BmZoumlqSwStIqkqRwY0T8GIga9nuWpCP6xcArgF5JncAlwO0R8ULg9vS5mZk1gVqSwv8CHgLWAnsl/RTwxFw7RcTBiLg7fTwOHABOBt4IXJ1udjVJsjEzsyYwY1KQ9EpJioiPR8TJEfH6iAjgP4Ge+byJpFOBs0iGtp4UEQchSRxA+wz77JA0LGl4bGxsPm9nZmYLNNuVwsXAPknXSPodSVsAIvFsrW8gaR1wHfDutG+iJhFxRUR0R0R3oVCodTczMzsKsw1J/QMASS8CfhX4hKTnAkPAvwJfiojDsx087Yu4DvhURFyfrh6VtDUiDkraioe1mpk1jTn7FCLiGxFxWUS8DngNcBdQJGkKmpEkAVcCByLio1Uv3URyFUL698aFBG5mZotv1tpHGUkvA36eZNTRlyLiD2vY7RySoav3Sfp6uu79wIeBayW9k6R/ojjvqM3MrC7mTAqS/pzkiztr/rlKUiki/nK2/SLiLkAzvPxL84rSzMyWRC1XChcBZ0XEjwAkfRi4G5g1KZiZ2fJTyzyFh0iqo2aOAx6oSzRmZtZQs5XO/juSPoSngf2Sbkufn0fS2WxmZi1mtuaj4fTvPuCGqvV31C0aMzNrqNnmKVw902tm1lwGBwcpFou0tycFAiqVCqVSid7e3gZHZstNLaWzf13S1yQ9JukJSeOSap6ZbGb1NTg4SF9fHz09PVQqFSqVCj09PfT19TE4ONjo8GyZqaWj+WMkk8w2R8QJEbE+Ik6oc1xmDTE4OEil8pNJ9pVKpem/WIvFIp2dnYyMjNDV1UVXVxcjIyN0dnZSLHoakM1PLUNS/wsop8XwzFpW9ot7165dDA0NAdDT08PIyAhA0zbFtLe3MzQ0RFdXF1nxyEKhwNDQUN6cZFarWpLCnwK3SLqTZCQSAJNKV5gte8VikV27duW/uAHGxsb8i9uOKbU0H30I+G+SuQrrqxazlpL94i4UCoyNjTE2NrYsfnFnfQhZvFn8WR+D2XzUkhQ2RcRvRMRfRMQHsqXukZktscHBQSbfu+Opp56adftm6H8olUp5H0K5XKZcLud9DKVSacnjsWUuImZdSArY/fJc29VzOfvss8Osnnbu3BlAHHfccQHE5s2bo62tLYDYsmVLjI6OTrt9Z2dnjI6OxujoaHR2dgYQO3fubEj81TGOjo42JA5rLsBwzPP7tpakMA4cAZ4iuQ3nOPDEfN/oaBYnBTsatXxhjo6OxpYtWwKItra22Lx584QkMd32WRIoFApRKBQmJAmzZlCXpNAMi5OC1WK6L/9isVjTL/pisRh33nlnrFu3LkjKucSqVauiXC7nx50uMWTJAIh169ZFuVye8Lp/rVsjLWpSAE6ddcekLPYp833DhSxOCjaX2ZpzsiuAmX7RZ4lj9erVsXHjxvxLHohf+ZVfmTGRDAwM5FcU2dLe3t4UzUlmEQtLCkr2m0pSiaQj+kaS+kdjJCOQfhroIbknwl9ExG0L682oXXd3dwwPD8+9oR2zshE4IyMjZPf0zoaTXnvttfnoHEjG8JfLZdrb2xkcHOSMM87gvPPO45lnnply3BUrVrBmzRoOHTpER0cHe/fupVQq8e1vf5uPfexjAKxZs4aI4Ec/+hEAq1atYvXq1fk+F1xwAVu3bm3aeQ7WuiTti4juee0zU1JID9gJ/A+Su6htJRmaegC4BfhspPdYqDcnBatFpVKZMoGrXC4DcPrpp/Pkk0/m68866ywkceutt9LZ2cnZZ5/Nnj17JhxvxYoVHDlyJH++fft2XvCCF3Drrbciidn+7QCsXLmSE044gcceewyA888/n1e96lVccsklebyuT2T1tJCk0PD+gloWNx9ZLSa38RcKhejv74/29va8A3nTpk0TmntOPPHECc/rtaxatSp/3N/fH/39/XmzlpuX5ubRVQuDO5rtWDXTaKBsWb16dQCxYsWKJUkCsy3VMUw33NUmarbhv8vJQpJCLZPXzJredBO4Ojo68tfb2toA8uag448/ftrjLIUshra2Nr7whS809WzpZuCCf0urltpHZk0va5cfHx8HkpIVe/fu5W1vext33XUXhw4dmrB91incSBs2bMg7xW1mLvi3tGq5n8Lttawza7Q777yT973vfbz0pS9l//79fPzjH+fWW2+dkhCaxaOPPur6RNZ0ZrtH8/HAc4ATJW0kmZcAcALwvCWIzWxW2d3GSqUS4+PjlEolVqxYwSOPPMIZZ5yBpLkP0kBtbW15fSKPQJrZ5IJ/QF7wz1cLdTBTZwPwLuA7JOWyv1O13AP0zbfz4mgWdzTbZFnnYzaC5/TTT887k5fTUiwWG/2fsum5o3nhqFPtoz+c70EXe3FSsMmqvxiywnXLaTnttNNiYGBgwvn4C25mHpK6MAtJCrNOXgOQ9Lbp1kfEJ2fdcRF58tqxYb43n69UKhMmpS03nZ2dU+7wtnPnTjcl2aJZyOS1WkYf/WzV4+NJylvcDSxZUrDWt5BbYe7evXvZJoSVK1f6Dm/WlOa8Upiyg/RcYE9EvGGO7XYDvw5UIqIrXXcp8HskdZQA3h8Rt8z1nr5SaH2z1S6arjOxUqnw6le/mvvvv78R4S6KdevWTSi9kdVjMlssC7lSWMjktf8GXljDdp8AXjfN+ssi4sx0mTMh2LFhvrfCLJVK3H///WzatKkB0R699vZ21qxZ0+gwzKaoZZ7CzZJuSpfPAd8kqZw6q4jYCzy2CDHaMS677WX2t1KpcOWVVwLwgx/8YFl9ua5YkfyTq1QqvqeyNae5eqKBX6xazmEe91AATgXKVc8vBR4C7gV2Axtn2XcHMAwMb9u2bbE75a0JVI8oGR0dje3btwdMrF2UDTnN/nZ0dOTbNetSfaOe6kXShOcdHR0eYml1Rb0K4gFbgDcA5wNbaj741KRwEtBGcoXyIWB3LcfxkNTWM3ns+cDAQP5lOTAwMO1NcqqHnjZDYbtal7a2tik373nDG97gIZZWd3VJCsDvAv9J0kdwNckv/XfUdPBJSaHW1yYvTgqtZ6aqptmv52yb7GpictXT5ZAYJMXatWunJLR169a5MqotiYUkhVo6mv8EOCsificiLgbOBv6shv2mkLS16umbgfJCjmPL30wdy3v37s07ltvb22cds199A5xm9JznPIdbbrmF4447jsOHD7Nu3ToKhQJPPvmk+w+sadWSFB4GxquejwP/NddOkj4D/BvQIelhSe8E/lrSfZLuJbml53sWELMdQ6rr3mTlr4Gmr2sEcOjQId7ylrfw9NNPs2XLFh544AHK5XJeBrpUKjU6RLMpapm89l3gy5JuJLn8fSPwFUnvBYiIj063U0RcNM3qKxcaqLWWWoucZfdJ2LJlC4888ggdHR1ERFPPT8hu45nFXCwW2blzZ35OQ0NDLoJnTauWK4UHgH8mSQiQDEc9CKxPF7N5m+6mONP9gu7t7WXnzp3cc8897Ny5k71793L99dezZcsWgAlXD81i48aNDAwM5DFfe+21E+ZazNUsZtZQ8+2EaMTijubWVCwWo1wu58/L5XJNVUOrRy6Vy+X8HszNsGQdytmoKrNGoh4dzZK2S7pC0ucl/d9sOcpcZMe4wcFBSqUSF154YT4h7cILL6RUKjE4ODjrfllzzNDQEDfffDOVSoXt27fT39/P2rVrl/Aspjp8+DDt7e3uM7Blq5Y+hRLw98A/AofrG44dK4rFIrt27ZpXUbjpiubt2bMHgLe//e2sX7+eQ4cOISkb9lx3Wf9Bf39/XnrjPe95D+vXr3cTkS1Pc11KAPvme/mx2Iubj1rT5PkHhUJh1iaX6rkNmzdvnjC3IZvwlk10q17WrFmz6M1EmzZtCkhu7pPdF8ET0KzZsJjNR5I2SdoE3Czpf0ramq1L15stqfb2dt761rcCyf2Nx8bG2Lx5MxHB+973Pvr6+njkkUc4/fTTWb16db7fU089tWgxtLW1US6XOXDgAJ2dnTzwwAOsX78+j89XB7bszZQtSG69+SATb8WZLQ/ON/sczeIrhdYz04zmuTpoy+XyhNnBWT2hbL9sBnS5XJ5Sa2jHjh3zviJYtWrVhOcbN26cMuParFlRr9pHjV6cFFrPQu67W71N9Rd+W1tb9Pf3T9i2v79/yhf8iSeemH+xr1y5cs6EUL1N9ftt377dI4tsWahLUgB+Y5rll4D2+b7ZQhcnhdY03/vuZokEpq97lO07XUKoTgzZlUQtiSFLAuVyOTo6Oqa8l1kzW0hSqGX00TuBVwJD6fNzgX8Htkv6YETsqeEYZlNMbn+fq02+t7eXgwcP8jd/8zc888wzE0YZHXfccZx77rkA3Hvvvfk+GzZsYMWKFTz2WHJrjxNPPJH29nZKpRLPPvssW7ZsQRIHDx6c9j27urq4/fbbaW9vZ+/evezevdsji6yl1ZIUjgAvjohRAEknAZcDPwfsBZwUbMls3bqVZ555hra2Ng4fTkZIt7W18fTTT3PHHXfwkpe8hJtuuokzzjiDcrnM448/DiTJ4cc//jHf+MY38nkQAwMDvOMd7wDgtNNO49ChQ6xbt441a9YwNjbG+vXr84QASdK65JJLGnDWZkunljIXp2YJIVUBtkfEY8CP6xOW2fR6e3sZGBhgw4YN+boNGzYwMDAw4df7NddcM6EExg9/+EMOHTpEZ2cn4+Pj9PX15XMcdu/ezaFDhwDo7+/PS26Mj497Apodc5Rdfs+4gbQL2EYyiQ3gN0kqp/4J8C8R0VPXCIHu7u4YHh6u99vYMpAV0hsZGZlQSK+zszMvpFe9TXUTU1tbG/fccw+FQmHaY3R0dOSluyuViovW2bInaV9EdM9nn1quFHpJbrBzJnAW8EmgNyIOLUVCMKtWSyG9bJuOjg42bfrJlJrDhw9z8803L8q9HMxa1Zx9CmkP9mfTxayhsi/qYrE4Yynq3t5exsfHueqqq3j00UcpFAocOXKERx99lD179uT9CGY2VS0F8cYlPZEuP5J0WNITSxGc2XR6e3vnLEW9fv167r///vyKIru6GBkZYffu3RPu5ZBdMfhuaGa1XSlMuGeCpDcBL69bRGaLYLYrCiBPEllhvayPwf0Idqybs6N52p2kf4+IV9Qhnmm5o9kWW1aCO0sY7li2VrSQjuZaRh/9RtXTFUA38IsR8cr5h7gwTgpmZvO3kKRQy+S186sePws8RHKfZjMzazG19Cm8fSkCMTOzxqtl9NEpkm6QVJE0Kuk6SacsRXBmZra0apm8dhVwE/A84GTg5nSdmZm1mFqSQiEiroqIZ9PlE0ChznGZ2RIYHBycMDejUqnkBQPt2FRLUvi+pN+W1JYuvw08Wu/AzKy+BgcH6evryyftZTWj+vr6nBiOYbUkhXcAFwKPAAeBC9J1ZraMFYvFfJZ3V1cXXV1d+aS+YrHY6PCsQWYdfSSpDfjNiHjDEsVjZkskKwzY1dXF2NgYAIVCIa82a8emWa8UIuIwC5yTIGl3OmKpXLVuk6TbJH0r/btxIcc2M7P6qKX56EuSdkp6taSXZUsN+30CeN2kdZcAt0fEC4Hb0+dm1gBZH4ILA1q1WpLCq4CXAB8E/jZdPjLXThGxF3hs0uo3Alenj68G3lRzpGa2qGq5N4Ude2qZ0byYN9I5KSIOpsc9KGnGhktJO4AdANu2bVvEEMwMars3hR17aimIdxzJLThPpSqJRMQH5zy4dCrJLTu70uePR8SGqtd/EBFz9iu4IJ4tlKuh2rGsXgXxbgR+COwDnl5IYFVGJW1NrxK2Am64tLrJxuHv2rVryn0TACcGs2nUkhROiYjJHcYLdRNwMfDh9O+Ni3RcsymKxSK7du3Kx+EDjI2NeRy+2Sxq6Wj+f5LOmO+BJX0G+DegQ9LDkt5JkgzOk/Qt4Lz0uVldZOPws1E12Sgbj8M3m9mMVwrp/IIj6TZvl/QgSfORgIiIn5ntwBFx0Qwv/dICYzUzszqbrfnoZODMpQrEbLFNHocP5OPwfbVgNr3Zmo++ExH/MdOyZBGaLZDH4ZvN32xXCu2S3jvTixHx0TrEY7ZoPA7fbP5mnKcg6SBwOUkfwhQR8YE6xjWB5ymYmc3fYs9TOFjLBDUzM2sds/UpTHuFYGZmrWu2pOCho2Zmx5gZk0JETK5wamZmLa6WGc1mZnaMcFIwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5VY24k0lPQSMA4eBZyOiuxFxmJnZRA1JCqmeiPh+A9/fzMwmcfORmZnlGpUUAvi8pH2SdjQoBjMzm6RRzUfnRMT3JLUDt0n6RkTsrd4gTRY7ALZt29aIGM3MjjkNuVKIiO+lfyvADcDLp9nmiojojojuQqGw1CGamR2TljwpSForaX32GPhloLzUcZhZ/Q0ODlKpVPLnlUqFwcHBBkZkc2lE89FJwA2Ssvf/dET8awPiMLM6GhwcpK+vj127djE0NARAT08PIyMjAPT29jYyPJuBIqLRMcypu7s7hoeHGx2Gmc1DpVLJk0DWBDw2NkZnZydDQ0O0t7c3OMLWJ2nffOeBeUiqmdVFe3s7Q0NDFAoFxsbGGBsbo1AoOCE0OScFMzPLOSmYWV1kzUfZFUJ2xdDT0zOh89mai5OCmdVFqVRiZGSEzs5OyuUy5XKZzs5ORkZGKJVKjQ7PZtDI2kdm1sKy0UXFYjHvQxgaGqJUKnnkURPz6CMzsxbl0UdmZnZUnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLOSmYmVnOScHMzHINSQqSXifpm5K+LemSRsRgZmZTLXlSkNQGDAK/CnQCF0nqXOo4zMxsqkZcKbwc+HZEPBgRzwDXAG9sQBxmZjbJyga858nAf1U9fxj4uckbSdoB7EifPi2pvASxNcqJwPcbHUQdtfL5tfK5gc9vueuY7w6NSAqaZl1MWRFxBXAFgKThiOiud2CN4vNbvlr53MDnt9xJGp7vPo1oPnoYeH7V81OA7zUgDjMzm6QRSeGrwAslvUDSauC3gJsaEIeZmU2y5M1HEfGspD7gVqAN2B0R++fY7Yr6R9ZQPr/lq5XPDXx+y928z08RU5rzzczsGOUZzWZmlnNSMDOzXFMnhVYvhyHpIUn3Sfr6QoaONRtJuyVVqueUSNok6TZJ30r/bmxkjEdjhvO7VNJ308/w65Je38gYj4ak50saknRA0n5J70rXL/vPcJZza4nPT9Lxkr4i6Z70/D6Qrn+BpC+nn90/pYN7Zj9Ws/YppOUw7gfOIxnG+lXgoogYaWhgi0jSQ0B3RLTE5BlJvwA8CXwyIrrSdX8NPBYRH04T+8aI+LNGxrlQM5zfpcCTEfGRRsa2GCRtBbZGxN2S1gP7gDcBv8My/wxnObcLaYHPT5KAtRHxpKRVwF3Au4D3AtdHxDWS/h64JyIun+1YzXyl4HIYy0xE7AUem7T6jcDV6eOrSf4hLksznF/LiIiDEXF3+ngcOEBSgWDZf4aznFtLiMST6dNV6RLAa4DPputr+uyaOSlMVw6jZT7EVACfl7QvLevRik6KiIOQ/MME2hscTz30Sbo3bV5adk0r05F0KnAW8GVa7DOcdG7QIp+fpDZJXwcqwG3AA8DjEfFsuklN36HNnBRqKoexzJ0TES8jqRjbmzZP2PJyOXA6cCZwEPjbxoZz9CStA64D3h0RTzQ6nsU0zbm1zOcXEYcj4kySKhEvB1483WZzHaeZk0LLl8OIiO+lfyvADSQfZKsZTdtzs3bdSoPjWVQRMZr+YzwC/APL/DNM26OvAz4VEdenq1viM5zu3Frt8wOIiMeBO4BXABskZZOUa/oObeak0NLlMCStTTu8kLQW+GWgFSvB3gRcnD6+GLixgbEsuuzLMvVmlvFnmHZWXgkciIiPVr207D/Dmc6tVT4/SQVJG9LHa4DXkvSbDAEXpJvV9Nk17egjgHR42Mf4STmMDzU4pEUj6TSSqwNIyo18ermfn6TPAOeSlCMeBf4C+GfgWmAb8J9AMSKWZWftDOd3LknTQwAPAb+ftb8vN5J+HvgicB9wJF39fpK292X9Gc5ybhfRAp+fpJ8h6UhuI/mxf21EfDD9nrkG2AR8DfjtiHh61mM1c1IwM7Ol1czNR2ZmtsScFMzMLOekYGZmOScFMzPLOSmYmVnOScGWPUlPzr1Vvu25kl5Vz3jmeP93S3rbIhznGkkvXIyYzKo5Kdix5lygIUkhnVn6DuDTi3C4y4E/XYTjmE3gpGAtSdL5aR35r0n6gqST0kJofwC8J62d/+p0Juh1kr6aLuek+1+aFki7Q9KDkv6o6thvSwuo3SNpj6T1kr6TllFA0glK7pWxalJYrwHuzgqUpce+TNLetM7/z0q6Pq19/5fpNmslfS59r7Kkt6TH+iLw2qoSBmaLwv9DWau6C3hFRISk3wX+NCL+OK0pn9fPl/Rp4LKIuEvSNuBWflJI7EVAD7Ae+Kaky4HtQD9JMcPvS9oUEeOS7gB+jWQG928B10XEjyfFdA5JHf9qz0TELyi56cuNwNkk5bkfkHQZyZXN9yLi19J4nwsQEUckfRt46TTHNFswJwVrVacA/5TWtlkNfGeG7V4LdCalcQA4IatJBXwuLQnwtKQKcBJpffrsxkhV5R7+kaQ555+BtwO/N817bSWpR1Mtq+d1H7A/K7Eg6UGSgpD3AR+R9FfAv0TEF6v2rQDPw0nBFpGbj6xV/R2wMyLOAH4fOH6G7VYAr4yIM9Pl5PQmLADVNWIOk/yIEtOUH46ILwGnSvpFoC0ipius9tQ0cWTvcWTS+x0BVkbE/SRXD/cBA5L+vGqb49Njmi0aJwVrVc8Fvps+vrhq/ThJc1Dm80Bf9kTSmXMc93bgQkmb0+03Vb32SeAzwFUz7HsA+Ok5I68i6XnAf0fE/wY+Arys6uXtwP75HM9sLk4K1gqeI+nhquW9wKVASdIXgep7YN8MvDnraAb+COhOOwC0G0AAAACeSURBVI5HSDqiZxQR+4EPAXdKugeoLjH9KWAjSWKYzv8B5nsjpTOAr6R31OoHsg7ok4CnlmNFT2turpJqtkgkXQC8MSLeOss2N5B0en/rKN/rPcATEXHl0RzHbDJ3NJstAkl/R3Jb1dfPseklJB3OR5UUgMeBPUd5DLMpfKVgZmY59ymYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnl/j82THhKb7ZEMgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# The following command loads the dataset.\n", + "data = loadmat('ex8data1.mat')\n", + "X, Xval, yval = data['X'], data['Xval'], data['yval'][:, 0]\n", + "\n", + "# Visualize the example dataset\n", + "pyplot.plot(X[:, 0], X[:, 1], 'bx', mew=2, mec='k', ms=6)\n", + "pyplot.axis([0, 30, 0, 30])\n", + "pyplot.xlabel('Latency (ms)')\n", + "pyplot.ylabel('Throughput (mb/s)')\n", + "pass" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def estimateGaussian(X):\n", + " \"\"\"\n", + " This function estimates the parameters of a Gaussian distribution\n", + " using a provided dataset.\n", + " \n", + " Parameters\n", + " ----------\n", + " X : array_like\n", + " The dataset of shape (m x n) with each n-dimensional \n", + " data point in one row, and each total of m data points.\n", + " \n", + " Returns\n", + " -------\n", + " mu : array_like \n", + " A vector of shape (n,) containing the means of each dimension.\n", + " \n", + " sigma2 : array_like\n", + " A vector of shape (n,) containing the computed\n", + " variances of each dimension.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the mean of the data and the variances\n", + " In particular, mu[i] should contain the mean of\n", + " the data for the i-th feature and sigma2[i]\n", + " should contain variance of the i-th feature.\n", + " \"\"\"\n", + " # Useful variables\n", + " m, n = X.shape\n", + "\n", + " # You should return these values correctly\n", + " mu = np.zeros(n)\n", + " sigma2 = np.zeros(n)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " for i in range(n):\n", + " mu[i] = sum(X[:, i]) / m\n", + " for i in range(n):\n", + " for j in range(m):\n", + " sigma2[i] += ((X[j][i] - mu[i]) ** 2) / m\n", + " \n", + " # =============================================================\n", + " return mu, sigma2" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd1hURxfG30vvTToK2BUVsWvsCtg7qNh7rDEmJtFoNIk1JsZeYu+99y52VLCAUpQivbcFlu3n+2OBmHxG7y67iMn8nmdcuHtn5tzFve+dmTPncEQEBoPBYDAqGzof2wAGg8FgMN4FEygGg8FgVEqYQDEYDAajUsIEisFgMBiVEiZQDAaDwaiUMIFiMBgMRqVEawLFcZwRx3GPOI57znHcS47jfio5vovjuDiO456VFC9t2cBgMBiMTxc9LbYtBtCFiAo5jtMHcJfjuIsl731DRMe02DeDwWAwPnG0JlCk3AFcWPKrfklhu4IZDAaDwQtOm5EkOI7TBRACoBaADUT0HcdxuwC0gXKEdR3AHCISv6PuJACTAMDU1LRZvXr1tGYng8FgMLRLSEhIFhHZqVJHqwJV1gnHWQE4CWAGgGwAaQAMAGwBEENEP7+vfvPmzSk4OFjrdjIYDAZDO3AcF0JEzVWpUyFefESUByAQQHciSiUlYgA7AbSsCBsYDAaD8WmhTS8+u5KREziOMwbgDSCS4zinkmMcgP4AXmjLBgaDwWB8umjTi88JwO6SdSgdAEeI6BzHcTc4jrMDwAF4BmCyFm1gMBgMxieKNr34QgE0ecfxLtrqk8FgMBj/HlgkCQaDwWBUSphAMRgMBqNSwgSKwWAwGJUSJlAMBoPBqJQwgWIwGAxGpYQJFIPBYDAqJUygGAwGg1EpYQLFYDAYjEoJEygGg8FgVEqYQDEYDAajUsIEisFgMBiVEiZQDAaDwaiUMIFiMBgMRqWECRSDwWAwKiVMoBgMBoNRKWECxWAwGIxKCRMoBoPBYFRKmEAxGAwGo1LCBIrBYDAYlRImUAwGg8GolDCBYjAYDEalhAkUg8FgMColTKAYDAaDUSlhAsVgMBiMSonWBIrjOCOO4x5xHPec47iXHMf9VHK8OsdxDzmOe81x3GGO4wy0ZQODwWAwPl20OYISA+hCRI0BeAHoznFcawC/AFhFRLUB5AIYr0UbGAwGg/GJojWBIiWFJb/qlxQC0AXAsZLjuwH015YNDAaDwfh00eoaFMdxuhzHPQOQAeAqgBgAeUQkKzklCYDLP9SdxHFcMMdxwZmZmdo0k8FgMBiVEK0KFBHJicgLQFUALQHUf9dp/1B3CxE1J6LmdnZ22jSTwWAwGJWQCvHiI6I8AIEAWgOw4jhOr+StqgBSKsIGBoPBYHxaaNOLz47jOKuSn40BeAOIAHATgF/JaaMBnNaWDQwGg8H4dNH78Clq4wRgN8dxulAK4REiOsdxXDiAQxzHLQbwFMB2LdrAYDAYjE8UrQkUEYUCaPKO47FQrkcxGAwGg/GPsEgSDAaDwaiUMIFiMBgMRqWECRSDwWAwKiVMoBgMBoNRKWECxWAwGIxKCRMoBoPBYFRKmEAxGAwGo1LCBIrBYDAYlRImUAwGg8GolDCBYjAYDEalRJux+BiMj4pMKoNUIoNCJodcpoBcJodcrgApCBwHgOOgo8OB4zjo6OpAz0APBkb60NPXA8dxH9t8BuM/DxMoxidDcZEIcaHxSHqVitz0fOSm5yEvMx+56fnIzxSguFAEUZEYoiIRxEIJ5DK52n3pG+rDwEgfJhbGMLc2g6mVCcysTGFmbQobBys413SEYw0HONd0gF3VKtDV09XglTIYDIAJFKOSIpfJEf7gFcIfvEL0szjEPI1D0qtUEP2Z39LQ2ADWDpawcrCCXdUqMDY3gpGJEYxMDWFoYggjE0PoG+pBV08Xunq60NHVga6eDjiOAxGBCMpXBUEhV0AqkUEqlkIikkAqlkEikkBYUIyivCIU5BYhPT4TMc/eICc1FzLpn+Knq6eLqnWc0NTbEy16NEHjjh4wMDL4GB8bg/Gvgnv7C19Zad68OQUHB39sMxjlgIggFAiRk5aH/EwBREIJJMUSiEuKVCSBVCKDXCpHbFg8Hp5/goKcQgCAvastajWpjlpe1VHTyx1uDarCxtEKxmbGH+Va5HI5spNzkBKTjtRYZXn9JBaht8IhEUlhaGyAxp0boMFn9WBkagh9Az3oGehBT1/5amxmBFNLE5hamsDMSvlqbG4MHR22JMz498JxXAgRNVelDhtBMTSOuFiMZzdf4uG5EMSExiM3LQ85qbkQF0t41Te3MUOrXk3Rpk9zeHVuCIsq5lq2WDV0dXVh72oHe1c7eHVuWHZcJBQj9FY4Hl98iseXn+HRhae82zQyNYR7g2pwb+iKGp5uqN7IFTUau8HCpnJdO4NRkbARFEMj5Kbn4cHZEASdC8bTa2EQCcUwMjVE3Ra1UMXZGjaO1rBxsoaNoxWs7C1gaGIIQ2MDGBgbKF+N9MtGGYYmBtDV/fTXdIqLRJBJZJBJZGWjQ4lYClGhCEX5QhTmFZW8CpGZmIW4FwmIC41HflYBAEBHh0PbAS0xcGYvNGhbjzluMD5p2AiKUSEQEURCMYSCYqTFZeDspssIPHwfcpkc9q628B3TCa37NEfjTg1gYKj/sc39aBibGgGmqtUhIuSm5yE2NAFPr4fh4rZruHP8IWo3q4GBM3uhUfv6sKhiBiNTIyZYjH89bATF+EekEimin75BYmSyskQlIyEyBakxaX9xEjA2M0LPCV3RbWxnuDd0/Sg3TplUBmFBMYoLRCWvxSguFEEqlkEmlSndzEteFQqFcr2HA3R0dMDpcNDV1YG+kT4MjAz+MrIzszaFRRXzjya0xUUiXN93ByfWnEdiZHLZcQMjfVjaWcDKzgKWdhao2dgdnQPaoYanGxMuRqVEnREUEyjG/yERS3F5500cXHYCmYnZAAA9fV0413JEtXoucKnlBIsq5iUu2KZo0d0LppYqDhXUID9LgJf3oxAXloCspGxkJecoS1I28jIFWu3bxNwYFrbmsLQ1h101W7jVrwrX+i5w9aiKanWdYWhsqNX+FQoFQm+FIzU2HYLsQuRn5iMvS4C8DAHyMvIR+zwecpkc7g2qocuw9ugyrB0c3Oy0ahODoQpMoBjlQiKW4vKOGzi47CQyk7Lh0aYOBs7shZpe7nCsbg89/YqdEU6NTcfzwJd4eS8SL+9HITEqpew9iyrmsK1qA1sXG9i5VEEVZ5sSbzgjmJgbw9jcGMZmRjAw0oeuvtLNXE9fV3kNHABS3vSJAFIoIJcpIBEpPQslIqnSu1AoRkFuEQRZBRBkFyA/WwBBVgHS4jKQHJ0GhVwBAOA4DlXrOKGZb2O07Nn0o7iZ52cJcPvoA1w/cAcv70UBADw7emD4vEFo0rURG1UxPjpMoBi8ICJkp+QgITLlL9N3sc/jkZcpgEebOhj142A09fbU2I1NIpYiJToNiZHJSI1NR1G+EEJBMYoEQggFQhQJiiERSZUOBWIpiguKkfYmE4DSq6/BZ3WVpW091G5WA0Ym2h2x8L2e+PAkJEQkIeLhazy/+aLMzdzB3Q56BnowLJkqNDQxhIGxAYxMDGFhY6Z0GCkpVZysYO9mp1yz0gBpbzJw8+A9nN18GZmJ2ahWzwWO1e1Rxcka9tVs0W5gS1Rv5KaRvhgMvjCBYrwXcbEYp9ZdwtHfTpd5igHK6atq9ZzhXMsR3cZ01ogwFeQW4tKOmwi99RIJkclIi02HQvHn/zUdHQ4mFso9QCYWxjCxMIahsQH0DPSgb6gPfUN91G9ZG826NUa1us6fxB4hcbEYzwPD8fjSU+Sk5ZVs+pVCLBSXjcjEQgnyswQQFYn/UldPXxeNOnigZY8maNGjCVzruZT7byARS3Fp+w08vvwU2Sm5yE7JRW5aHogIDdrWRd8p3dBuUOv/tCMLo+JgAsV4J3KZHFd2B2LPj0eQlZyDlj2boFXPZqhWzxnV6rmgipO1xkZKcWHxOLXuIq7vvwNxsQRuHlXh1qAaqtV1hms9F7jWrwqnmg4wMTf+T087CQuKkZOai+zUXOSk5iH6SSweXXyKNy8TAQCO7nZo1asZek/2hXuDahrrV5BdgMu7AnFu82WkxKTDys4C3cZ2Rr/pPWBXtYrG+mEw/g4TKEYZRIRXIbF4fvMFLu+6iYSIZNRvXRsTlo+AZwePcrVdmFeEnLQ85GXklxTlQv3zWy8ReischsYG6DKsPfpN746ajd01c0H/EdLjM/Ho4lM8vvQUIVeeQyKSoplvYzRoUxfmNmYwtzGDS21HuDd0Ldc0p0KhwJNrYTi3+TIenAmGnoEeeozvCo82dcoeKFi4JoYmqVQCxXFcNQB7ADgCUADYQkRrOI77EcBEAJklp35PRBfe1xYTKH5IJVI8DwzH/VOP8OBsMLKScwAA7g2qYcyiofisXwu1Ry1Zydm4fTQIgUfuISLo9TvPca7pgF6TfNB9fBcWAUED5GcJcH7LNZz740qZN2UpHMfBpbYjqnu6oUYjNzTv1hj1WtZWq5+0NxnYteAQAg/dLwuwq6PDoV6r2hi3dBgad2xQ7mthMCqbQDkBcCKiJxzHmQMIAdAfwGAAhUT0G9+2mEC9n9yMfOz98QiuH7gDoaAYRiaGaNatMdr2a4kWPbxgZWepVrsFuYUIPHQPNw/fw4s7kSAi1PRyR7sBreBcyxFW9pawtreAlb0lLKqYf9SI3kSEgpxCZCZlIyspG5lJSvfzIoEQYqEE4mIxxEIxRCVRzt8OHqurpwt9Az2YWytHKBZVzJXF1hwutRzhVNPho0e2kMvkKMwrQl6mAImRyYgLTUBsWDxin79BSkw6AKCZb2OMXOCPBp/VVasPiViK5NepiH+ZiDcvEnFlTyAyE7PRdkBLTPxlBFxqOWnykhj/MSqVQP1fRxx3GsB6AG3BBEojCHIKcGn7DexfchxioQRdhrdDh0Ft0KRrQ7X35YiEYqS/yUDg4fs4seY8hIJiuNZ3QachbdFpyGeoVtdFw1fxz0jEUoiKRJCIpGUOB1KxFFKxDHKZHGlxGYh6HI1XIbGIffYGIuFfHQ84jlM6X5gYwshE6UlnaGIIHV0dKOQKKOQlOaJkckjFMhTkFKIwt/AvzhyAMvVGtXrOcG9QDW4e1VDTyx3mNmbQ01cKm66+HvQNlUFgjUyNYGhsUKHra0X5RTi/5RqO/nYGeZkCNPVuBL+v+6JWk+qwtlfv4QRQOn0cX3Ueh5afhFQsRb9p3THoqz5srYqhFpVWoDiOcwdwG0BDAF8BGANAACAYwNdElPu++p+qQG3YAPj7A/b2fz2ekQEcPQpMm6Z6m4LsAhz59TQeX36GuNAEEBFa926GSb+OVEs8iAjPbr7AidXnEfU4Grnp+WXvtR3QEsO+H4jaTWto/IZbXCRCYmSy0k07PAmJUcnIyxSgMFeZ2qIwtxASkfSD7RiZGKJW0+qo1aQ6nKo7KPdGVa0Cu6pVYONopfKoTqFQoChfqNz3lClAYlSKckQRnoT4l4nISMj6YBscx8HYzAjG5kawcbSCbdUqsHWpotyzVbUK6jSvAdf6VbXymZ7bfBVHfj2NvAzl39HBzQ71WtVC/VZ1UL91bdRqUl3ltaWctFzs+uEwLu24ASJCy55N4PdVH3h1bvifdnRhqEalFCiO48wA3AKwhIhOcBznACALAAFYBOU04Lh31JsEYBIAuLq6NouPj9eqnZpmwwZg+nTAwwO4efNPkcrIADp3BsLDgfXr+YuUXCbH+S3XsOuHgygSFKNxpwbw7OCBZr6NUb+V6msPcrkcd088wpFfT+NVcAysHSzRqmdTONZwgFN1e9RsUh1u9auq3O77SIhMxoWt13Dv1COkv8ksy+1UGqXCxtEKZtZmMLMyhbm1KUytTEs22yqDyZYmEdQzUOZ4quJsDdf6LhU6/VYkECIuNB7CAhFkUmUgWJlUDolIOdoTFYkhKhRBVKQMCJudllcW9aI0fQigTCHSonsTtOzRBE26NtRo6pDSqOoJEUmIfPQakQ+jkR6vXPLVN9RHzwldMfwHP5VHV4lRybhx4C7Obb6CvEwBajR2g9+sPug09DPoGzBXdcb7qXQCxXGcPoBzAC4T0e/veN8dwDkiavj3997mUxxBvS1EpSIF/P+xv4+u3sXzwJfYMHMH4sIS4NWlIaauHovqDV3VsksqkeLSjps4+tsZpMamw6W2EwbP7gvvkR204rUlEUlw5/hDnN9yFWF3IqCnr4sWPZqgTrOacPOoClePqnCp5VjhUSo+BiKhGBkJWQi7rdwr9eRaGIoLRdDT10UTb0/0/twHrXo11YrgZqfmIvLhawSdC8GV3YEwNDaA/9d9Meir3jAxV00cJSIJru+/g+OrziE+PAk2TtYYMX8Qek7y/uhrdYzKS6USKE459t8NIIeIvnzruBMRpZb8PAtAKyIa+r62PkWBAv4qUnYlYdEyM/mL0/PAl9j781E8D3wJe1dbTF45Gu0GtlJpWqUwrwivgmMQ9TgGUY9fI/zBK+Sm56Ney1oY/G1/fNaveblvKsWFxQi+/BzJ0WnK3E9pucgpyQGVlZQDkVAM51qO6DXRGz6jO5VrXeTfhFQixct7UXh88SluHLyLrOQcmFmZwtrRCpa25rB2sIR7A1fUaqJM1GjvaquRKbXEqGTs/OEQ7hwLgqmlCeq2rIX2A1uj29hOKo2EiAjBV57j4LITCLsdgWp1neE7uhO6jujA1qkY/0dlE6h2AO4ACIPSzRwAvgcQAMALyim+NwA+LxWsf+JTFShAKVINGyqFCVAK1YsX7xenrJQcbP12L24cuAt7V1v0meyL/l/0VGnfS3p8JrbN3Y9bh++XTaW51HZC3RY14T2iA5p38yrXza64SIRHF57i1tH7eHT+SVkyQmMzo7K8TzZOVrBxtMZn/VrAs6PHJxEN4mMhk8rw4EwwnlwLhSCnEIIsAbKSc5D8Oq3s72dubYqaXu7oHNAePqM6lHtaLeLha1zYeg0RQa8QH54EBzc7DJ8/CD6jOqo0oiUi3DkehJNrL+DF3UhwHAevLg3Rd2o3tO3fkq1TMQBUMoHSJP8VgZJJZTi17iL2/nQUUokMQ77th6Fz+qvkkScsKMbBZSdxfNU56Ohw6DetO5r6eKJO85owtzYr9/VEPHyNE2vOI+hMMERCMawdLNF+UGt08G+DOs1qfLQ07P9WiotEePMiEdFP4xDz7A1e3ovEm5eJsKtaBf6z+6LHhK7ljktIRAi+/Ay7FhzGq+AYONd0wIgF/ugyrJ3Ko+uUmDRc33cHV/feQmpsOpr6eGLGuvGoWse5XDYyPn00LlAcxxkB6A2gPQBnAMUAXgA4T0Qvy2GrSnyqAqXKFN+T62HYNGsn3rxIRIseTTBtzViV9p2kxKTh5sF7OL3hInLT89F1eHuMWzoM9tVs1bZfJpUh5nk8kl+nIvl1KsLuRODp9TCY25iho38bdBrSFg3b1/vo6w5EBGFBMcRCMSQipTu6Miq5BDKp/E+X8pJXEAEcB47jwHEAOA46OlxZRl89Az3oGyhfjUwNS6KjG3306yy91uArz3Fw6QmE3YmAlb0lOvq3QQ1PNzRoV69cMfyICA/OBmP3wsOIfR4PN4+q6DetO9r0awFbZxuV2pLL5Ti76Qp2zj8IqUiKQbN6w/+bvmwD938YjQpUScSHPgACodxkmwHACEAdAJ1Lfv6aiELVN5kfn6JA8XWS0FPkYvPXu3Hz4D04VrfHlN/HoE3f5rxvMkUCIQ4sPo4Ta85DJpXDs6MHJv4yQu2oAoDyqf3itus4tvIsMpOUEQw4joNjdXv0/twHfab4VthISaFQICs5pyTiegqSolKQHp8JQU4hCrILUJBTCEFOYVnqC21iZGIIY3MjWNpZwK7EddyuahVUcbGBUw171GtVW2MRyfkQdicCB5efxIs7ESguFAEALG3N0bBdPTRoWx/NfDxRw1P1qOUKhQJ3TzzEnh+PID48CQBQr1VttO3fEu0GtkLV2vwfnHLScrH1u324vu8OjM2MMGBmTwz5rn+Ffk6MyoGmBaoXEZ1/T2f2AFyJSOvK8SkK1IfdzOX4avBVRF8+AKlIioC5AzHku368PekUCgWu77uDbXP2ISctD93GdMbon4eUa3G6ILcQp9dfwsm1FyDILkCj9vXRZ0o3uDesBueaDlpPyldK2psM3D3xEPdOPUL0k7i/bMA1MTeGYw17WNpaKGPTWZvBoorytTSlhYGRvjIrrpE+dPX1oKurA523CscpB1Gk/KcsJ5RMKodUIoO85FUqlkJUJEZxQTGEBcUQCpSZevOyBGXRKkqjgwOAjq4O6jSrgYbt6qNR+/po2K4eLKpof8RARGUj3Bf3IvHiTkRZdInP+rXA2MUBagWcJSIkRCTh7slHuH/6MV4FxwAAfEZ3xIRlw2HjaM27rbgXCdi36BhuH30ABzc7zFg/Hq16NVPZJsani9bXoDiO0wFgRkTaTV/6Nz5FgQL+eaPuw2ux+G3CFuQlxKCpdyPMWD9BpTn6iIevsWnWTkQEvUa9lrUwbe04tUdMpTe3yztv4vSGSyguFKFVr6YYOmcAGratp1abfPsVFYmQl6lMApifVYDop3G4eyIIr5/EAQBqeLrBs6MHXOsrs9ZWreus0cjrmkAmlSEnNRfx4UlKgbgbichH0ZCKpeA4Do061EenwZ/BpY4zzKxMYG5tBhsnK62LfVZKDq7sCsThFadQXCCC96gO6De1O2p6uavt0p+RmIWzGy/j2O9nYWBsgFELB6P3ZB+VriXsTgTWTNmC+PAktB/UClPXjFN5+pDxaaIVgeI47gCAyQDkUE71WQL4nYh+VddQVflUBervFBeJsGfhEZxYfQ6WdhaYsmosOg35jPcNNyMhE1u/24fAw/dh7WCJ8cuGw2dUR5W94+IjkvD0ehjC7kQg7HY4ctPzwXEcOg5ug6FzBmg8AnlhXhEiH0UjIugVIh+9RlxoAvIyBZCK/z9SRP3WtdFuQCu0HdDyk439JhFJ8Co4Bk+uhSHw8L2/ZAIuxdbFBk41HeBcQxnrr07zmmjq3Ujj61yC7AIcWn4Sp9ZfglQshZGpIfpO6YaA7wfCzMpUrTaTXqVg45c78fjSM1hUMUfPid4YNKsX75iPUokUx1aew75FR2FgZIDp68ajy7B2lerBg6F5tCVQz4jIi+O44QCaAfgOQAgReapvqmr8GwTq0cWnWDt1K9LjM9Frkg8mLB/O+wZRXCTC4V9O4ehvZwAAg7/pB//ZfVXeYJkSk4at3+3D3RMPAQB21arAs6MHPNt7oEnXRnCq4aDaRb2HjMQsnF53EUHnQ5AQkQxAuY7l5lEVtZpWh42jNSxtzWFhawFLW3NY2prDwV2Z9fXfROkINTc9HwW5hcqAtonZSIlNQ2pMOlJi0pGTqoz0Ze9qix7ju6L7+C4aH1XkZuQjNPAlHpwNxo0Dd2FuY4aRC/3R+3MftUZURITQW+E4ufY87p8OhpmVCcYtHY6eE7vyfmBKjk7FijEbEH4/Cq37NMOM9RPK5dTDqNxoS6BeQrlv6QCA9UR0i+O450TUWH1TVeNTFqjc9Dxs+moXbh68B9f6Lpj1x+do2K4+r7pEhBsH7mLbnH3ISs5Bp6FtMXH5cNi72qlkQ1F+EfYvPo5T6y5CV08Xg7/tB59RHeHoziOMhYpEBcfg+KqzuHXkAQCU5TKq37o26raoCVNL9Z7a/80UF4kQfOkZzm25iidXQ6Gjq4M2fZuj9+e+aOZT/uzGf+f1k1hs+WYPnt18iWp1nTHhlxFo04e/Y87fiQ9PxLrp2/E88CXqtayFmZsmoVaT6rzqyuVynFh9AbsXHIKOrg7GLR2GPlN8K4XHJEOzaEugvoBy1PQcQC8ArgD2EVF7dQ1VlU9RoIgIt47cx7rp21FcUIyA7wdiyHf9eafXToxKxurJWxB6Kxy1m9XA1NVjVV4Tinn+BsdXncO9U49QXCCC7+hOGLN4qMaezouLRAi/H4XngS8RdicCCRHJEGQXwMTcGD0neqP/jB5wcFNNTP/rJEen4sLW67iy6ybyMgUwtTRBtbrOcKnjhGp1XFC1rjOad2sMUwuTcvVDRAg6F4Kt3+5FYlQKani6odvYzug6vD0sbS3Uau/6/jv4Y/YeCLIE6D3ZF2MWDeW99y41Lh1rpmxFyJXnaN6tMRYcm808/f5laNqLrw2AIPrbCSUhjHSJSKa2pSryqQlUVkoO1k7digdnglGneU18u2sa3Dz4eVFJJVIc/uU0Diw5DkMTQ0xcMRLdx3VWaZ1JkFOAXT8cxvk/rsDY3BjtBrRCv+ndUbtpDXUvqYyMxCxc2HoNz26+QNSjaMikcujo6qBui5qo4emOmo3d0GV4+3LfQP/rSMRS3D0ehBf3opD0SuleX+ryb25tikFf9UH/GT3K/TnLpDJc2RWI81uv4VVwDPT0ddGmXwt0H9sFzXw9VR7JFOYVYef8gzi3+QosbC0wZdUYdB7altfojIhwfss1rJu2FXVb1sLic3PZvql/EZoWqM0AWgJ4BeASgEtElFZuK9XgUxEoIsLF7Tew5Zs9kIqlGLMoAANn9uSd8iH8QRRWTfoDb14motOQzzBl1RiVXHnlcjkubb+BHfMOojC3EH2mdMPon4doJIJEdmouDi07ifNbrkIuV6BO85po3NEDjTs3RMO2dVkEiQqguEiE6CdxOPLraQSdC9GoUAFAXFg8Lu+8iWv7biM/qwBONRwwZdUYtOmj0j0FABD9LA5rJm9B5KNoNO/WGF9snAin6vzWOO+deoQlQ1fB2tEKX/7xOVp081K5f0blQ1tTfPUA9ADQDUoPvptQCtY9IpKraatKfAoCVVxYjB8H/YYnV0Ph2dEDX22dzNsLrbiwGNvnHsCZjZdhW9UGMzdOVHmPSMjV59g+dz9eP4lDow71MX3teLU2ab6NILsAD84GI/R2OG4dvg+pRAbf0Z0w4ge/SjN1J5fJlbmbsgogKhJBLJRAJFRmzxULJZBJZZDL/pqcsCSQhDKShI4yooSOrk5Z9Ah9Q33oGypfTS2MYQ+54XkAACAASURBVGppoiwl6T8qQ0zBqOAY7Pv5aJlQdRnWHs27eaFxJ49yPyxIJVIEnQ3B7oWHER+ehBY9mmD80mEqe3fK5XKc3XgFO+YdgEKuwKRfR6HPFF9eo6mIh6/x27gNSIhIRq9JPvhi44RK8bkz1Kci9kEZQxlFogeANqp2pi6VXaDCg17ht3EbkfwqBdPWjkfvyT68v0yht8Px27iNSIvLQL9p3TF2SYBK3nlZydnY9NXusg2Q45cNV8l1/V2Ii8U4ueYCDv1yCkX5Qphbm6J13+YYPm/QR3H9FmQXIDY0HnFhCYgNjUdydCryMgTIzxSgIKcQqvwfLi8cx8HawRIO7nZwcLeHo7s9HN3tUK2eC+q3rl3heZGigmNwcNkJBF96BnGxBHr6umjYrh6a+XqhTZ9mvKeW34VMKsPJtRdxYMlxFOYVob1fa4z+cbDKbWYkZmH15C14fPEpuo/tjKlrxvISUYlIgl0/HMLRlWfRb1p3TFs7jrmif8JoTaA4jmsKoB2UEcjvEdET9UxUj8oqUBKRBLsXHsGxlWdQxcUGs7dPRVNvft73IqEYO74/gJNrL8CphgNm75gKzw4evPuWy+Q4veESdi84DKlEhuHzBsH/m768nTDe2aZcjmt7b2P3gsPITMpG6z7NMHKBP2o1qV6hT6/FhcV4eP4Jbh97gPAHr5Cd8mfCZUtbc1Sr5wJrRytY2VrAyt4SVvaWsLQ1h5GZEYxMDGFoYqCMJGFsAH1Dfejo6kBXTxe6ejrQ1dVBaSiJ0mgSpCDI5QrIpTJIxTJIxFLIJDJIRFIUFxSjMK8IRflCFOULUZhXhOyUXKTHZyItLgMZCVmQy5QTCUamhvDq0hDNfb3QorsXnGs6VthnJhFJ8OJeFEIuP0PwleeIDVUm+OwyrB3GLRlWrhFvYV4Rjv1+FifXXICoSIS+U7tjzOKhKk0rKhQK7Fl4BAeWnoCDmy2+/ONzNPPh5wi8+evdOL7qHMYuDsCw7weqexmMj4y2pvgWAPAHcKLkUH8AR4losVpWqkFlFKjXT2KxbMRaJEYmo+eErpj02yjeX9iIh6/xy6h1SH6din7TumP88uEqeSxFPnqN1ZO3IObZG7To7oXp68aX62Yol8vx8NwT7FpwCHFhCajboiYmrhiJxh0bqN0m775lcqTHZyI5Og1ZSdl4fPlZWfoOG0crNPFuhJqe7qju6YYanq6wdrCqVE/Rcpkc2Sk5iH76BsGXn+Hx5WdIi8sAADjXckRH/zao3awmbF1sYOtio1YaenXITs0ti/qgUBAGfNET/Wf0KFcoLEF2AXYvPIyzm67AxskK09aOR/uBrVRq48XdCPw+cTMSo1LQbUxnTFv74dGUQqHAitHrcX3/HczaMhk9J3RV+xoYHw9tCVQEgCZEJCr53RjAEyLit5lHA1Q2gSrKL8I4j1nQ0eHw9fapaO7L70lQJpXh4NKT2L/kOGxdbDB7x1R4dX5vMuG/UFxYjF0/HMapdRdg7WiFqavHov2g1mrfsLOSs3Fx2w1c3H4dmUnZcK7pgHFLh6ODn/ptvg8iwvPAl3hwJhhJr1OQ/DoNaXEZZSMQALCyV6bv6DTkMzRoW/eT2w9DREiOTkPw5WcIOheCp9dCoVD8+R3T0eHg3tAVnh084NmpATw71FfLrZsvmUnZ2Dn/IK7uuQWO49Cka0OMXODPey/eu3j7AclndEdMXztepWlpiUiCvT8fw5EVp9DE2xOLznz3walRqUSKH/r+gpArz9FnSjdMXDGCuaF/YmhLoC4CCCCivJLfraDcB9VbbUtVpDIJlLhYjJUTNiHw0H2sC1qKui1q8aoXGxqPX8duQPTTOHQZ1g7T1o5TyYX28eVnWDN5C9LjM9FnSjeMXzZMLc+t0nQN5zZfQdC5ECjkCjTzbYxek3zQpk8zraRez83Ix9Xdgbiw7TqSX6fCyMQQLnWc4FzLES61nOBS2wkutRxh62IDezfbT06U3kdBbiHS4zORlZSDrOQcZCZmIfLRa4Tff1UWBNe9YTW06tkU/aaXb4TzPlJi0nBt721c2HYN2Sm56Dq8PSb8MkLtPXEyqQz7Fh3DwaUn4OBuj293TVNZ9C7tvImV4zei64j2+HbX9A9OI4uLxdg5/xBOrD4Pp5oO+HbXdDT4rK5a9jMqHnUESjkH/44CYB2AtQBOAUgGsAvATgBJAA79Uz1tlGbNmlFlICo4msZ5zCRvzo/2/HSEVx2pREp7fz5K3Q2GkJ/DeLp78qFKfeZl5tPyUWvJm/OjsfVnUtidcHVMJyKiN+GJ9I33T+TN+ZGfw3jaNmcfpcSkqd3e+1AoFBR6O5wWD/2duhsMIW/Oj75sP5+u7r1FIqFIK31+SkjEEnpxL5L2LzlO3/r+TL56g6mb/hBaPmotRT+LI4VCoZV+hYXFtGPeAephOJT6mI+gQ7+cIrFIonZ7YXfCaUT1KeTN+dGaqVupML9Ipfr7Fh8jb86P5nRfRBmJWbzqPAt8QcPdp5Cvrj9tm7u/XPYzKg4AwaTivf99+6BGf0DYdqukhOWgMoygnge+xJxui2Blb8l7Wo+IsHTYagQevo9OQ9ti+tpxKk3nvLgbgcVDVyEvQ4Chc/pj2PcDeafjeBtBdgH2/nQUZzdfgZGpIcYsGopek7w16nFWXCRC1KNohD94hYggZcnPKoC5tSl8RnVCz4ldy+VR9m8n7U0GTqw+j4vbr0NUJIaVvSXqtaoF7xEd8Vm/5hr3DkyJScOmr3Yh6GwIHKvbY/zSYeg4WD3vz9Kp55NrL6BqXWesuLaA98iMiHB20xVs/XYvDIwNsPzyfF4byosEQmz+ajcu7bgB75Ed8N3uGSrbzahYWMp3LZEal47pLefC0s4Cq+8u4jU1l5ueh98nbUbQ2RCM/mkIRvzgx7s/kVCMnfMO4uTaC3Bwt8PC47NRy4tfbLO3kUqkOLXuEg4sOQ6hQIge47ti9KKhsLbnF3WaD4V5RTi28ixOrDlfljSvWj0XeLSug0Yd6qPj4M/KnZL8v4QgpwC3Dt9H5ONoPL0ehszEbFjZW6L72M7oOdFbowF9AeXU8fa5+8scbmasn6B2H89uvsCCfr/Axskav15fqNJ0ZWJUMuZ2X4LCvCIsvfA9PNrwm7r7Y/YenFh9DnP3z0SnIW3VsptRMWh0iq+0QJny/SmAHAACAAUABKoO1cpTPuYUn7BASJMaf039rUdT4qsUXnXunXpEfvbjqIdRAB37/SzJ5XLe/YXdjaDRdWaUTZkIC4Rq2R16O7xsOnJuzyUU9yJBrXb+CWGBkPYvOU79rUeTN+dHi4aspKDzIZSfLdBoP/9lZDIZBZ0PoR/6LSdfXX/y0fGnOd0X0bObLzTez4k156mP+QjqaRxAB5edIKlEqlZbL+5FUl+LkTSy5jRKj89QqW56fAaNrjODepsNp6c3wnjVyc8W0Iw2c8mb86Plo9aqPMXIqDigxhQfH4GKBuCJktHWxygfU6CWjVxDvrr+9OjSU17n75x/kLw5P/q8yWyVReHwilPko+NPI6pPoSfXQ9Uxl8QiCa2bvo28OT8a7j6Fgs6HqNXOP5GekEmbv95NfvbjyJvzo/l9ltHrp7Ea7YPx/2QkZtGeH4/QEJeJ5M350ewuC+nq3lskLCzWaB8/DvqVvDk/mtBoFkU/i1OrnYiHr6if1SjycxjP+3tTSnZqDk1oNIt6GgdQ2N0IXnVkUhntXniYfHX9aUSNqZSZnK2O2Qwtoy2BuglAR9WGNVk+hkDJpDLateAQeXN+9Mfs3bzqJEYlk6/eYFo2Yg1JxKot3F7de4u8OT/6yf83KhKoN2rKSMyi6a2VT5MbZu7Q6M2rMK+Qts3ZRz2NA6i7wRCa33cZvXwQpbH2GfwQF4vpyG9nyhwTepsNp+Wj1tLL+5Ea6+P+mcc02HkidTcYQvsWHVNrNBX3IoEmNJpFPjr+tHvhYZLJZLzr5mcJaJjbZOprMZKu77/Nu17Y3QjqaRxAPw76VWV7GdpHHYHi42beAsAiALcAiN+aGvxdpbnEclDRa1AZiVlYPmItwu5EwGdUR3yxcSKvdZQlw1Yj6Eww9sSsh7WDFa++igRCbPxyJ67sCkTDdvXwy5Uf1HKEeHojDEuHrYFYKMbsHVPRwa+Nym28C6lEinObr2LfomMQZBeg6/D2GLNoqFZySWkaqUSKgpxCFOb9GQWiKK8IUrEMeqVx90pejUwMYFu1CmxdbLTiaq9pFAoFXt6LwrW9t3Dr6AMU5QvROaAtJiwfoZGkf3mZ+djwxQ4EHr6Pml7umL1jqsrroCKhGGunbsXVPbfQ1McTc/d9wTvrbtqbDCwfuRYv70XBe2QHTF83nte2ikO/nML2ufux8PhstBug2iZihnbR1j6oKwAKAYQBUJQeJ6Kf1DFSHSpSoIKvPMfSYashFUvxxcaJ8BnZkVe9qMfRmN5qLobOGYDxS4fxqxMcg8WDVyIjIQsBcwdixAI/lW+OErEUW2bvwekNl1CtrjMWnvgGbvWrqtTGuyAi3D35CNu+24uUmHR4dWmISStGaiRlR3lRKBQozCtCfqYAeRkC5GUKIMgSQFgggiBLgITIZCREJCElJh0KueLDDb4Fx3Go4mwNezc72LvawrWuCyxszWFmZQozK2XAWBtHK9hVq1Lhcff+ieIiEY6sOI0jv54Gx3EY8m1/+H3dWyMR5u+efIi1U7dCkF2IgLkDMHKhv0phr4iUEf7Xz9gOS1tz/HjyW9RtXpNXXblMjgNLTmDfoqNwcLfHjye++WAAZJlUhmkt5yAvQ4Ad4atYgsxKhLYEKljVRkvqVQOwB4AjlMK2hYjWcBxnA+AwAHcAbwAMJqLcf2oHqDiBkoilGFl9KsxtzPDjyW9RtTa/wKi3jj7A7xM2wcDYANvDV/Hy8ivKL8LERl+D0+Hw/YEv1dpwWCQQ4seBv+LZjRfoP6MHxi0dppHd9dFP47Dpq10IvRUO9wbVMHHFSLTo7lXhIYaICOnxmcpAsaEJiA2LR1xoPFJi0v8SfeJtdPV04VLbEa71q8K1nguqONuUCUupyOgZ6EEmlUMulUMqkUEmkaG4UITMxCxkJGQhIzELGSWx9tLeZL6zHx0dDlVcbJTBYqvbo1pdFzT18UTtphUbt/Bt0t5kYMu3e3HnWBCs7CwwbN4g9J3ardyhlQQ5Bdg0axeu7b2NPpN9MX39eJWvMfppHBYOWAGO47D8yg+8v1sA8OJeJH72+w1V6zrj98CfP3h+eNArzPxsHobOGYBxSwIqVWis/zLaEqjlAG4Q0RUVjXEC4ERETziOMwcQAmUcvzEAcohoOcdxcwBYE9F372urogTq6t5bWDF6PZZdms9rn5NEJMEfs/fgzMbLqN+6NuYdnMU7KOeqSZtxaccNrLm/BPVa1lbZ1uzUXHzfcwniXybh6+1TeI/0PtTmznkHcWV3ICyqmGH0z0PRc0LXCokd9zZJr1JweVcgru29hazknLLjTjUcUMPTFVXrOMPG0RqWdhawsrcoCxZrbG4MI1NDjUaikIilKMorKgsYW5BbEiz2TUZZwNi0NxnITFQmE7S0NUdTH0+06NYEzXw9VcrnpSnCg15h57wDeHbzJWp6uePLzZPU+j/2NkSE7XP34/CK0/Dq3ADf7JwGe1fVAtCGB73C/F5LIZPK8cXGifAe0YF33cMrTmPbnH3Y9nLVB2cIiAgL+v+CoLMh8BndEV9s4DdFz9Au2nIzL4ByBFSMcriZAzgNwAdAFJTCBQBOAKI+VLcinCQUCgVNbvoNjfOYyWsXf3J0Kk1p9k2ZE4UqC8khV5+TN+dHW77Zo5atCZFJNKL6FOptNlxlL6l3IZVI6eCyE9TbbDh1NxhCf8zeTQW5heVuVxXyMvPpwrZrNLPdPPLm/MhX15/m9V5KZzdfoZcPotR2HKkocjPy6Pr+27R81FrycxhP3pxfmVv4vVOPKjx6hkKhoNvHHtBg54nko+NP66ZvK7cLtkKhoIvbr1Mf8xHUz2oUXdvH34GhlPT4DPqy/Xzy5vzol9HreP9dc9LzqLvBENo0ayev82UypWefj44/TfT8ihIik1S2laFZoA0vPk0UKKfzEgBYAMj723u5H6pfEQIVdiecvDk/OrPp8gfPVSgUNKr2dBpgM5run3msUj9RwdE02Hkijak7Q62b1ot7kTTYaQL52Y+jyMfRKtf/OykxaTSt5XfkzfnRgv6/UNJrfnu9ykuRQEhB54Jp45c7aaLnV+TN+ZWFczr0yynKSsmpEDu0gVwup9dPYmnXgkNlbuHd9IfQlObf0tppW+npjTCthTL6O4V5hbRu+jbl9oUaUykqWDP/Z0ofJC7tvKFy/bfdwn8evJJ3vcVDf6cehkPp1tH7vOs8vvyMBtmNpSEuE1mIrY+MRgUKgPt7KwIcgKof7AAwg3J6b2DJ77wECsAkAMEAgl1dXbX1mRGRMraXn/046mc1inIz8j54/uunseTN+dHF7dd596FQKOjs5ivUw3AoBbh+rvLeIblcTgeWniBfvcE0osZUig2LV6n+u7h56C71tRxJ/axGqfSlVxeZVEZX996iL9vPp276yvh8PYwC6Fufn+jA0hMU8fBVhd24KwqZVEYPLzyh7d/vp9ldf6Q+5iPIm/OjKc2/pZuH7pJMyt/9ujyE3Y2ggGqfUw/DoXTktzMquX2/C5lMRl91WkB9LUZS2hvVNuSWsvMH5Z5BvvutslJyyjblbvlmD+/P7lngC/Lm/Ojk2gtq2cnQDJoWqKMAjgMYBaABAHsArgC6QOl2fh+Az3sbB/QBXAbw1VvHKs0Un0KhoJNrL1A3/SE0tt4XFB/Bbxpgz09HyEfHn3LScnmdLywsLgv4Oqf7IsrLzFfJzuzUHPrWRxnkdfHQ36kwr3zTb8VFIlo5YRN5c370xWffU2pcerna+xClwjSmrjJCxvgGX9K2ufsp5Frof+6pVlwspnN/XCn7LEZUn0In117Q6J61fyIvM58W9P+FvDk/mtluXrlHyymxadTHfATN7rJQpWgppQhyCqif1SiV9i2JRRJaM2WLcrNy1x95PVASEc3q8AMNrTqJBZb9iGh8ig+AB4AlAAJLhOUpgAMARgAw+kBdDkovvtV/O/4rgDklP88BsOJDRmpLoEqf4Ob3Xcb7pv/iXiT1tRxJX7Sdx+t8uVxOU1t8Rz46/rTnpyMqf5EzErPI33E89TIZRue3Xiv3CCMhMqlsA+W2ufvVDmnDh5y0XDq47ASNqjWNvDk/muT1Nd09+VCtm9m/DblcTndPPqQv2iqnygbZjaVdCw5pfWpToVDQlT2B1M9qFPUyGVbuSCMXtl0jb86P1k3fptZocPfCw+TN+dHzWy9Vqnd5103qaRxAw92n8FrHCr7yTOVZD4ZmqVRrUPgzRXwogGclpSeAKgCuA3hd8mrzoba0IVA56XnU0ziAFg1ZyfuGef/MY+ppHECj68zg/fT57KZyeuHcH1fUsnPlhE3Uw3Co2mFnSild4O5tOpwGVBmjEeeKf0IkFNH+Jcept9lw8ub8aFbHH+jOiSAmTP9A2N0Imt9nGfno+FM3/SG0dPhqCg96pdU+M5OyaEqzb6iXyTB6cU/9KBQKhYI2zNxRFn6J74imFEFOAQ1zm0y9TIbRzUN3Var78MIT8ub8KPDIh6enFQoF+TuOpxVj16vUB0NzVCqB0mTRhkDtmHeAfHT8eXv3XNh2jXz1BtO0lt+p9CVcOWET9TEfQcVFqk9lhQe9Il+9wbT+i+0q132bgtxCWjRkZdlNJDOJX94dVVEoFBR45D4Nd1eG4Vk4cAXznlKBpNcptPHLndTXciR5c340vfVcCr2tfv6vD5GTnlfm7BMb+qZcbV3edZN6GAXQMLfJ9CokRjU70nLLPPu2zd3Pe31MJpPRQNuxtGzEGl7nz+m+iPwdx2tk/ZahOkygeFIkEFJ/69H0kx+/ue+jK8+UrR+pEl1cWCCkflajaPmotSrbeHXvLephpJzC4LvW9S5inr9RJnfTG0wHlp4o9+L4P/H6SSzN6vCDciqv8de8o1Ez/p8igZBOrb9IAa6fkzfnR8tGrlF5ZMKXlNg0Guw8kXqbDacbB1UbwfydqOBoCnD9nHoaB9DtYw9UqisRS2jVpM1lU+58p55/GbOO+luP5nV+9LM4Guw8kfpajKSQa+oFY2aoDxMonjy+rJyPDrn6/IPnioQi6m06nOb1XqrSeo0gp4C+6rSAvDk/ehaoWnqEuycfkq+uP83uslBlh4q3KS4S0eg6M2iIy0StBXYVCUW05Zs95KvrT3724+jcH1e0JoL/Nd7OfjvQdixdP3BHK16OmUlZZQ8XZzZeKldbuRl5NKX5tzTYeaLKa1IKhYKO/KZ8GOTrVXrz0F2V7M5IzKIJDWfRAJvRKqcDYZQPrQgUgOt8jmmzaFqgzmy6TN6cH68U00HnQ8ib81NpzSY1Lp3Gecyk7gZDVIrGTKTcj9XTOICmt55bLs+unLRcmtVRedNRN3XHh3h+6yWNqj2dvDk/+n3ipgrf3PtfIe5FAk1vNYe8OT/6od9yraSTEBeLaX7fZeTN+dGRX0+Xq627Jx+SN+en8h5BIuW0XUC1z2luzyW8zhcJRfR154XkzfnR4RWneAl40usU6muhdHTSppMQ469o2s3cCIANgOcArEt+tinZdBuhakflKZoWqE1f7aIehkN5LdqvnvwH9TYbzts99VVIDA12mkD9rUernFjuzcsE6m89msbUnVGukVPEw1c0tOok6mUyTGWB5IOwQEhrpm5VuknXmKo1Afwvs349Ufpb3v8ymYyOrjxDPYwDqIfpaLWiOHwIqURKi4f+Tt6cH+1eeFjt0ZpUIiV/x/E0o81ctaJX7Jx/kHx1/Xk9QBIpXc9L11g3zNzB63t9/cCdsjUvRsWgaYGaCSAOyhQbcW+V5wCmq9pReYomBer1k1jqazmSpreaw+v80XVm0A/9lvM6VyaT0TC3yTTMbTK9eal6BtuvOy8kP4fxlBKbpnLdUlLj0qmv5UgaUWOqVhIJpidk0uSm35CPjr/Gc05pm7/f9EtJT1e+V1lYv175zfTw+Ku96elEjWomU3MoXdN3zj+o8Sk/mUxGv47dQN6cX7lc0K8fuEPd9IfQF599r3JW6OToVPLm/OjEmvO868jlctr45U6lK/kOftEtfh27gXx0/Ck79dONWvIpoa0pvhmqNqrpoimBin4WRwOqjKEA1895iUBuRh756g2m7d/ze8oq3WvBx+317whyCshXbzDtmHdA5bqlyGQy+rL9fOprOVIrm2+DzgXTgCpjqI/5CHp44YnG29cm77vpe3go36ssIvW2TaX2/uVYfRktHqHcaL3xy50aFympREojqk+hCY1mUX6WQO12bh8PIl9df/rG+ycSF4tVqhtQ7XOa5PU15Wfz71+hUNAkr69pnMdMXqOolw+iyJvzo9vHg1SyjaEe2hKoUe8qqnZUnqIJgYoNfUMDbcdSQLXPKTk69YPnZ6fm0ISGytTTfGPeLR2+mgbYjFb5y0j052Jvefak7Ft8jLw5P7q695babbwLqURKW77ZU7bZNjEqWaPtVwQfvOl7vHt09bF42zY7O2V528639x+tnLBJ444pQedDqIfhUBpTdwalxKg/or+yO7Bs7UyV9Z6gc8HUw3AoTfT8SiUv1uv7b/Ne/xKLJNTDKIA2f80vYzajfGhLoNa9VbYCiAVwTNWOylPKK1DCAiH5O46nIS4TeW2wFYskNNHzK+ptOpy3u3RxkYh6GgfQmilbVLavILeQJjScRYPsxqp9o0mITKJu+kNoccAqjT5Ry+VymttzCXlzfrR68h9qiW9l4UM3/cpGevqfNpba/LadCoWCdsw7QN6cHy0dvpokYs2G8Qm7E04Dqowhf8fx5YpwcXrDJbWi94dcfU69TYfThEazeF+bTCqj4e5TaHbXH3md/2X7+byjwjDKhzoC9cGsY0Q0460yEUATAKrnJP+IPDgbgtz0fMzZ+wVcan04UdrRX88gLiwB8w/Pglfnhrz6SIpKgUQkhVcXfueXIhKKMb/PMiS9SsF3e79QO5fRxW3XQUSY8vtojSZoO7byLB5ffIppa8Zh5qZJaqWj/1gQyUDyDJA0EqeOPIABnceDG3ux8JttGNxnD/r5HsbkMaew+IcLsLO8BZLFg0iGDRuAjIz/by8jA9iwoeKv45/gOA5jFwdg7OIA3DhwF3O6LYYgp0Bj7TdsVx8rA39CUb4Qqyf/UfrAqjJ9p3ZDe7/WuLI7EHL5uxNNvoum3p6Ye2Am3rxIxNlN/NLR6erponXvZnj1OIaXvU41HZCZmMXbJkbFolp+cSVCAOXLflbBBB6+B1sXG3h29PjguSkxaTiw9Dg6Dm6DVr2a8e4j+XUqAMBFhUyhUokUP/uvRPj9V5h/eBZadPPiXfdtru65heOrzqG9X2uNJsiLCo7BzvkH0W5gK/Sb3l1j7WoLUuQBkqcgaQggeQJIw6D08QH6doAy8BaABV+9o25JTme5XB8dGrrhaWANtO1QA6bWrQCDFsjMNEDnzkB4uPK8adO0ey0ZGUDnzkBmJmBXkhcwM1N57OZNwN7+z3OHfT8QDm52WDl+I2Z+Ng+Lzs5VKWPt+6je0BVjFwfgj9l7cG3fbbUTY3Ya/BnuHAvCizuRaNypAe96bfo0R1MfT+z7+Si8R3bgla3atX5VCAuKkZWcA7uqVd57rpWtBQRZmhN1hmb5oEBxHHcWZV9t6AKoD+CINo3SJIV5RXh88Sn6Te/BK031hpk7oKevh8m/j+Hdh1wux4Xt16GnrwvnWo686636/A88vvgUs/74HB382vCu9zbX99/Br2M3wKtLQ8zeobm75ot7kZjfexmsHa0w64/PK2XabCI5jh8KRffON2CidwOQvS55Rw9SeCD8dQC8mrkhv8AGM2fZT0JJ7gAAIABJREFUIDjEBoJCG+TmGcHJUQKxWAx9PQnMzSQ4cVyA6tXeQCyIQXpWLKo5v4a+7AYodzMUMMWTW+3RoUUr1HRrCX+/msCHJx/UplScwsMBDw+lIAF/HnuXSHUd3h4ObrZYOOBXfNHme6y4tgC1vKprxJ4BM3vi7smH2DhzJ5r7Noa1g5XKbbTo0QSGxga4feyBSgLFcRwm/zYKk5t8gwOLj/P6XrrWdwEAJEQkfVCgLGwtIC6WoLhIBGNTI952MSqID80BAuj4VmkLHjmgNF3KswYVci2Ud9SIvMx88ub8aNeCQyr1UeqccHId/3wzKTFp5cqqS6TMj9PXYiTN6vCDRtNWxEck0QCb0TS6zgy1c/1omlIXcYVCRIriyyTPm0MFca1JnlqbxIn1qDh1JCkKNpJC/JDS04R/8czz9yc6dYrI0FB5jOOIrK2VP+vo/LkO9eKF8vxly4jq1CEyNhbSML/rtH3VPIoPaUfy1NrKktGVFIV7KD2tUCuef+XxOEyOTiV/x/G812D4Ehv6ptyRJuZ0X0SfN5mtVt2f/H6loVUn8To37U0GeXN+dGHbtQ+ee+dEEHlzfnRg6Qm17GLwB9oKdQTAEUBfAH0AOKraSXlLeQTq/Jar5M358brRlu6AD7vDP0Dn81svyVfXn5YOX62Sc0JpTqn0hEzedf7OkmGrqIdRgEaz4Oak5dKIGlOV+7HK4b2lSdavJ9LXF9PCbw+QJLVEKNKaUc6bWTTC/yxZWeaRo+O7PfP69FH+rKf3pziVOh2UFjMz5auj45/H6tYlMjX983ddXQV1ah9P4wKOUMJzf5Kn1qbcV81o2bwVtHO75rMQl2fPVmnsyPJ4hP4dhUJBw9wm845f+S42zdpJvUyGqZWW4+TaC7yjvwgLhOTN+dGhX0598FyFQkGLhqwkX11/enz5mcp2MfijFYECMAHKdO27AOwG8AbAOFU7Kk8pj0Btm7OPuhsM4eUdt2nWTuphFMA7akRuRh4NcZlIo+vM4JWTphSFQkGj68yg2V0W8q7zd0pHhrsXHla7jb9TXCSi6a3mUC+TYRT56LXG2i0PCoWc8tKOU/yTziRP/R975x0W1fH18e+l9w6CYu+ILfbekGhsQReMXey9xNiiRo0tRo0aW+y9i723KIodFQEVQXrvfdl63j8ui0jQvXd3Ufy9+3meeYRlZu6wsvfcc+ac79Smp9cHUnriXUpKFBcZIoVnVDwzz8GBaMECort3P/y8tKanR2Rl9eH7mjWJatT4dP+qVdk+rZs9p2Pbp5E4ti6J4+rRm8ezSC7VvKFShfxcIQ2w96Z5PZZpdN413lvIw3akysem+J17Qm6MgLbN3Mt77NsnobyO1hhUZTwNrz2FstNzlPbPzxXS2EY/k4fNiHLzUPa/iCoGiksgfTaApkQ0kohGAGgGYK6GIoxlTnJMKuwr23HKjnvnH47azWrAwFCf09w+f11ERlIWFh6fCRNzY85rin0Xj7jQBHQe2I7zmJIcX30GDlXsMHBuP5XnKMmFrdfw9kkYfj0yA3Vb1NLYvKpCkhBQ+iCY0zxUcLLChHm70ML9KOo27AjXhvp4/RpwdAQmTgRsbdkkgpQUdmxyMrBiBeDpCVy/Duh/4r9UKgUyMz/+XiL59JqiooD374FH/k0xZNJG1G59Ext3DIez/XUIY/vg9NGrRVmAXyvjz9jUCF6z++HZtQBc2nFDY/M26eqKnPRcPL3yQqXxbfu2QI1OPeGz4RJe3A786GfK3q8ajatCV08X719GKL0OwzD49cgMJEWmYPe8w0r7G5saYcnp2ZDJ5Niz4IjS/lq+HFwMVCyA4mkuOQBiymY5mic3Mw9m1qac+qbEpsGxmj2nvkSEe6cfo0lXV96b0dFv4gAAtZqqtoktLhAj6P5btPdoBUNjQ5XmKAkR4fr+O3BpUwdt+7XQyJzqrIXyDoDS+gOyKDCWq2FQwQfL/+wIe3umyBCZmQGJicCGDR8bmeK5MMnJQI8erOHhQlQUEMPxr1smA6JinTF76Xx08riIkPfV8GOXadATLkTLFkJMmfL1jNSAn3ujRY8m2Dx1N4L83mpkzvb9W6FyvUr4a+w/yEjO4j1+yxZg152hkOo7YNPUfZBJ2ZRzRVLI594vfQN9WFewRHpCZukdSuDarh76THDHld23EBEUrbR/xZqO6Da4Ax6ce4q87HzOv5OWsoWLgYoD8JhhmCUMwywG8AhAGMMwPzMMU0rCbvkiLysfppYmSvsREdLiM2BX0YbTvFGvYxEXmoD2Hq14rynmLWugnOtW5D0WAIIfhEBcIEHTbg1VGl8a7/zDERkcA/cRnTU2pyqQPAuUORmUsxwwbAfG7jIYY49SswgNDYGqVdmvFeU1OjqAXP5xP6GQDdCVJc8DqqDl90fxx6ZxGD34JC4e7I+G9d8i5ytlMOvq6mL+4elwqGqP3wVrkRKbpvacRiaGWHhsJnIy8rDGewvkJd9oJXh6AvVcDPBaPAwxb6Jx/K+b/8lY9PT89HhrRyukJ3EzUAAw9DcBjM2NsXPuIU793YZ1hLhAgns+jzlfQ0vZwsVAvQdwFh9Szc8BSABgXtjKNXlZ+TC1UB5+y8nIhUQkgY0TtzqiRxeeAYBK3kbsuwTYOFnD1EK54SyNgDvB0NHVQcOO9VUaXxr/HrkHfUN9dPJqq7E5+ULyHFCaFyC6C8Z8Hhir7WB02AeG5GSgceMPdUH29kBaGhAb+/EcPO+ZGkUq1ceClb+gx097YG2ZjcdXBBjv7ffV1mNubYbfz85BQZ4Ia0dv1cicNRpVxYR1I/D0ygvcPOjLa6yDA5seb1e/FTLIBTvnH4drA9lH6fTFU+dLYuNohfSEDM7Xs7SzwJCFAjy98gKvH4Yo7V+/dR1UrOWIuye+3v+Zlo/hoiSx9HPtSyxSHcQFEhgYK1c/yMti3Xqu4cCIoGhUqGoPW44GrTiZKVmwdeJfS6IgLiwRFaraq2zgSkJEeHE7CA3a1oGZFbffX9MQyUFZcwBZDBjr3WBMRxV5TQrjlJgIGBgA48axNzNz8w+eU3ni1r126D7wPHQNq8MSk0DiZ19tLVVdKmPgnB/x/MYrJEQkaWTOPhPdUbluRVzb9y/vsQ4OwL93GGRZ9IAe5UCcGgZ7e+XGCQDMrEyRny3kdb0fxnSFjg6Dp1dfKu3LMAwadXRB2ItIXtfQUnYoNVAMw9RhGGYHwzDXGYa5rWhfYnGaQCKSQJ9D0kNBbgEAwNiMW7FeXGgCKtVRrVo/Oy0H5jZmKo0FgOToVFSoaqfy+JL8e/Q+wl9FoZOX6kkbapO3AxDdAmM+F4xhawAoSjaYMoU1TgAgFrPJD126AJs2fb3lKuNNiC0OXdwL6DiCMsaCJIHKB5URbsM6AgBvj+dTMAyDLoPaI9D3DZJVlAnK1WeLdW0QxHmMkakRhDn8DJSppSlqN6uBl/9yu05VF2dkJmchKzWb13W0lA1cQnwnAbwAsBBsRp+ifRNIxVLoGyg3UEIeBoqIEPsugZOuX2nkpOeqZ6CiUmBfRTMGSpgrxD+z9qNui5roOaarRubkC4l8QbkbAKNegMlwAKxxmjKF9ZxOnmSfrhX7TQAb6hs58qsslxMMA7RqYwfGZj+gYw1KHwWSKt+sLwsqVLVHky4NcPPgXUXpiNp0HdweRIS7xx/wGqfYc0pMs0C+bnVU0H9VJOFUmv5hcWo2rorMlGzOxkZBky6uePs4FMK8AqV9qzaoDACIDP5m8sD+p+FioKREtI2InhCRv6KV+co0gFwuR0GeCPoGyiUHRUIxAHASQxUJxcjLyodD5c/LqJSGuECM1Nh0WDuoFuIjImQmZ8FGBbmZ0lAI6Y5dPUxloVp1IBKDspcCejXBWKwoCut5erL7EomJbDJEcjJ70/9Uunh5gwgYMABISXMEY70PREIEPt7z1dbTpk8LxL9PQqYK2XelUamWE5zrOOH1o3ecx5RMiOg9pBYcLWLg4vJBwulzRup77y4wtTTBrUP8PME6zWtCKpEhPixRaV+n6mycMTU2ndc1tJQNnzRQDMPYMAxjA+ACwzCTGIZxUrxW+Hq55/XDdxDmFqB+a+XatlIJu5mhx8GY5WbkAgDMrPl7QU+uvEBBvgit+3AXoi1OXFgipBIZ7JRojHHF7+wT2DhaaTTh4nP8Ryk8/yAgi0GW7Fds3fZhT02xoe7oCIhYvVdERn6+Rqm8ERIC7NkDpKRXwZkrfVHd6Qx27tCMgeBLNVfNewZVXZwR/SZWecdCTp78WF+wWl175Kbn4MrFgiIjdfLkp8cbGBmg5Q9N8eiiPy9VdPvKbLQhOVp5ONLCls370ob4ygef86D8ATwDMAJsSO9B4WuK18s9930eQd9AD616KzcGMh4GKicjDwBgzjGhojh3jvvByt6C8zEeJbl9+B4YhkF7j5YqjS+OSCjCk8vP0bZfC05CuuqiCNspnpRJngHK3QYxOqJ913b/qYM5eZL1oL6CY6c2BsUc8S5dgN/XDIepiRA/9fvMHbgMqeLiDIAtj9AUletWQnxYIqQSbkVmkycDmzd/SIgo2kcVpeHff9mfKVOJb9OnBTJTshHyJIzzOu0LIx0pMcpT7U2tTMAwDLLTtArn5YFP3pWIqDoR1Sj8t2SroWxihmH2MAyTzDBMULHXljAME8cwzMvC9oOmfpHSeOX7Gg071ueU7ab4kOnqKb9RKzZqTTikr5ck4N9gtOrVDLp6qt11/W8EoH6bOrCrpL4H9f5lJAryRGjRs6nac3FBEbZThHOyU64DlI3B437+Tx3Mli1AQgJQs2b5zNT7HAYGbDKHmRnw11/s7ytj6kGCJjDV05yyAx9snaxhZGKIxHDNZPIBgFNNR0glMqTFc0/9njz5Q7aebWHNYVp8OhwcuB1h0sy9EQAg6D734mMbRyswDMMpRV1XVxcmFsbIy9QW65YHuBy30b+Ul7MABBLR57Y19wHYDOBAidfXE9FazitUg9S4dNRqqtSWAgBIzm4ec/EkJGLWmHHxtoojFkmQmZINpxoVeI0rTnJ0Kpq6aaZAN62wKt9BQwkXylCE7RT7EEcPhmHoAGOcvVgPLi7AsGFsP4WnBXysCvGtIBazXl9uLtsUadT6hrUA0d2vsiaGYWBiaYL8HOWJAlxR1BcqEoz4YmjCupniAu5xWwsbcxiZGCIjiXuoVEdHBwZG+hAXiDn11zfU5+wVailbuHz8RwPYBWBIYdsJ4GcAfgzDDPvUICLyBfDVdhplUhkyk7NhW5FbnZIiu4nRUX7ukUzKVoPq6fMzUIonOK5r+u91ZUhPyICDs2YMSkYia6BsHDWTcFEaJfecFEbK1hao5vwer9/VhJ2dDmrVAubPZ41X586s5wR83cJbdSjN62N0nQF5Cog0ZyT4YGxmxCmTjStGhRmvqhooRUKSWMjNcCiwcrBARjJ3RQn2WvqcDaGevi6kYq2BKg9wMVByAPWJaAARDQDgAvaY0lZQTTR2CsMwrwpDgJo7/rUE2Wk5ICJY2ltw6q/IvuVyMJ9CQ0xHl9/jveKpz8rBktc4BZkp2ZDLibPahTIUG8GKjWFNU3LPSUFKCqudV6NqNMIjK0MoBM6fZ7P1Xr8GvLyAWl9fq5YXFhb/3StTKF4o0qiz8woPs5QpyacuI4xMDVGgSQNlwupAivJFKo03MGJTMvl4UABgbmvO+xRcfSMDfgZK+o3Flf9H4XKHrUZExQPXyQDqEFE6AL45VdsA1ATQBKxc0rpPdWQYZhzDMM8YhnmWopCo5oFCf49r5bnCLnGpE9Ep9LKI5+O9mRW7JoVqBV8U43MKswjVRbE3l8+z+JErJfeckpOB4GCgWTPWw0hKsYNzxVTk5rLGSST6YKSuXSuTJZUJDANkZ3/sNTk6AkFBbFO8B/9sK9wD0Sk7j/VzSEQSTmUUXBGL2I8/l0L40uCTOVscYY6Q9/6vTCLlfB2ZVP5VSi60/BcuBuoewzAXGYYZwTDMCLBafL4Mw5gC4OVnE1ESEcmISA42VPjJVDQi2kFEzYmoub09N4Xx4hgYGcDMypSzdpfCc1LsRX0ORWhP8QHjSvFNYVUwNDaEpZ05p2wkLlhVYD05PvF8PijCeYobtIsLW3irMEQNGtVA6xbv4eLy4TWR6MPDwrdCyWcaBwcgIID9t/h7YKwfB5HYHIwON69e0whzNXuseUEe6zkZmaqmqP+h9pCfgctMzoaVPb8ohLhAwvk6UokUevpaA1Ue4GKgJoNNeGgCoCnYpIfJRJRHRF34XIxhmOLSCx4AD50TFbBxskIqR2Og2HviotCsW/jHy9dAmZgbw8jUUC1laTtnWyRH8/coS8O60EDxEeDki+IGrRB3lcnYUJi/P2BtXxM6SMed2ylFRsrEpOyVxzWFRQk7o3jonjnzY105xXvQ54cYGJpU+nILLIEwp0BlY1IaCnkwVedU7D0ZctDKLBojkiA3M49XmJyIIBKKuRsosbToM67l68JFLJaI6BQRzSSiGYVfK72FMAxzFMBDAHUZhollGGY0gD8ZhglkGOYVgC4AZqr9G3yG2t/VQKDvm6I9o8+h2E+Sy5QbKMUHUpXN4drNauD5zVcqS87Ua1ELgffeaGSzu5prFejoMHh197Xac/HByoo1WDDoCEAHtsa78O+/wIIFH4pyvwUKiv0X6OqyxtfRERg16r997W3TUNXpAWCgWoG2uuRl5SE3M6/Ii9cECh0+VfdEM1P474Eq0strNKqqpOcHcjPzIJfJOV2HiJCfU8DrAFItZQcXsdgchmGyC1sBwzAyhmGUllkT0SAiciIifSJyJqLdRDSMiBoSUSMi6ktECZr5NUqnnUcrZKfl4JWv8huwQg6Ji1dkXqggkZeZx3tNnb3aIfpNHCI5HKJWGl0Gt0dBnggPz6tfK23tYIkG7erB7+wTtef6FAp5m5LHZHTpAqRk1AaM+wP5h5CZFo21a9mb/LeQWs4wbDq5gcGHWi1HR7awuFTJHuExABIwJp9MfC1TogoPyazawFljc8aExMGhip3KYcOUQmUHPmUOjy48g76hPq9SC0VIXKEo8Tnyc4SQSWVlljikhR9cPChzIrIobEYABoCtbyr3tOjRBPoGenh2LUBpX93CfSUZBwP1IVmBv4HqMKAVdHQY3D35kPdYAGjYoT4YhuElMfM52v3YEhGB0YgL0/yzguKYDMX+U8mkgcaNgfSC6SDoIcR/DUQigqEh8OoV602VR0NlbMwaWSJAT481UmPGsCoIAQEoVbKHSATKPwoYdACjx60uT9NEFypIVHXRoIF6G4/K9VQPWSZHp8DIxJCzcDIR4dFFfzTt5srLKKYUenr2HLQzFQoS5loDVS7gfQsgorMAvo7sNU+MTAxhammCfA5HOBsYsgaKSzGfiYUJ9A31kZHIf+/GuoIVHKraIzFCtVRjHR0dmNuYITNZM1phHQa0gq6eLo6sPK2R+YqjOCbD0BA4ceJD0sCJE+xriYnApKkV8CRoAnq5XcO86Yfwyy/s2DNn2BoohZEqL4kTQiG799SnD/DyJWuY5s37oJBQUrKHSALKnAHIk8GYjvlq6355JwhmVqZwrK7k0CWO5GTkIuJVFGryCLWVJCIoGhVrOXIq7QCAZ9deIiE8CR0GtOF5HVZ/sGJN5QXyaXHsnnVZ1gZq4Q6XEF//Yk3AMMwf+HC6brlHz0CPU9GdouhQkZn0ORiGQcWaFRDHQR25NMxtzNRKFXeoYoeUWNXO4fnvXPbwnNUH1/fdQeC9NxqZU8HmzR/EXr28WI8qOZn9WiRif7Z5M9C623hExnfF73NW4fa152jb9mNRUTOz8pE4oUiCeP+eFYK1t/+vPE9xyR4iGXsIo+gWGIvFYAz53Vg1RX6OEH6nn6CTV1uNpU/fP/0YErEUHVU8gVlcIEbQ/bdo3LkB5zGPLz2Hibkxug1pz+taAXeCUKV+JU6Zf9GFodAq9b9eMouWD3DxoPoUa98DyAHQrywXpUn0DfWLpIk+h+IcKK41QZVqOyEuVLWwmLmNGXLS1TNQyVGaMVAAMGSRADZO1vDZcFFjcwIf0q0VYS9XV7YpjI8iFZthdFC9yZ+ATkWc3D0NxoYp0NMDtm0DHjxg5YK+JsbG7Dplsg8isO/efV55m0gOyl4EFFwCYz4HjMmQL7PYUrh/+jEK8kXoPryTxua8ffQ+KtV2Qp1mqoUsXz98B3GBBE27cd9Lys8VwtzGjNP5bgqkEmmhIeQmzhwZHAMjE8MvJv+l5fNw2YPyLtbGEtEKJRp85QquGlyKrB2uhb3OdSoiPiwRBSpU0VvYmqsVonOs5oDEiGSN6YUZmRiiaTdXBN9/yynjkQ/F08xTUj4kS5Q84pvRsYCe7WZUsM+G77nBaFg/GF27AmsLVRuLP/h/qb0pReRJKATGjmWNqlgM9O37eeVtkqeDMicCwlOA6eSvGtrLzxHi2OqzqFjLES5t6mhkzuAHIQj4NxhdB7XnHJ4ryZ1jftDV00WjTi6cx+RnCzmfeK3gyeUXKMgToWlXbgbqnf97VHFx/iLq/lqUwyXE58wwzJlCZfIkhmF8GIbR3E5rGWNsbsxJINPCzhw6OkyRPp0ymrk3hkQsxbNrL3mvqVJNRyRFpRRV4vPFpW1dFOSL8O7Ze5XGl0bHAW2QmZKt0u+jKRj9etC13QN7+wL4XfDC+OEHkZZGYJgPKg12dmwShYNmtlJKpXNn1gglJgJ167KvOTl92F86d+4zxkn0CJTaFxDdB2O+EIzZtLJbqBLkcjn+HLEJcaEJmPHPOJWNSXFyMnKxcvAGOFZ3wICfe6s0R0RgFK7svoU+E9w5nTSgICMpq6i4nAsyqQy75h9GpdpOaNO3udL+iZHJCPYLQdt+LThfQ0vZwuUxYS+A8wAqAqgE4ELha98EJhbGnKSFdHV1Ye1oxVnloVHH+jC3MVMpRdu5bkXIZXIkvFdtD6tJFzZu/+K25uqcW/RsAks7c1w/oFm17dLSzD93xPfWnc1Ru9U53LzXDptWLsP5A+NRuVIcrK1Zo5SaCixd+uGEXXX4lJFLTgZ27mR/7uv7wVv63JEQRFLIczaAMkYAjCkY25NgTIdrxCioypEVp+F39inGrxmOpl3VV8AnIqwf9w/S4jPw65HpvIxL8Tm2/bwfppYmGLbEk9fYjMRMXskLl3fdQszbOIxdPZSTsPPtI/cBsMfZaykfcDFQ9kS0l4ikhW0fAP7aQ18JU0sTzvVKthVtkBLHzUDp6euhdZ9meHj+GbLT+QlXKlJzI4NVSxW3tLNAjcZV8fiSv8oFvyXRN9BHl0Ht8fDcU8SraDhLUvKI75Jp5qUZqc6dgdw8G/Qdth3TFy5Ep7ZPEHT3B8wctx5iURZcXIDFi1ljoe6vrrg2wwCmhWdPKrQAFWtTdk4REYFEfqD0n4C8rYBxfzC2p8Hocw9dlQVPr73EgSUn0G1oB3hM18yxa89vvsI9n8cYuewn1Gup/JTq0vj3mB9e3ArE8CUDYWHDPZWbiJCekAFrjgoSGUmZOLD4OBp2qM/JIyrIF+Ha3ttwbV8PTtVVPw5Hi2bhYqBSGYYZyjCMbmEbCkAzYnBfAFsna6TGpXO6kVdzrYxQ/3BOckcA0H9aL4jyRVg3ehsvQ1G9YRWYW5vi4fmnnMeUpOfobnjzKBT3fB6pPEdJ+s/oBWNzYyzotVIjJ4qWPOK7pDZdyXqh4hl+DMNg8+7hcO10GRevd8GCGdvw/nFXXDy+Fdeu5JbqfRVHn4e82507QHg4PtIEVHb8OFvb5ANK6wvK8AZkCWAs/4KO5SowOvxPWtYkRIRd8w7BqWYFzNw+XmNenP/1AOgb6OHHqT1VGh8RGIW/xmyDS9u66D2hO6+xcWGJEAnFqFKf2+7CyiEbIcwtwJRNo5X+/kSEDeO3IyE8GYMXDOC1Li1lDBF9tgGoAjbElwJWyfwsgKrKxmmyNWvWjFTFZ8NFcmMElJGcqbTvld23yI0RUGRwNPf517Pzn954ide61o/fTr1Nh1B+Tj6vcQqkEimNb/oL/eQ8TuU5SiPw3mvqafgTzey4iEQFYrXn27yZKCnpv68nJbE/K9kXIDI0ZP/V1WX/BYga1n9DZ/ZOIFlCbcoMa0LHd0yloYIzZGOdXtSnZLO3L/31km3Vqg9rcnFhX/P0LP33kUsTSJ7zN8mSWpMsoTbJUnqTPO8kyeUFar9XmuLB+afkxgjo2r5/NTrvxGazaVaXxSqP37voKLnrelJ6kvLPYkmuH7hDboyAwgOjlPYVi8Tkxghoz4IjnOZWfIYPLT/Fe11auAPgGfG893/Wg2IYRhfAAGJlieyJyIGIfiSiqDK2mxqjYk32DJ7498qPunbtUB8A8MqXez2Qx/Qf0LpPM+yccxAhT8M4j3Mb2gEF+SL4nlLNA9LV08W0LWOQGpeOfYuOqzRHabi2r4/Z+6Yg8N4brBm5We2svuJHfBentNDZ5MnsER0iEVCnDqvZpyA2sR7Gz92G1j1P4tiZXmjb4jn2b5qDxMA2+PfMYMyevAONXN5AR+fDem1sgO+///gaNWuyKhW2pYgKFC+0PXGCfY3keaCC65BnLYQ8xR2U0hGUuwnQdwVjvReM7XkwJgIwjOZEWNVBLJLg4O8n4VjdQaN7KdlpOQh7EYkmXbhlw5VGTEg8nGo6cg7TFefNw3cwMTfmVJ+UncbWJdg5K1eOeOf/HttnH0A7j5YYNN+D97q0lC2fNVBEJMM3VPNUGtUbVgEABHEoQq1UyxGV61bE6Q0XOWfYMQyD2Xsmw8bJGr/1W835hu7Sti5qNK6KrTP2IuxFBKcx/5mjTV30mfg9Tm+8hMPLfVSaozS6/NQOY/4YijvHH2DJgDWQlXY8bBlx4gSwahW7L5SW9iGxIiMDsLYG+g9sDKnxcmw/5YsBY05h5caJsDTPwfJ56/HiVj+khzRHyGNv/L2j288QAAAgAElEQVRqEypX8ENsVAxMTfIAEOrWZeuqli9nQ3h1CrOuzc0LIwmyFNhbPcEk72OQZ6+EPN0blNwKlDkFKLgM6NUAYz4XjN1V6FjvBGPY7qsmQZQkOy0H89yXIdQ/HN7LfuJ94vPn2Pcb+xCkaoabTCZD0L03qNmkGu+x2Wk5+PeYH5p2c+VUaKyQNrLlIGIb6PsGcpkcUzaN1qaWl0eUuVgAVoDV3usA4DtF4+uqqdPUCfEREU1qMZcmNp/Dqe/Tay9Zd38ZP3f/yp7b5MYIKDY0nvOYpOgUGlRlPAkqjOY1rjhSqZT+GP43uTECOrb6rEpzfApFePToH2c0Ou/nKB5mc3Fhvy/5WlDQh+8VYcDKleJoqOAcbV61mILv9SFpfB02BFfYciNcSZzQkWQpP5IsdSDJUjxIlNCL0kLdSJbUkWSJTT7qL0tsRLKUviTLWkHyggckl6sf7ixLYkLiaHjtKdTTaBDdPnpfo3O/uB1IboyAtv28T+U5Xvm+JjdGoNLaNk/bTe66nhQRxC30fn0/Gw6MfhurtO/uXw+Tu54XyeVy3uvSwg+oEOLj8oil0DL5vbhdwzeixwcAnb3aYsecg4gLS0ClWk6f7dvcvTE6erbBkZU+6Dq4PZxqcMvoca5dGEoMS1R6DQUOle3wx7VFmNlhEea5L8P6+8thx/M4BF1dXfyyZxJyM/JwdNVpeEzrqbFTUz2m/YDgByHYt+gYmnZriLrNa2pk3s9RWmIFwH6tyAhcupT9V3HAob09UCCuiEOn+uLkhb4QiYB1a3PhdycAlmYJsLNNRxXnDIwamQ5d3XSARICOOfR0DWBlZAgwBgBjAka3GqBXg206jmCYb+OJ+pXvayzx+BO6erpYe3sxXNrU1djcwlwh1o3Zhoq1HDFy2U8qz3PP5xH0DfXRqtd3vMbFhibgwrbr6Dm6G6o1qMxpTPSbWOjq6XL67Gan5sDSzrxcecJaisHXon2Npq4HlRSVTO56XjSn+1ISCUVK+6fEplJfi2E0xnUmpSdmcLpGRnImuTECOvj7Sd7re/sklPqYD+Xs5ZWG/81XZeJFZafn0KAq4+lH6xF0/8xjjc79KZQlViQlETk6ftrLcnAgqlv3Q6KEIllC0fd/Cf8bAdTbdAh5159O8e8TNTp3Vmo2TW+/gLrreNIr39cqz6P4+17ssZrXuNT4dBrdYAb1tRjG+XNIRDSt7a80ttHPnPrO/2EFjWs8i9e6tKgGVPCguIT4DAEMBvArgN8Uje+F1GnqGigioqt7b1N3HU+a/8MKTtlpL24Hsh/8etM4fzhmdlpEI+tOVSlccHLdeXJjBBTzTrVQn1wupyUD1lAPg4EU9jJCpTk+RXx4Ik1qMZfcGAFtmb6HxKKvG+5SZPuVNDhJSUR16lBRdt6nQoT/K0bq0cVn1NNoEI1t9DOvGzgX4sMTaWTdqdTTaBDdOe6n8jyRwdHkYTuShlafSCmxqZzHJUYm0/Bak6m32RB6+W8Q53HBD96SGyMgnw0XlfaVy+XkYTuS1o7awnl+LapTVgbqKoDjAOYAmKVofC+kTtOEgSIiurTjBrkxAlrYdxWnm6wibn5k5WlO8yvS1IMfvOW9tvj3iSqlqxcnMyWLvJzG0BjXmZw8RT6ICsS0ZfoecmMENLnlXF43m7LgU17WqlWfNl4KI1Uyvf1bxPfUQ+phMJAmtZhLWWnZGp9/VpfF9KP1CAq8/0blOeLDE2lgpbHk5TSG4sISeI2d3HIu9bMaTsEPQ3iNWzJgDXnYjOBUehH9NpbcGAFd3nWT1zW0qEZZGaggvpNqumnKQBERndtyldwYAf3pze0u5eU0hlaP2MSpb152PvU2HUJzui8lYR7/uhjvetNoYrPZatUfPbnynNwYAS0VrKH8XKHK83yKe6cfUR/zoTSw0lh6dMlf4/NrAj61V98aErGEDv5+ktz1vGhauwWUm5mr8Wsokgy4eCGfIupNLA2tPpE8bEZQ+KtIXmOz03Oou44nHVhygte4hxeeUXcdT9r962FO/U+sOce77lGL6pSVgdoBoCHfiTXZNGmgiIhWDF5P/ayGc+q7VLCGfnIexzlsd3H7dequ40lTWs3jXZB457gfuTECWjZwHclkMl5ji3Ny3Xly1/WksY1+5v3kyoXQF+E0usEMcmME9MfwvykrVfNP8Fr+y/uASJrYbDa5MQJaMXi9Rgu0FVzedZO663jSL10Xq+WFT2w2mwQOo+jt0zDeY89vu0ZujIDX2Es7b5K7ridNajGXstNzlPYPD4yiH4wH0bwey7QZfF8IjRooAEEAXgF4DUACIKTw+0AAr/heSJ2maQN1Yi2738PlD1mRPh76Ipzz/H5nn1Avk8E0rOZkigmJ47e2wqc6dVJ6idh0eQ/bkeRhO5KSolPUmqs0RAVi2rvoKH2vP5AEFUbT3ZMPNH4NLSxikZj2Lz5e9F77nnpYJtc5s+kyuTECmt9zORXkq66M8c7/PbkxAjqz6bJK46e0nk9jGs7kZDjkcjkdWHKiaN1cjLYwr4DGuM4kT8fRGt+70/JpNG2gMgBU/VTjeyF1mqYN1L3Tjzg/oaUnZpAbI6Cdcw/yusbrR+9I4DCKPGxH8vJi5HI5bZ62u6gWS52nu5iQOOptNoRmdlpUJqEgIqKwlxFFT/UL+6xSOclDS+kE+b2lMQ1nkhsjoFVDN1JmStZn+6sS3pTJZHTw95Pkxgjotx9XqxVilslktGroRuppNIjTA2BJFEkOJ9ed59RfUaO1auhGkoglSvtLpVJaPWITuTECenb9Je/1aVEdTRuo53wnK6umaQOVFJ1C7npetP2X/Zz6LxWsITdGQMf/5JfCHfUmltz1vGjHHH7GTSqV0qqhG8mNEdDyn/7i9MH7FDcO3iV3PS8aWn0i7w1nrkglUjqx5hz1tRhGPQwG0raf91FORtkYxP8vxIUlFN1IB1UeTw/OP1U65nPZjZ9KEBEViGlhn1W8bvKfIi87n5YMYD8rXD9bxblz4gH1Nh1CgyqPV2qIFeyYc5B6GAyk3Kw8Tutb0HsluTECOrCU3/6WFvXRtIGKBfDzpxrfC6nTNG2giNh9qL4WwzjdSEUFYlo2cB25MQLaMfsAL6/m114raHDVCbz3lORyOR1aforcGAGd23KV19iSBD94S0OrTyR3PS86tPwUSaVSteb7FGkJ6bR29FbqruNJA+y96fy2aySVlM21/heRy+XkfyOAFvZdRd11PKmHwUDaNf8w570mLiocxQ2XTCaj5T/9xYbj/r6slrceGxpPY1xnkruuJ5366wKvuWQyGe1deJTcGAFNa7eA0hLSOY/1rj+d5rj/zqnv6pGbyF3Pi85vu8Z5fi2aQ9MGKqGw5mlxaY3vhdRpZWGgQp+HkxsjoMMrfDj1l0ql9PfknUUZgFyfNG8e8iU3RqBSoaNcLqeZHReRV8Wxamfk5Wbm0vJB68mNEdCsLot53QT4Evo8nGZ2WkRujICG15pMh1f4cH4i/v+IqEBMF7dfL0o8ETiMor2LjlJKXBrvuYobpM8VKctksqK/5xNrzqm1/idXX9CP1iPIw3Yk+d8I4DVWKpHSYo/V5MYIaO3orbzCizEhcUXGlQsj6kylJQPW8FqfFs1RrkJ8APaAPZ4jqNhrNgBuAAgt/Neay1xlYaCIWO/me/2BnJ8e5XI5HVh6gleaen5OPv1oPYK8Ko5VyUgF3n9D3XXYjLzI1zG8xxdHLpfT1b23qZfJYPJyGkMvbgeqNZ+ya907/YhmdVlMboyAepsNoV3zDmkNVTGy03Po6KrT5FVxLLkxAprYbDZd339H7Rq2pKSPjxqxt//YOMW/T6SfO/+mciiuOO/839P3+gNpXONZFB/OX8lCcYzGkZWneXldUW9iybv+dOphMJCSopKV9o95F0/ddTw5P5Bq0TyaNlAv+E5WYnxHsMKyxQ3UnwDmFX49D8BqLnOVlYHKzcylRf3+IDdGQKtHbuJ8Y/jTezP1Nh3Cuf/7gEgaUWcquet50Yk153iHUp5ceU4Ch1HU23QIXdl9S+202PcBkeRdbxq567K1JmUV8lMQGRxNKwavp+46ntTbbAj9M2s/BdwN/uqKFF+L+PBE2jxtN/U2G0JujIDmfr+M/G8EaCzd+VMGSi6X04V/rlNvsyHU13IYXdlzW61rioQiGt1gBg2sNFalYmGpVEoj606lcY1n8QqB+/o8or4Ww0jgMIqzysTaUVvoB+NB2qy9r4imDZQN38lKmaNaCQMVAsCp8GsnACFc5ikrA0XEhjoUaaqTW87lZHSeXH1BboyAV6FqblYeLfVcS26MgBZ7rOadRJASl0a/dFtSVAOTl61eDUx+Tn6RCvovXRerFE7iS+TrGFoxeD2563qyXpXpEJrXYxkdW32WQp6F/c/uVwnzCijgbjAdW32WFvReSe667P7S6hGb6H1ApEav9akQX4O6uTS/N5vAMKf7Uk5ehzK2/7Kf3BgBPbnyXKXxivA317R5qURKO+ceJDdGQFNazaPkGG5qJomRyfS9/kDaPHW3SuvUohnKpFBXnVaKgcos8fMMLvOUpYFScH4rqzDhd+6J0r6iAjH1MR9Kk1vO5fwhIWKfYH3WXyR3PS9a0Hsl76dXqVRKh5afInddT5rRYaFGMuWu7r1NvU2HUH87b7qy+5ZaBcJcycnIJb+zT2jz1N1F+y6KvZdtM/dyVh4oz4oRcrmc3j4JpbWjt1Jv0yFFv+PwWpNpx5yDZSIV9akkiaaVn1E7TKBujBftWXJebU9NKpHSgSUnqLuOJ60fv12lOV75vmZluRrO5Pw3t/vXw+TGCGj9+O2c96rSEzNoZqdFbCiwDOoBtXDnf8pAARgH4BmAZ1WqVCmL9+sjxCIxeTmNofk/rODU3/fUQ+pjPpT623nT48v8niBP/XWB3BgB3Trsq8pS6c5xP+phwMb9U+PVT3aIfB1D09otKNoHUUe5WhVS49Pp1mFfWipgxW7dGAFNbD6Hzm6+QklRyaXeUFVJqS5rMlOy6PbR+/Sn92YaWGlskZe4dvRWenTxWZnvv5V8T1Li0oq89k6GM8gSb9V+T2LexdOUVvOK0tL5SnpJpaxxc9f1pOG1p3D2IEUFYupv502//chdET3gbjB5VRxLPxgPohsH7/JapxbN8y0YqHIX4iuOIgGCq/pDTEgcjWs8i9wYAe2ad4hziEoqldKU1vOpv503ZSTzk0NS8PTaS+ptNoSG1pik8mGHxZHL5XTryD0aVGU8uTEC+t1rnUqb3uqSmZJFpzdeovFNfynyOvpZDacZHRbSxok76Py2a/TidiD5+0aTa51MAqRfVLVcKpVSSmwqBd5/QzcP+dKh5ado3ZhtNKnFXOquw4YuPWxG0LKB6+jK7ltfvB5s82aimMgCOv7nWeprMYx+MB5Eh1f4UFyMWG3j9Pjyc+ptOoQ8bEaopHCenpRZlN25athGXmHq20fvkxsjoKfXuBXX+mxgIxUj6kzVeBhVi2qoYqAYdlzZwDBMNQAXici18Ps1ANKI6A+GYeaB3eeao2ye5s2b07Nnz8psnQoykjIxpOpEtO7bHPMPTYO+gb7SMSKhCNtm7MOlnTfRuHMDrL6+CLp6yo+ljgyOwcTvZqOpWyMsODIdppamvNf79kkoFvRaBR1dHcw/NA3fuTXiPUdJCvJFOLXuAo6vPguZTI4BM3rhp3k/qrQ+dQl/FYVgv7eICIxGeGAUIgKjkZ8t/KgPgYGEzCHXM4eMMUa+xApGdpXwy2/OcGlREfbOtjCzMoGRqdFnD6UjImSlZiM5OhUpMWlIjk5FYkQyIoKikZWSjdzMPORm5v3n+gBgXcESznUr4rtujdDMvTHqNK/B6WhyTSOXy3HjwF3sXXgUafEZaNGzKSZv9OZ8gOanICLcPnIf68ZsQ7UGzvj93FzYVbLlNYcwV4gl/dcg6P5bzPhnPLoP78R5bE5GLuZ9vxzZqdnYH7ZZ6dHsqXFpGFxlIpq5N8LC4z/D1MKE11q1lA0Mw/gTUXNeY8rKQDEMcxRAZwB2AJLA1k+dBXACQBUA0QA8iShd2VxfykABwMHfT+LAkhOo07wmfj0ynfOH+9yWq9g8dTdm7Z6EHt5dOI05v/UatkzbDfvKdph7YCoadqjPe73Rb+OwxONPxITEo8/E7zHhrxEwMFRuWJWRGpeG3b8ewc2DvrCwNceQBQPQe6K7RuZWFSJCSkwqYkMTkZWSjayUbMRHZmHntmzIhNnQQwFM9dJgqpMAmUT20VgdXR2YWprAzMoU+oZ6kIqlkEpkkIqlkIilKMgTQSKSfDTG0NgA1Vwrw7aiDUytTGBmaQozK1NYV7CEY3UHVKjmAIcqdjAyMfySb0OpBD8IwdYZe/Hu2XvUb10bY/4YikYdXdSeNzUuDRsn7cSjC/5waVMHy87Pg4WtOa85YkLisHTAWsS8jcOM7ePRc3Q3zmMD773BqqEbkZ6QiTn7JqPr4A5Kx6wcsgH3fR5jZ9BfahtnLZqjXBkoTfIlDRQA3D/zGH+N2QaZVI7p28Zy+lAQESa3nIectBzsDfkbevp6nK71+tE7rB72NxLCkzHsN08MW+zJe70ioQh7Fx6Dz/qLqNeqNn47OQv2zvyecD9F2IsI7Jp/GP7XA+BYzR4jlw1Cl0HtlD7FfimSkwFXVyAlhf3e3h54+UIKWW4S4sMSkRafUeT95GXlIy8rH2KRBAaG+tDT14Oevi70DPRgaGwAO2dbOFSxK2oWtuX7KHCxSIInl5/j+v47eHj+GWwrWmPs6mHoOri92usmIlzbdwf//LwPEpEE3ssHwWP6D7w9w3s+j7B21FYYGOlj/pEZ+K5bQ07jZFIZDv5+EkdXnoZjjQr49fB01G1RS+m4p9de4teeKzDsN08MX+LFa61ayhZVDFSZ7kFpqn2pPajiJEUl04wOC8mNEdDVvbc5jXl0yV8lFef8nHxaNYzV3ju7+YoqyyUitj6kj/lQElQYzbuiXxn+NwJownesKOy4xrPo7OYraileawKuqgn/a0S+jqGNE3eQh80IcmME5Ok4mvYuOqqx4zfSEtKL9PlmdlqkkgCwWCQuSkOf0no+r2xXmUxG839YUVQQz3WvKjczl4bWmETe9aapJXirpWxAeUuS0FT7GgaKiE2nHd/0Fxpg702JkcrrRuRyOc3stIi663jStp/38VIEkEqlNL/n8qI6J1XPWIp8HUPe9acXfbg1eVaTTCajW0fuFSWGeFUcS2c3X/kqBbd8def+Fwh5FkZ/em8md11P6mUymFYMXk9PrjzXWP2YTCajC/9cp35Ww6mn4U/ks+GiSmUHuZm5RVmhGyft5GUspFIp/em9mZVgWstN0ZyIVVxR6E2+vMP9iHgtXw6tgSoDYkLiqJ/VcJrw3WxOKbX5uULaOHEHuTECGuM6k9c5UhKxhA4sPUHf6w8kT8fRdP/MY5XWLMwroF3zDtH3+gOpv503nd18RS2V6tIIuBtMMzuyGVlDqk2kK3tua/yY+c9RHtPMy4LcrDw6v+1a0ZEmvUwG09YZe1XO/vwU4a8iaVrbX4sKt6Pfxqo0T05GLk1pNY++1x9I/x67z2usVCKllUM2FKmNc6nXkslktHfRUXLX9aShNSZR8IO3Kq1bS9mjNVBlxKOL7FHSq4Zu5Fzk+Pjyc/JyGkM9DAbyPncm7GVEUZr1qqEbVQ7dhL+KpF+6slp43vWn04PzTzV6eqhcLqen117SpBZzyY0RUA+DgTSl9XzaOmMv3TnuV6aCtETlu1BXHeLfJ9KtI/dojfeWoiLfcY1n0bktVzWetp6Vmk3/zNpP3+sPpAH23nT9wB2V/0ay0rJpYvM51MNgIKeC9+JIxBL63Ys9MeDoqtOcx13aeZOVKhuxidORG1q+HloDVYYcWsYefbHUcy3nsFlWajaNcZ1JfS2G0eVdN3l98CViSVFB44g6U1UOW8jlcvI794RG1p1KboyA5vVYxvuUXy7XeHrtJe2Yc5BmdlxEPxgPIjdGQO56XrR80Hp6cTtQe6y2EuRyOT27/pLmuP9eVP/V22wIrRuzjd48fqfx908qkdKZTZfpR+sR1F3Hk9aO3qpWOPjZ9Zc0tPpE6mn4Ez26+IzX2Oi3sTS1zXxyYwR06q8LnMfdPnqffrQeQZNbztX+fX0DaA1UGSKTyejoqtPUw2AgeTmNoee3XnEalxiZXKToPb/ncl6bxUREz2+9oqE1JrESL+P+UfkJWiKWkM/6i9TXkj1UcNWwjfTK93WZfLAlYgm9fRJK22bupR+t2Y384bWn0NFVp8vcq/qWkEqlFPoinHw2XCzymL2cxtCRlacp7GWExsOyCgLuBhftI852W0rhgVEqz5WblUdrvLeQGyOgkXWnUpAfvxDbK9/X1MtkMHnYjuQcEsxKzS46n21K6/kU//7LF5Rr4Y8qBkqbZs6TsJcRWDl4IzKTMrH7zUZYO1gqHSOXy3F+6zXsnncYuvq6mPDXSHw/sjPnVGBhXgEOLjkBn/UXYVXBClM3j0Z7j1YqrT89MQOHl/vg5iFf5GcLUbleJfQa64buwzvxrm/hgkgowj2fx7i86yYCfd9AR1cHzdwbo7prFVSq5YiKtRxRqbYTbCtal5vU9bJALJIgLT4dKTFpCHkShle+rxF0/y1yM/MAANVcK2PAjN7oOqRDmdSaERHePHqHM5uu4M4xPzhUscOEdSPQvn8rlVPSgx+E4I9hfyM5KgVes/th2GJPGBgZcB4fGRyDmR0WwbqCJdbcXgJbJ2ulYx5ffo6/xmxDdloOhi32wsA5/TgVxmv5+mjroL4QUa9jMKHpbDTq3ADzD02Dlb1yIwUA8e8TsXbUVgTee4P2/Vth5vbxvIzCO//3WDdmG8IDotDOoyUmbfCGQ2U7lX4HYV4B7p54iMs7b+DNo1DoG+rDfURnDFvsyelGoQqx7+JxZfdtPLzwDInhSZCIpUU/0zfUh21FazTq5ILOXm3RtFtDzrVk5ZHkmFQ8vvQcd477ISo4BlmpOR/93LmOExp1dEHDji5o1MlF5f9HZRAR7p54gP2LjyP2XQKMTAwhmNUHA+f+qHKBcUG+CIeXncKJNefgUNUe8w5OQ4O2dXnNEXA3GH8M/RtyOeHvBytQoaq90jGHl/tg32/HUM21MuYemIpaTaqrtH4tXwetgfqCXNpxA1um7YGppQmmbhmDjoI2nMbJ5XKcXHsBexcehaW9BWbtmoiWPZtyvq5UIsWpdRdwaNkpMDoMhi8ZCI9pPdW6mYe/isL5rddwdc9t6BvoYcDM3vCc3bdMJWJkMhlSY9MRF5qAuLBEJLxPRGJUCvyvByA/WwhzGzO069cCjTo1QJ0WNeFc26lcPykL8wrw6u5r+F8PgP+NAES/iQMAVHVxhmv7+rB3toVtJRvYVbJB9YZVyuwhoDjBD0Kw/Zf9ePMoFNUbVkH/Gb3RUdAaJubGKs/55MoLbJqyC4kRyejh3QUT1o/k9XeSl52PXXMP4eL2G6hYswIW+8xGjUZVlY67vOsW1o/7B92GdMDPuyZ+VUUTLaqhNVBfmIigaKzx3oJQ/3B08mqDKZtGc/amwl5EYPWITYgMikGvsW4Yv244jM243zgSIpKwZdoePL70HDUaVcX0bWPh0obfU2xJ4sISsHfhUdw98RBW9hYYslCAXuPdOGkSagqxSAL/6wG4e+IBnl17WeR56Bvqo6qLM6o3rALnOhVh5WAJK3sLWCqanTmMzYw07nXJ5XIIcwuQV0yJIi0hE0mRyUiMTEFSVDKSo1IRF5oAiVgKAyN9NOrkgmbdG6OZe2NUa1D5i6lRiAvECPILgf/1ADy/+QphLyJg42QN72U/ofuITmrpA755HIp9vx3D8xuvULleJUzfNhaNOzXgNUfA3WCsHr4JaXHp8JjeCyOX/cTJi3t8+Tl+67cazbo3wu/n5n7TnvX/Z7QG6isglUhx/M9zOPT7SVjYWeCPawtR3bUKp7HiAjH2/3YcJ9ddgGN1B8zaPZHXh56I4Hf2CbZO34uU2DR0H94JI38fCIcqysMlnyPkaRh2zj2EgDvBsK5giUadXNBhQBt0GNDqi+4TSSVSRAbFICIwGhGBUYgIikZEYDTS4jM+OUZXTxeGJgYwNDaAoYkh9A30oKOrA109Xejq6UBHVweMjg5ILkdRkpCcIJfLWV0+kRQSkQRSsRRikQTCnAJ86jNibm2KCtUcUKGaPZxrO6Fpt4Zo2KE+r30YdREXiHFt3x34nX2CQN/XEBdIoKevC5e2ddG6VzP0ntCd14NPSaJex2DXvMN4dNEflnbmGDjXA/2m9ODlwcjlcpzddAU7Zh+EUw0HzNk/FfVb1eY0NuBuMBb2WoXK9Spi3Z2lav0uWr4uWgP1FQl7GYH53y9HXlY+Bi8YgJ/m/cj5SS/w3hus8d6ChPAk9BzdDWP/HApzazPO1xbmCnHo91M4u/kKGIbBoPn94flLH7VulESEp1df4uahuwj0fYPUuHRUb1gFI5YORNt+Lb6qRp1IKEJWSjYykrOLRGOzUrMhyhejIF8EsVAMUb4IBUIRZBIZZFIZ5DI5ZFI5+7WcoKPDAAwDHR0GDMOA0WGgb6gPfQM96BvoQc9AD/qG+jAxN4aplSlMLU2KmnUFSzhWs/8qCu8KxAViXN51C8f+OIO0+AxUrlcJzd1Zr61Rx/pq38hzM/NweLkPzvx9GcZmRvD8pS88pvXkPW9kcAzWj9+O1w9C0Lp3M8w7OJXT+ybMFWLPgqM4t/kqnGpWwHrf32HjWPZhUS1lh9ZAfWUykrOwdcZe3DnmhxqNqmLW7omo06wmp7EF+SIcWHwcPusvwtLeApP/Ho2Ogta8DEFSVAq2/7If93wew6lGBUz4awTa9GmutjGRyWS4e+IhDi49gdh3CajZpBra9WuJRp1cUL917S/qMfx/p6RhatihPoYv8ULjzqa5tZ8AACAASURBVA008v/8/GYgbhy4A78zTyARSdFjVFeMXjUYlnYWvNd5eLkPTqw5BxMLE0xYNwJuwzpyWmNydArmfb8cMSHx6De5B0atHKzWvpmW8oHWQJUTHpx/io0TdyIzKROCWX0xYqkX55t46PNwrB/3D0KfR6B172aYumUM7wyv57cCsWXabkS/iUPTbg3RY1RXtPdoqbYhkUlluHX4Hs5uuoywF5EgIugb6qNeq1po1NEFNRpVRe3vasCpRgW1rqOFJTstB0F+bxEbEo+YkHjEhSYgMigaORl5GjVMsaEJuLbnNm4e8kVqXDrMrU3RZVB7/DDWDTUbV+M93+NL/tg6Yy/i3yeh+/BOGL92OGcDF/02DvPclyE/R4glp2ejSRdX3tfXUj7RGqhyRG5mHnbMPogru2+hcr1KmLl9POfznmRSGU5vvIwDi48DDPDTPA8Ifu4NQ2PuacFSiRTnNl/FyXXnkRafAcdq9hjzx1B09GyjkfBcTkYugu6/xau7r/HK9zXCnodDLmf/llr3boYBM3tr5Ob5/w1FvdLlnbdw57gfREIxAMDKwRLOdZzgXKciugxqj6ZdXdV+bzOSMnFgyQlc3nULANCiRxO4j+iM1n2aq5QllxSVgq0z9uLBuaeoXK8Spmwazf14DZkM5zZfxd6FR2FkaoQ/ri1UyThqKb9oDVQ55Om1l/h74g4kRqag11g3jFk9FGZW3PYuEiKSsH3WfvidfQr7yrYYvXII77OY5HI5/K8HYNe8wwh/FYUG7epiwroRqNeS2yY1V4S5QsSFJuLh+Wc4v/UqMlOyUatpdfQY1RUubeqgesMq2uyrz5CdnoObB31xZdctRAbHwMjUEF0HtUf3EZ1R1cWZ156kMkRCEXzWX8Lx1WchEorRZ4I7fprvoXLqu0Qsgc/6Szi87BQAYMgiAQbM7MU5+/N9QCTWj/sHIU/fo0XPppixbazaiT5ayh9aA1VO+UgJwsESkzaO4rW/FHA3GNtn7Ufo8wjUbVETE9aNgGt7fqfvymQyXNt7B/sWHUVGUhYq16uERh3qo1EntlhUUwccAuwN8Nbh+/BZf6GoHsjASB+1vquB+i1rodZ3NWBdwRKWdhawsDOHpZ05L+/wW4SIIBKKkZuRi+SYNCSGJyH+fRISIpKQEJ6Et4/DIBFJUK9lLfQc44bOA9tqfN8lOy0HDy88w/7Fx5ESk4a2/Vpg7OqhcK5TUaX5CvJFuHnQFz7rLyD2XQLa/dgCE9d7cyq6BVgv/+iqMzi83Afm1qaYuMEbXX5qp/W6/0fRGqhyTujzcKwfvx2h/uFo1es7TP57FJyqc9uvkcvluHX4Hvb8egSpcelo07c5xq8dzvtI6/wcIS7tuImX/wYi6P5b5GcLAQDVG1bBkIUCtO/fUq16meIQEZKiUvD2cSjePg7FmydhCHseDnGB5D99DY0NUMXFGe09WqF9/1aoUq+SRtbwtSAihL+Kwp3jD3DP5xGSo1I+Us5QYFfJBk41KhR5m1yKVvkScCcYexcdRbBfCACgdrMaGL92OO86JgUyqQwXt9/A/sXHkZOei1pNq2PE0oFo3bsZ5zlCnr3HhvHbEfYiAt2GdMCkDd5lIrWlpfygNVDfADKpDGc3XcG+346B5IShiwQY8HNvzuGQgnwRTm+4hGN/nIFULIVgVh8Mmu+hUlqxTCZDxKtovLr7Ghe3X0dMSDwq1XaC56w+6D68U5lk50klUsSFJSI7NQfZaTnISs1Bdmo2MlOy8fphCN48CgUAVKlfCe09WsGlTR3UaFyt3Gv1ScQShD6PQPD9twjye4tgv7fISs2Bjq4OmnZriFpNqsHM2gxmVqawd7aBY40KcKxmX6aeY+jzcOxZcATPrgXA3tkWvcZ3R8MO9eHavp7K72XQ/TfYNHU3wgOi0KSrK4Yv9oJr+3qcvZ687HzsW3gM57dehZWDJaZsGo0OA1qrtBYt3xZaA/UNkRyTim0z9+H+6ceo6uKMaVvHolFHF87j0xIysGveIdw86Au7SjYY++cwtcIjMpkMfmee4Pif5/Du2XtYV7CEx7Re6DXeDRY2X+7JNjUuDX5nn+L+6UcIfvAOEhHrbRmZGKJibUdUrlsRjtUcYGFrDnMbM5jbmMHC1hxmVqZFBboGRgbQN9KHgZE+b29QLpdDKpFBKpZCKpZCmFuA/BwhhDlC5OcUQJgjRGZKNtLi0pESl4bUuHSkxaUjITypyDOsWMsRru3rwbVdPbTu05yToLAmSI5OQZBfCIL93iL4QQjev4yEuY0ZBs3vj76T3FUyhgpP0O/ME/idfYLwV1Gwr2yLCetGoMMA7mFqqUSKm4fuYd+io0hPyESfie4YtWLQV60l0/Jl0Rqob5BHF/2xeepuJEWlwG1YR4z5YyivzergByHYMm03Qp9HoFqDyug6uAM8pv+gshAoEeHlv0E4seYcnl0LAADYOFmjUm1H1GhYFX0n9/hi4be8rDyEPo9gU6zfxSPmXTxi3yUgKTIFMqmM0xwMw0BHl1WQ0NVVKEkwIHnxM2c+GCa5TM5pXh0dBtaOVkUae47VHNCgbV00aFf3ixWUFuSLcHXPbby4FYjQ5+FIiUkDABibGaF+69po2rUh+kx0V8kI5Gbm4cSac/j3mB8SI5LBMAxc29dDe49W+GGcG+e/LyLCneMPsHfhUSSEJ6FO85qYunm0xpN0tJR/tAbqG0WhDu2z/iL0DfUxfIkX+k3pwTnrTSaT4cb+u7h+4A4Cfd/A3tkWo1YORtfB7dUKi4W9jMCTyy8QF5aAuNAEhD2PgLhAgk5ebeA+ovNXUxwnIhTkFSAnPRfZ6bnISc9FbkYeCvJFkBRIIC6QQCQUQywUQyaVQSaTQ168yeXQ0dEBwwBgWCUJHR0GegZ60NNnVSTYr3VhZGoIE3NjGJsbw8TcCMbmxrC0M4d1BauvJl6bl52PC1uvwWf9RWSmZMO5jhNqNqkG13b10aBdXdRoVFXlteVm5uHMxsvw2XAR+dlCNO/RBO09WqFNX/6eYNSbWGyeuhsvbwehZpNqRftU2iSI/59oDdQ3TlxYArZM34unV16gmmtlTN08hlfYDwBe+b7GP7P2I9Q/HPVa1sKolYPh2r6eRgRfM1Oy4PPXRZzfdo1VHLc2RZt+LdBxQGs0dWukVZguI4gIiZHJCA+IwusHIbi86xZyM/PQokcTDJrfn3N93efIzczD6Q2XcHrjJeRl5aOdR0sM+82Tdy0SEeGdfziu7f0XV3bdhJGpEUatGIQfxrlpLPlGy7eJ1kD9D0BEeHDuKbbN3IekqBR0GdQOgp/7cJZMAthw1c2Dvtiz4AjS4jOgb6iPWk2roW7zWqjbshba/dhCLa02sUiC5zdewffUQzw49xR5WfkwsTBGtQb/1959R0d13Qkc//4kjXpHqEsIBMjIdFOMMQYDLuASY8A2G6du4s0ee53YOZtNNtms00529yTrPRv7OOs4m7jGXuMSiI0xJsZgOqZYCCGaekG9lxmN7v7xngYZSxRJSDPi9zlnzoxGb97ce640v3n33ff7pRGTGE1sQrR1nxhNXEosM5dOHfXLyIdCa1Mbh7bm0FDVRFNtM7XldRTkFHPm0yJaG9sAa2rxhnvmse4Hqy7rb6Ivne2d7Nn4Cbm78nn/+W20NrZx473zefBf1lx2YGqsaWLTc1vZ8uJHFOeV4QhysOxvbuTrv/zisJ2DU95NA9Qo0tHWyau/fIvXf70BZ4eLZQ8u4hv/9iBxybGXvI/21g72vXOQ4/tOkX/gFCcPnKGjrZOYhChWP3YXdzy0/JIvGu6Py+ni0Naj7Hp7H+VnzlJf2UBdZQNNtecK9EXEhLH8S4tZ+c3lZFybNqj3G23cXW7y959iywsf8cFL2+lo7fT8LjQyhIyp6WTOyCBzxjgmzMggY2oaIWHBg3tPt5stL2znhX99jerSWhyBAcy/87oBBab21g42PbeVF3/yOi0NrUy98Rpu+dJiblq7YNB/W2p08ZkAJSKFQDPgBrou1uirMUD1aG1q47V/f5v1v96Iv8OfL/5oDfd+544BTae53W5yd+bz0s/Wc2hrDiHhwaz422Ws+vZKEjPih7TdLqeL+rONFOeVsfmPH/LxG3vocrnJviGLW7+8mEnXTSDtmpRBf9j6ourSWg5sPsz+zYc59EEOLQ2tOIIc3LxuIbd/bSlJE6xVikO9zL+9tYNP3j/C8z9+jcLcErLmZvK1n69j+uLsy54Criqu5s9Pb2bTcx/QXN/KrGXT+Psnv3rJpWbU1cfXAtQcY0zNpWx/NQeoHuWnK/ntd59n94YDJE9MZOU3ljNjSTaTZk8Y0AnxU4cKWP+fG9n22i6MMdy05noW3jOPxPHxJI6PJyouckhPZjdUN7Llhe28+7stlJ6o8Dwfnx5H+pQU0rJSiEmIJjwmjPDoMMJjwoiICSM4LBhHkFX6IjDY4SmJ4e/wH7FzGsYYulxd55aju9y4Ol10tHbS3tJBR2sHHS0dtDV3UFdRT01ZHTXl1nL06pIaKgurARiTHMPc22Yy57aZzL5l+pCnMyo/VUne3lPk7zvJ8f2nKDxaQre7m9TJSXzt5+sua5k4WFPHx3bl89ZvNvHxm3vBGBbeO597H13JtQsv/VoodXXSAHUV2P/eIX7/z69w+nAhADEJUXz1pw9w29dvHtAHdnVpLW//97v85dktnqwSAKmTk/jij9Zw87qFQxoIjDEUHy+j+FgpxXllFB+37kvzy+lo67z4DnpJy0pm8pxMJl+XyYQZ40iemMiYpJghXV3X2tRGcV4ZRcdKKT5WQlFeKfn7Tnkq/V6KwGAHcSmxnpLvk2ZnMue2K1NttzC3hJd/vp7tr+/2JO+NiAkja95EsuZOZMr8SVx364zLWn1pjGHHG3t47vsvU3HmLOHRYaz8xjLufvj2S05rpJQvBagCoB4wwP8YY57tY5uHgIcA0tPTrysqKhreRnq5usp6crbn8fZTmzj68XEmTB/Hgz9ey5zbZgxo2qznG3dlYTUVp8+y+Y8fcubTIhLHx7Pkvhu4ae0CJs4af0W/JXe2d9LS0EZLfYvnvqPNibPD6al06+xwWfftTgqOFpO//9RnKuyKCDEJUZ5gEB4TRlCwVV03ODSIoNAg/AP8cHd120UMrYKGrk4XzfWtNNe30FTbbC1hr2mmrrLBs29HkIO0rGQyZ2WQkpmEI+jcsnRHUADBYcEEhwUREn7uPiYxmoiY8Ct+dFGQU8SLP1vPjvV7PFO3WXMzmTx3IikTEwf8/sf3neS3332e3J35TJg+jtWP3cmiNddflVOzanB8KUAlG2PKRSQe2AL8gzFme3/b6xFU/4wxbF+/h99970XOFlUTGOxg1rJpLLhrDvPvvO6yFlX01t3dzc639vHO7z7g0NYcut3dJGcmcNOaBSxcZU0FRsSGe8XS4ZryOopySzhbWE1NWR3VpbXUltdRU1ZHW1O7VV23rZPONmef5dt7roEKjwkncsy57BQRMeGkTEwkPTuVcdmpJI6P94r+tja1UXi0hIKcYgpyijh9pJDcnfmERoRwzz+sYPVjdw4qr11zfQtFuSX85X+2sPXlHdZR+s/WcaZ9Cffd70/8eacrq6rg9dfh4YcH2TE1qvlMgPpMA0SeAFqMMb/qbxsNUBfX5eri0+157Nl4gN0bD1BZUAXAhOnjmLVsGvf/0z0DXu7bWNPEzrf3s339bk+wAuuDPXJMBFFjI4kaG8n4qenc9fe3Mi7bO1fqGWNwObtwu7rwD/DHP8DfyizhxedOivJK2fD0exQdK6W5roXGmqbPHDGGRoSQMTWN2cuns+rbKweUlsoYY5VJeWYzBTnF1FVY+3cEOVjz+J088P1V/OGFEB55BLKz4cMP8QSpqiq4+WY4dgyeekqDlOqfTwQoEQkD/IwxzfbjLcBPjTHv9fcaDVCXxxhD0bFS9mw8wKEPj3L4r0cJCglk7XfvZvXjdw6qjENTbTOH/nqU+soGGqobaahqorGmifqzDZw4cAZXp4uZS6dyzyMruP6u67ziiMPX1JTXcWDzEba/vov97x3GEeQga26mJ/dgysQkxk9LZ/y0dBLGjR1wgO1s72T763vY8Mxmju89SdKEBKYuuoaM7DTGXZvG5DmZni81vQNRT5CCzz93/tGVUj18JUBNAN6yfwwAXjHG/OJCr9EANTgl+WX84Ud/Yscbe4mOj+KLP1zNvJWzSMgYO6QBpOdizQ3PbKa6pJaEcWNZvHYBaVNSSctKJi0rWUsqnMcYQ0tDK6cOFXDgvcMceP8IZz61zrfGpcRyx0O3cOe3biF67NBd7FqYW8I7z27hgxe309LQSurkJFY/dhcr/nbpBReY9A5SY+21EdXVGpzUpfGJADUQGqCGRt7ek/z+By9zZFsuAI7AAFImJZGalUzq5GRSJiWxaPV8wiJDB/U+7i43uzYcYMPT1gKOLte5xK6RYyJIzkwgPCaMkIgQwiJCCI0MJTQyhMDgQM+Cg7CoUGYtmzbgc2gjpcvVRe7OfIqPl9Hl7PLkBOxs66Sz3Ulnu5OmWmvxRV1FPfWVDZ46UQEOf6YumsKcW2cy9/aZjJ+WPujpx6rianZv/ISa0lpqK+opzislf/9pHIEB3Lh6Pnd88xamL86+5PepqoKpU63ABFagOnpUg5O6OA1Q6qJ6cqUVfFpESX45JfnWEu/y02dxd7mJiAlj9WN3cc+jKwYdqMAKVhUFVZTml1OSX05pfhmVRdW0NbXT1tRm37fT1tze5+vTp6QwbVE22Qsmk71gMimTkrzqnJGzw0nZyQqO7zvFvk2HOPjBp59Zrt/DEeSwSoGEBBI5JpzYpBhi7bRQVrb4JGYsyR5UCqreSvLLeOu/N7HpuQ/ocrkJcPgTmxRDXOoYblw1n1u/spiouMjL3q8GKDVQGqDUgHW5ujjxyRn+9Ms32bPxEyJiwrj3O3ey6tEVw1Kzp7u7my5nFy6ntZy8rqKBA5sPc+ivOeTtOenJRRcRG86k2eOJSx1DXHKs5/qiMUkxhEWFEhIR4lnmPZhM7u4uN53tTmu5eW2zfbMeny2sovh4GSXHy6gsqPJcbzQ2dQxzb5/JvJWzyZqbSWCwFZACgx3DUmyxsrCKba/tYttrOzl9uBD/AH9u//pS7vvHu0kcHz/oNugUnxoMDVBqSJz45DQv/Ww9uzccQERIyBhL6uQkUicnk5aVQsqkRCJiwwmNDCUqLmJIMyD0pbu7m+K8Mo7tPkHe7nwKjhZTW15PXUW9Jzj0JTgsCEeQgwCHv2fVnr/DHz8/sV5njOfe7e7G2e70lOq4UF0oR5CD1MlJpE9JIf2aVNKuSWHC9HTSp6Re0aM7Z4fTk+ewsdqqQtxU00xDVSNHPsr1VCOecv0klty/kJvWLhiyKVJdJKEGSwOUGlInD55h94YDVqHA/HJKT5R/JpkpWBfGLlw1jzWP38W1N2QNa/vcbjf1ZxupLaujrrLBM1XY0asKrsvZhbvr3AW57i6rKKH4iXVEIVi1ofyEoGDraCfQrsobFBJIWHQYkWOs66Ki4iKIHBNBZFzEsK5OPFtUzZ+f2sS7z231HEn25ufvx/hp6Sy5fyGL71tA0viEIW/D00+jy8zVoGiAUleUMYaasjrKT1fS2midPyrIKfYkDE2emMj8lbOZt3I202+aMuTJTq8mbrebY7tO8NZv3mXnm3tBhEWr5zPn1plExkUQFWddexYVZ5W7H47zck8/DWvXfv4oSS/UVZdCA5QaEe2tHWx9aQe7NuznyIdHcXa4CA4NYtbyaWQvyGJMUgzRCVHWooDE6GE/AvFGbreb9uYOWhvbaG1so7q0lsKjJRTmFlN4tITivFKcHS4iYsJY+c3l3P3w7cSnxY10s5UaMA1QasR1tHVyZFsue985yL53D3K2qLrP7Tyr2uwptaCQQPwd/jgCA8ickcGCu+cya5nvFTp0OV3k7sxn/3uHyd11nI7WTs/iD7fLjcvZ5ZmC7MvY1DFkTE0j49o0MmeO54Z75mreOzUqaIBSXqe9pZ26ygZPIcO6ygaaaprPXR/U7sTZaT3uclkr547vOUlbczuBwQ4mz8kka04mE2ZkkDkzg/QpKUNSvn4oGGNorGmisqCKU4cK2f/eIQ5tzaG9pYMAhz9Z8yYSOSaCAIc/AYFWUtmAgABCwoMJjQwhLCrUc4tNiiHj2jQt8qdGrYEEqEvPua/UAISEh5AyMYSUiUmX/BqX08WRbcc4uOUIRz46xsbfvo+zwwVYF7MmZSYSmxhNdHwkUXGRRMdHET02kuDwYCujeGggwWHBBIUG4ggMwM/f77O59/wE020wxr51W6v5XJ0u+9bledzW1E5LQ6uVXb2hldaGVmor6qk4c5bKgiraWzo87Y5Pj2Pp3yxi3opZzFw6dVAppZRSegSlfIC7y03pyQrOHCnizJFCSk9WWMusqxppqGqkub51WNrh5+9HeHQYsYnRJE6IJzEjnqQJCSSOjyf9mhSvu4hYKW+iR1BqVPIP8GfclFTGTUnl5gcWfu73LqeLptoWOlo76Gxz0tHWSUdrJ51tnXS53HR7lph343ZbdaD8/ARE8PMTRATxE6tab0/1XvtxaGQo4dGhhEWHERwapAFIqWGkAUr5PEeggzFJMSPdDKXUELvy+VeUUkqpAdAApZRSyitpgFJKKeWVNEAppZTyShqglFJKeSUNUEoppbySBiillFJeSQOUUkopr6QBSimllFfSAKWUUsoraYBSSinllTRAKaWU8kojEqBE5HYRyReRUyLy/ZFog1JKKe827AFKRPyBp4EVQDawTkSyh7sdSimlvNtIHEHNA04ZY84YY5zAq8AXRqAdSimlvNhI1INKAUp6/VwKzD9/IxF5CHjI/rFTRI4OQ9uGUxxQM9KNGGLaJ98w2vo02voDo7NPWZf7gpEIUH2VJP1c3XljzLPAswAicuBySwV7O+2Tb9A+eb/R1h8YvX263NeMxBRfKZDW6+dUoHwE2qGUUsqLjUSA2g9MEpHxIhIIPABsGIF2KKWU8mLDPsVnjOkSkUeAzYA/8L/GmNyLvOzZK9+yYad98g3aJ+832voD2icAxJjPnf5RSimlRpxmklBKKeWVNEAppZTySl4doEZjSiQRKRSRHBE5PJBll95CRP5XRKp6X58mIrEiskVETtr3MSPZxsvRT3+eEJEye6wOi8jKkWzj5RKRNBH5UETyRCRXRL5tP+/L49Rfn3x2rEQkWET2icgRu08/sZ8fLyJ77XF6zV5U5hMu0Kc/ikhBr3GaecH9eOs5KDsl0gngFqyl6fuBdcaYYyPasEESkUJgjjHGpy/CE5GbgBbgBWPMVPu5/wDqjDH/Zn+hiDHG/NNItvNS9dOfJ4AWY8yvRrJtAyUiSUCSMeagiEQAnwD3AF/Fd8epvz7dh4+OlYgIEGaMaRERB/Ax8G3gceBNY8yrIvJb4Igx5pmRbOulukCfvgX8xRiz/lL2481HUJoSyYsZY7YDdec9/QXgefvx81gfHD6hn/74NGNMhTHmoP24GcjDyuTiy+PUX598lrG02D867JsBlgI9H+S+Nk799emyeHOA6islkk//IdoM8L6IfGKncxpNEowxFWB9kADxI9yeofCIiHxqTwH6zFTY+UQkA5gF7GWUjNN5fQIfHisR8ReRw0AVsAU4DTQYY7rsTXzu8+/8PhljesbpF/Y4PSkiQRfahzcHqEtKieSDFhpjZmNlc3/YnlpS3ukZIBOYCVQAvx7Z5gyMiIQDbwDfMcY0jXR7hkIfffLpsTLGuI0xM7Ey68wDpvS12fC2anDO75OITAV+AFwDzAVigQtOLXtzgBqVKZGMMeX2fRXwFtYf42hx1j5H0HOuoGqE2zMoxpiz9j9ZN/A7fHCs7Pn/N4CXjTFv2k/79Dj11afRMFYAxpgGYBtwPRAtIj3JFHz2869Xn263p2iNMaYT+AMXGSdvDlCjLiWSiITZJ3YRkTDgVmA0ZWnfAHzFfvwV4M8j2JZB6/kQt63Cx8bKPlH9eyDPGPOfvX7ls+PUX598eaxEZKyIRNuPQ4DlWOfWPgTW2Jv52jj11afjvb4YCdY5tQuOk9eu4gOwl4r+F+dSIv1ihJs0KCIyAeuoCaw0U6/4ap9E5E/AEqyyAGeBfwXeBv4PSAeKgbXGGJ9YeNBPf5ZgTRkZoBD4u55zN75ARG4EdgA5QLf99D9jnbPx1XHqr0/r8NGxEpHpWIsg/LEOGv7PGPNT+/PiVaypsEPAg/aRh9e7QJ/+CozFOoVzGPhWr8UUn9+PNwcopZRSVy9vnuJTSil1FdMApZRSyitpgFJKKeWVNEAppZTyShqglFJKeSUNUErZRKTf5a59bLtERG64ku25yPt/R0S+PAT7eVVEJg1Fm5QaahqglBqYJcCIBCg7u8DXgVeGYHfPAN8bgv0oNeQ0QCl1ASJyl12T55CIfCAiCXaS0m8Bj9k1bRbZV86/ISL77dtC+/VP2MlLt4nIGRF5tNe+v2wnzTwiIi+KSIRdK8dh/z5SrPphjvOatRQ42JNI1N73kyKyXaw6SXNF5E2x6gj93N4mTETesd/rqIjcb+9rB7C8V0odpbyG/lEqdWEfA9cbY4yIfAP4njHmu3Z9Hk/9IRF5BXjSGPOxiKQDmzmX8PMa4GYgAsgXkWeAycAPsZIH14hIrDGmWUS2AXdgZeV4AHjDGOM6r00Lseog9eY0xtwkVgG/PwPXYZUPOS0iT2Id8ZUbY+6w2xsFYIzpFpFTwIw+9qnUiNIApdSFpQKv2TnEAoGCfrZbDmRbKcYAiOzJuwi8Y6eo6RSRKiABu9ZPT+HKXqmGnsOacnsb+BrwzT7eKwkrV1tvPXkqc4DcnjQ/InIGK+lyDvArEfl3rIJxO3q9tgpIRgOU8jI6xafUhf0GeMoYMw34OyC4n+38gAXGmJn2LcUu0V+M7gAAAVdJREFUqAfQO3+aG+uLodBH+QRjzE4gQ0QWA/7GmL6Sabb30Y6e9+g+7/26gQBjzAmso6oc4Jci8uNe2wTb+1TKq2iAUurCooAy+/FXej3fjDVl1+N94JGeH0Rk5kX2uxW4T0TG2NvH9vrdC8CfsMoR9CUPmHjRlvciIslAmzHmJeBXwOxev54M5F7O/pQaDhqglDonVERKe90eB54AXheRHUBNr203Aqt6FkkAjwJz7EUPx7AWUfTLGJML/AL4SESOAL3LYbwMxGAFqb5sAi630OU0YJ9YFU5/CPQsnkgA2n0l87e6umg2c6W8jIisAb5gjPnSBbZ5C2vBxslBvtdjQJMx5veD2Y9SV4IuklDKi4jIb4AVwMqLbPp9rMUSgwpQQAPw4iD3odQVoUdQSimlvJKeg1JKKeWVNEAppZTyShqglFJKeSUNUEoppbySBiillFJe6f8B9lxbpUchZCQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Estimate my and sigma2\n", + "mu, sigma2 = estimateGaussian(X)\n", + "\n", + "# Returns the density of the multivariate normal at each data point (row) \n", + "# of X\n", + "p = utils.multivariateGaussian(X, mu, sigma2)\n", + "\n", + "# Visualize the fit\n", + "utils.visualizeFit(X, mu, sigma2)\n", + "pyplot.xlabel('Latency (ms)')\n", + "pyplot.ylabel('Throughput (mb/s)')\n", + "pyplot.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def selectThreshold(yval, pval):\n", + " \"\"\"\n", + " Find the best threshold (epsilon) to use for selecting outliers based\n", + " on the results from a validation set and the ground truth.\n", + " \n", + " Parameters\n", + " ----------\n", + " yval : array_like\n", + " The ground truth labels of shape (m, ).\n", + " \n", + " pval : array_like\n", + " The precomputed vector of probabilities based on mu and sigma2 parameters. It's shape is also (m, ).\n", + " \n", + " Returns\n", + " -------\n", + " bestEpsilon : array_like\n", + " A vector of shape (n,) corresponding to the threshold value.\n", + " \n", + " bestF1 : float\n", + " The value for the best F1 score.\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the F1 score of choosing epsilon as the threshold and place the\n", + " value in F1. The code at the end of the loop will compare the\n", + " F1 score for this choice of epsilon and set it to be the best epsilon if\n", + " it is better than the current choice of epsilon.\n", + " \n", + " Notes\n", + " -----\n", + " You can use predictions = (pval < epsilon) to get a binary vector\n", + " of 0's and 1's of the outlier predictions\n", + " \"\"\"\n", + " bestEpsilon = 0\n", + " bestF1 = 0\n", + " F1 = 0\n", + " \n", + " for epsilon in np.linspace(1.01*min(pval), max(pval), 1000):\n", + " # ====================== YOUR CODE HERE =======================\n", + " \n", + " cvPredictions = (pval < epsilon)\n", + " tp = np.sum((yval == 1) & (cvPredictions == 1))\n", + " fp = np.sum((yval == 0) & (cvPredictions == 1))\n", + " fn = np.sum((yval == 1) & (cvPredictions == 0))\n", + " prec = tp / (tp + fp)\n", + " rec = tp / (tp + fn)\n", + " F1 = (2 * prec * rec) / (rec + prec)\n", + "\n", + " # =============================================================\n", + " if F1 > bestF1:\n", + " bestF1 = F1\n", + " bestEpsilon = epsilon\n", + "\n", + " return bestEpsilon, bestF1" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best epsilon found using cross-validation: 9.00e-05\n", + "Best F1 on Cross Validation Set: 0.875000\n", + " (you should see a value epsilon of about 8.99e-05)\n", + " (you should see a Best F1 value of 0.875000)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOyddXxUx9eHnxsPEJJAEgLB3YprcQhatAR3LVpKnZZCFagXqFKKu7sVintwCK4hIe6yycp5/9iQ0r607G4SCL/O8/kMm9y9M3Pukr3fOzNnztFEBIVCoVAocht2z9oAhUKhUCgehxIohUKhUORKlEApFAqFIleiBEqhUCgUuRIlUAqFQqHIlSiBUigUCkWuJMcEStM0F03TTmiadk7TtEuapn2UcXyBpmm3NU07m1Fq5JQNCoVCoXh+ccjBttOAliKSpGmaI3BI07TtGe+9JSJrcrBvhUKhUDzn5JhAiXkHcFLGr44ZRe0KVigUCoVFaDkZSULTNHvgFFAW+EFE3tE0bQHQEPMIaw/wroikPabuSGAkQN68eWtXrFgxx+xUKBQKRc5y6tSpKBHxtqZOjgpUZiea5gGsB8YD0UAY4ATMAW6KyMf/Vr9OnToSGBiY43YqFAqFImfQNO2UiNSxps5T8eITkThgH9BORB6ImTRgPlDvadigUCgUiueLnPTi884YOaFpmivgD1zRNK1wxjEN6ApczCkbFAqFQvH8kpNefIWBhRnrUHbAKhHZomnaH5qmeQMacBYYlYM2KBQKheI5JSe9+M4DNR9zvGVO9alQKBSK/x1UJAmFQqFQ5EqUQCkUCoUiV6IESqFQKBS5EiVQCoVCociVKIFSKBQKRa5ECZRCoVAociVKoBQKhUKRK1ECpVAoFIpciRIohUKhUORKlEApFAqFIleiBEqhUCgUuRIlUAqFQqHIlSiBUigUCkWuRAmUQqFQKHIlSqAUCoVCkStRAqVQKBSKXIkSKIVCoVDkSpRAKRQKhSJXogRKoVAoFLkSJVAKhUKhyJUogVIoFApFrkQJlEKhUChyJUqgFAqFQpErUQKlUCgUilxJjgmUpmkumqad0DTtnKZplzRN+yjjeClN045rmnZd07SVmqY55ZQNCoVCoXh+yckRVBrQUkSqAzWAdpqmNQA+B74VkXJALDAsB21QKBQKxXNKjgmUmEnK+NUxowjQEliTcXwh0DWnbFAoFArF80uOrkFpmmavadpZIAL4HbgJxImIIeOU+4DfP9QdqWlaoKZpgZGRkTlppkKhUChyITkqUCJiFJEaQFGgHlDpcaf9Q905IlJHROp4e3vnpJkKhUKhyIU8FS8+EYkD9gENAA9N0xwy3ioKhD4NGxQKhULxfJGTXnzemqZ5ZPzsCvgDl4G9QEDGaYOAjTllg0KhUCieXxyefIrNFAYWappmj1kIV4nIFk3TgoAVmqZ9CpwBfstBGxQKhULxnJJjAiUi54Gajzl+C/N6lEKhUCgU/4iKJKFQKBSKXIkSKIVCoVDkSpRAKRQKhSJXogRKoVAoFLkSJVAKhUKhyJUogVIoFApFrkQJlEKhUChyJUqgFAqFQpErUQKlUCgUilyJEiiFQqFQ5EpyMhafQvFMMegN6NMNmAxGjAYTRoMRo9GEmARNAzQNOzsNTdOws7fDwckBJxdHHBwd0DTtWZuvUPznUQKleG5ITdZx+/xd7l97QGx4PLHhccRFxhMbHk98ZAKpSTp0yWnoknWkpaRjNBht7svR2REnF0fy5HfFzTMfeT3ykM8jL/k881KgkAdFyvjiW7oQRcoUwrtoQewd7LPxShUKBSiBUuRSjAYjQUevEXT0GjfO3ubmmdvcv/YAkT/zWzq7OuFZyB2PQh54Fy2Iq5sLLnlccMnrjHMeZ1zyOOPo7IC9gz32DvbY2dth72CHpmmICCKYX02CyWhCn25An6YnXZeOPs1Aui6dlMRUkuOSSYxNJvxuJDfP3iHmQSwG/Z/iZ+9gT9HyhanlX4267WtSvVllnFycnsXHplD8T6E9+oXPrdSpU0cCAwOftRmKLCAipCSkEBMWR3xkArqUdNJT00nLKHpdOvp0A0a9kVsX7nJ862kSY5IA8CnuRdmapShboxRlapSkRJWiFPD1wDWf6zO5FqPRSHRIDKE3w3lwy1yun77F+f1BpOv0OLs6Ub1FFaq8WBGXvM44Ojng4OSAg6P51TWfC3nd85DXPQ/5PMyvrm6u2NmpJWHF/y6app0SkTrW1FEjKEW2k5aaxtm9lzi+5RQ3z98lNiyOmAexpKWmW1TfrUA+6r9Ui4ad6lCjRVXyF3TLYYutw97eHp/i3vgU96ZGi6qZx3UpaZzfH8TJ7Wc4ufMsJ7adsbhNl7zOlKxSjJJVi1O6WglKvVCc0tVLkL9A7rp2heJpokZQimwhNjyOo5tPcWxLIGd2X0CXkoZLXmcq1C1LwSKeFPD1pEBhTwr4euDhkx/nPM44uzrh5OpkfnVxzBxlOOdxwt7++V/TSU3WYUg3YEg3ZI4O09P06JJ0JMenkBSXnPGaQmRwFLcv3uP2+bvERyUCYGen0ahbPV6e8BJVGlVUjhuK5xo1glI8FUQEXUoaKQmphN2OYPNPO9m38ghGgxGf4l60GdycBp3qUL15FZycHZ+1uc8M17wukNe6OiJCbHgct87f48yeC2yfu5uDa49TrnZpXp7wEi80qUT+gvlwyeuiBEvxP48aQSn+EX26nhtn7hB8JcRcroZw70ooD26G/cVJwDWfCx2Gt6LtkBaUrFr8mdw4DXoDKYmppCbqMl5TSU3SoU8zYNAbzG7mGa8mk8m83qOBnZ0dmp2Gvb0dji6OOLk4/WVkl88zL/kLuj0zoU1N1rFnyUHWzdxK8JWQzONOLo64e+fHwzs/7t75KVO9JC36NKZ0tRJKuBS5EltGUEqgFP+P9DQ9O+fvZfn0dUQGRwPg4GhPkbK+FKvoh1/ZwuQv6Jbhgp2Xuu1qkNfdyqGCDcRHJXDpyFVuX7hH1P1ookJizOV+NHGRCTnadx43V/J7ueHu5YZ3MS9KVCpK8Up+FK9clGIViuDs6pyj/ZtMJs7vD+LBrXASopOIj4wnLiqBuIgE4iLiuXXuLkaDkZJVitGybxNa9m1MoRLeOWqTQmENSqAUWSI9Tc/OeX+wfPp6Iu9HU7lheV6e8BJlapTEt5QPDo5Pd0b4wa1wzu27xKXDV7h05CrBV0Mz38tf0A2vogXw8iuAt19BChYpkOEN50IeN1dc3VxxzeeCk4sj9o5mN3MHR3vzNWiAmG/6IiAmE0aDiXSd2bMwXac3exempJEYm0xCVCIJ0YnERyeQEJVI2O0IQm6EYTKaANA0jaLlC1O7TXXqdaj1TNzM46MSOLD6KHuWHeTS4asAVGtWmX7vd6dmqxfUqErxzFECpbAIESE6NIZ7V0L/Mn1369xd4iITqNywPAM/7Ekt/2rZdmNLT9MTeiOM4CshPLgVTnJ8CikJqSQnpJCSkEJyQirpOr3ZoSBNT2piKmF3IgGzV1+VFyuYS6OKlKtdGpc8OTtisfR67gbd597l+1w+fp1zey9mupkXKumNg5MDzhlThc55nHFydcIljzP5C+QzO4xklIKFPfAp4W1es8oGwu5EsHf5YTb/vJPI4GiKVfTDt5QPBQt74lPMi8Yv16PUCyWypS+FwlKUQCn+lbTUNDbM3sHqrzZmeoqBefqqWMUiFCnrS9vBLbJFmBJjk9gxby/n91/i3pUQwm6FYzL9+bdmZ6eRJ795D1Ce/K7kye+Ks6sTDk4OODo74ujsSKV65ajdtjrFKhR5LvYIpaWmcW5fECd3nCEmLC5j06+etJS0zBFZWko68VEJ6JLT/lLXwdGeF5pWpl77mtRtX5PiFf2y/H+QnqZnx29/cHLnGaJDY4kOjSU2LA4RoUqjCnQe3ZbG3Rv8px1ZFE8PJVCKx2I0GNm1cB+LPlxFVEgM9TrUpH6H2hSrWIRiFf0oWNgz20ZKty/cZcPs7exZepC01HRKVC5KiSrFKFahCMUr+lG8UlEKlylEHjfX//S0U0piKjEPYol+EEvMgzhunL7Fie1nuHMpGADfkt7Uf6k2HUe1oWSVYtnWb0J0IjsX7GPLzzsJvRmOh3d+2g5pQZdx7fEuWjDb+lEo/o4SKEUmIsK1U7c4t/ciOxfs5d7lECo1KMfwGf2p1rRyltpOiksmJiyOuIj4jGJeqD+3/xLn9wfh7OpEy75N6DKuHWWql8yeC/qPEH43khPbz3ByxxlO7TpHuk5P7TbVqdKwAm4F8uFWIB9+5XwpWbV4lqY5TSYTp3dfYMvPOzm6KRAHJwfaD2tF5YblMx8oVLgmRXaSqwRK07RiwCLAFzABc0RkpqZpHwIjgMiMU98TkW3/1pYSKMvQp+s5ty+IIxtOcHRzIFEhMQCUrFKMwZ/05sUudW0etUSFRHNg9TH2rTrM5WPXH3tOkTKFeGlka9oNa6kiIGQD8VEJbJ2zmy2/7Mr0pnyIpmn4lfOlVLUSlH6hBHXaVqdivXI29RN2J4IFU1awb8WRzAC7dnYaFeuXY+i0vlRvViXL16JQ5DaBKgwUFpHTmqa5AaeArkBPIElEvrK0LSVQ/05sRDyLP1zFnmUHSUlIxSWPM7XbVqdRl3rUbV8DD293m9pNjE1i34rD7F15mIsHryAilKlRksbd6lOkrC8ePu54+uTHw8ed/AXdnmlEbxEhMSaJyPvRRN2PJvK+2f08OSGFtJR00lLTSEtJQ5cR5fzR4LH2DvY4Ojng5mkeoeQv6GYuXm74lfWlcJlCzzyyhdFgJCkumbjIBIKvhHD7/D1uXbjLrXN3CL0ZDkDtNtUZMKUHVV6sYFMf6Wl6Qq4/4O6lYO5cDGbXon1EBkfTqFs9RnzeH7+yhbPzkhT/MXKVQP2/jjRtI/A90Ij/mkDduwebNkFcHHh4QJcuUCzr6woJMYns+O0Pln62lrSUdFr2a0zT7g2p2aqqzftydClphN+JYN/KI6ybuZWUhFSKV/Kjea9GNO/1IsUq+GXZbktJT9OjS9aRrtNnOhzo0/To0wwYDUbCbkdw9eQNrp26xa2zd9Cl/NXxQNM0s/NFHmdc8pg96ZzzOGNnb4fJaMJkzMgRZTCiTzOQGJNEUmzSX5w5wJx6o1jFIpSsUowSlYtRpkZJ3Arkw8HRLGz2jg44OpuDwLrkdcHZ1emprq8lxyezdc5uVn+1ibjIBGr5v0DAG50pW7MUnj62PZyA2elj7bdbWTFjPfo0PV3GtqP7653UWpXCJnKtQGmaVhI4AFQFXgcGAwlAIPCGiMT+W/3nVaDmTw+jz5FxuGxbDyZT5nGxs+NmtW6U3f49+Ppa1WZCdCKrvtzIyZ1nuX3+HiJCg461GfnlAJvEQ0Q4u/ci677bytWTN4gNj898r1G3evR972XK1Sqd7Tfc1GQdwVdCzG7aQfcJvhpCXGQCSbHm1BZJsUmk6/RPbMcljzNla5WibM1SFC5VyLw3qmhBvIsWpICvh9WjOpPJRHJ8innfU2QCwVdDzSOKoPvcvRRMxL2oJ7ahaRqu+VxwdXOhgK8HXkUL4uVX0Lxnq2hBytcpTfFKRXPkM93y8++s+nIjcRHm/8dCJbypWL8sleqXp1KDcpStWcrqtaWYsFgWfLCSHfP+QESo16EmAa93okaLqv9pRxeFdeRKgdI0LR+wH/hMRNZpmlYIiAIE+ATzNODQx9QbCYwEKF68eO27d+/mqJ3ZzfzpYTR9rxFluIU4OqJ17gwVKqA7fxX7LRtxxEC8V2ncLx6BQoWe2J7RYGTrnN0s+GA5yQmpVG9ehWpNK1O7TXUq1bd+7cFoNHJo3QlWfbmRa4E38SzkTv0OtfAtXYjCpXwoU7MUJSoVteXS/5F7V0LY9utuDm84QfidyMzcTg+jVBTw9SCfZz7yeeTFzTMveT3yZmy2NQeTfZhE0MHJnOOpYBFPilfye6rTb8kJKdw+f5eURB0GvTkQrEFvJF1nHu3pktPQJenQJZsDwkaHxWVGvXiYPgTMKUTqtqtJvfY1qdmqaramDnkYVf3e5ftcOXGdK8dvEH7XvOTr6OxIh+Gt6PdBgNWjq+CrIfyx7BBbft5FXGQCpauXIGBiJ5r3fhFHJ+Wqrvh3cp1AaZrmCGwBdorIN495vySwRUSq/v29R3keR1C6TgG4bFnLKWrxVrmNrDhkvtm3aAHxQffZ6dKFKrrT0L07rFnzr22d23eJHybM4/aFe9RoWZUx3w2hVNXiNtmlT9ezY95eVn+1iQe3wvErV5ieb3bGf0DTHPHaStelc3DtcbbO+Z0LBy/j4GhP3fY1KV+7DCUqF6V45aL4lfV96lEqngW6lDQi7kVx4YB5r9Tp3RdITdLh4GhPTf9qdHylNfVfqpUjghv9IJYrx69zbMspdi3ch7OrEz3e6Ez31zuSx806cUzXpbNn6UHWfruFu0H3KVDYk/6Tu9NhpP8zX6tT5F5ylUBp5rH/QiBGRF575HhhEXmQ8fNEoL6I9P63tp47gbp3D0qVQuztaVXyFnuvF8U7IyxaZCRUrgz7lwTjVa+0eervzp3Hrkmd23eJxR+v5ty+S/gU92LU14No/HJ9q6ZVkuKSuRZ4k6snb3L15HWCjl4jNjyeivXK0vPtrrzYpU6WbyqpSakE7jxHyI0wc+6nsFhiMnJARd2PQZeSRpGyvrw0wp/Wg5pnaV3kfwl9up5Lh69ycvsZ/lh+iKiQGPJ55MXT1wN3Lzc8C7lTskpxytY0J2r0Ke6VLVNqwVdDmP/BCg6uOUZe9zxUqFeWJi83oO2Q5laNhESEwF3nWD59HRcOXKZYhSK0GdScVv2bqnUqxf8jtwlUY+AgcAGzmznAe0AfoAbmKb47wCsPBeufeO4E6vvvYfx46N6diB/XULWqWZgAvL3h4kXw8QECAmDtWvP5Y8dmVo8KjeHXtxfzx7JD+BT3otOoNnR9tYNV+17C70Yyd9JS9q88kjmV5leuMBXqlsG/f1PqtK2RpZtdarKOE9vOsH/1EU5sPZ2ZjNA1n0tm3qcChT0o4OvJi13qUq1Z5eciGsSzwqA3cHRTIKd3nychJomEqASiQmIIuR6W+f/n5pmXMjVK0qJPE1oPbJrlabXLx6+z7dfdXD52jbtB9ylUwpt+k7vTemAzq0a0IsLBtcdYP2sbFw9dQdM0arSsSucxbWnUtZ5ap1IAuSwflIgcwhyW8+/8656n/wni4syvFZ7g7lu+vPk11uwjYtAb2DB7O4s/Wo0+3UD/DwLo/W5XqzzyUhJTWT59PWu/3YKdnUaPNzpRq3U1ytcpg5tnPluu5i9cPn6ddTO3cmxTILqUNDwLudN2SAua9mhI+dqln1ka9ucdB0cHmnRvQJPuDf5yPDVZx52Lwdw4c5ubZ+9w6fAVvh35M0s+Xk2PNzvTfngrmzfsVqpfjkr1y5lHQjvPsmDKSr4Z8TMrZqyn/5QetOzb2KLRtaZpNA1oSNOAhoTeDGPPkoP8vng/H3X/ilqtqzF+9jCKli9ik42K/zb/OoLSNM0F6Ag0AYoAqcBFYKuIXHoqFvL8jqB0HbtT+9YagoL4f1N8e/eCz5g/R1CnKzblp4nzuXMxmLrtazJ25hCr9p2E3gxj7/LDbPxhO7Hh8bTq14Sh0/riU8zL5ssw6A3cPHeXkOsPCLn+gAsHL3NmzwXcCuSjWY+GNO/ViKpNKj7zdQcRISUxlbSUNNJ1Znd0c1TydAx6458u5RmviICmoWkamgZoGnZ2WmZGXwcnBxydzK8ueZ0zoqO7PPPrfHitgbvOsXzaOi4cvIyHjzvNejSkdLUSVGlcMUsx/ESEo5sDWTh1JbfO3aVE5aJ0GduOhl3q4lWkgFVtGY1GNv+0i/mTl6PX6ek+sSM93uqsNnD/h8nWKb6MiA+dgH2YN9lGAC5AeaBFxs9viMh52022jOdOoO7dQ0qVwmCypxS3cK9clL17zW+1aAFBQdCyXDC7b5cm1ujIz50ns3fTGXxL+TD6m8E07FzH4ptMckIKyz5dy7qZWzHojVRrVpkRn/e3OaoAmJ/at8/dw5qvNxN53xzBQNM0fEv50PGV1nQa3eapjZRMJhNRITEZEddDuX81lPC7kSTEJJEYnUhiTBIJMUmZqS9yEpc8zri6ueDunR/vDNdx76IFKehXgMKlfahYv1y2RSS3hAsHL7N8xnouHrxMapIOAHcvN6o2rkiVRpWo3boapatZH7XcZDJxaN1xFn24irtB9wGoWL8cjbrWo/HL9SlazvIHp5iwWH59Zwl7lhzENZ8L3SZ0oNc7XZ/q56TIHWS3QL0kIlv/pTMfoLiI5LhyPHcCBdyoGUDZs2u55FKLQkc24FXT7AQREQF9Ggcz43pXQolnnmMN9HaO9Jn0Mr3e6WKxJ53JZGLPkoPMfXcJMWFxtB3cgkEf98rS4nRibBIbv9/B+lnbSIhO5IUmleg0ui0lqxajSJlCOZ6U7yFhdyI4tO44hzec4Mbp23/ZgJvHzRXf0j64e+U3x6bzzEf+gubXhyktnFwczVlxXRyxd3TA3t4Ou0eKppkHUWL+JzMnlEFvRJ9uwJjxqk/To0tOIzUxlZTEVFISzJl646ISMqNVPIwODmBnb0f52qWp2rgSLzSpRNXGFclfMOdHDCKSOcK9ePgKFw9ezowu8WKXugz5tI9NAWdFhHuX73No/QmObDzJtcCbALQe1Izh0/tRwNfT4rZuX7zHkk/WcGD1UQqV8Gb898Oo/1Jtq21SPL/kuJOEpml2QD4Rydn0pX/jeRQowsKIf6ER7lG3wMHBHD2ifHm4do1rG/Yx01ida1oBajWtwPg5Y6yao798/Do/TZzP5WPXqVivLGNnDbV5xPTw5rZz/l42/rCD1CQd9V+qRe93u1G1UUWb2rS0X12yjrhIcxLA+KhEbpy5zaF1x7h++jYApauVoFqzyhSvZM5aW7RCkWyNvJ4dGPQGYh7EcjfovlkgDl3hyokb6NP0aJrGC00r0bzni/iVL0I+jzy4eeajQGGPHBf7qNAYdi3Yx8ovNpCaqMN/YFO6jGlHmRolbXbpjwiOYvOPO1nzzWacXJ0YOLUnHUe1tupaLhy8zMzRc7gbdJ8m3eszZuZQq6cPFc8nOSJQmqYtA0YBRsxTfe7ANyLypa2GWstzKVAAYWEwbhysN0eSSMWeRVRhnVYOd2cY/d0Qmo/sYPENN+JeJL++s4R9K4/gWcidYdP70XpgM6u94+5evs+ZPRe4cPAyFw4EERsej6ZpNOvZkN7vdsv2CORJcclcOXGDy8euceXEdW6fv0dcZAL6tP8fKaJSg3I07lafRt3qPbex39J16VwLvMnp3RfYt/LwXzIBP8TLrwCFyxSiSGlzrL/ydcpQy/+FbF/nSohOZMWM9Wz4fgf6ND0ueZ3pPLotfd57mXweeW1q8/61UH58bT4nd5wlf0E3Oozwp/vElyyO+ahP17Pm6y0s+WQ1Ti5OjJs9jJZ9G+eqBw9F9pNTAnVWRGpomtYPqA28A5wSkWq2m2odz61APSQ4mBPT5zNrxRXC4/S81K8hw2e/YvENIjVZx8rPN7D6q00A9HyrCz3e7Gz1BsvQm2H8+s4SDq07DoB3sYJUa1aZak0qU7PVCxQu/eSIFpYSERzFxtnbObb1FPcuhwDmdawSlYtStlYpCvh64u7lRn6v/Lh7ueHu5Uahkuasr/9LPByhxobHkxibZA5oGxxN6K0wHtwMJ/RmODEPzF6cPsW9aD+sFe2Gtcz2UUVsRDzn913i6OZA/lh2CLcC+RgwtQcdX2lt04hKRDi/P4j1s7ZyZGMg+TzyMHRaPzqMaGXxA1PIjQd8MfgHgo5cpUGn2oz/fniWnHoUuZucEqhLmPctLQO+F5H9mqadE5HqtptqHc+zQMWGx/HT6wvYu/wwxSv5MfGXV6jauJJFdUWEP5YdYu67S4gKiaF570aMmNEPn+LeVtmQHJ/M0k/XsmH2duwd7On5dhdaD2yGb0kfWy7pX7kaeJO1325m/6qjAJm5jCo1KEeFumXI627bU/v/MqnJOgJ3nGXLnN85/ft57OztaNi5Dh1faUPt1lnPbvx3rp++xZy3FnF27yWKVSjC8M/707CT5Y45f+duUDCzx/3GuX2XqFivLBN+GknZmqUsqms0Gln33TYWTlmBnb0dQ6f1pdPoNrnCY1KRveSUQL2KedR0DngJKA4sEZEmthpqLc+jQIkI+1cdYfa430hNTKXPey/T652uFqfXDr4awnej5nB+fxDlapdmzHdDrF4TunnuDmu/3cLhDSdITdTRZlBzBn/aO9uezlOTdQQducq5fZe4cPAy9y6HkBCdSB43VzqM8Kfr+PYUKmGdmP7XCbnxgG2/7mHXgr3ERSaQ1z0PxSoUwa98YYqV96NohSLUaVudvPnzZKkfEeHYllP8+vZigq+GUrpaCdoOaUGrfk1w98pvU3t7lh7klzcXkRCVQMdRbRj8SW+L9949uB3OzNG/cmrXOeq0rc6UNW8qT7//MbLbi68hcEz+dkJGCCN7ETHYbKmVPG8CFRUaw6wxv3J0UyDl65Th7QVjKVHZMi8qfbqelZ9vZNlna3HO48yILwbQbmgLq9aZEmISWfDBSrb+sgtXN1cad6tPl3HtKFertK2XlElEcBTbft3N2b0XuXriBga9ETt7OyrULUPpaiUpU70ELfs1yfIN9L9OepqeQ2uPcfHwVe5fM7vXP3T5d/PMS/fXO9F1fPssf84GvYFdC/ax9dfdXAu8iYOjPQ271KXdkJbUblPN6pFMUlwy8ycvZ8vPu8jvlZ/R3w6mRe9GFo3ORIStc3Yze+yvVKhXlk+3TFL7pv6HyG6B+hmoB1wDdgA7RCQsy1bawPMiUCLC9t/+YM5bi9Cn6Rn8SR9entDB4pQPQUev8u3IX7hzKZjmvV5k9LeDrXLlNRqN7PjtD+a9v5yk2CQ6jW7LoI97ZUsEiegHsayYvp6tc37HaDRRvk4ZqjerTPUWVanaqIKKIPEUSE3WceP0bVZ9uZFjW05lq1AB3L5wl53z97J7yQHioxIpXLoQo78dTMNOVt1TALhx9jYzR83hyokb1GlbnY99lzsAACAASURBVFd/HEHhUpatcR7ecILPen+Lp68Hr/3yCnXb1rC6f0XuI6em+CoC7YG2mD349mIWrMMiYrTRVqt4HgQqNSmVD7t/xenfz1OtWWVe/3WUxV5oqUmp/DZpGZt+3IlX0QJM+HGE1XtETv1+jt8mLeX66du80LQS42YNs2mT5qMkRCdydHMg5w8EsX/lEfTpBtoMak7/DwJyzdSd0WA0526KSkSXrCMtJR1dijl7blpKOga9AaPhr8kJMwJJmCNJ2JkjStjZ22VGj3B0dsTR2fyaN78red3zmEtG+o/cEFPwauBNlny8OlOoWvZtQp22NajevHKWHxb06XqObT7FwqkruRt0n7rtazJsWl+rvTuNRiObf9zFvPeXYTKaGPnlQDqNbmPRaOry8et8NfQH7l0O4aWRrXn1x+G54nNX2M7T2AflijmKRHugobWd2UpuF6igY9f4auiPhFwLZeysYXQc1driL9P5A0F8NfRHwm5H0GVsO4Z81scq77yokGh+en1h5gbIYdP70bzXi1laWE9LTWP9zG2s+HwDyfEpuHnmpUHnOvR7v/szcf1OiE7k1vm73L5wj1vn7xJy4wFxEQnERyaQGJOENX/DWUXTNDwLuVOopDeFSvrgW9IH35LeFKvoR6UG5Z56XqSrgTdZPn0dgTvOkpaajoOjPVUbV6R2mxo07FTb4qnlx2HQG1g/azvLPltLUlwyTQIaMOjDnla3GREcxXej5nBy+xnaDWnBmJlDLBLRdF06Cz5YweqvN9NlbDvGzhqqXNGfY3JMoDRNqwU0xhyB/LCInLbNRNvIrQKVrktn4dRVrPl6EwX9CvDmb2Oo5W+Z970uJY157y1j/axtFC5diDfnjaFa08oW9200GNn4ww4WTlmJPt1Av/e70+OtzhY7YTy2TaOR3YsPsHDKSiLvR9OgU20GTOlB2ZqlnurTa2pSKse3nubAmqMEHb1GdOifCZfdvdwoVtEPT18PPLzy4+HjjoePO+5ebrjkc8EljzPOeZzMkSRcnXB0dsTO3g57B3vsHeywt7fjYSiJh9EkxCQYjSaMegP6NAPpaXoM6QbSdXpSE1NJiksmOT6F5PgUkuKSiQ6NJfxuJGG3I4i4F4XRYJ5IcMnrTI2WVanTpgZ129WgSBnrsiVnhXRdOhcPX+XUzrME7jrHrfPmBJ8t+zZm6Gd9szTiTYpLZs03m1k/cxu6ZB2dx7Rj8Ke9rZpWNJlMLJq6imXT1lGohBev/fIKtVtb5gj88xsLWfvtFoZ82oe+771s62UonjE5NcU3BegBrMs41BVYLSKf2mSlDeRGgbp++hbT+88i+EoIHYa3YuRXAy3+wl4+fp3PB84m5PoDuoxtx7AZ/azyWLpy4jrfjZrDzbN3qNuuBuNmD8vSzdBoNHJ8y2kWTFnB7Qv3qFC3DCO+GED1ZlVsbtPivg1Gwu9GEnIjjKj70ZzceTYzfUcBXw9q+r9AmWolKVWtBKWrFcezkEeueoo2GoxEh8Zw48wdAnee5eTOs4TdjgCgSFlfmvVoSLnaZfDyK4CXXwGb0tDbQvSD2MyoDyaT0O3VDnQd3z5LobASohNZOHUlm3/aRYHCHoydNYwmL9e3qo2Lhy7zzYifCb4aStvBLRg768mjKZPJxBeDvmfP0oNMnDOKDsNb2XwNimdHTgnUZaCmiOgyfncFTouIZZt5soHcJlDJ8ckMrTwROzuNN34bQ502lj0JGvQGlk9bz9LP1uLlV4A3542hRot/TSb8F1KTUlnwwUo2zN6Gp68HY74bQpPuDWy+YUeFRLN97h9s/20PkfejKVKmEEOn9aNpgO1t/hsiwrl9lzi6KZD710MJuR5G2O2IzBEIgIePO026N6B5rxep0qjCc7cfRkQIuRFG4M6zHNtyijO7z2My/fkds7PTKFm1ONWaVqZa8ypUa1rJJrduS4m8H838ycv5fdF+NE2jZquqDJjSw+K9eI/j0Qek1oOaMW7WMKumpdN16Sz+eA2rvthATf9qfLLpnSdOjerT9XzQ+XNO7TpHp9FtGfFFf+WG/pyRUwK1HegjInEZv3tg3gfV0WZLrSQ3CVRaahpfD/+JfSuOMPvYNCrULWtRvVvn7/LlkB+4ceY2Lfs2ZuysoVa50J7ceZaZo+YQfjeSTqPbMmx6X5s8tx6ma9jy8y6ObTmFyWiidpvqvDSyNQ071c6R1OuxEfH8vnAf2+buIeT6A1zyOONXvjBFyvriV7YwfuUK41fWFy+/AviU8HruROnfSIxNIvxuJFH3Y4gKiSEyOIorJ64TdORaZhDcklWLUb9DLbqMy9oI598IvRnG7sUH2DZ3N9GhsbTq14Thn/e3eU+cQW9gySdrWD5tHYVK+vD2grFWi96O+Xv5etiPtOrfhLcXjHviNHJaahrzJ69g3XdbKVymEG8vGEeVF5+Qc02Ra7BFoMxz8I8pwGxgFrABCAEWAPOB+8CKf6qXE6V27dqSG7gaeEOGVp4g/lqALPpolUV19Ol6Wfzxamnn1EsCCg2TQ+uPW9VnXGS8zBg4S/y1ABlSaYJcOBhki+kiInInKFje8v9I/LUACSg0TOa+u0RCb4bZ3N6/YTKZ5PyBIPm09zfSzqmX+GsB8lqTyfL74v2iS9HlSJ/PE+lp6XLx8BVZ+tlaebvNx9LGoae0dewlMwbOkhtnb4vJZMqRflOSUmXe+8ukvXNv6eTWX1Z8vkHSdOk2t3fhYJD0LzVa/LUAmTnmV0mKT7aq/pJP14i/FiDvtvtEIoKjLKpzdt9F6VdytLSx7yFzJy3Nkv2KpwcQKFbe+/9tH9SgJwjbQquUMAvkhhHUuX2XeLftJ3j4uFs8rSciTOv7HftWHqF570aMmzXUqumci4cu82nvb4mLSKD3u13p+97LFqfjeJSE6EQWf7SazT/vwiWvM4M/6c1LI/2z1eMsNVnH1RM3CDp6jcvHzCU+KhE3z7y0HticDiNaZcmj7H+dsDsRrPtuK9t/24MuOQ0PH3cq1i+Lf/9mvNilTrZ7B4beDOOn1xdwbPMpfEv5MGxaX5r1tM378+HU8/pZ2yhaoQhf7J5i8chMRNj80y5+fXsxTq5OzNg52aIN5ckJKfz8+kJ2zPsD/wFNeWfheKvtVjxdctzN/FnxrAXqwe1wxtWbhLt3fr479IlFU3Ox4XF8M/Jnjm0+xaCPetH/gwCL+9OlpDH//eWsn7WNQiW9mbr2TcrWsCy22aPo0/VsmL2DZZ+tJSUhhfbDWjHok954+lgWddoSkuKSWfP1ZtbN3JqZNK9YRT8qNyjPC00r0aznizanJP8vkhCTyP6VR7hy8gZn9lwgMjgaDx932g1pQYcR/tka0BfMU8e/TVqa6XAz/vvhNvdxdu9FpnT5nAKFPflyz1SrpiuDr4Ywqd1nJMUlM23be1RuaNnU3S9vLmLdd1uYtHQCzXs1ssluxdMhW6f4HhbMKd/PADFAApAIJFg7VMtKeZZTfCmJKTKy+hvS1XOQBF8LtajO4Q0nJMBnqLR36SNrvtksRqPR4v4uHLosg8qPz5wySUlMscnu8weCMqcjJ3X4TG5fvGdTO/9ESmKKLP1srXT1HCT+WoB80utrObb1lMRHJ2RrP/9lDAaDHNt6Sj7oMkPa2PeQ1nY95N12n8jZvRezvZ91M7dKJ7f+0sG1jyyfvk706Xqb2rp4+Ip0zj9ABpQZK+F3I6yqG343QgaVHy8d8/WTM39csKhOfHSCjG84Sfy1AJkxcJbVU4yKpwc2TPFZIlA3gGpkjLaeRXmWAjV9wExpY99DTuw4Y9H58ycvF38tQF6p+abVorDyiw3S2q6H9C81Wk7vOW+LuZKmS5fZ4+aKvxYg/UqOlmNbT9nUzj8Rfi9Sfn5joQT4DBV/LUAmd5ou18/cytY+FP+fiOAoWfThKunlN0L8tQB5s+VU+X3xfklJSs3WPj7s/qX4awEy/IWJcuPsbZvauXz8mnTxGCgBhYZZ/L15SPSDGBn+wkTp4NpHLhy6bFEdg94gC6eulDb2PaR/6TESGRJti9mKHCanBGovYGdtw9lZnoVAGfQGWTBlhfhrAfLLmwstqhN8NUTaOPSU6f1nSnqadQu3vy/eL/5agHzU4ytJTrBt1BQRHCXjGpifJn+YMC9bb15JcUky990l0sG1j7Rz6iWTO0+XS0evZlv7CstIS02TVV9tynRM6Jivn8wYOEsuHbmSbX0c2XRSehYZIe2cesmST9bYNJq6ffGeDH9horS26yELp64Ug8Fgcd34qATpW2KUdM4/QPYsPWBxvQuHLksH1z7yYfcvrbZXkfPYIlCWuJnXBT4B9gNpj0wNfmPVXGIWeNprUBHBUczoP4sLBy/TemAzXv1xhEXrKJ/1/Y5jmwJZdPN7PAt5WNRXckIKP742n10L9lG1cUU+3/WBTY4QZ/64wLS+M0lLSePNeWNoGtDQ6jYehz5dz5aff2fJJ2tIiE6kVb8mDP6kd47kkspu9Ol6EmOSSIr7MwpEclwy+jQDDg/j7mW8uuRxwqtoQbz8CuSIq312YzKZuHT4KrsX72f/6qMkx6fQok8jhs/ony1J/+Ii4/nh1XnsW3mEMjVK8ua8MVavg+pS0pg15ld+X7SfWq2rMWnJqxZn3Q27E8GMAbO4dPgq/gOaMm72MIu2Vaz4fAO/TVrK1LVv0ribdZuIFTlLTu2D2gUkARcA08PjIvKRLUbawtMUqMBd55jW9zv0aXpe/XEErQc0s6je1ZM3GFd/Er3f7cawaX0tqxN4k097fk3EvSj6THqZ/lMCrL45pqfpmfPmIjb+sINiFYowdd1blKhU1Ko2HoeIcGj9Cea+s5jQm+HUaFmVkV8MyJaUHVnFZDKRFJdMfGQCcREJxEUmkBCVQEqijoSoBO5dCeHe5fuE3gzHZDQ9ucFH0DSNgkU88SnhjU9xL4pX8CO/lxv5PPKSz8McMLaArwfexQo+9bh7/0Rqso5VX2xk1Zcb0TSNXm93JeCNjtkSYf7Q+uPMGvMrCdFJ9JnUjQFTe1gV9krEHOH/+/G/4e7lxofr36ZCnTIW1TUajCz7bB1LPllNoZI+fLjurScGQDboDYyt9y5xEQnMC/pWJcjMReSUQAVa22hGvWLAIsAXs7DNEZGZmqYVAFYCJYE7QE8Rif2nduDpCVR6mp4BpcbgViAfH65/m6LlLAuMun/1Ub4Z/hNOrk78FvStRV5+yfHJjHjhDTQ7jfeWvWbThsPkhBQ+fPlLzv5xka7j2zN0Wt9s2V1/48xtfnp9Aef3B1GySjFGfDGAuu1qPPUQQyJC+N1Ic6DY8/e4deEut8/fJfRm+F+iTzyKvYM9fuV8KV6pKMUr+lGwSIFMYXkoMg5ODhj0Rox6I/p0A4Z0A6lJOiKDo4i4F0VEcBQRGbH2wu5EPrYfOzuNgn4FzMFiS/lQrIIftVpXo1ytpxu38FHC7kQw5+3FHFxzDA/v/PR9vzudx7TNcmilhJhEfpq4gN2LD9BpVBvGfT/M6mu8ceY2U7t9gaZpzNj1gcXfLYCLh6/wccBXFK1QhG/2ffzE84OOXWPCi+/T+91uDP2sT64KjfVfJqcEagbwh4jsstKYwkBhETmtaZobcApzHL/BQIyIzNA07V3AU0Te+be2npZA/b54P18M+p7pOyZbtM8pXZfOL28uYtOPO6nUoBzvL59ocVDOb0f+zI55fzDzyGdUrFfOalujH8TyXofPuHvpPm/8Ntrikd6T2pz//nJ2LdxH/oL5GPRxbzoMb/VUYsc9yv1roexcsI/di/cTFRKTebxw6UKUrlacouWLUMDXE3fv/Hj45M8MFuvq5opLXudsjUSRnqYnOS45M2BsYmxGsNg7EZkBY8PuRBAZbE4m6O7lRq3W1ajbtia121SzKp9XdhF07Brz31/G2b2XKFOjJK/9PNKmv7FHERF+m7SUlV9spEaLKrw1fyw+xa0LQBt07BqTX5qGQW/k1R9H4N+/qcV1V36xkbnvLmHupW+fOEMgIkzp+jnHNp+i9aBmvPqDZVP0ipwlp9zMEzGPgFLJgps5sBFoDVzFLFwAhYGrT6r7NJwkTCaTjKr1lgytPMGiXfwhNx7I6NpvZTpRWLOQfOr3c+KvBcictxbZZOu9K/elf6nR0jFfP6u9pB6HPl0vy6evk475+kk7p17yy5sLJTE2KcvtWkNcZLxsm7tbJjR+X/y1AGlj30Pe7zhNNv+8Sy4dvWqz48jTIjYiTvYsPSAzBs6SgELDxF8LyHQLP7zhxFOPnmEymeTAmqPSs8gIaW3XQ2aPm5tlF2yTySTbf9sjndz6SxePgbJ7ieUODA8JvxshrzWZLP5agHw+aLbF/68x4XHSzqmX/DRxvkXnGwxmz77Wdj1kRLXX5d6V+1bbqsheyAkvvuwomKfz7gH5gbi/vRf7pPpPQ6AuHAwSfy1ANv2084nnmkwmGVhunHQrMEiObDppVT9XA29IzyIjZHCF8TbdtC4eviI9Cw+XAJ+hcuXkDavr/53Qm2Eytt474q8FyJSun8v965bt9coqyQkpcmxLoPz42nwZUe118dcCMsM5rfh8g0SFxjwVO3ICo9Eo10/fkgVTVmS6hbd17CWj67wts8b+Kmf+uJBjoYz+TlJcksweN9e8faH0GLkamD1/Mw8fJHbM/8Pq+o+6hX/c82uL633a+xtp79xb9q8+YnGdkzvPSnfvIdLLb4QKsfWMyVaBAkr+a0XQgKJP7ADyYZ7eeznjd4sEChgJBAKBxYsXz6nPTETMsb0CfIZKF4+BEhsR98Tzr5+5Jf5agGz/bY/FfZhMJtn88y5p79xb+hR/xeq9Q0ajUZZNWydtHHpK/9Jj5NaFu1bVfxx7VxySzu4DpIvHQKu+9LZi0Bvk98X75bUmk6Wtozk+X3uXPvJ2649k2bR1cvn4tad2435aGPQGOb7ttPz23lJ5s9WH0smtv/hrATK6ztuyd8UhMegtd7/OChcOXZY+xV6R9s69ZdVXm6xy+34cBoNBXm8+RTrnHyBhd6zbkPuQ+R+Y9wxaut8qKjQmc1PunLcWWfzZnd13Ufy1AFk/a5tNdiqyh+wWqNXAWmAgUAXwAYoDLTG7nR8BWv9r4+AI7ARef+RYrpniM5lMsn7WNmnr2EuGVHxV7l62bBpg0UerpLVdD4kJi7Xo/JSk1MyAr++2+0TiIuOtsjP6QYy83doc5PXT3t9IUlzWpt9Sk3Xy9fCfxF8LkFdffE8e3A7PUntP4qEwDa5gjpAxrMprMnfSUjm1+/x/7qk2LTVNtvyyK/Oz6F9qtKyftS1b96z9E3GR8TKl6+firwXIhMbvZ3m0HHorTDq59Zc3W061KlrKQxJiEqWLx0Cr9i2l6dJl5ug55s3KrT606IFSRGRi0w+kd9GRKrDsMyTbp/iAysBnwL4MYTkDLAP6Ay5PqKth9uL77m/HvwTezfj5XeCLJxmZUwL18AlucufpFt/0Lx6+Ip3dB8irjd636Hyj0Shj6r4jre16yKKPVln9RY4IjpIevsPkpTx9Zeuvu7M8wrh35X7mBsq5k5baHNLGEmLCYmX59HUysOxY8dcCZGSNN+TQ+uM23cz+1zAajXJo/XF5tZF5qqy79xBZMGVFjk9tmkwm2bVon3TxGCgv5emb5Ugj2+buFn8tQGaPm2vTaHDh1JXirwXIuf2XrKq3c8Fe6eDaR/qVHG3ROlbgrrNWz3oospdctQbFnynizwNnM0oHoCCwB7ie8VrgSW3lhEDFhMdJB9c+8kmvry2+YR7ZdFI6uPaRQeXHW/z0eXaveXphyy+7bLLz6+E/SXvn3jaHnXnIwwXujnn7SbeCg7PFueKf0KXoZOlna6Vjvn7irwXIxGYfyMF1x5Qw/QMXDl2WyZ2mS2u7HtLWsZdM6/edBB27lqN9Rt6PktG135KX8vSVi4dtj0JhMpnkhwnzMsMvWTqieUhCTKL0LTFKXsrTV/auOGRV3ePbTou/FiD7Vj15etpkMkkP32HyxZDvrepDkX3kKoHKzpITAjXv/WXS2q6Hxd492+buljYOPWVsvXes+hJ+Pfwn6eTWX1KTrZ/KCjp2Tdo49JTvX/3N6rqPkhibJJ/0+jrzJhJ537K8O9ZiMplk36oj0q+kOQzP1Je/UN5TVnD/eqj8+Np86ew+QPy1ABnXYJKcP2B7/q8nERMel+nsc+v8nSy1tXPBXmnv0kf6lhgl107dtM6OsNhMz765k5ZavD5mMBjkZa8hMr3/TIvOf7fdJ9LDd1i2rN8qrEcJlIUkJ6RIV89B8lGAZXPfq7/elLl+ZE108ZTEFOniMVBmDJxltY2/L94v7V3MUxiWrnU9jpvn7piTuzn0lGXT1mV5cfyfuH76lkxs+oF5Kq/6GxZHo1b8f5ITUmTD99ulT/FXxF8LkOkDZlo9MrGU0Fth0rPICOmYr5/8sdy6EczfuRp4Q/oUf0U6uPaRA2uOWlU3PS1dvh35c+aUu6VTz58Pni1dPQdZdP6Ns7elZ5ER0jn/ADm127ZgzArbUQJlISd3muejT/1+7onn6lJ00jFvP3m/4zSr1msSYhLl9eZTxF8LkLP7rEuPcGj9cWlj30PebDnVaoeKR0lN1smg8uOll9+IHAvsqkvRyZy3Fkkb+x4S4DNUtvyyK8dE8L/Go9lvX/YaInuWHcwRL8fI+1GZDxebftyRpbZiI+JkdJ23pWeREVavSZlMJln1lflh0FKv0r0rDllld0RwlAyvOlG6FRhkdToQRdbIEYEC9lhyLCdLdgvUpp92ir8WYFGK6WNbT4m/FmDVms2D2+EytPIEaefUy6pozCLm/VgdXPvIuAaTsuTZFRMWKxObmW86tqbueBLn9l+SgeXGib8WIN+M+Ompb+79T3D3rtx+b4aMKzpQ/LUA+aDN1BxJJ5GWmiaTO08Xfy1AVn25MUttHVp/XPy1AKv3CIqYp+36FHtFJnX4zKLzdSk6eaPFVPHXAmTlFxssEvD710Olc36zo1NOOgkp/kp2u5m7AAWAc4Bnxs8FMjbdXra2o6yU7Baon15fIO2de1u0aP/dqF+kY75+FrunXjt1U3oWHi5dPQdZnVjuzqV70tVzkAyuMD5LI6fLx69J76Ij5aU8fa0WSEtISUyRmWN+NbtJlx6TYwL4X2betAeS2rG7iJ2dCIgBZDXlpIPWTTo7dJfdP2zK9j716Xr5tPc34q8FyMKpK20erenT9dLDd5iMbzjJpugV8ycvlzb2PSx6gBQxu54/XGP9YcI8i77Xe5YdzFzzUjwdslugJgC3MafYuP1IOQeMs7ajrJTsFKjrp29JZ/cBMq7+uxadP6j8ePmgywyLzjUYDNK3xCjpW2KU3LlkfQbbN1pMlYBCwyT0VpjVdR/y4Ha4dHYfIP1Lj8mRRILh9yJlVK23pLVdj2zPOZXTfP+9SPhjtnyFh5vfyy3Mm/ZAblBaBMTk6CjSvbvIe+9Jasfucgt3eZXm4q8FyPyJc7N9ys9gMMiXQ34Qfy0gSy7oe5YdlLaOveTVF9+zOit0yI0H4q8FyLqZWy2uYzQa5cfX5ptdyedZFt3iyyE/SGu7HhL94PmNWvI8kVNTfOOtbTS7S3YJ1I2zt6VbwcHSp/grFolAbESctHHoKb+9Z9lT1sO9Fpa4vf6dhJhEaePQU+a9v8zqug8xGAzyWpPJ0tl9QI5svj22JVC6FRwsndz6y/Ftp7O9/Zzk++/Nf+2VK/9VpMLDzccg94hUasfuIiCB1JIW5YIlPPxPO/0IlvPOteRraom/FiA/vjY/20VKn66X/qVGy/AXJkp8VILN7RxYe0za2PeQt/w/krTUNKvq9in2ioys8YbER1vev8lkkpE13pChlSdYNIq6dPSq+GsBcmDtMatsU9hGTgnUwMcVazvKSskOgbp1/o687DVE+hR7RUJuPHji+dEPYmR4VXPqaUtj3k3r9510KzDI6i+jyJ+LvVnZk7Lk0zXirwXI74v329zG49Cn62XOW4syN9sGXw3J1vafBo8K0UORetyxZ87duyJ2dmJydJQW5YIFRLy9zeWhnZGn74nJ3kF+0GqIvxYgXw//KdsdU45tPSXtnXvL4ArjJfSm7SP6XQv3mdfOusywar3n2JZAae/cW0ZUe90qL9Y9Sw9YvP6VpkuX9i595Oc3LMuYrcgaOSVQsx8pvwK3gDXWdpSVklWBSklMkR6+w6SX3wiLNtim6dJlRLXXpWPefha7S6cm66SDax+ZOXqO1fYlxibJ8KoTpbv3EJtvNPeu3Je2jr3k0z7fZusTtdFolEkdPhN/LUC+G/WLTeKbW3hUkP5+088V4iQiMnu22aju3SU8/E8bH9qcaWf37mICmdfOHGh3Wr/vJD0te8P4XDgYJN0KDpYevsOyFOFi4w87bIref+r3c9Ixbz8Z/sJEi6/NoDdIv5Kj5c1WH1p0/mtNJlscFUaRNWwRqCdmHROR8Y+UEUBNwPqc5M+Qo5tPERsez7uLX8Wv7JMTpa3+chO3L9xj8sqJ1GhR1aI+7l8NJV2np0ZLy85/iC4ljcmdpnP/WijvLH7V5lxG2+fuQUQY/c2gbE3QtubrzZzcfoaxM4cy4aeRNqWjf1aIGBBjBKK/woZVR3GSrRz9YzFT35pLz06L6NJmJaMGb+DTD7bh7b4fMdxFxMAPP0BExP9vLyICfvghh42OizO/VnhCAsvy5dGAIY08GfJpH/5Ydoh3235KQkxitplStXElvt73EcnxKXw36peHD6xW03lMW5oENGDXwn0YjY9PNPk4avlXY9KyCdy5GMzmnyxLR2fvYE+DjrW5dvKmRfYWLlOIyOAoi21SPF2syy9uJgXIWvazp8y+lYfx8itAtWaVn3hu6M0wlk1bS7OeDan/Um2L+wi5/gAAPysyherT9Xzc42uCjlxj8sqJ1G1bw+K6j/L7ov2s/XYLTQIaZGuCC3QtLQAAIABJREFUvKuBN5k/eTmNX65Pl3Htsq3dnEJMcZB+BtGfgvTToL+A2ccHOjfFHHgLmPL6Y+pm5HQ2Gh1pWrUEZ/aVplHT0uT1rA9OdYmMdKJFCwgKMp83dmwOXYSHBwC681dp0QIiI8E7Iy9gZCS0aAF794LPtWvmg56e9B37MoVKePP1sB+Z8OL7fLJ5klUZa/+NUlWLM+TTPvzy5iJ2Lzlgc2LM5j1f5OCaY1w8eIXqzatYXK9hpzrUal2NJR+vxn9AU4uyVRevVJSUxFSiQmLwLlrwX8/18MpPQlT2iboie3niCErTtM2apm3KKFsxB43dmPOmZQ9Jccmc3H6GZj1ftChN9Q8T5uHg6MCobwZb3IfRaGTbb3twcLSnSFlfi+t9+8ovnNx+htd+HknTgIYW13uUPUsP8uWQH6jeoipvzsu+u+bFw1d4p/XHePp6MPGXV3Jl2mwRI2uWnyEp7GtMUS8hEfWQuFcgeR56fTrnrvdByz+VBG0mQ15fzAvNtlKi9lHylzlDhUbHKVnnAOUa7KaW/zbuxK9Ayz+DNPvBhEeVoFiR6zga5iKxQzCG1+f03ldpWncpndpfp0eAKecuqnNnxM4O+y2biA+6T+XKcPGiuVSubBbIPo2DkY0bwc4OOncGoFW/JnyxewoJ0Um82vA9bpy9nW0mdZvQgSqNKvDjhPnEhsfZ1Ebd9jVxdnXiwJqjVtXTNI1RXw0kOT6FZZ+utahO8Up+ANy7fP+J5+b3yk9aajqpyTqr7FI8JZ40Bwg0e6Q0woIcUNldsrIGdWr3eYujRsRFxou/FiALpqywqo+HzgnrZ1uebyb0ZliWsuqKmPPjdM7/f+ydd1xT1/vHPzcQ9l6C4sKNu+69ELWiFgngRtx71Lq1bq1Vq9ZV9957VOusC/dCQEWQKXtvEpI8vz8uQaRo7k2C4/vL+/U6LzCcc+4Jkvu55znPGExT28/XaNmKyNfvyd3Kh3xqTlS51o+mUbiIy+X5JM+7TLL0WZQV3pJkcTVIHF2b8uIGkzxrM8nFDykhPvcjzzxPT6IzZ4j09dnXGIbI0pL9vjDMiJydiQID2f4rVhDVrElkaJhLA0TXaefauRT5tC3J4mqwLbELybP3UUJ8dpl4/oU0Yr34Ag1+oKRnH8IVEhKIOteIoif4oeicqiQxoXHkaT+c8xkMV8JeRqidaWJW9yU0uvEvKo1dJFpF/RxHceobH5FILoyILu64prTvnVMPyIUR0aHlp1RalxbuoKxSHQGwB9AbQC8A9nwvom5TR6D+3naVXBgRpxutIgI+4A73BJ3+t4LIVceTlg9cx8s5QVFTKiEqifOYkiwbsJZ6GPTXaBXc1Pg0GuQ0jo3HUsN7S5Ns3EgkFIppwYxDJIkrFIr4JpQaMZUGeZ4nC/N0srcv3TOvVy/2e13dD+KkcDpQNBMT9qu9/YfXatUiMjb+8G8dHTl1bBdJw/ofoyh/T5LF1aC0t01oxdzfafdODVchjoujdBunDwv38CCaPZt1jFC8EScnovjS/38UuSPV8QgtiVwupwGVx3DOX1kaW6bupp5GA1Qqy3H6z4ucs7/kZuWSCyOiIyvPKO0rl8tpifcactXxpMeXX/BelxbulIlAARgBtlz7HgB7AUQAGMb3Quo0dQRqx6wD1F3Pm5N33Japu6mHQX/OWSPSEtPJu8JI8qk5kVNNGgVyuZx8ak6kXzov4DymJIqd4d4FR1WeoyR5Ofk0ocUs6mk0gN48CtHYvOogl8soPf4kRT7rRLK4GvT4ijelxt+ihHhJkRApdkbFPfPs7IjmziW6devDz0trurpEFhYf/l2tGnvv/1T/ypXZPi2bPKMjWyeR5H0tksTUptcPp5FcqkGhiotjhUmxxVM0gYB9/RPiRMTm8POw9aVZ3Zdobj3EBra6Ww9VuWyK39lH5MKIaMvU3aw7/YYNREuWsF+jPh/Y/uZRCK/SGv0rjaYhNSZQZmqW0v652Xk0ssHP5G7l8808lP0vUlYCFQzAuti/rcGhCq4mmzoCtXzgOhpcbTynvlPbz+flcrpj1gFy1fXinbEh6s17tWpEERHN6LqIBlQeo1HT3rFVZ8mFEZHfmUcam1Md5JI3JEv2IllcDcqPc6eRPrcIkH8kRPb2RFOmEFlbly4odnasSAmFnxadkgJUsSK3vjo6RJUdo2nVguWUFVafciKa0MlDl4rMkRox/0VFsRMtWcJ+VXIjV3D09zNq/42V5Or+W2yGiQtPVJ5jXOsNbH5IptxHv0y5QMCaNuNKj1GUiCXUTejNOWg+4O5r6ib0prWj/uLUPyY0jnqbD6al/f7g/F608EMVgVLuNQC8B1DczSULQLSqZ15fmuz0HJhYGnPqm/Q+BfZVbDn1JSLcOfUQjTrXQ/VGVXmtKep1DACgemN+4xRI8iUIvPsGbd1bQN9QX6U5SkJEuLL3Jpxb1UTrPs00Mqc6a6GcfaCUvoAsEoz5SuiVO4mlv7eHrS2DpCTWo83EBIiPB9at++CdDbC+AwoSE4Hu3QGplNu1IyOBaI5/3TIZEPneEdMXzUYH9wsIflcFP3WaBN28eWjeLA8TJmjALb1iRdZlcN489mvFipyGefzshmbdG2HjxJ0I9Huj5iJY2vZtgYq1K+CPkX8hLTGD9/jdK+Ix8d462FM2tqABZO4ewJw5yHfzgFQuQPUXJ5FRvw2QkPCfsUI9ISzLmSM1jpuTRr02tdFrjCsu7byO8MAopf3LV7NHlwHtcO/sY+Rk5vJ+b1rKBi4CFQPgIcMwCxmGWQDgAYBQhmF+ZhimFIfdb4ucjFwYmxsp7UdESIlNg015K07zRr56j5iQOLR1b8F7TdFvWIFyrFWe91gACLoXDEl+ARp3qa/S+NJ4+zQMEUHRcPXpqLE5VYHkGaD08aCspYB+GzA2F8EYupfqRaivD1SuzH6vCK8RCAB5CSe7vDz2Mb0seeZfCc27HcZvG0Zh+IDjuLC/L+rXeYOsr+TBrKOjg9kHJ8Ousi0Wi1Yj6X2K2nMaGOlj3pGpyErLwSrfTZCX/EUrof+9CaiNd+iCHITDHEdbjkTi5GVoEnYCVRGOIIMfYJ4c9kkffkt7C6Ty8CIc9KsIhqaG2D7zAKf+LoPbQ5JfgDsnH3K+hpayhYtAvQNwBkVRJDgLIA6AaWH7psnJyIWxmaHSfllp2SgQF8DKgVsc0YPzTwBApd3G+7dxsHKwhLGZcuEsDf+bQRDoCFC/fR2VxpfGv4fuQKgvRAev1hqbky8kzwKleAHiW2BMZ4Gx2ApGwD4wJCYCDRt+iAuytQVSUoD3JTyJed4zNYpUKsTc5b+ge79dsDTPxMNLIoz29ftq6zG1NMHiMzOQnyPG6uGbNTKnU4PKGLPGB48vPce1/be5D4yKgsHF0yChEPuqH0QaOWP77KOoV1eGV68Ac2dHlLt3BtDVBU6fLnUba2VvgdS4NM6XNLcxw8B5Ijy+9Byv7gcr7V+nZU2Ur26PW8e+3v+Zlo/hkkli0efal1ikOkjyC6BnqDz7QU4Gu63nag4MD4xCucq2sOYoaMVJT8qAtYMF73EKYkLjUa6yrcoCVxIiwvMbgajbuiZMLLi9f01DJAdlzABk0WAsd4IxHla0a1KIU3w8oKcHjBrFBquamn7YOX1LXL/TBl29z0FHvyrMMQ4kefLV1lLZuSK8Z/yEZ1dfIi78v6YzVeg11hUVa5XH5T3/ch907hwgl4Pp3RtH/Coiw6w7dCkLkuRQ2Nqy/582jSsCffqwTxnnzv1nChMLY+Rm5vFa648jOkMgYPD4nxdK+zIMgwbtnRH6PILXNbSUHVwCdWsyDLONYZgrDMPcULQvsThNUCAugFBfqLRffjYbqGdoYsBp3piQOFSoqVq0fmZKFkytTFQaCwCJUckoV9lG5fEl+ffwXYS9jEQHrzYam5M3OdsA8XUwpjPB6LcEgKKUQxMmsOIEABIJsGwZm1Fhw4avt1xlvA62xoELuwGBPShtJKgg4KutxWVwewDgt+P5DAzDoFP/tgi4/RqJXNMElUjhlC1ks0lYIfDjfjVrsl/T/rtTMjA2QF4WP4EyNjdGjSZOePFvoPLOACo7OyI9MQMZyZm8rqOlbOBi4jsO4DmAeQCmF2vfBVKJFEI95QKVx0OgiAjv38ZxyutXGlmp2eoJVGQSbCtpRqDysvPw17S9qNWsGnqM6KyROflC4tug7HWAQU/AaAgAVpwmTGB3TsePA3Z2H86bANbUN3ToV1kuJxgGaNHKBozVXkBgCUodBpIqP6wvC8pVtkWjTnVxbf8thSeu2nQe0BZEhFtH73EbUCKFU3yKGXJ1qqKc8GVRCqfERADFUjiVpFrDykhPyuQsNgoadaqHNw9DOGWLqFyXdUKJCPpu/MD+p+EiUFIi2kJEj4joqaKV+co0gFwuR36OGEI95SkHxXkSAOCUDFWcJ0FORi7sKn4+z1dpSPIlSH6fCks71Ux8RIT0xAxYlVPdRFgcRSLdkSsHq5yoVh2IJKDMRYBuNTBmy4rMep6ebGqf+HjWGSIxkb3pC5U/a3wTEAEeHkBSij0Yyz0gykPAw11fbT2tejVD7LsEpKvgfVcaFao7wLGmA149eMttQCkpnNwGVoe9WfRnUzgVp5tvJxibG+H6AX47wZpNq0FaIENsaLzSvg5V7QAAye9TeV1DS9nwSYFiGMaKYRgrAOcZhhnHMIyD4rXC1795Xt1/i7zsfNRpqTy3rbSAPczQ5SBm2WnZAAATS/67oEeXniM/V4yWvbgnoi1OTGg8pAUy2ChJgskVvzOPYGVvoVGHi8/xn0zhufsBWTQyZHOwecuHMzU7O/Zcwt4eELP5XhERARQUfJFlaoTgYGDXLiAptRJOX+qNqg6nsX2bZgSCL1XqaX5nUNnZkVO+OwBApUp418AdQhTgskEf3DoQjSq1bJGdmoVLF/LRuUY0fg/5CYxUCri7l+pOr2egh+Y/NsaDC095ZUW3rchaGxKjlJsjzaxZvy+tie/b4HM7qKcAngDwAWvSu1f4muL1b567Jx9AqKeLFm7KxUDGQ6Cy0nIAAKYcHSqKc/OoHyxszTiX8SjJjYN3wDAM2ro3V2l8ccR5Yjy6+Ayt+zTjlEhXXRRmO4U5h+RpoOwtkKA92nZu85+4oePH2R3UV9jYqY1esY14p07A4lVDYGyUh359jn+V9VRydgTAhkdoioq1KiA2NB7SAm5BZtUvbUSGjRPq5j+DTXMnlDtzkP3BmEG4Fu6EJngGODl9NnisVa9mSE/KRPCjUM7rtC20dCRFK3e1N7YwAsMwyEzRZjj/FvjkXYmIqhKRU+HXks1J2cQMw+xiGCaRYZjAYq8tZBgmhmGYF4XtR029kdJ4efsV6revw8nbTfEh09FVfqNWHNQacXBfL4n/v0Fo0bMJdHRVu+s+veqPOq1qwqaC+juody8ikJ8jRrMejdWeiwsKs92rV+xNOzPpCkCZGDDqZ7x6xf7M05Ptu2kTEBcHVKv2bXrqfQ49PdaZw8QE+OMP9v3KmNooQCMY6179KmuydrCEgZE+4sM048kHAA7V7CEtkCEllqPrt709zAP8WNunXA7rR6ypLuXKbTByOfv6vXtAuXKfnKKJawMAQOBd7sHHVvYWYBiGk4u6jo4OjMwMkZOuDdb9FlC6XWAYpm8pL2cACCCiUsq6FbEHwEYA+0q8vpaIVnNeoRokx6SiemOlWgoAIDl7eMxlJ1EgYcWMy26rOBJxAdKTMuHg9OkPoDISo5LR2EUzAbophVH5dhpyuFCGwmynqKt0eH8oBnkY4syF2nB2BgYPZvspdlrAx1khvhckEnbXl53NNoUbtVC/OiC+9VXWxDAMjMyNkJulubISivhChYMRJ+ztgRMngOho6P95AFjzDJKxE4DZvpyyZJhZmcLASB9pCdxNpQKBAHoGQkjyJZz6C/WFnHeFWsoWLh//4QB2ABhY2LYD+BmAH8Mwgz81iIhuA/hqJ40yqQzpiZmwLs8tTknh3cQIlNc9kknZaFBdIT+BUjzBcV3Tf68rQ2pcGuwcNSMoafGsQFnZa8bhojRKnjkpRMraGqji+A6v3laDjY0A1asDs2ez4tWxI7tzAr5u4K06lLbrY3QcAXkSiL5O7SFDEwON1j0yKPR45SVQCipWhN7gAQAASRdXzimcAMDCzgxpifzqUrECxe0AU1eoA6lEK1DfAlwESg6gDhF5EJEHAGewZUpbAJipwjUnMAzzstAEqLnyryXITMkCEcHc1oxTf4X3LZfCfDIpe/cR6PB7vFc89VnYmfMapyA9KRNyOXHOdqEMxUGw4mBY05Q8c1KQlMSGxThVjkJYREXk5bFxmfr67M7KywuoXr1MllRmmJn996xMkfFC4UadmVNYzFL2OcND2WFgrI98TQqUEZsHUpwrVmm8ngHrkslVOBSYWpvyroIrNNDjJ1DS78yu/D8KlztsFSIqbrhOBFCTiFIB8PWp2gKgGoBGYNMlrflUR4ZhRjEM84RhmCdJSUk8L4Oi/HtcI88VusQlTkRQuMsino/3JhbsmhRZK/iiGJ9V6EWoLoqzuVyewY9cKXnmlJgIBAUBTZqwO4yEJBs4lk9GdjYrTmLxB5G6fLlMllQmMAyQmfnxrsne/r+VcP/aUngGIii7HevnKBAXcAqj4IpEzH78uQTClwYfz9ni5GXl8T7/lRVIOV9HJpV/lZALLf+Fi0DdYRjmAsMwPgzD+IDNxXebYRhjALz22USUQEQyIpKDNRV+0hWNiLYRUVMiampryy3DeHH0DPRgYmHMOXeXYuekOIv6HArTnuIDxhXrwkS0KbGqWT71DfVhbmPKyRuJCxbl2J0cH3s+HxTmPMUN2tmZDbxVCFHdBk5o2ewdnJ0/vCYWf3hY+F4o+UxjZwf4+7Nfi/8ODIUxEEtMwQi47eo1TV52PgyNuWVK4UJ+DrtzMjBWLaP+h9hDfgKXnpgJC1t+VghJfgHn60gLpNAVagXqW4CLQI0H6/DQCEBjsE4P44koh4g68bkYwzDFUy+4AyXznGgWKwcLJHMUA8XZE5cMzTqFf7x8BcrI1BAGxvpqZZa2cbRGYhT/HWVpWBYKFJ8EnHxR3KAVyV1lMtYU9vQpYGlbDQKk4uaNpCKRMjIq+8zjmsKshM4oHrqnTmXftwLF76DXj9HQN6rw5RZYgrysfJXFpDQU6cFUnVNSKFD6HHJlFo0RFyA7PYeXmZyIIM6TcBcoibToM67l68IlWSwR0QkimkpEUwq/V3oLYRjmMID7AGoxDPOeYZjhAH5nGCaAYZiXADoBmKr2O/gMNX5wQsDt10VnRp9DcZ4klykXKMUHUpXD4RpNnPDs2kuVU87UblYdAXdea+Swu0q9ShAIGLy89UrtufhgYcEKFvTaAxDA2nAH/v0XmDv3Q1Du90B+sf8CHR1WfO3tgWHD/tvX1joFlR3uAXqqBWirS05GDrLTc4p28ZpAkYdP1TPR9CT+Z6AK93KnBpWV9PxAdnoO5DI5p+sQEXKz8mFkyj+ERIvm4ZIsNothmMzCls8wjIxhGKVh1kTUn4gciEhIRI5EtJOIBhNRfSJqQES9iShOM2+jdNq4t0BmShZe3lZ+A1akQ+KyKzItzCCRk57De00dvdog6nUMIjgUUSuNTgPaIj9HjPvn1I+VtrQzR902teF35pHac32KxET2/KlkmYxOnYCktBqAYV8g9wDSU6KwejV7k/8eXMsZhnUn19P7EKtlb88GFpd0CgEA5B0BUADG6JOOr2VKZGGRzMp1HTU2Z3RwDOwq2ahsNkwqzOzAJ8zhwfknEOoLeYVaKEziiowSnyM3Kw8yqazMHIe08IPLDsqUiMwKmwEAD7DxTd88zbo3glBPF08u+yvtq1N4riTjIFAfnBX4C1Q7jxYQCBjcOn6f91gAqN+uDhiG4Z5iRgltfmqO8IAoxIRq/llBUSZDcf5U0mmgYUMgNX8yCLoIfroKYjFBXx94+ZLdTX2LQmVoyIosEVu6SCIBRowANm5kz50U7+14sYQRRGJQ7mFArx0YXW5xeZomqjCDRGVnDQrUm1hUrK26yTIxKgkGRvqcEycTER5ceIrGXerxEsWkwp2eLYfcmYoMEqZagfom4H0LIKIzAL5O2mueGBjpw9jcCLkcSjjr6bMCxSWYz8jMCEJ9IdLi+Z/dWJazgF1lW8SHq+ZqLBAIYGplgvREzeQKa+fRAjq6Oji0/JRG5iuOokyGvj5w7NgHp4Fjx9jX4uOBcRPL4VHgGPR0uYxZkw/gl1/YsadPszFQCpH6Vhwn8vLYs6devYAXL1hhmjWLLQKrOGvauPFDUViiAlD6FECeCMZ4xFdb94ubgTCxMIZ9VTvlnTmQlZaN8JeRqMbD1FaS8MAolK9uzym0AwCeXH6BuLAEtPNoxfM6bP7B8tWUB8inxLBn1mUZG6iFO1xMfH2LNRHDML/hQ3Xdbx5dPV1OQXeKoEOFZ9LnYBgG5auVQwyH7MilYWploparuF0lGyS951iHR+lctvCc1gtX9txEwJ3XGplTwcaNH5K9enmxO6rERPZ7sZj92caNQMsuoxER2xmLZ6zAjcvP0Lr1h13Xv/+yKYO+BccJhRPEu3dsIlhb2/9WJ7ezKy5OMrYIo/g6GLMFYPT53Vg1RW5WHvxOPUIHr9Yac5++e+ohCiRStFexArMkX4LAu2/QsGNdzmMe/v0MRqaG6DKwLa9r+d8MRKU6FTh5/kUVmkIr1fl6zixaPsBlB9WrWOsGIAtAn7JclCYR6guLUhN9DkUdKK4xQRVqOCAmRDWzmKmVCbJS1ROoxEjNCBQADJwvgpWDJU6uu6CxOYEP7tYKs1e9emxTiI/CFZthBKja6HdAUB7Hd06CoX4SdHWBLVvY1GzZmgn7UhlDQ3adMtmHJLBv335sxisJkRyUOR/I/xuM6QwwRgO/zGJL4e6ph8jPFaPrkA4am/PG4buoUMMBNZuoZrJ8df8tJPkFaNyF+1lSbnYeTK1MONV3UyAtkBYKIbfkzBFB0TAw0v9i6b+0fB4uZ1C+xdpIIlqmJAffNwXXHFwKrx2ugb2ONcsjNjQe+SpE0ZtZm6plorOvYof48ESN5QszMNJH4y71EHT3DSePRz4UdzNPSvrgLPHvvx+7YjMCM+hab0Q520zcPjsA9esEoXNnYHVh1sbiD/5f6mxKYXnKywNGjmRFVSJhSxUVN+OVhOSpoPSxQN4JwHj8VzXt5Wbl4cjKMyhf3R7OrWpqZM6ge8Hw/zcInfu35WyeK8nNI37Q0dVBgw7OnMfkZuZxrnit4NHF58jPEaNxZ24C9fbpO1Rydvwi2f21KIeLic+RYZjThZnJExiGOckwjOZOWssYQ1NDTgkyzWxMIRAwRfnplNHEtSEKJFI8ufyC95oqVLNHQmRSUSQ+X5xb10J+rhhvn7xTaXxptPdohfSkTJXej6ZghLWhY70Ltrb58DvvhdFD9iMlhcAwH7I02NiwThR2mjlKKZWOHVkRio8vqlAOB4cP50tnz35GnMQPQMm9AfFdMKbzwJhMKruFKkEul+N3nw2ICYnDlL9GqSwmxclKy8byAetgX9UOHj+7qTRHeEAkLu28jl5jXDlVGlCQlpBRFFzOBZlUhh2zD6JCDQe06t1Uaf/4iEQE+QWjdZ9mnK+hpWzh8piwG8A5AOUBVABwvvC17wIjM0NOqYV0dHRgaW/BOctDg/Z1YGplopKLtmOt8pDL5Ih7p9oZVqNOrN3++Q3NxTk369EI5jamuLJPs9m2S3Mz/6jEdwk2b2+KGi3O4tqdNtiwfAnO7RuNihViYGnJilJyMrBo0YcKu+rwKZFLTAS2b2d/fvv2h91S8fOlkhBJIc9aB0rzARhjMNbHwRgP0YgoqMqhZafgd+YxRq8agsad1c+AT0RYO+ovpMSmYc6hybzEpfgcW37eC2NzIwxe6MlrbFp8Oi/nhYs7riP6TQxGrhzEKbHzjUN3AbDl7LV8G3ARKFsi2k1E0sK2BwD/3ENfCWNzI87xStblrZAUw02gdIW6aNmrCe6fe4LMVH6JKxWuuRFBqrmKm9uYwalhZTz8+6nKAb8lEeoJ0al/W9w/+xixKgpnSRTi9Ck389JEqmNHIDvHCr0Hb8XkefPQofUjBN76EVNHrYVEnAFnZ2DBAlYs1H3rimszDGBcWHtSkQtQsbbPiRLA3nBJ7AdK7QfkbAYM+4KxPgVGyN10VRY8vvwC+xYeQ5dB7eA+WTNl155de4k7Jx9i6JJ+qN1ceZXq0vj3iB+eXw/AkIXeMLPi7spNREiNS4MlxwwSaQnp2LfgKOq3q8NpR5SfK8bl3TdQr21tOFRVvRyOFs3CRaCSGYYZxDCMTmEbBEAzyeC+ANYOlkiOSeV0I69SryJCnoZxSncEAH0n9YQ4V4w1w7fwEoqq9SvB1NIY98895jymJD2Gd8HrByG4c/KBynOUpO+UnjA0NcTcnss1UlH0+PGPvfFK5qYrGS9U3MOPYRhs3DkE9TpcxIUrnTB3yha8e9gZF45uxuVL2aXuvooj5JHe7eZNICwMH+UELLm2krCxTSdBKb1Bab6ALA6M+R8QmK8AI+BfaVmTEBF2zDoAh2rlMHXraI3t4p5e8YdQTxc/Teyh0vjwgEj8MWILnFvXgtuYrrzGxoTGQ5wnQaU63E4Xlg9cj7zsfEzYMFzp+ycirBu9FXFhiRgw14PXurSUMUT02QagElgTXxLYTOZnAFRWNk6TrUmTJqQqJ9ddIBdGRGmJ6Ur7Xtp5nVwYEUUERXGffy07/6n1f/Na19rRW8nNeCDlZuXyGqdAWiCl0Y1/oX6Oo1SeozQC7ryiHvr9aGr7+STOl6g938aNRAkJ/309IYH9Wcm+AJG+PvtVR4f9ChDVr/OaTu8eQ7K4GpQe2oiObptIg0SnycoytahPyWZrW/rrJduKFR/W5OzKuFewAAAgAElEQVTMvubpWfr7kUvjSJ71J8kSWpIsrgbJktxInnOc5PJ8tX9XmuLeucfkwojo8p5/NTrv2CbTaVqnBSqP3z3/MLnqeFJqgvLPYkmu7LtJLoyIwgIilfaViCXkwoho19xDnOZWfIYPLD3Be11auAPgCfG89392B8UwjA4AD2LTEtkSkR0R/UREkWWsmxqjfDW2Bk/sO+Wlruu1qwMAeHmbezyQ++Qf0bJXE2yfsR/Bj0M5j3MZ1A75uWLcPqHaDkhHVweTNo1Ackwq9sw/qtIcpVGvbR1M3zMBAXdeY9XQjWp79SnObkpSmuls/Hi2RIdYDNSsyebsU/A+vjZGz9yClj2O48jpnmjd7Bn2bpiB+IBW+Pf0AEwfvw0NnF9DIPiwXisroFu3j69RrRqbpcK6lKQCxQNtjx1jXyN5Dij/CuQZ8yBPcgUltQdlbwCE9cBY7gZjfQ6MkQgMo7kkrOogERdg/+LjsK9qp9GzlMyULIQ+j0CjTty84UojOjgWDtXsOZvpivP6/lsYmRpyik/KTGHjEmwclWeOePv0HbZO34c27s3Rf7Y773VpKVs+K1BEJMN3FPNUGlXrVwIABHIIQq1Q3R4Va5XHqXUXOHvYMQyD6bvGw8rBEr/2Wcn5hu7cuhacGlbG5im7Efo8nNOY/8zRqhZ6je2GU+v/xsGlJ1WaozQ69WuDEb8Nws2j97DQYxVkpZWHLSOOHQNWrGDPhVJSPjhWpKUBlpZAX++GkBouxdYTt+Ex4gSWrx8Lc9MsLJ21Fs+v90FqcFMEP/TFnys2oGI5P7yPjIaxUQ4AQq1abFzV0qWsCa9mode1qWmhJUGWBFuLRxjnewTyzOWQp/qCEluA0icA+RcBXScwpjPB2PwDgeV2MPptvqoTREkyU7Iwy3UJQp6GwXdJP94Vnz/Hnl/ZhyBVPdxkMhkC77xGtUZVeI/NTMnCv0f80LhLPU6BxorURtYcktgG3H4NuUyOCRuGa13Lv0WUbbEALAObe68dgB8Uje9WTZ2mjomPiGhcs5k0tukMTn0fX37BbveX8NvuX9p1g1wYEb0PieU8JiEqifpXGk2icsN5jSuOVCql34b8SS6MiI6sPKPSHJ9CYR49/Ntpjc77OYqb2Zyd2X+XfC0w8MO/FWbAihViaJDoLG1csYCC7vQiaWxN1gRX2LLD65Ekrj3Jkn4iWbI3yZLcSRzXk1JCXEiW0J5k8Y0+6i+Lb0CypN4ky1hG8vx7JJerb+4sS6KDY2hIjQnUw6A/3Th8V6NzP78RQC6MiLb8vEflOV7efkUujEiltW2ctJNcdTwpPJCb6f3KXtYcGPXmvdK+O+ccJFddL5LL5bzXpYUfUMHEx+URS5HLZHFxXcN3ko8PADp6tca2GfsRExqHCtUdPtu3qWtDtPdshUPLT6LzgLZwcOLm0eNYo9CUGBqv9BoK7Cra4LfL8zG13XzMcl2CtXeXwoZnOQQdHR38smscstNycHjFKbhP6qGxqqnuk35E0L1g7Jl/BI271EetptU0Mu/nKM2xAmC/V3gELlrEflUUOLS1BfIl5XHgRG8cP98bYjGwZnU2/G76w9wkDjbWqajkmIZhQ1Oho5MKkBgQmEJXRw8WBvoAowcwRmB0qgC6TmwT2INhvo8n6pe3X2Gh++/Q0dXB6hsL4NyqlsbmzsvOw5oRW1C+uj2GLumn8jx3Tj6AUF+IFj1/4DXufUgczm+5gh7Du6BK3YqcxkS9fg8dXR1On93M5CyY25h+UzthLcXgq2hfo6m7g0qITCRXXS+a0XURifPESvsnvU+m3maDaUS9qZQan8bpGmmJ6eTCiGj/4uO81/fmUQj1Mh3EeZdXGk+vvSyTXVRmahb1rzSafrL0obunH2p07k+hzLEiIYHI3v7Tuyw7O6JatT44SiicJRR9/5d4etWf3IwHkm+dyRT7Ll6jc2ckZ9LktnOpq8CTXt5+pfI8ir/vBe4reY1Ljk2l4XWnUG+zwZw/h0REk1rPoZENfubUd/aPy2hUw2m81qVFNaDCDoqLiU8fwAAAcwD8qmh8L6ROU1egiIj+2X2Dugo8afaPyzh5pz2/EcB+8GtP4vzhmNphPg2tNVElc8HxNefIhRFR9FvVTH1yuZwWeqyi7nreFPoiXKU5PkVsWDyNazaTXBgRbZq8iyTir2vuUnj7lRSchASimjWpyDvvUybC/xWRenDhCfUw6E8jG/zM6wbOhdiweBpaayL1MOhPN4/6qTxPRFAUuVsPpUFVx1LS+2TO4+IjEmlI9fHkZjKQXvwbyHlc0L035MKI6OS6C0r7yuVycrceSquHbeI8vxbVKSuB+gfAUQAzAExTNL4XUqdpQqCIiP7edpVcGBHN672C001WYTc/tPwUp/kVbupB997wXlvsu3iV3NWLk56UQV4OI2hEvamcdop8EOdLaNPkXeTCiGh885m8bjZlwad2WStWfFq8FCJV0r39e+T2ifvUXc+bxjWbSRkpmRqff1qnBfSTpQ8F3H2t8hyxYfHkXWEkeTmMoJjQOF5jxzefSX0shlDQ/WBe4xZ6rCJ3Kx9OoRdRb96TCyOiizuu8bqGFtUoK4EK5DupppumBIqI6Oymf8iFEdHvvtzuUl4OI2ilzwZOfXMyc8nNeCDN6LqI8nL4x8X41p5EY5tMVyv+6NGlZ+TCiGiRaBXlZuepPM+nuHPqAfUyHUTeFUbSg7+fanx+TcAn9up7o0BSQPsXHydXXS+a1GYuZadna/waCicDLruQTxH5+j0NqjqW3K18KOxlBK+xmalZ1FXgSfsWHuM17v75J9RV4Ek75xzk1P/YqrO84x61qE5ZCdQ2APX5TqzJpkmBIiJaNmAt9bEYwqnvItEq6uc4irPZ7sLWK9RV4EkTWsziHZB486gfuTAiWuK9hmQyGa+xxTm+5hy56njSyAY/835y5ULI8zAaXncKuTAi+m3In5SRrPkneC3/5Z1/BI1tMp1cGBEtG7BWowHaCi7uuEZdBZ70S+cFau3CxzaZTiK7YfTmcSjvsee2XCYXRsRr7N/br5GrjieNazaTMlOzlPYPC4ikHw3706zuS7QefF8IjQoUgEAALwG8AlAAILjw3wEAXvK9kDpN0wJ1bDV73sPlD1nhPh7yPIzz/H5nHlFPowE0uNp4ig6O4be2wqc6dVx6iVh3eXfroeRuPZQSopLUmqs0xPkS2j3/MHUTepOo3HC6dfyexq+hhUUiltDeBUeLfte3T9xXPigykmjDBqIlS9ivUcp3Cac3XCQXRkSzeyyl/FzVM2O8ffqOXBgRnd5wUaXxE1rOphH1p3ISDrlcTvsWHitaNxfRzsvJpxH1ppKn/XCNn91p+TSaFqg0AJU/1fheSJ2maYG6c+oB5ye01Pg0cmFEtH3mfl7XePXgLYnshpG79VBeuxi5XE4bJ+0sisVS5+kuOjiG3EwG0tQO88vEFEREFPoivOipfl6vFSo7eWgpnUC/NzSi/lRyYUS0YtB6Sk/K+Gz/XcvjKM/Ng0ggoOL5nOQCAYU08iCK++/fokwmo/2Lj5MLI6Jff1qplolZJpPRikHrqYdBf04PgCVRODkcX3OOU39FjNaKQeupQFKgtL9UKqWVPhvIhRHRkysveK9Pi+poWqCe8Z2srJqmBSohKolcdb1o6y97OfVfJFpFLoyIjv7Oz4U78vV7ctX1om0z+ImbVCqlFYPWkwsjoqX9/uD0wfsUV/ffIlddLxpUdSzvA2euSAukdGzVWeptNpi663nTlp/3UFZa2Qji/xdiQuOKbqT9K46me+ceKx2za3kchcKJFSShkMjDg2jOHMpz8yAJdIkASrdxIor/4I4uzpfQvF4reN3kP0VOZi4t9GA/K1w/W8W5eeweuRkPpP4VRysVYgXbZuyn7nrelJ2Rw2l9c92Wkwsjon2L+J1vaVEfTQvUewA/f6rxvZA6TdMCRcSeQ/U2G8zpRirOl9AS7zXkwoho2/R9vHY1c3ouowGVx/A+U5LL5XRg6QlyYUR0dtM/vMaWJOjeGxpUdSy56nrRgaUnSCqVqjXfp0iJS6XVwzdTV4Enedj60rktl0laUDbX+l9ELpfT06v+NK/3Cuoq8KTuet60Y/ZBzmdNeW4eRAA9wQ/UqUb0Ry72FRBNgQY/sB95Dw8iYnc7S/v9wZrj/ryo1m79fUgsjag3lVx1POnEH+d5zSWTyWj3vMPkwohoUpu5lBKXynmsb53JNMN1Mae+K4duIFddLzq35TLn+bVoDk0LVFxhzNOC0hrfC6nTykKgQp6FkQsjooPLTnLqL5VK6c/x24s8ALk+aV47cJtcGJFKgY5yuZymtp9PXuVHqu2Rl52eTUv7ryUXRkTTOi3gdRPgS8izMJraYT65MCIaUn08HVx2kvMT8f9HxPkSurD1SpHjichuGO2ef5iSYlK4TxIZSSQQkFwopE41oksNUk56FkWkq0skEJAsIqLo7/nYqrNqrf/RP8/pJ0sfcrceSk+v+vMaKy2Q0gL3leTCiGj18M28zIvRwTFF4soFn5oTaaHHKl7r06I5vikTH4BdYMtzBBZ7zQrAVQAhhV8tucxVFgJFxO5uugm9OT89yuVy2rfoGC839dysXPrJ0oe8yo9USaQC7r6mrgLWIy/iVTTv8cWRy+X0z+4b1NNoAHk5jKDnNwLUmk/Zte6cekDTOi0gF0ZEbiYDacesA1qhKkZmahYdXnGKvMqPJBdGRGObTKcre2+q5j23YUPR7igh4eNSI7a2xdzuPTwoFsb0c43hKpviivP26TvqJvSmUQ2nUWwY/0wWijIah5af4rXrinz9nnzrTKbuet6UEJmotH/021jqKvDk/ECqRfNoWqCe852sxPj2YBPLFheo3wHMKvx+FoCVXOYqK4HKTs+m+X1+IxdGRCuHbuB8Y/jddyO5GQ/k3P+dfwT51JxIrrpedGzVWd6mlEeXnpHIbhi5GQ+kSzuvq+0W+84/gnxrTyJXHTbWpKxMfgoigqJo2YC11FXgSW4mA+mvaXvJ/1bQV89I8bWIDYunjZN2kpvJQHJhRDSz2xJ6etVfvf/XJUvYj/OcOZ8UKLlcTue7jyM3/ES9Dbzo0q4bal1TnCem4XWnkHeFkSoFC0ulUhpaayKNajiNlwn89skH1NtsMInshnHOMrF62Cb60bC/1mvvK6JpgbLiO1kpc1QpIVDBABwKv3cAEMxlnrISKCLW/q1wUx3ffCYn0Xn0z3NyYUS8AlWzM3JokedqcmFEtMB9JW8ngqSYFPqly8KiGJicTPViYHKzcouyoP/SeQE/c5KKRLyKpmUD1pKrjie7qzIeSLO6L6EjK89Q8JNQ1c+rVHCp/pLk5eST/60gOrLyDM11W06uOuz50kqfDfTOP0IzFyncQeW5eRRlzChu4qtbK5tmu7EODDPQjhIWr1b7klt/2UsujIgeXXqm0niF+ZuT2zyx5sDtM/eTCyOiCS1mUWI0t2wm8RGJ1E3oTRsn7lRpnVo0Q5kE6qrTShGo9BI/T+MyT1kKlIJzm9kME35nHyntK86XUC/TQTS++UzOHxIi9gn25NoL5KrrRXPdlvN+epVKpXRg6Qly1fGkKe3macRT7p/dN8jNeCD1tfGlSzuvqxUgzJWstGzyO/OINk7cWXTuojh72TJ1N+fMA6q4VH8p5HI5vXkUQquHbyY344FF73FI9fG0bcZ+zaeKiowkuUBAEgipAqI/ykPYuOITaoMx1IXxomOC2iRnBGqJuLRASvsWHqOuAk9aO3qrSnO8vP2KTctVfyrnv7mdcw6SCyOitaO3cj6rSo1Po6kd5rOmwDKIB9TCnf8pgQIwCsATAE8qVapUFr+vj5CIJeTlMIJm/7iMU//bJ+5TL9NB1NfGlx5e5PcEeeKP8+TCiOj6wduqLJVuHvWj7nqs3T85Vn1nh4hX0TSpzdyicxB1MlerQnJsKl0/eJsWidhkty6MiMY2nUFnNl6ihMjEUoVcFZfqsiY9KYNuHL5Lv/tuJO8KI4t2iauHb6YHF56U+flbSCPWiy/Q4AdKehZFSTEpRbv2Lvrj6SRaUXEvPlWIfhtLE1rMKnJL55vSSyplxc1Vx5OG1JjAeQcpzpdQXxtf+vUn7hnR/W8FkVf5kfSjYX+6uv8Wr3Vq0Tzfg0B9cya+4igcILhmf4gOjqFRDaeRCyOiHbMOcDZRSaVSmtByNvW18aW0RH7pkBQ8vvyC3EwG0iCncSoXOyyOXC6n64fuUP9Ko8mFEdFirzUqHXqrS3pSBp1a/zeNbvxL0a6jj8UQmtJuHq0fu43ObblMz28EUHAHD0qDHj3i6FKtKaRSKSW9T6aAu6/p2oHbdGDpCVozYguNazaTugpY06W7lQ8t8V5Dl3Ze/7LxYHFxlG7jRPkQ0FFBbeot9KAfhZ50sK4HiXWE7O/DSXXRfnjxGbkZDyR3Kx+VMpynJqQXeXeuGLyel5n6xuG75MKI6PFlbsG1J9exlgqfmhM1Z0bVohaqCBTDjisbGIapAuACEdUr/PcqAClE9BvDMLPAnnPNUDZP06ZN6cmTJ2W2TgVpCekYWHksWvZuitkHJkGoJ1Q6RpwnxpYpe/D39mto2LEuVl6ZDx1d5WWpI4KiMfaH6Wjs0gBzD02Gsbkx7/W+eRSCuT1XQKAjwOwDk/CDSwPec5QkP1eME2vO4+jKM5DJ5PCY0hP9Zv2k0vrUJexlJIL83iA8IAphAZEID4hCbmbeR30IDArIFHJdU8gYQ+QWWMDApgKmTzRCncVjYCvPhcmrFzCoVe2zRemICBnJmUiMSkZSdAoSo5IRH56I8MAoZCRlIjs9B9npOf+5PgBYljOHY63y+KFLAzRxbYiaTZ04lSbXNHK5HFc3nMPu2QeQks+gGcVhPF6gAnIAgQBwdwc2bQLKcSvCqYCIcOPQXawZsQVV6jpi8dmZsKlgzWuOvOw8LOy7CoF332DKX6PRdUgHzmOz0rIxq9tSZCZnYm/oRqWl2ZNjUjCg0lg0cW2AeUd/hrGZEa+1aikbGIZ5SkRNeY0pK4FiGOYwgI4AbAAkgI2fOgPgGIBKAKIAeBJRqrK5vpRAAcD+xcexb+Ex1GxaDXMOTeZcHffspn+wceJOTNs5Dt19O3Eac27zZWyatBO2FW0wc99E1G9Xh/d6o97EYKH774gOjkWvsd0w5g8f6OkrF1ZlJMekYOecQ7i2/zbMrE0xcK4H3Ma6amRuVSEiJEUn4/2qv5CxcRsyGrVAbGcRtm/JhCwvE7rIh7FuCowFcZAVyD4aK9ARwNjcCCYWxhDq60IqkUJaIINUIkWBRIr8HDEKxAUfjdE31EOVehVhXd4KxhZGMDE3homFMSzLmcO+qh3KVbGDXSUbGBjpf8lfQ6kE3QvG5im78fbJO9RpWQMjfnZFg4QgIC0NsLQEevcGKnKrSFuc5JgUrB+3HQ/OP4Vzq5pYcm4WzKxNec0RHRyDRR6rEf0mBlO2jkaP4V04jw248xorBq1Halw6ZuwZj84D2ikds3zgOtw9+RDbA//g/PnVUvZ8UwKlSb6kQAHA3dMP8ceILZBJ5Zi8ZSSnDwURYXzzWchKycLu4D+hK9TldK1XD95i5eA/EReWiMG/emLwAk/e6xXnibF73hGcXHsBtVvUwK/Hp8HWkd8T7qcIfR6OHbMP4ukVf9hXscXQJf3RqX8bpU+xZcrSpcD8+cCcOUicvAz16gFJSeyPbG2BF8+lkGUnIHb+70g5fh7Z3dyQ3aQlcjJykZORC4m4AHr6QugKdaEr1IGuni70DfVg42gNu0o2Rc3M+tsuBS4RF+DRxWe4svcm7p97Auvylhi5cjA6D2ir9rqJCJf33MRfP+9BgbgAvkv7w33yj7x3hndOPsDqYZuhZyDE7ENT8EOX+pzGyaQy7F98HIeXn4K9UznMOTgZtZpVVzru8eUXmNNjGQb/6okhC714rVVL2aKKQJXpGZSm2pc6gypOQmQiTWk3j1wYEf2z+wanMQ/+fqpSFufcrFxaMZjNvXdm4yVVlktEbHxIL9NBJCo3nHdEvzKeXvWnMT+wSWFHNZxGZzZeUivjtVoocakuKlbowToNfPdFoEoQ8Sqa1o/dRu5WPuTCiMjTfjjtnn9YY+U3UuJSi/LzTe0wX6UEwBKxpMgNfULL2by8XWUyGc3+cVlRQDzXs6rs9Gwa5DSOfGtPUivhrZayAd+ak4Sm2tcQKCLWnXZ041/Iw9aX4iOUR6vL5XKa2mE+dRV40paf9/DKCCCVSml2j6VFcU6q1liKeBVNvnUmF324NVmrSSaT0fVDd4ocQ7zKj6QzGy99+YDbz7hUKwSrc40okhem9fnW4qJUJfhJKP3uu5FcdTypp9EAWjZgLT269Exj+Q5lMhmd/+sK9bEYQj30+9HJdRdUCjvITs8u8gpdP247L7GQSqX0u+9GNgXTam4ZzYnYjCuKfJMvbnIvEa/ly6EVqDIgOjiG+lgMoTE/TOfkUpubnUfrx24jF0ZEI+pN5VVHqkBSQPsWHaNuQm/ytB9Od08/VGnNeTn5tGPWAeom9Ka+Nr50ZuMltbJUl4b/rSCa2p71yBpYZSxd2nVD42XmP0dJl2oFCQmsOD1B2XjxfWmyM3Lo3JbLRSVNehoNoM1Tdqvs/fkpwl5G0KTWc4oCt6PevFdpnqy0bJrQYhZ1E3rTv0fu8horLZDS8oHrirKNc4kTlMlktHv+YXLV8aRBTuMo6N4bldatpezRClQZ8eACW0p6xaD1nINrH158Rl4OI6i7njfvujOhL8KL3KxXDFqvsukm7GUE/dKZzYXnW2cy3Tv3WKPVQ+VyOT2+/ILGNZtJLoyIuut504SWs2nzlN1086hfmSakVbhUE8AmQPXwIJo9m8jDg905qelS/TWJfRdP1w/doVW+m4qCfEc1nEZnN/2jcbf1jORM+mvaXuom9CYPW1+6su+myn8jGSmZNLbpDOqu580p4L04BZICWuzFVgw4vOIU53F/b7/Gpirz2cCp5IaWr4dWoMqQA0vY0heLPFdzNptlJGfSiHpTqbfZYLq44xqvD36BpKAooNGn5kSVzRZyuZz8zj6iobUmkgsjolndl/Cu8svlGo8vv6BtM/bT1Pbz6UfD/uTCiMhV14uW9l9Lz28ElE1Z7bg4VphKZJIggYB9/TsSJ7lcTk+uvKAZrouL4r/cTAbSmhFb6PXDtxr//UkLpHR6w0X6ydKHugo8afXwzWqZg59ceUGDqo6lHvr96MGFJ7zGRr15TxNbzSYXRkQn/jjPedyNw3fpJ0sfGt98prZs+3eAKgKl9eLjiFwux7Hfz2LvgqMwszbFrAOT0Lizco+khMgkrPLdBP+bQWjWvRGmbhvDy8Pu+Y0A/DHyL8SHJ6LnSBeMWDkIJhb8Y5KkBVKc23QZexcehSRPgg7erdFzZFfUa1tb455q0gIp3r2IwL+H7+LynpvITs9B+er26DGsM1yHdoSVvaVGr4foaODcObVdqr80MpkM4QFReHnrFa7svYl3LyJgZW+Bnyb+iOY/NkZlZ0fO3qB8eHn7FTZN2oWwl5Fo3KU+xq4diqr1Kqk0V05mLrZM2YPLe/6FY00H/LJrPOq2rsV5fMCd15jdfSn0DPUwadMIdPRuo3RMZkoW/hy/HbeO3UftFjUw5+BkODjxi+3S8uXRupl/AUJfhGP5gPVIT0jHztfrYWlnrnSMXC7Huc2XsXPWQegIdTDmj6HoNrQjZ2HIy8nH/oXHcHLtBViUs8DEjcPR1r2FSutPjU/DwaUnce3AbeRm5qFi7QroOdIFXYd04B3fwgVxnhh3Tj7ExR3XEHD7NQQ6AjRxbYiq9SqhQnV7lK9ujwo1HGBd3vLruq6XMRJxAVJiU5EUnYLgR6F4efsVAu++QXZ6DgCgSr2K8Jjihs4D25VJrBkR4fWDtzi94RJuHvGDXSUbjFnjg7Z9W6j8gBJ0Lxi/Df4TiZFJ8JreB4MXeELPQI/z+IigaExtNx+W5cyx6sZCWDsof3B5ePEZ/hixBZkpWRi8wAveM/pwCozX8vXRCtQXIvJVNMY0no4GHeti9oFJsLBVLlIAEPsuHquHbUbAnddo27cFpm4dzUsU3j59hzUjtiDMPxJt3Jtj3Dpf2FW0Uek95OXk49ax+7i4/SpePwiBUF8IV5+OGLzAk9ONQhXev43FpZ03cP/8E8SHJaBAIi36mVBfCOvylmjQwRkdvVqjcZf6ZbJ7+FIkRifj4d/PcPOoHyKDopGRnPXRzx1rOqBBe2fUb++MBh2cVf5/VAYR4daxe9i74Cjev42DgZE+RNN6wXvmTyoHGOfninFwyQkcW3UWdpVtMWv/JF67JgDwvxWE3wb9Cbmc8Oe9ZShX2VbpmINLT2LPr0dQpV5FzNw3EdUbVVVp/Vq+DlqB+oL8ve0qNk3aBWNzI0zcNALtRa04jZPL5Ti++jx2zzsMc1szTNsxFs17NOZ8XWmBFCfWnMeBJSfACBgMWegN90k91LqZh72MxLnNl/HPrhsQ6unCY6obPKf3LtMUMTKZDMnvUxETEoeY0HjEvYtHfGQSnl7xR25mHkytTNCmTzM06FAXNZtVg2MNh2/6STkvJx8vb73C0yv+eHrVH1GvYwAAlZ0dUa9tHdg6WsO6ghVsKlihav1KZfYQUJyge8HY+stevH4Qgqr1K6HvFDe0F7WEkamhynM+uvQcGybsQHx4Irr7dsKYtUN5/Z3kZOZix8wDuLD1KspXK4cFJ6fDqUFlpeMu7riOtaP+QpeB7fDzjrFfNaOJFtXQCtQXJjwwCqt8NyHkaRg6eLXChA3DOe+mQp+HY6XPBkQERqPnSBeMXjMEhibcbxxx4QnYNGkXHv79DE4NKmPylpFwbsXvKbYkMaFx2D3vMG4duw8LWzMMnCdCz9EunHISagqJuABPr/jj1rF7eHL5RdHOQ6gvRGVnR1StX7dNQtQAACAASURBVAmONcvDws4cFrZmMFc0G1MYmhhofNcll8uRl52PnPScokwUKXHpSIhIRHxEEhIiE5EYmYyYkDgUSKTQMxCiQQdnNOnaEE1cG6JK3YpfLBuFJF+CQL9gPL3ij2fXXiL0eTisHCzhu6Qfuvp0UCs/4OuHIdjz6xE8u/oSFWtXwOQtI9GwQ11ec/jfCsLKIRuQEpMK98k9MXRJP067uIcXn+HXPivRpGsDLD4787veWf9/RitQXwFpgRRHfz+LA4uPw8zGDL9dnsf5wFmSL8HeX4/i+JrzsK9qh2k7x/L60BMR/M48wubJu5H0PgVdh3TA0MXesKuk3FzyOYIfh2L7zAPwvxkEy3LmaNDBGe08WqGdR4svek4kLZAiIjAa4QFRCA+IRHhgFMIDopASm/bJMTq6OtA30oO+oR70jfQh1NOFQEcAHV0d6OgKINARgBEIQHI5irxY5QS5XM7m5RNLUSAugFQihURcgLysfHzqM2JqaYxyVexQrootHGs4oHGX+qjfrg6vcxh1keRLcHnPTfideYSA268gyS+ArlAHzq1roWXPJnAb05XXg09JIl9FY8esg3hw4SnMbUzhPdMdfSZ057WDkcvlOLPhErZN3w8HJzvM2DsRdVrU4DTW/1YQ5vVcgYq1y2PNzUVqvRctXxetQH1FQl+EY3a3pcjJyMWAuR7oN+snzk96AXdeY5XvJsSFJaDH8C4Y+fsgmFqacL52XnYeDiw+gTMbL4FhGPSf3Reev/RS60ZJRHj8zwtcO3ALAbdfIzkmFVXrV4LPIm+07tPsq+aoE+eJkZGUibTETGQkFbbkTIhzJcjPFUOSJ4E4V4z8PDFkBTLIpDLIZXLIpHL2ezlBIGAAhoFAwIBhGDACBkJ9IYR6uhDq6UJXTxdCfSGMTA1hbGEMY3OjomZZzhz2VWy/SoZ3BZJ8CS7uuI4jv51GSmwaKtaugKau7K6tQfs6at/Is9NzcHDpSZz+8yIMTQzg+UtvuE/qwXveiKBorB29Fa/uBaOlWxPM2j+R0+8tLzsPu+YextmN/8ChWjmsvb1Y896fWr4oWoH6yqQlZmDzlN24ecQPTg0qY9rOsajZpBqnsfm5YuxbcBQn116Aua0Zxv85HO1FLXkJQUJkErb+shd3Tj6Eg1M5jPnDB616NVVbTGQyGW4du4/9i47h/ds4VGtUBW36NEeDDs6o07LGF90x/H+npDDVb1cHQxZ6oWHHuhr5f352LQBX992E3+lHKBBL0X1YZwxfMQDmNma813lw6UkcW3UWRmZGGLPGBy6D23NaY2JUEmZ1W4ro4Fj0Gd8dw5YPUOvcTMu3gVagvhHunXuM9WO3Iz0hHaJpveGzyIvzTTzkWRjWjvoLIc/C0dKtCSZuGsHbw+vZ9QBsmrQTUa9j0LhLfXQf1hlt3ZurLSQyqQzXD97BmQ0XEfo8AkQEob4QtVtUR4P2znBqUBk1fnDSxqRoiMyULAT6vcH74FhEB8ciJiQOEYFRyErL0agwvQ+Jw+VdN3DtwG0kx6TC1NIYnfq3xY8jXVCtYRXe8z38+yk2T9mN2HcJ6DqkA0avHsJZ4KLexGCW6xLkZuVh4anpaNSpHu/ra/k20QrUN0R2eg62Td+PSzuvo2LtCpi6dTTnek8yqQyn1l/EvgVHAQboN8sdop/doG/I3S1YWiDF2Y3/4Piac0iJTYN9FVuM+G0Q2nu20oh5ListG4F33+DlrVd4efsVQp+FQS5n/5ZaujWBx1Q3jdw8/7+hiFe6uP06bh71gzhPAgCwsDOHY00HONYsj07926Jx53pq/27TEtKxb+ExXNxxHQDQrHsjuPp0RMteTVXykkuITMLmKbtx7+xjVKxdARM2DOdeXkMmw9mN/2D3vMMwMDbAb5fnqSSOWr5dtAL1DfL48gv8OXYb4iOSeGeCiAtPwNZpe+F35jFsK1pj+PKBvGsxyeVyPL3ijx2zDiLsZSTqtqmFMWt8ULs5t0NqruRl5yEmJB73zz3Buc3/ID0pE9UbV0X3YZ3h3KomqtavpPW++gyZqVm4tv82Lu24joigaBgY66Nz/7bo6tMRlZ0deZ1JKkOcJ8bJtX/j6MozEOdJ0GuMK/rNdlfZ9b1AUoCTa//GwSUnAAAD54vgMbUnZ+/Pd/4RWDvqLwQ/fodmPRpjypaRajv6aPn20ArUN8pHmSDszDFu/TBe50v+t4KwddpehDwLR61m1TBmjQ/qteVXfVcmk+Hy7pvYM/8w0hIyULF2BTRoVwcNOrDBopoqcAiwN8DrB+/i5NrzRfFAegZCVP/BCXWaV0f1H5xgWc4c5jZmMLMxhbmNKa/d4fcIEUGcJ0F2WjYSo1MQH5aA2HcJiAtPQFxYAt48DEWBuAC1m1dHjxEu6OjdWuPnLpkpWbh//gn2LjiKpOgUtO7TDCNXDoJjzfIqzZefK8a1/bdxcu15vH8bhzY/NcPYtb6cgm4Bdpd/eMVpHFx6EqaWxhi7zhed+rXR7rr/R9EK1DdOyLMwrB29FSFPw9Ci5w8Y/+cwOFTldl4jl8tx/eAd7JpzCMkxqWjVuylGrx7Cu6R1blYe/t52DS/+DUDg3TfIzcwDAFStXwkD54nQtm9zteJlikNESIhMwpuHIXjzMASvH4Ui9FkYJPkF/+mrb6iHSs6OaOveAm37tkCl2hU0soavBREh7GUkbh69hzsnHyAxMumjzBkKbCpYwcGpXNFuk0vQKl/8bwZh9/zDCPILBgDUaOKE0auH8I5jUiCTynBh61XsXXAUWanZqN64KnwWeaOlWxPOcwQ/eYd1o7ci9Hk4ugxsh3HrfMsk1ZaWbwetQH0HyKQynNlwCXt+PQKSEwbNF8HjZzfO5pD8XDFOrfsbR347DalECtG0Xug/210lt2KZTIbwl2yy0gtbryA6OBYVajjAc1ovdB3SoUy886QFUsSExiMzOQuZKVnISM5CZnIm0pMy8ep+MF4/CAEAVKpTAW3dW8C5VU04NazyzefqK5AUIORZOILuvkGg3xsE+b1BRnIWBDoCNO5SH9UbVYGJpQlMLIxh62gFe6dysK9iW6Y7x5BnYdg19xCeXPaHraM1eo7uivrt6qBe29oq/y4D777Ghok7EeYfiUad62HIAi9eCYdzMnOxZ94RnNv8DyzszDFhw3C082ip0lq0fF9oBeo7IjE6GVum7sHdUw9R2dkRkzaPRIP2zpzHp8SlYcesA7i2/zZsKlhh5O+D1TKPyP6vvTuPj7K6Fz/++SaZ7HtC9oQskLCEVRYxgIBIEQVF0Iq1tbXWtj+3an+3t9ttvW297e1m7y1ee63WfaGCCKiIgCDKIvsWICzZ933PZJac+8czGaImLElIZsJ5v17zmsnkmWfO4Qnzneec83y/djs71+5l1e/XcXr/OcKiQ1j6yM3c/N35BIcP3Dfb6pIadr6zj0/f3kP2rtNY242zLV9/H+JGxpCYEUdMchTBEUEEhQcSFB5IcEQQgaEBzgt0vX29Mfma8PY1XfbZYEdHBzarHZvFhs1io63ZTGtTG21NbbQ2mWlraqO+qpGaklqqSmqoLqmlpqSWstwK55lh3IgYMmeOIjNrFNcunnJJCYX7Q2VhFcd35pC98xTZu3I4dzifoPBAVvzkdpb8vwW9CoadZ4I71+5l5zt7yT1awLDECL73p3uZtezSh6ltVhtbXv2EF//tDWrL6ln8/QXc9+SKQb2WTBtYOkC5oT3vHmDlw89TUVDF/K/P5v7f3XNZk9XZu3J4+pHnOXMwj+Sxicy7exZLH13U60SgSikObzvOP/+wjv2bjgAQHhtG/MgYUscNZ8mDCwds+K2loYUzB/OMJdanSyk6XUrx6TIq8quw2+yXtA8RwcPTyCDh6dmZSUJQHV2Lop0PTB32jkvar4eHEBYT6syxF5McxdjrMhiblTFgF5SaW9v54B8fcWjrMc4czKWqqAYAv0BfRl87kknzxrH4+wt6FQSa61v45x/Wse3NnZTnVSIiZM4cxcyl01n0wPxL/vtSSrF91S5e+PkblOVWkD4ljYdXfrvfF+lork8HKDfVmR16zVPvYvIx8Y0n7uTWhxZe8qo3u93O5pc+5sOXt3Nsx0mGJURw33/czby7Z/ZpWOzs4Tz2vn+IkrNllJwp4+zBPCxmK9ffOYMF984ZtIzjSinMLWaaaptprG2mqbaZ5roWzK3tWM1WLGYr7W0WLG0W7DY7dnsHHV1vHR14eHggAoiRScLDQ/Dy9sLLZGSRMB574hvgg3+QH35BfvgH+eIX5EdIZBBh0aGDlry2pbGVDf+ziTVPvUt9VSMJ6bGkTUwmM2s0Y7MySB0/vNdta65vYe1/vc+av7xLa2MbUxZOZObS6cxYcvlnggUni1n58PMc/ug4aROTnfNUehHE1UkHKDdXcraMpx99gX0bD5GcmcjDK++/rGE/MIrR/e2HL3HmQC6jpo3gvv+4m8yZo/ol4Wt9VQNr/vwu65/ZZGQcDwtgxq1Tmb3sWibNH68zTF8hSinK8yvJPVLAiV05vP/cVprrW5i6cCIrfnL7JV9fdyHN9S28/Zf3ePu/3qOloZWspdP4+i/uuOxrkZRSnD6Qy6YXtrHxuS34Bvhy35MrWPTA/H5bfKO5Jx2ghgClFLvW7eOZx16koqCKuSuyWP744ktOmQTGcNWWV3bwj5+9Tk1pHSYfEyMmJZMxZQQZ00aQddvUPuVqs7RbObj5KDtW72bXun20NLTiH+xH8thEwmJCCY8ONe5jQomMD2fivMwhv4y8P7Q0tnJo6zHqKxtprGmiprSWvGOF5B4toKWhFTCGFq+7bRorfrL0sv4mutPe1s6eDQfI3pXDhy9tp6WhlZm3T+eef1t+2YGpobqRjc9tZfMrH1N4sgSTj4kb7p7Jfb/92oDNwWmuTQeoIcTc2s6bv13LW39aj8Vs5YZ7ZnH/7+4hMi78kvfR1mJm73sHObX3LDn7z3Jmfy7m1nbCokNY9thibn5gfq/Kx3dltVg5tPU4u97ZS2luBXXl9dSW19NYc75AX1BYAPO/fj2LvjOf5LGuX4p9INltdnL2nWXzyx+z5dUdmFvanb/zD/YjOTOJtAnJpE0YTuqEZJIzE/EL8O3be9rtbH55By//chVVxTWYvL2Yfss1vQpMbS1mNj63lVf+/S2a61vInDmKG79+PbPvmNHnvy1taHGbACUi+UATYAdsF2v01RigOrU0trLqP99h9Z824Gny5Gs/X87tP7i5V8Npdrud7J05vPrr1Rzaegy/QF9u+vYNLH10ETHJUf3abqvFSl1FA4UnS9j04jY+XbMHm9XOmOsyWPCN6xl5TSqJo+L7/GHrjqqKa9i/6TD7Nh3m0JZjNNe3YPIxMXdFFgu/NY/YVGOVYn8v829rMXPgwyO89ItV5GcXkTE1jW/9ZgXjrx9z2UPAlYVVrHt6Exuf20JTXQuTbhjH95/65iWXmtGuPu4WoKYopaovZfurOUB1Kj1Xzt9++BK71+8nbkQMi+6fz4Q5Yxg5ObVXE+JnD+Wx+s8b2L5qF0opZi+/lqzbphGTEkVMShQhkcH9OpldX9XA5pd38P7fN1N8usz5fFRSJEmj40nMiCcsOpTAsAACQwMIDAsgKCwA3wBfTD5G6QtvX5OzJIanyXPQ5jSUUtistvPL0a12rO1WzC3ttDWbMbeYMTebaW0yU1tWR3VJLdWlxnL0qqJqyvOrAIiIC2PqVyYy5SsTmXzj+H5PZ1R6tpyTn50lZ+8ZTu07S/7xIjrsHSSkx/Kt36y4rGXiYAwdn9iVw9q/buTTtz8Dpci6fTq3P7KIsVmXfi2UdnXSAeoqsO+DQzz/09c5dzgfgLDoEL75q7v4yn1ze/WBXVVcwzv//T7vPrvZmVUCICE9lq/9fDlzV2T1ayBQSlF4qoTCE8UUniyh8JRxX5xTirm1/eI76CIxI470KWmkX5NG6oThxI2IISI2rF9X17U0tlJ4soSCE8UUniii4GQxOXvPOiv9XgpvXxOR8eHOku8jJ6cx5StXptpufnYRr/1mNTve2u1M3hsUFkDGtBFkTB3B6OkjuWbBhMtafamU4pM1e3jux69RlltBYGgAi+6/gSUPLrzktEaa5k4BKg+oAxTwv0qpZ7vZ5gHgAYCkpKRrCgoKBraRLq62vI5jO07yzsqNHP/0FKnjh3PPL+5gylcm9GrYrPMbd3l+FWXnKtj04jZyjxYQkxLFnDuvY/YdMxgxKeWKfktub2unub6V5rpm57251YLFbHFWurWYrcZ9m4W844Xk7Dv7uQq7IkJYdIgzGASGBeDja1TX9fX3wcffB08vD+y2DkcRQ6OgobXdSlNdC011zTTWNBlL2KubqC2vd+7b5GMiMSOOtEnJxKfFYvI5vyzd5OOFb4AvvgE++AWevw+LCSUoLPCKn13kHSvglV+v5pPVe5xDtxlT00ifOoL4ETG9fv9Te8/wtx++RPbOHFLHD2fZY7cwa3o8fls2QX09hIbCrbdCop5b1C7MnQJUnFKqVESigM3Aw0qpHT1tr8+geqaUYsfqPfz9R69QUVCFt6+JSTeMY8biKUy/5ZrLWlTRVUdHBzvX7uW9v2/h0NZjdNg7iEuLZvbyGWQtNYYCg8IDXWLpcHVpLQXZRVTkV1FdUktVcQ01pbVUl9TS2thmVNdtbae91dJt+fbOa6ACwwIJjjifnSIoLJD4ETEkjUlg+JgEYlKiXKK/LY2t5B8vIu9YIXnHCjh3JJ/snTn4B/lx28M3seyxW/qU166prpmC7CLe/d/NbH3tE+Ms/dcrKKsYzdf2PILv+2uh4/wFzcrDg3PjlzJi40qIiemPLmpDkNsEqM81QOQJoFkp9ceettEB6uJsVhtHd5xkz4b97N6wn/K8SgBSxw9n0g3j+Oq/3tbr5b4N1Y3sfGcfO1bvdgYrMD7YgyOCCBkWTMiwYFIyk1j8/QUMH+Oa36aVUlgtNuxWG55ennh6eRqZJVx47qTgZDHrn/6AghPFNNU201Dd+LkzRv8gP5IzE5k8fzxLH13Uq7RUSimjTMozm8g7VkhtmbF/k4+J5Y/fwl0/XsqqlQ3M/mkWaeSiTCZkyRLIyMB8NAfPd9dhwkZDZCohx3dBtC5YqX2ZWwQoEQkAPJRSTY7Hm4FfKaU+6Ok1OkBdHqUUBSeK2bNhP4e2HefwR8fx8fPmjh8uYdnjt/SpjENjTROHPjpOXXk99VUN1Fc20lDdSF1FPaf352JttzJxXia3PXQT1y6+xiXOONxNdWkt+zcdYcdbu9j3wWFMPiYypqY5cw/Gj4glZVwSKeOSiB4+rNcBtr2tnR1v7WH9M5s49dkZYlOjyZw1iuQxiQwfm0j6lDTnlxrz4uX4vruGA0zmX0au481PEwCYOxcaThSzyfdWxpoPwrJlsHp1v/1baEOHuwSoVGCt40cv4HWl1JMXeo0OUH1TlFPCCz9/g0/WfEZoVAhf+9kypi2aRHTysH4NIJ0Xa65/ZhNVRTVEDx/G9XfMIHF0AokZcSRmxOmSCl+glKK5voWzh/LY/8Fh9n94hNyjxnxrZHw4Nz9wI7d870ZCh/Xfxa752UW89+xmtryyg+b6FhLSY1n22GJu+va87heYFBZCSgrK05MbknPZdiaBYY61EVVVMGYMfPxqEZHTUo2hv/x8PSelfYlbBKje0AGqf5z87AzP/+Q1jmzPBsDk7UX8yFgSMuJISI8jfmQss5ZNJyDYv0/vY7fZ2bV+P+ufNhZw2KznE7sGRwQRlxZNYFgAfkF+BAT54R/sj3+wH96+3s4FBwEh/ky6YVyv59AGi81qI3tnDoWnSrBZbM6cgO2t7bS3WWhvs9BYYyy+qC2ro6683lknysvkSeas0UxZMJGpCyeSMi6pz8OPlYVV7N5wgOriGmrK6ig8WUzOvnOYvL2YuWw6N3/nRsZfP+bC77NyJTz8MCxbRuX/rCYz0whMAMOGwfHjEBUFLF8Oa9YY2z/4YJ/arQ09vQlQugb3VWT09JH8YesvOX0gl7yjBRTllFKUU0JBdhG71+/HbrPz7P9/iWWPLea2R27qdaDy9PJk1u3TmXX7dOw2O2V5lRTnlFKUU0pxTgnlBVU017dSWVhNa2ObcWtq63ZfSaPjGTdrDGNmpDNmRjrxI2Ndas7IYrZQcqaMU3vPsnfjIQ5uOfq55fqdTD4moxSInzfBEYGEx4aRkB5LeHSoI1t8LBPmjOlTCqquinJKWPvfG9n43BZsVjteJk/CY8OITIjggT98gwX3Xk9IZPCl7azesZIxI+PC26WnG/d1dRfeTtMukQ5QVxkRIWNKGhlTPp/HzWa1cfpALm/89m1e/MWbrHlqA7f/4BaWPnJTn2r2eHp5kjAyloSRsResuNrR0YHNYsNqMZaT15bVs3/TYQ59dIztq3by3rObAQgKD2Tk5BQiEyKIjAt3Xl8UERtGQIg/fkF+zmXefcnkbrfZaW+zGMvNa5ocN+NxRX4lhadKKDpVQnlepfN6o2EJEcy58zqmLZpMxtQ0vH2NgOTtaxqQYovl+ZVsX7WL7at2cu5wPp5eniy8bx53/ssSYlKiet+G0FAAzEdzmDvXOHvqOsQ3dy5s2wZRp08bT4YNTLkRbejTQ3zal5w+cI5Xf72a3ev3IyJEJw8jIT2WhPQ4EjPiiR8ZQ1B4IP7B/oREBvVrBoTudHR0UHiyhBO7T3Nydw55xwupKa2jtqzOGRy64xvgg8nHhJfJ07lqz9PkiYeHGK9Tynlvt3dgabM4S3VcqC6UycdEQnosSaPjSRqVQOKoeFLHJ5E0OuGKnt1ZzBZnnsOGKqMKcWN1E/WVDRz5ONtZjXj0tSOZ89UsZt8xo3+GSAsLUSkp2Do8SSGXkDEJbNtm/GruXDhxAuaNLGJLXiqi56C0Hug5KK1fnTmYy+71+41CgTmlFJ8u/VwyUzDOyLKWTmP544sZe91FhoD6md1up66igZqSWmrL651DheYuVXCtFht22/kLcu02oyiheIhxRiEYtaE8BB9f42zH21GV18fPm4DQAIIjjOuiQiKDCI4IIjgyaEBXJ1YUVLFu5Ubef26rM6t5Vx6eHqSMS2LOV7O4/s4ZxKb0/zLvs5OWM+LwGrJ9JxO96x0iJxkBqLISVsws4vdnbuMa9Co+rWc6QGlXlFKK6pJaSs+V09LQSmtjG3nHCp0JQ+NGxDB90WSmLZrM+Nmj+z3Z6dXEbrdzYtdp1v71fXa+/RmIMGvZdKYsmEhwZBAhkca1ZyGRRrn7Kz4vV15Ow7gsQqpzwcvLyB6Rng6nT6PWrUNsNkhNhV36OiitezpAaYOircXM1lc/Ydf6fRzZdhyL2Yqvvw+T5o9jzIwMImLDCI0OIdxRI2qgz0Bckd1up63JTEtDKy0NrVQV15B/vIj87ELyjxdReLIYi9lKUFgAi74znyUPLiQqMXJwG11eDg89BGs/n0kCDw9YuhSefloHJ61HOkBpg87c2s6R7dl89t5B9r5/kIqCqm63c65qcwyp+fh542nyxOTtRdqEZGYsmcqkG9yv0KHVYiV7Zw77PjhM9q5TmFvanYs/7FY7VovNOQTZnWEJESRnJpI8NpG0iSlcd9tU1ytJUlQE69cbq/XCwmDJEj3npF2UDlCay2lrbqO2vN5ZyLC2vJ7G6qbz1we1WbC0G49tVmPl3Kk9Z2htasPb10S6Y8Vh6oRk0iYmkzQ6vl/K1/cHpRQN1Y2U51Vy9lA++z44xKGtx2hrNuNl8iRj2giCI4LwMnni5W0klfXy8sIv0Bf/YD8CQvydt/DYMJLHJuoif9qQpa+D0lyOX6Af8SP8iB8Re8mvsVqsHNl+goObj3Dk4xNs+NuHWMxWwLiYNTYthvCYUEKjggmJDCY0KoTQYcH4BvoaGcX9vfEN8MXH3xuTtxcenh6fz73nIagOhVKOW4exms/abnXcbM7HrY1tNNe3GNnV61toqW+hpqyOstwKyvMqaWs2O9sdlRTJvLtnMe2mSUycl9mnlFKapukzKM0N2G12is+UkXukgNwj+RSfKTOWWVc2UF/ZQFNdy4C0w8PTg8DQAMJjQolJjSImOYrY1GhiUqJIGhXvchcRa5or0WdQ2pDk6eXJ8NEJDB+dwNy7sr70e6vFSmNNM+YWM+2tFsyt7Zhb2mlvbcdmtdPhXGLegd1u1IHy8BAQwcNDEBHEQ4xqvZ3Vex2P/YP9CQz1JyA0AF9/Hx2ANG0A6QCluT2Tt4mIWJ29QNOGmiuff0XTNE3TekEHKE3TNM0l6QClaZqmuSQdoDRN0zSXpAOUpmma5pJ0gNI0TdNckg5QmqZpmkvSAUrTNE1zSTpAaZqmaS5JByhN0zTNJekApWmaprkkHaA0TdM0lzQoAUpEFopIjoicFZEfD0YbNE3TNNc24AFKRDyBp4GbgDHAChEZM9Dt0DRN01zbYJxBTQPOKqVylVIW4E3g1kFoh6ZpmubCBqMeVDxQ1OXnYmD6FzcSkQeABxw/tovI8QFo20CKBKoHuxH9TPfJPQy1Pg21/sDQ7FPG5b5gMAJUdyVJv1R3Xin1LPAsgIjsv9xSwa5O98k96D65vqHWHxi6fbrc1wzGEF8xkNjl5wSgdBDaoWmaprmwwQhQ+4CRIpIiIt7AXcD6QWiHpmma5sIGfIhPKWUTkYeATYAn8A+lVPZFXvbslW/ZgNN9cg+6T65vqPUHdJ8AEKW+NP2jaZqmaYNOZ5LQNE3TXJIOUJqmaZpLcukANRRTIolIvogcE5HDvVl26SpE5B8iUtn1+jQRCReRzSJyxnEfNphtvBw99OcJESlxHKvDIrJoMNt4uUQkUUS2ichJEckWkUcdz7vzceqpT257rETEV0T2isgRR5/+3fF8ioh85jhOqxyLytzCBfr0oojkdTlOEy+4H1edg3KkRDoN3IixNH0fsEIpdWJQG9ZHIpIPTFFKYyuyZAAABiJJREFUufVFeCIyG2gGXlZKZTqe+z1Qq5T6neMLRZhS6l8Hs52Xqof+PAE0K6X+OJht6y0RiQVilVIHRSQIOADcBnwT9z1OPfXpTtz0WImIAAFKqWYRMQGfAo8CjwNvK6XeFJG/AUeUUs8MZlsv1QX69D3gXaXU6kvZjyufQemUSC5MKbUDqP3C07cCLzkev4TxweEWeuiPW1NKlSmlDjoeNwEnMTK5uPNx6qlPbksZmh0/mhw3BcwDOj/I3e049dSny+LKAaq7lEhu/YfooIAPReSAI53TUBKtlCoD44MEiBrk9vSHh0TkqGMI0G2Gwr5IRJKBScBnDJHj9IU+gRsfKxHxFJHDQCWwGTgH1CulbI5N3O7z74t9Ukp1HqcnHcfpKRHxudA+XDlAXVJKJDeUpZSajJHN/UHH0JLmmp4B0oCJQBnwp8FtTu+ISCCwBviBUqpxsNvTH7rpk1sfK6WUXSk1ESOzzjRgdHebDWyr+uaLfRKRTOAnwChgKhAOXHBo2ZUD1JBMiaSUKnXcVwJrMf4Yh4oKxxxB51xB5SC3p0+UUhWO/2QdwN9xw2PlGP9fA7ymlHrb8bRbH6fu+jQUjhWAUqoe2A5cC4SKSGcyBbf9/OvSp4WOIVqllGoHXuAix8mVA9SQS4kkIgGOiV1EJABYAAylLO3rgXsdj+8F1g1iW/qs80PcYSludqwcE9XPAyeVUn/u8iu3PU499cmdj5WIDBORUMdjP2A+xtzaNmC5YzN3O07d9elUly9GgjGndsHj5LKr+AAcS0X/wvmUSE8OcpP6RERSMc6awEgz9bq79klE3gDmYJQFqAB+CbwD/BNIAgqBO5RSbrHwoIf+zMEYMlJAPvDdzrkbdyAiM4FPgGNAh+Ppn2LM2bjrceqpTytw02MlIuMxFkF4Ypw0/FMp9SvH58WbGENhh4B7HGceLu8CffoIGIYxhXMY+F6XxRRf3o8rByhN0zTt6uXKQ3yapmnaVUwHKE3TNM0l6QClaZqmuSQdoDRN0zSXpAOUpmma5pJ0gNI0BxHpcblrN9vOEZHrrmR7LvL+PxCRb/TDft4UkZH90SZN6286QGla78wBBiVAObIL3Ae83g+7ewb4UT/sR9P6nQ5QmnYBIrLYUZPnkIhsEZFoR5LS7wGPOWrazHJcOb9GRPY5blmO1z/hSF66XURyReSRLvv+hiNp5hEReUVEghy1ckyO3weLUT/M9IVmzQMOdiYSdez7KRHZIUadpKki8rYYdYR+49gmQETec7zXcRH5qmNfnwDzu6TU0TSXof8oNe3CPgWuVUopEbkf+JFS6oeO+jzO+kMi8jrwlFLqUxFJAjZxPuHnKGAuEATkiMgzQDrwM4zkwdUiEq6UahKR7cDNGFk57gLWKKWsX2hTFkYdpK4sSqnZYhTwWwdcg1E+5JyIPIVxxleqlLrZ0d4QAKVUh4icBSZ0s09NG1Q6QGnahSUAqxw5xLyBvB62mw+MMVKMARDcmXcReM+RoqZdRCqBaBy1fjoLV3ZJNfQcxpDbO8C3gO90816xGLnauurMU3kMyO5M8yMiuRhJl48BfxSR/8QoGPdJl9dWAnHoAKW5GD3Ep2kX9ldgpVJqHPBdwLeH7TyAGUqpiY5bvKOgHkDX/Gl2jC+GQjflE5RSO4FkEbke8FRKdZdMs62bdnS+R8cX3q8D8FJKncY4qzoG/FZEftFlG1/HPjXNpegApWkXFgKUOB7f2+X5Jowhu04fAg91/iAiEy+y363AnSIS4dg+vMvvXgbewChH0J2TwIiLtrwLEYkDWpVSrwJ/BCZ3+XU6kH05+9O0gaADlKad5y8ixV1ujwNPAG+JyCdAdZdtNwBLOxdJAI8AUxyLHk5gLKLokVIqG3gS+FhEjgBdy2G8BoRhBKnubAQut9DlOGCvGBVOfwZ0Lp6IBtrcJfO3dnXR2cw1zcWIyHLgVqXU1y+wzVqMBRtn+vhejwGNSqnn+7IfTbsS9CIJTXMhIvJX4CZg0UU2/THGYok+BSigHnilj/vQtCtCn0FpmqZpLknPQWmapmkuSQcoTdM0zSXpAKVpmqa5JB2gNE3TNJekA5SmaZrmkv4Prcfje/owoMsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pval = utils.multivariateGaussian(Xval, mu, sigma2)\n", + "\n", + "epsilon, F1 = selectThreshold(yval, pval)\n", + "print('Best epsilon found using cross-validation: %.2e' % epsilon)\n", + "print('Best F1 on Cross Validation Set: %f' % F1)\n", + "print(' (you should see a value epsilon of about 8.99e-05)')\n", + "print(' (you should see a Best F1 value of 0.875000)')\n", + "\n", + "# Find the outliers in the training set and plot the\n", + "outliers = p < epsilon\n", + "\n", + "# Visualize the fit\n", + "utils.visualizeFit(X, mu, sigma2)\n", + "pyplot.xlabel('Latency (ms)')\n", + "pyplot.ylabel('Throughput (mb/s)')\n", + "pyplot.tight_layout()\n", + "\n", + "# Draw a red circle around those outliers\n", + "pyplot.plot(X[outliers, 0], X[outliers, 1], 'ro', ms=10, mfc='None', mew=2)\n", + "pass" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best epsilon found using cross-validation: 1.38e-18\n", + "Best F1 on Cross Validation Set : 0.615385\n", + "\n", + " (you should see a value epsilon of about 1.38e-18)\n", + " (you should see a Best F1 value of 0.615385)\n", + "\n", + "# Outliers found: 117\n" + ] + } + ], + "source": [ + "# Loads the second dataset. You should now have the\n", + "# variables X, Xval, yval in your environment\n", + "data = loadmat('ex8data2.mat')\n", + "X, Xval, yval = data['X'], data['Xval'], data['yval'][:, 0]\n", + "\n", + "# Apply the same steps to the larger dataset\n", + "mu, sigma2 = estimateGaussian(X)\n", + "\n", + "# Training set \n", + "p = utils.multivariateGaussian(X, mu, sigma2)\n", + "\n", + "# Cross-validation set\n", + "pval = utils.multivariateGaussian(Xval, mu, sigma2)\n", + "\n", + "# Find the best threshold\n", + "epsilon, F1 = selectThreshold(yval, pval)\n", + "\n", + "print('Best epsilon found using cross-validation: %.2e' % epsilon)\n", + "print('Best F1 on Cross Validation Set : %f\\n' % F1)\n", + "print(' (you should see a value epsilon of about 1.38e-18)')\n", + "print(' (you should see a Best F1 value of 0.615385)')\n", + "print('\\n# Outliers found: %d' % np.sum(p < epsilon))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average rating for movie 1 (Toy Story): 3.878319 / 5\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATAAAAHkCAYAAAC5VHPKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO29f7TfVXXn/d5zg6GgFLDGkoCF1GgnglxNLkKmdGVCNeo4hZnpTISqOMXFeoZqmeI8DT5lVn+lM81MR0vXU33qr8bWBrFOizwu21sLUn0WVC5pLwRDNWl0QRIktqD9wUxq0v388f2cy77nnp+f35/Pd7/Wysr9fn6eX5999tlnn32ImaEoijJE/knXCVAURSmLCjBFUQaLCjBFUQaLCjBFUQaLCjBFUQaLCjBFUQbLYAQYEb2eiL5CRIeI6Nau06MoSvfQEPzAiGgGwFcBvBbAEQALAK5l5gOdJkxRlE4ZigZ2GYBDzHyYmf8BwCcAXN1xmhRF6ZihCLB1AJ4Qv48UxxRFmWJWdZ2ARMhxbNnYl4huBHAjAMxgZtMZOGvZxd/53jNx2jf+3vlwfsEZoL99dun3iYu+C6u/9r+W/jecuZHx9wco+Cz72qqY59hpkdjpyXl3yrWu/L7slc/iq4+cEX2mSbfvPa7jsWN2fdnEzpv0Hz35Xcvek1KvKci6Mum2/7exj4fqu2qaYudd16am58yNjG89/fylciz7LFkef4tn/oqZX+S6big2sCsA/Bwzby9+vwcAmPm/uq4/i87l19BVS7/njy1i+9rZUu+ucq/SHnOLp7AwOxO9ro76HHubOLpzC9btvr/rZCzxx/ypfcy82XVuKEPIBQAbiOgiInoegDcDuNt38Xe+98xlv2ON7fDe5efnjy0m39s1h/fOrkh/DvPHFnF055YVxyRzi6e8v+1rc3GlveozQ8j6tPNl4zuf2yaq5ieWTsBdjmXf4RNeVd/RBIMQYMx8EsA7AcwDeAzAJ5n5y77rzz7375YazeG9s8v+drH+uuUNLNZAcxqk752+RplzfG7x1Iq057J97SyuufaLWfdITee245csOyfza5eTS9ju2LgP88cWl+Vv+9pZ5732Mfl715r9SWmX98Q0Nt95O72x9rB97ezS9XZnkUKKZnlw657g+bnFU8F0ynf42uzqh90mA/P8MueqXj+IIWQucgh5eO9s5Y+8D/RNrU9l7MMtpXnGMITMRvbYrp4n1BuFtCDT+8Y0BJ+2YHpgX09sP8ek5cSlzy6dl8+ztQFfHk5u27TiGvMMea19n3m+Oe7Lv7zfNQS3n2GnwZd287e815Vu+bxQvcvy89WRq6zs+831Ml/2dbJu7P9t7DzLPMj0hDRceZ95nrk+VwuyiY1iXGny1XnKvamMXgMD0g28qeRodWPQQOz8ltFqzT11asRzi6ewa83+UuXrSkfd7aQKfW03J7dtwqp79znPlanblDIPaWBTIcBy6GvDCVHnhxd7Vk4jrSJglHqoWyjX9byc72wqh5BAObU5VKhGfXap0a6hVx2kGH/rbKCuZ8n8GuGVkr+F2Zml8syZwYpdW3b2MEZdwxzfkBLwD0+bmnmtq22Y9N91x5Wl7rOpq1NTDUxplD4Ny5RhMrUaWJd05TNTZpq+SYzw8mlFVcupj75JVQ3mYyI0IVIHUyHAyqrnodmuGDlDrRChYashxQkxhGvWM+Va8ztFiPi0MJc9LbXM5o8tNu4iU6buh6pxxmZKy+Az+Pvenfv+qRBgsfG2T2sx95kGmTqVDDxXCWVsQBLzgYY+1KofjCyfOw+Ee0y7LLev9Rv1ZbnmOOjazrGpaTGklrV9neu+uoWRLJO+aY8mr2XzfHTnlqQyDb079/1TIcCAcEGmeqKbD8b3wUrNwRYEIS9m1/02VVXx1PtjGo3xNQr5lRnW7b4fJ7dtwtGdW7yN0mUUdgnRJoYidl5TtLmYdnhy26agX57UkG3XFJs6zAG5QtKnCaX4yK3bfT92bFyucdm/62YqjPgxQ3KdhuaqHvN9cOOIpUGet69tKv1zi6fwwC2XJQ9JlPEwtUb8MuprbCFzjKrLfaoOi6pyeO9sVACFzjclfBdmZ1YIrzJaS45NsslF5dNOXXa20QqwucVTS+prykJfs7TktuOXLFv+sGvN/qVzchlNrHH7BGHsPt8ynYNb9+Dw3tkVFe9aSuQ6Zv82S13sd9kqv4lWYS/lsW188j2ud9tLW0J59S0vsp97cOse57A1xMW33+Q9Zz9LLsL2YS/7sZ8XWtbkyr9ryZTrvP137FxdwjhlKVHKUjH7myxrxJ+KISSwcpgohzq+5RG+JTQpQ84yQynXPeZY6tDU995UD/qUvJ3ctgmPv8MfCcOVhpxhurzW9Sy5LOklH16pmZU1CaSUccqz5TWmbZljqW2tbWLvz2n7shxzvgPfs6d2CGk4vHd2RcHIQn1qbvWyc6YH8FVoijdymaHU9rUrw82YGbnQhyXv8b03ZRLBhz0su+fjHwle7xI4qc+OPQuIG9tDM6kuTdDw6M3vDz4XSKt7eY0RVqb9XfHeB533uPIkNd+uMemL5X9u8dSytrrhvrcvHQ9hTw6kmkymRgMbErkaRIrmUFcPf3jv7NIwsyl/J19a7XIpo2mF7mlKsy6Tli4JtZUuwjpNvQYGhHuA1Cn6tnrD3EYtG5RPo6lzeLIwOxNd8G3/9vWorvT6tEX7nb40hHpveY/97gduucx7nyFkQzOktpNYPbfpJ+Za7+oiRXjJcs1xBSmTX9XAGqKvvWtX5GiAbfXydh2FQsX0ka7tZjlU+R6mXgPLkeyh3jNnaZFtK0idBbJnGu1oFK68pOSvipZpe9TLGUFXD+ua8Uw5Z0gVXnVHpfDZp3IJaR0yTbGVCr5giQbfMFtSxgG4ykjDV78u4SW/CbvMUtMwFQIshh0n3Vd4xvaR4pYhP0Kf3cT3Hldlm+fZjfbw3tkV8dBdwjJHs7CFiszLrjX7sTA7szTccgkbO/3rr3tuzaLrnE3qlLov9I/5GHJj3qcMIW1cZX3i0me9EVHlO2XZudIaG6q7sK9//B1pgiC0V4DLfcfHrjX7kzZqsb+JdbvvX/aO1HyPVoBJiR5bziDtGilr9szMSghXWGUbVyXZafUJS/P8g1v3LEtPHXYTl5A0mLyEBKIrrLFPm3ClV84iuqJZhDScg1v3LC0NC73P5WcVm1114arbHRv3LeXBdC4mH7H6iWnYsft9ZeMLn22Q609dvoGpm6YAbhum/XxXublmj2Mjl9EKsHW771/KfKzw5VpIX69njh3duaXR9V0pPkbAcx/OhvvevkIDc7ljVEHmN2d4sWvNfhzduQUHt+7BnQc2ObVbV1m6tDJ5r9FcXGnZvnY26EYhn+1amJ6LbwG4zzYVs1m5opjIe2Jtzzf8thfI23mV7c51LqXTBibt0ZUG+Q3K58vyk3lTN4oBu1FIyhq0h7KL0ZAM0XUwtImCPjD1RvwmaGuK296NKBUpvHIMuVVdRXLvj+1nGKJMHdi7OlUlFHnCRV0TBfZ7+uLwGiI2jDXk1OsoBdiZG3nZrF0slr25VgZ0s6+VNpy5xVN4yYfjDo/ymTE7hr0uznhh+7QT2WCljcllcH1qbvWSEHOtn5Pl4xrC5nwc9v0mRpRvey9X7K9Um8+Ojfucz3XVn8EITLndm8G3RV0ofQuzMyveZcePk9jmjDLxs2Qdh2b5gOWzxqHZ4FAabPtjyr3yWwEmZSG98kP5zAkGqkPIKacv/mpyaFUlTX3Jj7KcKisYdAiJlVLfpXVJXNEl7Z4oNcwzgBXv9s0Wmefa6XNd53q+S9MK9Zi2wTtFA0j1rjZpCfXa5lnSLiR96Hz1E8pTSNvwPQ9YroH5/OFcflYxLSolZHdKBI6U4a8sc/l/KE3yuhj2db5oGq6Rh10PMW1XNTALnwG1CYO3bZzu2nib+v66NRhTDjlRGKp67Z/ctglXvPfBzjSxUHtqux2UeV/VtZDyfvN3igZmP9ukfeo1MCPJfQZUU2i5RuFQD2E3gNRGVNeqAfs5qe9PdeNIxZSDr+xdRnzfRh8uLcz1Ma26d1/QJiQpMxFgb2Rix/xypcm8ty7hlapBlXlf1bWQ8n7z9/a1s1GNSobgAdImPKZKAxsrbfbqc4uncOeBTVPl+mDTtTYNrNRWhuI2U4ap1MBi0TB92LNS9rmUtZKuv1NtH760hmxBKR7koTWOdlpD5bVrzf5lkVBDtikZyfbozi3RCKMxXPXhswWmPqPMtSHhZc/C5UZkdb3bpe3ZwsrWXspStfxy35+y8iWEamAWQ+vJfLa2PmgJkmlzWK2LquU2tPbsYio1MElOL59S2X1yGtyxcd8yLcQILXsRb9M7JEtsvzsZBNGmT2VZF3U6OYfWpabQhfBytTVf+6ta/6qBKaNgDJpGFfqs4VZN29RrYEpz9GXrsWkWXkDzG8hWoUnBOloBZi/9STUgh8Ifl5kUyME4RbreEzL22ul1Tan78mRPTBiDu32N/Nu88/De2RVRCmxjvXEqNe9PCVyXuuTFl6+UYYlrQkYOeVMdiEMTO7nbotnPN5M/PheJUPys3KFZSpnHlgCZtpGzN6f5W+5o7pvwcTHqIaRxnstVYX3OnG2p6aH3uNJWdlMP17Pmjy3iqrfc4J0AMI2srCuFnQ5XGuSxNpcGlXlXlTaR8r7QNU21xyqOrKl5AsI+h/I9UzuENAuFzX52EinhpYHR+DnZ1wDPbS6bYkgta5z0aSi+Sp8/trgUsQLwa1quxeeuBrThvrcHd8A2cb1CuJZlmWMp27ulBjT0aQSm3kLaWcpCaxf2fa4P3bUY3bW0RuazjFafEsmjrgkF85wXL5yIXpuyqYfdhuwlWTJGX4jRamDfevKFyyIODGWBb5m0Vlkoa7/PhKiushlpnVuPDZU+G9XbJqUsZDuy289UamAyTEtOONwmSHFWNLiEQYwqwsIuG1evHlrAG4p+Kq/NsVXllJcL30LtssfK4NunIPb8KhpT6gJ+FyF7a66zcYqWahOKCBtitALMfJhzi6e867Bstd4YTVO8jXOMy7732xVlN3IpOELRBFye2jYuPxzXx7J97cQwL/Mn1XlpVwwZ4E06bjt+yZJWZ79z15r9zkkIF6YeXe+wrzN1b9eBOW/uc30o8lhsgiGUhg33vT26qsE1BDbl5BMosbr2rUyQk0Mubjt+ibdcckcEUnlw1a0cVqfkM8RoBdj2tZMPzLfTjFRZ5YJT4LkKcI3fTWA2l6YkK0D2wLHlQXaazfulsdQO8uYKyCfTbjeAp+ZWr3i/a+p9bvFUcEreNHRzjd277ti4D9vXzi7l5a47rlw6Zl+/fe0sbjt+SbCHlpMGoXQbdq3Zv1QGrusWZmdWCEL7XfJZMS6+/aYVdrU7D2xayrOZpbXblsG0E9PW5F4H5pnynlBM/4XZmaU2Y9JuykDWgQtTLj6h6+pUU3AJZLmzu8ybyXPO8Hu0Asz0xKvu3bes95bGcJ9gMcLJNiTK59iY465ezHzQvvfYx1wbIJiPzXZb8O1WbTcAaeg3mPfIcrA/WlsrNOfN9mquaKQySug1134x2IO7zsmyMu+TEzGh5912/JKl87Hosr4doMw1rjqzy1V2Mub6HRv3ragHU36yQ5XC1p7ZMx++zI+dflfezHnz3FBZuDCdius4ADx68/uj97uQz7zzwKal8pDpMmWVYzscrRHf9sTPMSyXNfrLd3Q1cWC0zrLrIF3pdvWIrrWW5t6Ya0TseKyuYmUb6sFDa0RT1o/abgSutaiPv+PUMsFlNBv5vy/NXbYbu+5ccb1i2pEdrSQnP75n98qIT0QXENHniegxIvoyEd1cHD+XiD5HRAeL/88pjhMR/RoRHSKiR4jo1SnvsaeyczaW9Z13TYU3Tco7pVq/MDuDVffuW3F9qurv0qrkcNj08q5YTaHe3hyzbXGua10agES6uYTcY1xIAWXn00T1yHFYdsV9k9qiyYtPaBmMe0mZSRzXc3ON+LLuTLpc27nFPP5jkzqA31G1zKxtF0PIkwDezcz/FMDlAH6CiDYCuBXAPcy8AcA9xW8AeAOADcW/GwF8IOUlOzbuW6pEX8H4egZZmfaM29yie6MNu2etEtM9JY0S1/DQTmOqX838scVgQzJDx9T82UbaFM0wFozQpM8eXgGTIXaKTU0+x8ZnrwLiS5ZMfk1YbDt9so2YNjp/bHHFc30G9ZBAM+fWX7eYJEh8+GyH88cWo3ZBuQu7uc+mzmVfrQswZn6Smf+s+PtvATwGYB2AqwF8rLjsYwCuKf6+GsBv8YQ/BXA2EZ0Xe4/8yHzaS2h5jflfNqCDW/csqdkuA7ykTM8Zmik1jSqmcZje177ONZnhep9rA1P5Id92/JJls2chR1J7xtI1G5u6xMs1FHFtYx/TEFIEr8s+48N+v2kH63bfH11643qHbX+zy0e2M/ucmfmswuG9s14h5bPlSlI1P7tzSJndddGpEZ+ILgTwKgBfAvBiZn4SmAg5AGuKy9YBeELcdqQ4FiQ2bQxg2fjeID8UWwMzlXfXHVc6G3dsyjzG9rUrtzWzh2WuHl0O8dZfN+kl7R7YNeRzaRgx7+5da/bjrjuudBpcpdZgL+My6U6xQ8oPyNSN66NyaVuuIXAqoeGewa5H+/1mWOsahgErh/v2++z6tetIvt9O5/rr/LbDVLefHRv3Lb3T15HEcK2rtFe72Pk09jWDb5bdpjMBRkTPB/A/AfxHZv6b0KWOYytmHojoRiJ6iIge+g4myx1kjx8SLmaZjcvmZfd4c4un8OjN73f2rrFpaolrtxh72YlMt0/jmVs8hYtvv2nZMy6+/aYVmojc6cdOkywbo2H5HFDN1vEhLVQOp1/y4eUaa0rPKrVAkw+TLok0Exh8vkTSlmhcBXwfR0gA2h2DbVuUndCuNftX5FvO4oXqWbYvn/2yivbqQ86Cu+7xuSWZ9+xas3/ZcjHzLDtqsN3Wbdtoyowz0NEsJBGdBuAzAOaZ+b3Fsa8A2MrMTxZDxPuY+eVE9BvF33fY1/meXyUeWIoPSpNLZcrMQlWJheXKS535a3JWrcpsZBsMaQlbWVxtpe5y79ssJAH4CIDHjPAquBvA9cXf1wP4tDj+tmI28nIA3w4JL4PsZVO9vQF3ry6feXTnlmUOdzFiKrDdixobm+86l8Yhjfi+WUvfM43DqbzO1nZs729Trr79LeW9ZuLDdc636sF3vU2KQdkmxQheFzE/tFj7MdpirvNok4RGHTlDd1vjTAmz5KKLIeQ/A/BWANuIaLH490YAvwzgtUR0EMBri98A8FkAhwEcAvAhADc5nrkCY3BcmJ2JzkzZ2A6N0razbvf9Xi901z2+Htj2vJb3uxwXzXBYOgG67jdDRZdtyMbcK8+ZaBNyeLlj43NuGeaeOw9swrrd90c1v9UPn7FMKMt3+cpGDnfr1mDMcNs1hIy5bwBpy4tC18u8uSYc5LPWX7e4NGRPTUuu+0Quoe/IuI+kfGt2u123+/5leXeZN1xMjSNriNwNMFKGBrZq3eSwUw4hzXvKbuqRGjfMNWyVeTTPiaWjjCNrLB1lSXlviiNnqG34znc93DXvjzljp+TvrjuuLFUnvrbSqyFkW8jhSY5zo41LffdVYEgzSnWkTTEs275Vth/Y3OKpJOHlmqndsXHfsvVw0kNbvtPVQGUezcdo0uEy+gPuYaDLVcBXLnX6FIVm/AyxYalsG65255u9NsJe3lOnhhUb3tnrgX1pjbFrzf6kOnGVjWyzg3CjaBK5aNe284SwZxddleGzSYTsAa73hzzWDdI50fy211nKj8o4d6bk1zXtbsrNHl6a/4/u3FJak4ytezTItJshX8yeJDH146onGQzR/khsYep6p+uZofWxdjvwRQABJh+wT4Ckzsr53pMTMz9k13TNZktuO37JshnFlG/FfofvvIvRCjAbu+B9oWpis1pAuV6/bMOztYJYxZppbnu6P3VbtRRDbKx3lM8w5ezLv+t9sbIyeVmYnXHmy2ikrnoyx2QHZ0j5aFyrHmxc3v6mzHwRaXMdXmPYmmLMM1+m2ZVHc3+s7d95IG668LXFMhrfqAWYnJHz7WQMLK/sucVTK7zepVOinBVyzc4ZfAHtfGmUaQlpTy5fNXnMrINM6XF9s4D2rK00eF9z7Rdx1VtucPaspmGacgImIYhD+XE5zsrrzRIomU/zgbiWJs0fWwyGrZaTLK6ylKQIc/tjPLz3OT8wqc27ojmY9x3duWVFffmG3DHN2px3td0UzKSNvFfeH/OYt2fxXdErrnjvg9F8SE05xGgFmLR/Hdy6x/uhAssLyTVLJitv+9rZJUdWOzaTPbST7/DNcIWMpPJvU6G2JvnALZetiK2+Y+O+FT2u7Uho3m0Prw9u3YMN9719SbAYtwrDrjX7ccV7H1zqAGzhaT48k/97Pv6RoLuDq1xcdeBb9O1ztA1h6tG1NAlYLohtbOH41Nxqp0ZhnDrtZ0gnXfP+E5c+61yB4VoqFdNS7IgSqYLLtBeXHVNi59/WWmVd223HcNcdVy5d5xuuSk05xChnITdfejq/7rffuFSZu9bsb2wGECg3K5mCnJkKvaOqw2TK/b5rys6uyskBl8CWz02ZUZX3+q6PzbD5cOWxidnE3HpMbR9N0dY7p24W8quPnLHUo0hbR50+MjG7Wa6PUSy8SKih5CxQzsVoVL53pPhOuQhNYMwfWx6F1CWM7J5bapw+YZc7wyZ98OTOSqH7q7hC5AgDO2pIFx7/Tba7VEYpwAD3ItuQIfPozi3JnsRm+BgSiPa7pGrtGnKUWUAb84KX+LSkw3tngzNLC7Mzy84bW5+MuhrCtb4zhitMzuG9s8vKzR4myvWsrpk/2wM+JV12Gu48sGnFs331lXMcyPvQ549N9u6U2G2qCcFhyi20MsA1pLfx3e+L5x9ilEPIKmshQ+SozGUdLKs6ZvqGT6mOrXU6hqa81/W+rp06Q2lIbQO++/uQtxh1ptHUr8uem7pB7tQNIU9c9F3OrcB8va4ZHsj1Wa7oAC4nRdmrymPXXPvFZe8xmoFMh+0wKp1S5XGpQZhn2L425pnSkC5ncqRDqVnDaKcbWNmo5hZPLb3LbD4qy8a8yzejJ99rlwXw3CyVrC8zC2avZ5X3y3eaCJ92lAmzXX1otlGWr0yXHSbIPMtuA642Y/Jgninr0p7xlm3BF3HEPNvUnXmmq13ItBmNyT5u7rfL1Z5Jl2Ul02rfJ99hT4xdc+0XMX9scVkUi0dvfv+SUAOWzziaYyaUVUxzVw0M9S/zmVtcHhfcENJGzMfR5JKjLqjD0JuiPZprmtBw+lgnvjbWNCENvY66dtXf1GlgklAcLdtHB1juHySlv+xhpA3FYAeqc9ngjHZkX2/uMWmxe0VX+uV5X9yrFFy+T7Y9xXb6NVqAb9s5l7E7x/Zj50eWmzwv7zUC7uDWPSvqz7c8x6Vt2PYyIBwF1YfrOfb75e8U25o87mpjOelzpTf0bvPc0LDPdMCxthdqC3Zgw1h+RinAztzIS+qoWdtnjO6xBrB97eyKgG7Gb8icl3G/jdrtG/pJ5o8tLrkOhBqCWYIi3ysdHe01l67ZqJAzp0mfSY983vrrFnHPxz+yrCGeuPTZJcF0cOuepa3S5DBA4vL7ci2LAZbPYpp3Sr+7hdmZFYLS5E3OLpvylv5dslMwz5dpkD5w5l0mbLhE1ql8p8skIX3IbP88mSYj4Ez5S+df6QxrIzc0cX3cIWFrp1cKbLsN2R1nylpes8zMHibb6fDlzXTeOzbuW6pzGazTxSiHkOe94hy++LEfDqq0oaGGS022VXZ7WBFTn+X1OX5FofMmD7FhU+zdEpN388y5RXd0gdThgnzejo37VjzL9Zz5Y4u4+PabvO90DZ9keg25flouG1eZYI/mOSkTIjJPKTO6sbTXMXlQ9rsBJuVjZh7t6Ba56TH3hoaQoxZgQyRVKLnuKUvOR2n/XZVU+5L9Tvt3ahmY69qwazXxDl/Zlw2fVIa6ZqpTy2fqbGBP/6/w8MmFa7bKdU3O88rc6xNeIbtCyocbWswdU9PtIY382/Vck1Y59MspO9ezbL+6sgLUHn7m2Fvs62P4NI/U5/kWurvsa0/NrQbg97HKSXcsPTnCy2dzDLUHn53YxSgF2CUv+OulqV2frcBmYTa+12HOR2Mbr1OWGpn/7QgGQDj6a4pwMGshXYJVLri1p8OBcCgW12YNJq3rdt+/VP6+/F98+03O+jHH5O5HtiFf3hfbTclgR1qw17PG2oq0VbnSG8OuR9/zXNfK47ad0Sx69wmXOmYr5bIlF658+EI7uaKByHNAmqAcpQDb/7cvxPrrJstRQnvZpa54B5YbcmM9g/y4UuNYGbuBNBKH1OuT2zZF41XJv2V8LzkzuzA7s8xbWk5WmGeEhK9ray/7vK3tSK3txKXPLgkOWS7yucb/7K47rlwm2OTeBBvue3sw/heApUkdFznGatc1KUMhl7Z6ctsmpz3Uxp4Jthey+4aVrplYG9dMqO/6k9s2eRfn2173crVGiu3VTkNKCKipsoFJQ28Xa8eaomp+Qo2rzORCGWKGY+A5bcW11ChV03W9L2YA96Vpx8Z9rZRNKA1VNCt7MqRseuvMZ64f2CgF2Or16/iHvt6fnVwUpWnqXgLWJ6bOiH/ud7mjZvocFV1B6WL3mt++WFC2Q5/L+RVwq+q+Ia1cMmQ/2+d86FseYtIo8+NKi9w6zeVgG8qHTJ/9ftsnySwHMkN0mS45weIqV5l++9k+B03p52TbEl12Qpdfn8/YbOrafo7LDOGqNzvN8t22bdecd7mcmDSYNiqvl8unXMZ1c8xnLrHL0s6vLN/YUNDXlm07p4tRamDnveIc/vd3/HPnMCPVVyuHFBW67KJl41fjuy523nYMdbkQ5Pjk5CDT5isj89yUIWRoyCaHmSGk86hJmyv/uRpNrHzke+tyrSgzhLSHy/bQu4yZxecrmEooH/PHFjFz3qHpG0Ke/19u6tWqf98K/CbW7sWo02eoDXuinV5f+tu2bea+L/X6NttElXe1Vd5TN4QE/D1xTGVPJWcGE5jMtr144cSK410I2TRQj9IAACAASURBVDodHmUQwhTsIXBsDR6wMr2+9Md2zJHYs7Upfkk2sZ3BbWL+czk7cJdd82gPhWPtL5Qm30RKKmXzIBmlALvkBX/tPO5bY1ZGiIRidtt2G2Dip1Rm37uU61MaToqjbhVirgAm/cZfqw7BbZeJawMJH8ZvCpjU5a41+7PrpMpQ8PF3nFrRTkybStmQJeXdPkfYnLKX5SRxtSVXwNBQmcaG3L73SEY5hOwqnE4by1Pqpuk0dzFE7pIhtoEcunBBmsohpAvfsM+1rMSFCSUjkUMB+zn2e+SMXiq+2cvQc8xspctB0f4d2ozXJtQb2pvJmv+N8PLtw2n+NjNZ8pysL9fyJFfQSt9srA9Xnfqus3G9K6ZV2LOornf76sHWSkL1ZWYf7aF6TKORM6UupLE/lF5XPeWaanxtX6IamIXdw9gaROy875gvwkLonrrwPTslwGJdzo7AczN7R3duwaM3v985+yhnE2UafNfIxe9meJqrAcVmHMvWTeg++52mLozg8O2kJfO7+uEzgun2RT2xny2vK+NPJtNkz2DW0a5VA8vA/jjtwjeG29C0vR2UDfDvV2iv+auCHcNJpkdizq+6d59XO5Extera/cbk3ywfstMztziJS2UEkXmXbSw/uHXPsjWSwMpF2jGkhmHHcrMxG4bUid0WTEdiNlFx5UOukwXiu4S7dozatWb/0nGj4ZgNQuYWTy3bSDiELCtT9iZtso00bT5QDawhps320yRN2F2GWj9Sa66ah6GUgWpgFnWEFomx/rpFr92nDlJnFOuYqq4baTdMjRSSQk4Zp0av6BtyyF9V+MQCE9qkBDFom6kSYEZltqepc/a5SxUc9vKO2AeTa9xP8fwH4kOqXCFbpZG68ijTZy9ZisWPstNycOue4ISF672xZT2htOfWWRVsQ3gVlxh7uZDN4b0rI7jMH1uM2sZCoYHKkJLHqRJgJpa9/fHbtoSQo1/ZoYxrg0+Jz9/GRUqYEVdjczUIeV3KciKfj1LoY7DX65ndg+w0mTKwQ/oA7nL32R9j18j3ytj+rhk289tVnjEblP0M1/tdx0L15LIz+fAJAOOvJfcEkPj2igDiM59yMgBI07BDdtipXAvZtQ3s6M4tSxtfAN34ztRBjo2kDv+n1HKS17UZSjmUjjpxzQSWyWdK+poqvzrta2oDa4BQuGTj2W3wRaUsQ5Pe9DY5DTDmie9Ltzzu04Bs5JKhx99Rrjxc6csdHueug0zFpdmFhIxPS7GXVrkiZDQl/FNWE9TB1AiwUHiQ0JAsxc7hashyCruKrSRlS6qUIWUZfB+0jPTpwxXD3iX07fwc3bllqfHLHcHlu33DXhkuJpR+V5TZ0BKbOmL75wi72JZ4Jk3GUdWn+dpmCZf5xMblZOsqR7tO7LTVFeQyhg4hW2Ao09VNomXQHFWGsn2vl8N7Z3H42tt0CJlK6sLoGLENOYZOSKt0lY9vSOG6ts3ZPUkfXU5SqKLtNN02Q3WZUt6x9KkGpihKL0nZ2FY1sIZo09g+BLpwclT6T8h+mzKrPRUCLOfjqTqE9Bmny74/pma7IjC4ZtRSy6AOQSMjGpzctqmU/1gKOev16n63oenhbt8Ef0p6XGXiK+uqs6BTIcBypnSrujzU6RckHQN9bF8765zxS3XotAltoOvC1TDlHpSr7t2H7WvdgSTltanvS3m/+chSyq4qIe/0OrTwtuynqYI49C2ZcpdlYkII+crateoih1ELMKkNhfySpBrriuFljucUctkKkR+69EQOuTTIafeqLhWuj84WPnK3GF/IFzs9PtcGVzm5QjX7Qk+nRPVMeY5MS0jwpGggRiuW7c71oYZ2eZJpbMMcEVsmZNLnirpqcMV+A1Z6/Lvi0W1fG4/95aIzIz4RzQB4CMBRZn4TEV0E4BMAzgXwZwDeysz/QESrAfwWgE0A/hrADmb+eujZVY34oWlp28veR9cbM3Q5Pd73qXlDHasHxrwfY5fINtRXI/7NAB4Tv3cDeB8zbwDwDIAbiuM3AHiGmV8K4H3FdVm4PJB9hISXWc+XspmDvXg7VSOT6ZS9ry/9JrCd/O0iVTNLWTQdw7VYPhZl1L4+NQ2hNYUuZARW14Jl3/t96XAJr1B782kivmtD15SJGNEkrnoOLT4PfRMpzrxARxoYEZ0P4GMAfgnALQD+JYBvAvheZj5JRFcA+Dlm3k5E88XfDxDRKgDfAPAiDiRc3SiUphiKdlk3Xea7jxrYrwL4aQD/WPx+IYBvMfPJ4vcRAOuKv9cBeAIAivPfLq5fBhHdSEQPEdFD38HK7ctCpPZabfRudg+W8k55jU/TanM2y+5tQ+/O0bbaxKdBpXzETS3tSqGpsvPZt2xy6r4OWhdgRPQmAMeZWY4zyHEpJ5x77gDzB5l5MzNvPg2rVzSik9s2ede0mWGAGbKZuGH2xgVmbZkZIsRCi0hSN0GwVWdfyBaTHzOsNe+T0TolJixyGfcKu9HG8i6H4Ed3blm2A7T9LNdWaDs27ltxvRyWuYYl8np7COda3yevldeF3GDk5IVBbpxhuOfjH0ke8prrcj50e2MQYOUmKq73hobW8nsJpSUWQmjXmv3L1soac4Kd5lB6TDmnlEnrQ0gi+q8A3grgJIDTAZwF4PcBbEeNQ8h3Prx12SxeVWNtFYNvn8Pp2GmbP7aI245fskIISVtPTlmErpUzdSnlE3qWHOLU8bwcXG2s6zqvkjf7XvM7JU91fW+SXg0hmfk9zHw+M18I4M0A7mXmHwPweQA/Wlx2PYBPF3/fXfxGcf7ekPAymILevta/Wj+H3GfYYWJSJxHKDFOrDCHtBuny2bIN1TllYabHXe83ESpcbhq+Z9mYcpWaxwO3XBZN19GdW4L5yKkHVxvzfehtDS9z26vLtcH+nSKQ7XvNc23NtS5zTJ/8wHYCuIWIDmFi4/pIcfwjAF5YHL8FwK25D87xyaprMbcrXEsKZabkZdgUEx/LTmOXhucdG/d53++KRJuaVp9G8NTc6uA9AJYNu12k1kOOGQGIe553Zf+rs31IIWaee/HtNy27pi7Xk04FGDPfx8xvKv4+zMyXMfNLmfnfMvOJ4vj/Ln6/tDh/OPX5pgHFeqMmDI91RTZIWQ7j+ojrWspUxzPuPLDSTiTPlU2DL48hO03dUXJDKxfKPD8mSHLrpy4n2KrfhMvWCaQFugyh0SiU3tFlmOiqDDntQD8dc3tlA2ublFDBXcSB8i1pSfnbJjc+Wew6exZP/m0/J/Zu2/6VklaXABhKdA+TdrucUpxkbVwRaUPEnJ5TiAmvOmxXrraV264MoxVgZpp2YXam9vjcdQwx5RZU9vpH+bd9TayiTdrshubapdnFbccvwcGte7xpsofjriGgXPdndoJyPcuVTpkHSc5wLFQ/oXWvdSEX4dsLy31DKVeaVt07cSeRAj3UEcnd1O3nxTqwUJnJTii2e9bRnVui0Shk+uQOSfKalNUuwIgF2MLsjLNCXfiWlPjw7fEo70tZtJwyU+SbETIszM4sEyI+G0poEW5OukKTA/YUeort0dXjp3Y4vo8uZEe64r0PLv2dUyYGl0+cnSbZ3nKN47HJn9zZRTkbn4LLf052QvZGITbrdt/vtEH63i/LR14T24bQoDYwRVF6zVTbwIDyAQ1997mOxwIR5nhm+2xOrt2AfDa+ssPcnIXvNvPHnhsWm/BDMU/zUDyvJshZTJ37PNdvG6nBhTR237GmiZVPygL0lON26KKyeR21AHM5OcaQTqe++1wr5WOqvm/YGXOBkLarVffuW3G97bQp1X7X8Rg7Nq58R+pkArDc6dHlD2QTs82FohmkpMfG2FbmFk+tSFOZyZxcVwlpA5PDpJRdxuvEV26xIaKvHRvs7fPkcYntHLv+usVSTr6jFmByo9Schu6rRPOMnC3lDak2iJj9xxZE0qYDPCdc7UZk1kLGiH2Qtt3I5cEtBcFLPjyzbM2hnS6XsVaWgfmIfely3R+aKQvZVq56yw3ec4ZYO1qYnQlOFMh2IIWBS5MrE8zQlLNMg0sw+8rTt+emIVZGdnpjs5byvGzL6gdW2MDMTOT8sUVsuO/tzkppwneniqOkvFeu8aszpIl8h8y/K90u36DUtJQph1iAxtC7XWs5U9MXaweu8678hfJsp92UbW45Hd25BY/e/P5a1xz60ph6zuBahymP+Z5hysAu55ANbLQC7Pxb/3PvHPKGQlUvddci7aYXN/fRAbNNul48nkLZBeZTacS/5tovlnbsi12fayspa/hMpU5/prnFU1EfnJhNLNV9xXd/6nWyHvoovHLrpYpDdZ+Fl+1eU2d7Ha0AA/I+JNd90glQFrqrFwk1vpjK3afGt2vNfmxfO5scHyo17b7rqtxfpjdv06M/JW+hKBBDxFW+qZE6yjBaAXbngZUuB7lIJ8BYoZvV9j5jddkdjXzTzDJvctKhap5NY5M2CFsAL8zOZE9758wi+gJP2pSZepcrGnzLfULUrc3XvXi7D7gmMXKXk6UyWgFmZnhCMzmuBhtr1L4ZzXW7719aOmN+y/tzelfpWiCnmQF3pAO5vEMuP5LkNJqQD5vx7wp9ePJ6Iyh86XJ1DHKWV8562nmITelLbL8jV32krMioqs3LPIRm6MoMJ10dX92kpEvOJtrtF1hep6Ht5FIYrRH/nQ9vXRoO5RgPu9i8IBRNNCXtKWnOMfLa75T32gI5JX3ymiozmjZ1zXD6yDU61xXh1aZK3fWdWHrnjy1i5rxD02fEB9IXMEty/bCqYn9QZda+pawd9K37s4dSvh5RbkUm07R97WxQk7DLq0oAQ5syaxmN1lZXBJKYbTTl3pC2MX9sMepcKim7QWxXxL7RWJmOWoAZfM6LoRk0G9Pgy35sdqMydoI6tL0yH7LhtuOXLGskrga1MDsTdN4NzQCufviMUh1JCmWijMiF5qmrCkKE/L1SCWlX29fORiNA2Axp27eqBv3RCrBda/Y7x98SV+H5GnVVtdxOQ52Osykfck4Z5NwfY93u+5cJ2CrC1iY15IpECpZY3qvYkep0OK6zzMbGaAWY7PWHpFJ3jUso5ARTdE1yHNy6p9S61BhlOpUcra2MgKybhdmZQWlUbTNaAQY893HlNNq6fbJybS1NzR6lCvE6dnGyZ5maGkKWsWPl2JPKkOO0nNrWxtoB12GHHK0Ak0PIWEOJbTorSQ2pW3Z/vFAkCBeu9Lo2Bc3Z6SeWptA5GfzORCbdtWb/klBL8Y/LEbYuzDtibgqx95QR5OuvCz+36kYfqdFmU67PIfU5vi30fA6uqWGmfIzajQLIbzApU9ZduFqEqDPNh/fO4uDWPYOYii/rMuArr9yF4GUosz502td5TuVaSIO9DCiG9DL33RcakuYGuEu9P/SclI8gdRgduy4WuNF1LrR2su49O1PwlVdV4ZWSN3uvAV/wSkkTwqvM5hwpdeXSbF31Vlddjl6A5fbQ0ss8x3vc3GuTawj2xUQPfVgpDSv1wzRDPd8zcz5wO2idaw9LezOHpknpCFyCN4UyPnyuDVOa2sVaUkYopu7h4Fp6ZlOXljtqAWZ6uBzDbRWDs2vNZO7zfB+Nb4t2IG0DhNSPccfGfSsM+aEPKGUDkNDyndgzQjQ1OWDSU2UWMsVm5BPc9iqIMsKmKcN/qC1U0ao0pLQDY2PIaQD2llSyMVVZPFwVM7RraqmK4c4Dm1Z8WLL8zFrIFMxwvCk/pqbcHMxHmrozjqs8Um2ksb0CypZdFRttqJ2HnGpz2rpdZmXTO1oj/ovuePfS3otlI3T2iZwon1Wpcz1d2dnYLmlrkqavba0qdZffVBrx69BYUgysvuvL4tu41jb4SlIM9D5Dqr0WMmUXczvahI08by9VqtPelRJNxCaljnKXKPnKoEpezb1VdpfqitRQ4ynEynD0GlgTpPScQ4sK0BV19da52kzfXGEUP1MZE/+dD28dpXreB8Y69FH6yVQOIWMfWBNT003Sp+UkZYRXm+nvum77skltnbi2a+sDoxVgMao6B9YdWjhGE8OdFH+npkMax4RNzK3EdZ3ZpiyXuvKas0ltXe9sWrDU3f7q6mRGO4Q0+0JOK9O+/ETpF749N1NskVM5hGySlN6uzIYRLlzhamxcvVnfhFebw7ohztx1TWr9lC0jX/y7qpqdamANMWZDdxM7mSuKD9XAIti9T9leJhTrqWwPl2sjqapFxLY5A4DH3xHe5clOgy/Eiuta+1iZ/KRsxVbGhyzlmpPbVq5kkMiydG0/1hWuEER1ln1T+VMNrCXU72g6iGmnffcPrNpOm2jnqoF1gK21tCW8qnq6d60JAMO2RT01tzqY/r4KL9Ney2yUIll/3WKrrhYqwBqiTSO6FJZVP5A6whznRAZ1HV/98BlJaegj63bfP0hN27TXOuy2UgNtevJGBVgGfdUMXMKy6bSGPlLXEMonlFzPqSr8+1pPQL/T1gSh7fjqQAVYBkPqWevav7IOTm7b1KpG2ud66nPa6qLsELJM2xu1ADP2nNywxTIQX2gGzUXqu3wzULkhqWV6Q/dUsW3Z6ZNlEooPZo5LjazsCoajO7es+DBy6tU1QxrbYCS13kP1V5WUGdXYsTbSIpH1bUJa2bhm28sI905mIYnobAAfBnAxAAbw4wC+AuBOABcC+DqAf8fMzxARAbgdwBsBPAvg7cz8Z6HnNz0L2aaX+1j8yfo2C1u2XKvWfd/KIZUu22EfZyFvB/CHzPwDAC4F8BiAWwHcw8wbANxT/AaANwDYUPy7EcAH6k5MrspbpgGXVavHILyAdodOKYbjsuUaq/tYPQ9JeMly7Gs7bF0DI6KzADwMYD2LlxPRVwBsZeYnieg8APcx88uJ6DeKv++wr/O9I1cDG2qvqCjTQN80sPUAvgngN4noz4now0R0JoAXG6FU/L+muH4dgCfE/UeKY/UlKFF4dR2mZShM20yb0h1dCLBVAF4N4APM/CoAf4/nhosuyHFshdpIRDcS0UNE9NB3cAJAubC8IUNlmaFjG2F3Uu5JXeLhmhQI4Spbu0Noyjm2z4IyJW19cBruK6l124UAOwLgCDN/qfj9KUwE2lPF0BHF/8fF9ReI+88HcMx+KDN/kJk3M/Pm07B62bkuh4cpoadlZZXZaSflHl86XPtQxp4nZ5UObt0TvLZvkxA5QqOMgDF1mdLmUuptbvHUVGj+dlmnfrOtCzBm/gaAJ4jo5cWhqwAcAHA3gOuLY9cD+HTx990A3kYTLgfw7ZD9S2L2DczdmbtN7I1Ay3jSu/ZHLNvoU8pKpjG2N6O9OXDXWkdO/ZZpCzmdZeq2bX0LjdQEZb+7rmYh3wXgd4joEQCzAP4LgF8G8FoiOgjgtcVvAPgsgMMADgH4EICbUl9iCiVHq+n6A6uLthp9atQNubtSXZTRrJvWwHJISb9vd3hlwqijUZRZ+V/3kKeNIdS0zqI2ne8+DH/7kIYukPnu2yxka5QZjtXdWJpufEd3bnF+xH02cNdF00K7D4KjShq62oCjDptdar5HLcBScQXgC5EytGhL7V+3+/7ahVUTQRF9ZeYqp6ofQNfCu+6hZ91hnOtMg2sjZmm+iJVF1e9k1ALMFF6sAciePDQsybHjlA1rc3jvbPYHYMdwmls8tSL6Q6pQyF2T5ipbWT5Hd27B0Z1bvGXmKif5AZjn53zEXYfjCbWPnHWTRoNq2zyQ4hpjkPV3eO8s7jywXOuLfSu+7yT1Gxi1DcyQYwubWzyFXWv29zbwnI1tI6lqF6oj/y67jW8NYRUbT5V724qMWnf9lH1vU/lNfa7rutR7p3Jn7rKLuZsymg7F0B5LZ6h86vpIhmy4jpWfbneXz9Qa8VORxs6UD6eMTcJu1DF3g7pJtTXs2LgvONw0LimuMnD1sH0jtJFGbigjF6aefW2kjPBqw5E1Ja+poaXsercnE3Ii9sZQDSxAjiZQl4bVlPaRox3Z18q8ldWyypSPfc8QNLMhpHFoqAaGcr2p3RBDayvrGh6WafwpvVeODdAmd6VA7BmpxO5JCfYYoo7ZZhvbiF3l/cCkzY3FuTqHPq+FbA1ZCCHBYKu8PpXdfLxlPsayw6mU4YNMT5n32PtZ2kIq9AG5zpmynj+2uEzouxpljstFinCX74xdX8dss++ZKUJn/XVx4bR97exUanSp39ioh5B98MRvgzrTfHjvLA5u3VObMd7YzIYyq1uVJtqP3GuyzX0lXcP+pr6P0HOndghpKrpuY3LoeVWcKO3IFPJ5VYcROV7ZoQXaJia+0QxDWtVdd1yJ7Wtngx9cat248h+7V6bNXGv+dz3PXJ9TVnb+bdeFlHtjce+lQ6osy5RY81VwaUEx4VUltJOrvmKMWgOr2lt04fqQ8s4yvXAVf50q1x/eO4sdG/e13msPgSGmv6nJqtBv9QNTlJYYolDqO1M7hCxDqj9Mn6gzPaFt0mL4hjRN+YP1oR5yh/a5ae5DHiV98+1TAVYC31q7ripXroVseso99HyX7ezg1j3JgfsMqR9t08P7lLLM1bZk20mdqWwDWeah9aexAJZ1kdqOVYBZLMzOLFWc7cIQ+7CamB3K/YjuuuNKACvTnmOYDuUj9MGac/LddsTZOojVQ+i8SVtZ/6rYu+3ysd9x4tJnndd2rWnJOjJ/y2Om3FL83OrIS2rHMDU2sJPbNuHxd5Tb/VdS1ijtM34OZY1kDDnV70LahuYWT+HOA5uSo4DEnm0YyzpDV1mEyqCJhfJ9Qm1gBXUIivXXLZZqFL5hZ06aUtfESW0rdVhbdb1dTMDIntsWXoC7tzc9+VNzyzdp8XHi0meT1t3FaFIbSklPSJBLTDp9QrupVR0uugqeODUamKLUTY7G11dtqA/piqVhajWw1N6ka/uDMkxyhqtdCwkffUhXlTSMWoDZkUp9dB3BU+kH07hoeuiMWoAZu0tMw5IzQyH6qqk1HS/q6M4ty5a9yA+9r2XiIySk+qCN9IEh1emobWB9GN8rilKNqbWB5TKknieXKrNEueF0cq7LCafjok7n4S4cke02V9cwtiuPf6mtS2TZ1hWgABi5BmZQTaw5tGyVppl6DSz3A1Nj7nKGYDcas/Y8BpryE5sKAZaL76PsUrB1+YFWFVJmb8hUqm6aknJ/k+UZi++VSpk0di3Ifcvv6txkVzIVQ0hF6QtjWToWou4lXVM/hMzplerSsso8xxWRtS5SNaA6tJccw7zLcJ6zi3ifqWtzEx9da1su5hZPJQuvOiZNVAPrEW3GO6+LadAolAldLZZXDSzSU+UaGEPP82kFKVpFbtysLrDznrrawZf/Klub9V0DGxtNCq+y2uRUCLCYhnDFex/Mfp5v8w2fwTtW+WU3frXxqeW5m2f49sC005hq4PflP5bnlPhjwPJ05kSV7XoYpkJ4QlktXoeQFkMcxvXZF6vPaVPy6aI+p34ImcNQhJfsuXN2gy5DFS0lp7GnbLdV5v6m7quDKmVbh/aYm/e+dUZToYGpFlCNUPnVobGmPkPrMZ8xRKmdeg0s1OilcTnUo+X2dnbPVjZiRCg+v2sjBl9aqnhCh8rPJXjstBzduSXY09vP8OXFTkfd3t0pz6v6ziqRQ8poikZ42e3Fpm5boJ1W1x4Evm8ktKmIzVRoYIZYbPUme6uyz55GrUPWU5v5j02klHUZGZJdtSm3mCploBvbBmjrAxlq+GH181KaIrWdT/0QMoSrAGNqfplhRNnwwynDBld66xoSNC28XOns2rVhGqmyVV3oOtM2Xe24jk566jWwGKkaiN2b5GhRqduGdYFpkKYM+qQdKtOBDiEVZYoZkg3OhQ4hUc+MlVSDm4reORTP7NzwODn5qhp6p+xMX0qdpuQjdE1OO6yrLbQpvHJ3s69KtgZGROcAuICZH2kmSdVRDUxRxkNlDYyI7iOis4joXAAPA/hNInpv2QQR0U8R0ZeJ6FEiuoOITieii4joS0R0kIjuJKLnFdeuLn4fKs5fWPa9ddH0LkAuhm7Y7iLevDJ+UoeQ383MfwPgXwP4TWbeBOCHy7yQiNYB+EkAm5n5YgAzAN4MYDeA9zHzBgDPALihuOUGAM8w80sBvK+4Lps6hpBGcKVuw1YnQ3dl8A1juugMlPZoun5TBdgqIjoPwL8D8Jka3rsKwHcR0SoAZwB4EsA2AJ8qzn8MwDXF31cXv1Gcv4qIKPuFNczyGVeIoQuTsZPSWTX5YTUV/11ZSaoA+wUA8wD+kpkXiGg9gINlXsjMRwH8CoDHMRFc3wawD8C3mPlkcdkRAOuKv9cBeKK492Rx/QvLvDuFoRjRx0ITKx9SOqsm1wf21SWmC5peh5kkwJj5d5n5lcz8H4rfh5n535R5YTEJcDWAiwCsBXAmgDe4XmtuCZyTz72RiB4iooe+gxNlkgagf6vtx87QbXtKt6Qa8V9GRPcQ0aPF71cS0W0l3/nDAL7GzN9k5u8A+D0AWwCcXQwpAeB8AMeKv48AuKB47yoA3w3gafuhzPxBZt7MzJtPw+qSSVPaJjWiq6K4SB1CfgjAewB8BwAKF4o3l3zn4wAuJ6IzClvWVQAOAPg8gB8trrkewKeLv+8ufqM4fy+36H07bUNK34YcOZtyxJ4n6bPGO2113ydSyz7JD4yIFph5joj+nJlfVRxbZOZS+j8R/TyAHQBOAvhzAO/AxNb1CQDnFsfewswniOh0AL8N4FWYaF5vZubDoeerH5iijIc6PPH/ioi+H4XtiYh+FBMDfCmY+WeZ+QeY+WJmfisznyjsapcx80uZ+d8y84ni2v9d/H5pcT4ovBQ3Q7I1lZkhzF1srO4b7VC2nFNnclM1sPUAPoiJreoZAF/DREP6eqnUNYxqYOXRxdpK36isgRXa0Q8DeBGAH2DmH+yr8MpF9txN9spln21sAfb9TfkaNRVfP0cDrFoPTWmbdTy3rrSVKaNQm0lNV+4Gyeb/ptprUAMjorcw88eJAiFpoQAAHfxJREFU6BbXeWYuvZyoSVQDU5TxUEUDO7P4/wWef4pSiZy9LeukrhlG9bqvjzJlmWoDexEzf7NMorpANTBlaGjobj91zELeT0R/REQ3FJ70o2WIvj+uNJe1taTel2tP8ZVrV+XdNw1MhVc5Uo34GwDcBuAVAPYR0WeI6C2Npqwm5HZSoQ/LBN0LzcDJRt+GoTj0PntjW/u8/UGEPjQ5ZHN9SK40hdb72c/IFRa+7eJiW8f5niGZP7aIw3tna5tpja17jOW9DfcWs6VZXZMjKfVpf3P2PSkdYErnUCag4fcAeC+AH2PmXs63NzWE7DI0b+oQo4n4+rlbwuUMh5oYOpXdwi6lfpsa6vV9CFnWvaaOfFWOiU9EZwH4V5gsH/p+AL8P4JPM3MuFbF3ZwPoQe7xqGqrcH7tXfcyUMtQhwL4G4C5MhNYDNaevdtSIryjjoQ4j/npm/ikAjxLR8+tLmqIoQ6JvS9JSBdgriOjPATwK4AAR7SOiixtMl9IjQn5ZsQbdByO2C10LWY6QPauLGeVUAfZBALcw8/cx80sAvLs4piQyRPcMQ8iuFTPQNm3zKiuImo4UOo3k1nUdDsupAuxMZv68+cHM9+E5L/3B0UWv3+SHXHUfRaC7XYNSZqhC+TOCaP7Y4iC1qiptsWo77rpTrWPCK1WAHSai/0xEFxb/bsMkIsUgaWO6uorvkw/fB5qjTeTmvS6hUGXR/DXXfjH6bPMx9GFpj8lf3+xFOdSV9qaFZKoA+3FMIlH8HiYuFC8C8O+bSlTTtNGwcjWuFMFS97BHfuyu3nBu8VRt75T5y33mA7dcFn220SD7sKGGyV9KuOz11y2uaI9tCj7fu3I6upD23rQJIduRdQh07UbRB3+wMdGEc64yHEJuFKtcBw1EdHfoPDP/SJWEjZXta2d771k9JFR4raTrTrLr9xtiQ8grMNkh6IuY7OX4P6x/U0mZ4G9VAxrmYtLYlXHeRq5v85VFVXuJq176YBNrgq6Fx4b73r7st732sa5hcOw5MQH2vQD+LwAXA7gdwGsB/BUz/wkz/0ktKRwgtmbl+iDXX7e4wtZT5gMta0MwaZQNvayACAnB0I5F8t71100WFK+6d19pu1pMGLs03jq0tyZmN115qbuzadKWZtvuTNnb/6cQKt/Yc4ICjJlPMfMfMvP1AC4HcAjAfUT0ruTUTQEpH+S63fd3vg7QDhed+sHEevtQvm47fknSdSnnu9I6YrOgZXDlxZRVXVqjbxKhbyG3q0wURY34RLQawL8AcC2ACzHZp/GjzHy09FsbpmsjvqLEKBsxo0+0tTi/ihH/Y5gMH/8AwM8z86MNpE9Rpo6hCy+gH5sSx2xgbwXwMgA3YxKV9W+Kf39LRH/TfPIUZfoYsgNs28RsYP+EmV9Q/DtL/HsBM5/VViKV8dLVLGnXy2hCrH74jK6TMBhSPfEHS0pDtT+isqGjq3yMdc105caed6XZzrN9TU4+Y+XvMmanPL+q93rK8MdOe5X69d3rSnedw8vUNKcK9JR22sRst4/Re+KbQunab6ZJUoypoWvqdEp0vacpp0eN8NoMISfsMnUZep6pw1BdVo7IOjSGOAtZxXNfP2RlzNQRkXUUSPXXpbrX6bBoPz/2bCm8Uoaw8nlSeLURUqaMn5IvH67jTRqxqz7bVb51hDNqiq7eZ/5vuj1OlQCTtgUjMGQB12l7sJ0IX7xwYunvWKVKgeQz6K7bff+K58wfW+n9D9TfiFO921Maryt/sa3dqlB1fapdvie3bcpydG17fWwT70vxnDf/m/KaWzwV3WqtDDqEnEK6dqKUQ96UoXMTQ+QxLLavIw9DKAcdQg6IMppG7j0h4VU1xr3N0Z1bVjxTCqOUmFnGyFsH5jl9+GirapUpZRejD+VQBRVgyB+npzS8sh9cmQZVZyOsI8a9nA6PaXqu57nqw/de17WhsjfP6UOUjqr1lqOVNhHpw4fLRtqU391UCLBY4ecOp1IaXtkhT5mKrmoorTv8tT3NnvuhptSHSYO0sRhCZW+uc7kCDDGmviFWh1WH4LIOY+XkspE2NUs+FTawIYzzx4r5sNTNQynL1NvADm7d03USBo9vyJXS86vwUmKUtQdOhQCzo0f2lSbtMqFnp7zXDLkO751NHq7Z16YyhiiqfV5r2UfsEVJq+U2FAKtjtqYNyi63Sem9Qs/Oidq6/rrFZI3KNMpcwdxkDPy2BEtdWue0CMKy+ZwKAWZHIjX4Cq2MOtu21mCEwtziqRW9VxVNru7h3sLszLKorBJZzinlV8fHPJThrKnDoaTXkBM0QB6382l+x+pcjfiKovSaqTfi90F41b2cp+sp/9z85GhPXeetKcYwHEytm1j7qGvEMhUa2DQxtk1gu172pHTP1Gtg04RPePU1THHdTsZDo639E8dKYwKMiD5KRMeJ6FFx7Fwi+hwRHSz+P6c4TkT0a0R0iIgeIaJXi3uuL64/SETXl01PXUbissObNo38rnA8fRhGu8pApsu36W2s7Ex+q0ZpjSHTUaYduNpXSr348u/al7ErygwtY/WTUn+NDSGJ6IcA/B2A32Lmi4tj/w3A08z8y0R0K4BzmHknEb0RwLsAvBHAawDczsyvIaJzATwEYDMABrAPwCZmfib07mkeQipKn6gjkkgnQ0hm/gKAp63DVwP4WPH3xwBcI47/Fk/4UwBnE9F5ALYD+BwzP10Irc8BeH2Z9NShAU2rml4HTZSd1kf/adoNpG0b2IuZ+UkAKP5fUxxfB+AJcd2R4pjveDaPv2P4M0DKcnzDprHOYg6RpjuZ4Ma2LUKOYxw4vvIBRDcCuBEATkdalM9curYzDJk2y27shv8h0XS9t62BPVUMDVH8f7w4fgTABeK68wEcCxxfATN/kJk3M/Pm07Da+fIme4Oq6xiNgTfHV6iMX1EdZdB0GpXxU9e32LYAuxuAmUm8HsCnxfG3FbORlwP4djHEnAfwOiI6p5ixfF1xrBRNromMrWNM/ZB9y55cFV6nfSG0n6Q9JMt5ry8/sff2gbJB/PoQLNGmrk4nt77M9bYNOkUzSynHJt0o7gDwAICXE9ERIroBwC8DeC0RHQTw2uI3AHwWwGEAhwB8CMBNAMDMTwP4RQALxb9fKI6VourHJM/HCtd+lvzoXfea876KrbLeMWW63SeUFmZnKg3J7AXdtlDYtWb/intSNxaW54yQnVs8lfSRpWi8vp2iXEj/u9uOX7JC6Nep/Yfq3veehdmZZNvgA7dcVuoc4C8nWT4mjbE2nBJFZuo88XOndcuuoxzqXo2udNe1lnRoa1LLbOLadL133a6a2qQ4hG5s2wOqLvEZ2sevtEtfl5DVsRRMBZgDFQiKMgx0LaQDFV7KNNCFT1yby+amVoCNiSF4pPvS2Ke0y4+9yuxonTOrVZ/VtU+cSX/KpFOZtjDVAqzJj6cp94Dc2c8QR3ducV4fesfc4inMH1tcutd1f04aXJpwblRPHzF3APt511z7xaW/5c7hue+o08huPytnJrwrpC3OpN9n+Jf5KTMqmlobmNIuanNUyqI2sA6we+aqoXracvhs6j1lhVcZLTnFd6xsPvs05M2hzw7DVVABZlFHjCLAv0lBiJC9wnf/4b2zzjSlptPlcCuHJnUMU6p8PCHB53tu6J7VD0/Wydr5rCM9KdS9C3oqQ/RJBOLtT4eQLdFXP52u6dvQsqn0aP2vJLWsdQjZAXbPMe2N16d59G3X9KaE6bTWf8gsUkdZqwamKBG6WD6jPIdqYBE0AF69SG1rDMZjFV79RQUYgBOXPtt1EnpNrhCSBmNXtIm20qHUT12+Z3XVpQowPDczFSNlRqivH1nq8o66445tXzuLozu3eMvO9UH4NOI6ZtLGrm3b+as76GVd2mhds6JqA0M7IUr6NtvWF5qYnes65IxSL2oDixALdFgHKrzcNDE7tzA7M1iHUyUPFWBQ4VKFvgqKaavTvpoumkYFmAeXzcj+WEN2pa5sLW2GMgGqC4qx26TaYlqHzCrABFJAuYY29scaGv50FcZkaA6TdZVTqgbShqYyrdqQi6Y1dBVggi6HHX1u9FXS1lTIF/vDsDUQ33vb0FSmVRtyMbZ9IUdBE8Me0+irTnv7PtyqAtJ3f6yHrdMJ1BU7ypeulPhTKe9pg5wIGU2lra7npjxn/thiqWgtLtSNQlGUXqNuFIqijBIVYEo2fXWdULqn7VllFWAl6LPB3VBFyMTunTYfqxBDaAtt4ptVbmoyRwVYCfo2y+QSOFWETBMCqmmtrSutsG9toUn66LOnAsxiiD1q3QKniTJoQiiW2dFGh7/lqeKz11RIIhVgFtPUo/qoswzKCIzUnr5MOnX4Oy5UgJWkyuYMQ9cCqu77KHEJK9nTD72s2mJoI4e66lUFWElye3/5ITepBfjWQqZqNbEP4ejOLViYnQleJxtn1bWZbWpMZQzNfbELhdpjm8ItVTDF6jX1OSrAHLS9IDpEbk/11Nxq5/FU+0VMMJvotaHrZOM0azN9+ehTNNzbjl+SfU9Xa15zaNMsYgumssIzteNST/wBM4TAfW2lUQNGtkMXbU498UvSlO9KGVw9WRMNqY7hhnxGbLhZ1/BGhVc79K3DVAEWoMrUb93G57YaTh3vydmV3HWuT0N4pRoaTqdjyhppVSMoz9Bimil+NJxOx/TJyNxXQkPtoU3vK8NCBVgE1aTihIbafbOZGPri/qBUQwWYMlUYbXEI7g9KHBVgAyGkMTRt9B7TMLCpNXlKN6gAGwghjaFpo3cfhoG6pEhxoQIsA/2IylO17NQWqbhQAaYoymBpTIAR0UeJ6DgRPSqO/Xci+gsieoSIfp+Izhbn3kNEh4joK0S0XRx/fXHsEBHd2lR6h8wQbFSqQSlN0KQGtgfA661jnwNwMTO/EsBXAbwHAIhoI4A3A3hFcc/7iWiGiGYA/DqANwDYCODa4tpO2LGxnw6WC7MzOrxVppLGBBgzfwHA09axP2Lmk8XPPwVwfvH31QA+wcwnmPlrAA4BuKz4d4iZDzPzPwD4RHFtJ/TBmO1DNRylafqo6XdpA/txAH9Q/L0OwBPi3JHimO/41GE3nhyNS7pgxBphlUCNoWuqaoh1p3sstKl5l+nAUzZdrkKj4XSI6EIAn2Hmi63jPwNgM4B/zcxMRL8O4AFm/nhx/iMAPouJgN3OzO8ojr8VwGXM/C7Hu24EcCMAnI4zNv0gvbGxfCmK0h69CqdDRNcDeBOAH+PnpOcRABeIy84HcCxwfAXM/EFm3szMm0+DO6jfWNHoDeNFbZthWhVgRPR6ADsB/Agzy1XSdwN4MxGtJqKLAGwA8CCABQAbiOgiInoeJob+u9tM8xDQ6A3jRW2bYZp0o7gDwAMAXk5ER4joBgD/N4AXAPgcES0S0f8DAMz8ZQCfBHAAwB8C+AlmPlUY/N8JYB7AYwA+WVw7anShsaKk0eQs5LXMfB4zn8bM5zPzR5j5pcx8ATPPFv/+D3H9LzHz9zPzy5n5D8TxzzLzy4pzv9RUenNIUetto3KOUJLLhvpqnK4rXa7ntDFscr23y6F4X+s5F7vumq5LjYnfEPPHFjtZODy02PB9Sm9XdTatpJZ3yIivAkxphT4JKqU96qj3Xs1CjoFU36c6yB1atDUMCqWrqg2vjfubHNq4nm3Ka6iziqnptq9rutNSDaxnVO2xTm7b1MqsZFvvURTVwAZE1R6rLaGiwkvpAyrAlCza2Cuz6oxcShqnxVWljtnNw3tns+q9zf1UVYA1RKjhDNUOAgC3Hb+k1H05ea66aD5lZqvtmPgm/23XfR0BCNZflzc7K68N5bcOQacCrCHuPLDcmC4rcsizcXa+UhlynuvA5H/s5ZBjxK/DZUWN+Ir6Pym9Ro34ShAVXv1AF+XnowJMUXqCzuzmowKsh+Qael3Xa28+DoY84dMGKsBqxsw+Vpm+zjX0uq63e/O6BNrhvbOjWXhs03a+UoTT0I3+TZepGvEVpUXmFk/1em+FPqJG/A5o05lPGQ4qvOpFBZgyKkzHobajfnF055bhberRFTqEVMbONA1FdQipJFO35hJbR1elV56W9YwupkV4xVANrCU0/IyilEM1sB6gwktpmybtgH2ZpFIBNgLqbqh1N86hGtb78pGWpUkfsr4sP9MhZAfo4un60Zj740WHkD1DhVf9qPCaTlSAKYoyWFSAKb0hdd1c27a0sa79HAMqwJTekOrb1PZwUX2u+osKMEVRBosKMEVRBosKMEVRBosKsIEwNCdQRWkDFWADYax+Thr6WqmCCjClU3SNqFIFFWCKogwWFWCKogwWFWCKogwWFWCKogwWFWCKogwWFWCKogwWFWBKoww9qqnSb1SAKY2iwRuVJlEBpoyCaV9qNa35VwGmKCNgrEvNYqgAU0bBtH7AQ6GpqLaNCTAi+igRHSeiRx3n/hMRMRF9T/GbiOjXiOgQET1CRK8W115PRAeLf9c3lV5FUZqjqai2TWpgewC83j5IRBcAeC2Ax8XhNwDYUPy7EcAHimvPBfCzAF4D4DIAP0tE5zSYZkVRBkRjAoyZvwDgacep9wH4aQByQ8qrAfwWT/hTAGcT0XkAtgP4HDM/zczPAPgcHEJRGTcacqef9GGzk1ZtYET0IwCOMvPD1ql1AJ4Qv48Ux3zHR4v6Ta1EQ+70kz5sdrKqrRcR0RkAfgbA61ynHcc4cNz1/BsxGX7idJxRMpXdo35TipJOmxrY9wO4CMDDRPR1AOcD+DMi+l5MNKsLxLXnAzgWOL4CZv4gM29m5s2nYXUDyVcUpW+0JsCYeT8zr2HmC5n5QkyE06uZ+RsA7gbwtmI28nIA32bmJwHMA3gdEZ1TGO9fVxxTFEVp1I3iDgAPAHg5ER0hohsCl38WwGEAhwB8CMBNAMDMTwP4RQALxb9fKI4piqKAmJ0mpUFzFp3Lr6Gruk6Goig18Mf8qX3MvNl1Tj3xFUUZLCrAFEWpjaM7t9TynFTfPxVgiqLUxrrd99fynFTfPxVgijLFDD0MjwowRZlihh7FQwWY0gq+nn7oGoDSLSrARkAfFtXG8PX0Q9cAlG5RAaY0yhCEq9I/UoMaqABTGqUPEQuU4ZEa1EAFmLKMujWmvmlganMbFyrARsCdB+oL+Fe3xtQ3DUxtbuNCBdgI0I9SmVZUgCmt0LehpNIOTde7CjClFfo2lFTaoel6VwGmKMpgUQE2JejOPkpbtNnWVIBNCX3d2acr21ifbXJDd/Vos62pAFM6pSvbWJ9tcjqrnI4KMEXpATrEL4cKMKVRYsOhoQ+X6qKvQ/y+owJMaZSDW/cEz+twSamCCjClUWKLcvtsTFf6jwowpVP6bExX+o8KMEVRBosKMGUU6FC0PoY0saICTGmcuvYKtJEfWh1DURWCE+qcWGmq7g3EzI2+oAvOonP5NXRV18lQFKUG/pg/tY+ZN7vOqQamZKFaitInVIApWaQM1exhQ9PDCGV6UQGm1I69vXxd283noJridKACTBkl6l82HagAUxRlsKgAUxQFwDCH3SrAFEUBMMxhtwowZaoYkpe5EkcFmDJVaPiecaECTFGUwaICTFGUwaICTFGUwaICTFGUwaICTFGUwaICTFGUwaICTFGUwdKYACOijxLRcSJ61Dr+LiL6ChF9mYj+mzj+HiI6VJzbLo6/vjh2iIhubSq9iqIMjyY1sD0AXi8PENE/B3A1gFcy8ysA/EpxfCOANwN4RXHP+4lohohmAPw6gDcA2Ajg2uJaRVE6pg+rGlY19WBm/gIRXWgd/g8AfpmZTxTXHC+OXw3gE8XxrxHRIQCXFecOMfNhACCiTxTXHmgq3YqipNGHVQ1t28BeBuBKIvoSEf0JEc0Vx9cBeEJcd6Q45juuKIrSnAYWeN85AC4HMAfgk0S0HgA5rmW4BaxzFxIiuhHAjQBwOs6oJbGKovSbtjWwIwB+jyc8COAfAXxPcfwCcd35AI4Fjq+AmT/IzJuZefNpWN1I4pV+MH+s+6GL0g/aFmB3AdgGAET0MgDPA/BXAO4G8GYiWk1EFwHYAOBBAAsANhDRRUT0PEwM/Xe3nGalZ2xfu9J43AeDstI+TbpR3AHgAQAvJ6IjRHQDgI8CWF+4VnwCwPWFNvZlAJ/ExDj/hwB+gplPMfNJAO8EMA/gMQCfLK5VlGVIg3KbwmyIUUzHhG5sqyhKr9GNbRVFGSUqwBSlRU5u29R1EkaFCjBFaZFV9+7rOgmjQgWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDRQWYoiiDZZQBDYnomwD+HpNw1WPgezCevACanz7Tx7x8HzO/yHVilAIMAIjoIV8Ux6ExprwAmp8+M7S86BBSUZTBogJMUZTBMmYB9sGuE1AjY8oLoPnpM4PKy2htYIqijJ8xa2CKooyc0QkwIno9EX2FiA4R0a1dpycFIrqAiD5PRI8R0ZeJ6Obi+LlE9DkiOlj8f05xnIjo14o8PkJEr+42Byshohki+nMi+kzx+yIi+lKRlzuLndZR7MZ+Z5GXLxHRhV2m2wURnU1EnyKivyjq6IqB181PFe3sUSK6g4hOH2r9jEqAEdEMgF8H8AYAGwFcS0Qbu01VEicBvJuZ/ymAywH8RJHuWwHcw8wbANxT/AYm+dtQ/LsRwAfaT3KUmzHZTd2wG8D7irw8A+CG4vgNAJ5h5pcCeF9xXd+4HcAfMvMPALgUk3wNsm6IaB2AnwSwmZkvBjAD4M0Yav0w82j+AbgCwLz4/R4A7+k6XSXy8WkArwXwFQDnFcfOA/CV4u/fAHCtuH7puj78A3A+Jh/1NgCfAUCYOEeususJwDyAK4q/VxXXUdd5EHk5C8DX7DQNuG7WAXgCwLlFeX8GwPah1s+oNDA8VzmGI8WxwVCo6K8C8CUAL2bmJwGg+H9NcVnf8/mrAH4awD8Wv18I4FvMfLL4LdO7lJfi/LeL6/vCegDfBPCbxZD4w0R0JgZaN8x8FMCvAHgcwJOYlPc+DLR+xibAyHFsMNOsRPR8AP8TwH9k5r8JXeo41ot8EtGbABxnZrmDayi9vc1LwSoArwbwAWZ+FSZL1EK21V7np7DVXQ3gIgBrAZyJybDXZhD1MzYBdgTABeL3+QCOdZSWLIjoNEyE1+8w8+8Vh58iovOK8+cBOF4c73M+/xmAHyGirwP4BCbDyF8FcDYRrSqukeldyktx/rsBPN1mgiMcAXCEmb9U/P4UJgJtiHUDAD8M4GvM/E1m/g6A3wOwBQOtn7EJsAUAG4oZledhYpy8u+M0RSEiAvARAI8x83vFqbsBXF/8fT0mtjFz/G3FjNflAL5thjNdw8zvYebzmflCTMr/Xmb+MQCfB/CjxWV2Xkwef7S4vjc9PDN/A8ATRPTy4tBVAA5ggHVT8DiAy4nojKLdmfwMsn46N8I1YKR8I4CvAvhLAD/TdXoS0/yDmKjljwBYLP69ERNbwz0ADhb/n1tcT5jMtv4lgP2YzCh1ng9HvrYC+Ezx93oADwI4BOB3Aawujp9e/D5UnF/fdbod+ZgF8FBRP3cBOGfIdQPg5wH8BYBHAfw2gNVDrR/1xFcUZbCMbQipKMoUoQJMUZTBogJMUZTBogJMUZTBogJMUZTBogJM6QVEdCERPWod+zki+k9dpUnpPyrAlNEiPMuVkaICTOk9RPSTRHSgiK/1ieLYmUT0USJaKBZZX10cfzsR/S4R/b8A/oiIziOiLxDRYhH/6spOM6PUivZQyhC4FcBFzHyCiM4ujv0MJstafrw49iAR/XFx7goAr2Tmp4no3ZiEhvmlIl7cGe0nX2kKFWBKX/AtCTFLrH6HiO7CZCkPALwOk0XjxkZ2OoCXFH9/jpnNguMFAB8tFsvfxcyL9Sdd6QodQip94a8xWWMoOReTAHr/ApP1hZsA7CtsWwTg3zDzbPHvJcxsIsD+vXkAM38BwA8BOArgt4nobQ3nQ2kRFWBKL2DmvwPwJBFdBUz2AwDwegD/H4ALmPnzmARJPBvA8zGJFPquIqICiOhVrucS0fdhEp/sQ5hE/OhdjHqlPDqEVPrE2wD8OhH9j+L3z2MS/uXzRPTdmGhd72PmbxHRL2ISZ+yRQoh9HcCbHM/cCuD/JKLvAPi74h3KSNBoFIqiDBYdQiqKMlhUgCmKMlhUgCmKMlhUgCmKMlhUgCmKMlhUgCmKMlhUgCmKMlhUgCmKMlj+f6IjsLJVlkBqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load data\n", + "data = loadmat('ex8_movies.mat')\n", + "Y, R = data['Y'], data['R']\n", + "\n", + "# Y is a 1682x943 matrix, containing ratings (1-5) of \n", + "# 1682 movies on 943 users\n", + "\n", + "# R is a 1682x943 matrix, where R(i,j) = 1 \n", + "# if and only if user j gave a rating to movie i\n", + "\n", + "# From the matrix, we can compute statistics like average rating.\n", + "print('Average rating for movie 1 (Toy Story): %f / 5' %\n", + " np.mean(Y[0, R[0, :] == 1]))\n", + "\n", + "# We can \"visualize\" the ratings matrix by plotting it with imshow\n", + "pyplot.figure(figsize=(8, 8))\n", + "pyplot.imshow(Y)\n", + "pyplot.ylabel('Movies')\n", + "pyplot.xlabel('Users')\n", + "pyplot.grid(False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def cofiCostFunc(params, Y, R, num_users, num_movies,\n", + " num_features, lambda_):\n", + " \"\"\"\n", + " Collaborative filtering cost function.\n", + " \n", + " Parameters\n", + " ----------\n", + " params : array_like\n", + " The parameters which will be optimized. This is a one\n", + " dimensional vector of shape (num_movies x num_users, 1). It is the \n", + " concatenation of the feature vectors X and parameters Theta.\n", + " \n", + " Y : array_like\n", + " A matrix of shape (num_movies x num_users) of user ratings of movies.\n", + " \n", + " R : array_like\n", + " A (num_movies x num_users) matrix, where R[i, j] = 1 if the \n", + " i-th movie was rated by the j-th user.\n", + " \n", + " num_users : int\n", + " Total number of users.\n", + " \n", + " num_movies : int\n", + " Total number of movies.\n", + " \n", + " num_features : int\n", + " Number of features to learn.\n", + " \n", + " lambda_ : float, optional\n", + " The regularization coefficient.\n", + " \n", + " Returns\n", + " -------\n", + " J : float\n", + " The value of the cost function at the given params.\n", + " \n", + " grad : array_like\n", + " The gradient vector of the cost function at the given params.\n", + " grad has a shape (num_movies x num_users, 1)\n", + " \n", + " Instructions\n", + " ------------\n", + " Compute the cost function and gradient for collaborative filtering.\n", + " Concretely, you should first implement the cost function (without\n", + " regularization) and make sure it is matches our costs. After that,\n", + " you should implement thegradient and use the checkCostFunction routine \n", + " to check that the gradient is correct. Finally, you should implement\n", + " regularization.\n", + " \n", + " Notes\n", + " -----\n", + " - The input params will be unraveled into the two matrices:\n", + " X : (num_movies x num_features) matrix of movie features\n", + " Theta : (num_users x num_features) matrix of user features\n", + "\n", + " - You should set the following variables correctly:\n", + "\n", + " X_grad : (num_movies x num_features) matrix, containing the \n", + " partial derivatives w.r.t. to each element of X\n", + " Theta_grad : (num_users x num_features) matrix, containing the \n", + " partial derivatives w.r.t. to each element of Theta\n", + "\n", + " - The returned gradient will be the concatenation of the raveled \n", + " gradients X_grad and Theta_grad.\n", + " \"\"\"\n", + " # Unfold the U and W matrices from params\n", + " X = params[:num_movies*num_features].reshape(num_movies, num_features)\n", + " Theta = params[num_movies*num_features:].reshape(num_users, num_features)\n", + "\n", + " # You need to return the following values correctly\n", + " J = 0\n", + " X_grad = np.zeros(X.shape)\n", + " Theta_grad = np.zeros(Theta.shape)\n", + "\n", + " # ====================== YOUR CODE HERE ======================\n", + " for i in range(Y.shape[0]):\n", + " for j in range(Y.shape[1]):\n", + " if R[i][j] == 1 :\n", + " J += ((X[i, :].dot(Theta[j, :].transpose())) - Y[i][j]) ** 2 / 2 \n", + " X_grad[i, :] += ((X[i, :].dot(Theta[j, :].transpose())) - Y[i][j]) * (Theta[j, :]) \n", + " Theta_grad[j, :] += ((X[i, :].dot(Theta[j, :].transpose())) - Y[i][j]) * (X[i, :]) \n", + " if lambda_ != 0 :\n", + " for j in range(Y.shape[1]):\n", + " J += (lambda_ / 2) * (sum(Theta[j, :] * Theta[j, :]))\n", + " Theta_grad[j, :] += lambda_ * Theta[j, :]\n", + " \n", + " for i in range(Y.shape[0]):\n", + " J += (lambda_ / 2) * (sum(X[i, :] * X[i, :]))\n", + " X_grad[i, :] += lambda_ * X[i, :]\n", + " \n", + " # =============================================================\n", + " \n", + " grad = np.concatenate([X_grad.ravel(), Theta_grad.ravel()])\n", + " return J, grad" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Load pre-trained weights (X, Theta, num_users, num_movies, num_features)\n", + "data = loadmat('ex8_movieParams.mat')\n", + "X, Theta, num_users, num_movies, num_features = data['X'],\\\n", + " data['Theta'], data['num_users'], data['num_movies'], data['num_features']\n", + "\n", + "# Reduce the data set size so that this runs faster\n", + "num_users = 4\n", + "num_movies = 5\n", + "num_features = 3\n", + "\n", + "X = X[:num_movies, :num_features]\n", + "Theta = Theta[:num_users, :num_features]\n", + "Y = Y[:num_movies, 0:num_users]\n", + "R = R[:num_movies, 0:num_users]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost at loaded parameters (lambda = 1.5): 31.34\n", + " (this value should be about 31.34)\n" + ] + } + ], + "source": [ + "# Evaluate cost function\n", + "J, _ = cofiCostFunc(np.concatenate([X.ravel(), Theta.ravel()]),\n", + " Y, R, num_users, num_movies, num_features, 1.5)\n", + " \n", + "print('Cost at loaded parameters (lambda = 1.5): %.2f' % J)\n", + "print(' (this value should be about 31.34)')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-8.81188428 -8.81188428]\n", + " [ 6.16976575 6.16976575]\n", + " [ 1.06954353 1.06954353]\n", + " [ 1.29466915 1.29466915]\n", + " [ 0.77717295 0.77717295]\n", + " [ 1.67436231 1.67436231]\n", + " [-6.02563852 -6.02563852]\n", + " [ 8.03412035 8.03412035]\n", + " [-0.47960146 -0.47960146]\n", + " [ 0.11646488 0.11646488]\n", + " [-1.57637698 -1.57637698]\n", + " [-1.58903965 -1.58903965]\n", + " [ 0.37278725 0.37278725]\n", + " [-3.4464264 -3.4464264 ]\n", + " [ 1.14622731 1.14622731]\n", + " [ 7.37200537 7.37200537]\n", + " [-2.13513945 -2.13513945]\n", + " [ 0.34983097 0.34983097]\n", + " [ 1.66788261 1.66788261]\n", + " [-0.09565778 -0.09565778]\n", + " [ 2.31997213 2.31997213]\n", + " [ 4.70275043 4.70275043]\n", + " [-8.52232265 -8.52232265]\n", + " [ 4.50133423 4.50133423]\n", + " [-8.98173825 -8.98173825]\n", + " [ 1.79276886 1.79276886]\n", + " [-0.21862071 -0.21862071]]\n", + "\n", + "The above two columns you get should be very similar.(Left-Your Numerical Gradient, Right-Analytical Gradient)\n", + "If your cost function implementation is correct, then the relative difference will be small (less than 1e-9).\n", + "\n", + "Relative Difference: 2.53581e-12\n" + ] + } + ], + "source": [ + "# Check gradients by running checkCostFunction\n", + "utils.checkCostFunction(cofiCostFunc, 1.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New user ratings:\n", + "-----------------\n", + "Rated 4 stars: Toy Story (1995)\n", + "Rated 3 stars: Twelve Monkeys (1995)\n", + "Rated 5 stars: Usual Suspects, The (1995)\n", + "Rated 4 stars: Outbreak (1995)\n", + "Rated 5 stars: Shawshank Redemption, The (1994)\n", + "Rated 3 stars: While You Were Sleeping (1995)\n", + "Rated 5 stars: Forrest Gump (1994)\n", + "Rated 2 stars: Silence of the Lambs, The (1991)\n", + "Rated 4 stars: Alien (1979)\n", + "Rated 5 stars: Die Hard 2 (1990)\n", + "Rated 5 stars: Sphere (1998)\n" + ] + } + ], + "source": [ + "# Before we will train the collaborative filtering model, we will first\n", + "# add ratings that correspond to a new user that we just observed. This\n", + "# part of the code will also allow you to put in your own ratings for the\n", + "# movies in our dataset!\n", + "movieList = utils.loadMovieList()\n", + "n_m = len(movieList)\n", + "\n", + "# Initialize my ratings\n", + "my_ratings = np.zeros(n_m)\n", + "\n", + "# Check the file movie_idx.txt for id of each movie in our dataset\n", + "# For example, Toy Story (1995) has ID 1, so to rate it \"4\", you can set\n", + "# Note that the index here is ID-1, since we start index from 0.\n", + "my_ratings[0] = 4\n", + "\n", + "# Or suppose did not enjoy Silence of the Lambs (1991), you can set\n", + "my_ratings[97] = 2\n", + "\n", + "# We have selected a few movies we liked / did not like and the ratings we\n", + "# gave are as follows:\n", + "my_ratings[6] = 3\n", + "my_ratings[11]= 5\n", + "my_ratings[53] = 4\n", + "my_ratings[63] = 5\n", + "my_ratings[65] = 3\n", + "my_ratings[68] = 5\n", + "my_ratings[182] = 4\n", + "my_ratings[225] = 5\n", + "my_ratings[354] = 5\n", + "\n", + "print('New user ratings:')\n", + "print('-----------------')\n", + "for i in range(len(my_ratings)):\n", + " if my_ratings[i] > 0:\n", + " print('Rated %d stars: %s' % (my_ratings[i], movieList[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Recommender system learning completed.\n" + ] + } + ], + "source": [ + "# Now, you will train the collaborative filtering model on a movie rating \n", + "# dataset of 1682 movies and 943 users\n", + "\n", + "# Load data\n", + "data = loadmat('ex8_movies.mat')\n", + "Y, R = data['Y'], data['R']\n", + "\n", + "# Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by \n", + "# 943 users\n", + "\n", + "# R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a\n", + "# rating to movie i\n", + "\n", + "# Add our own ratings to the data matrix\n", + "Y = np.hstack([my_ratings[:, None], Y])\n", + "R = np.hstack([(my_ratings > 0)[:, None], R])\n", + "\n", + "# Normalize Ratings\n", + "Ynorm, Ymean = utils.normalizeRatings(Y, R)\n", + "\n", + "# Useful Values\n", + "num_movies, num_users = Y.shape\n", + "num_features = 10\n", + "\n", + "# Set Initial Parameters (Theta, X)\n", + "X = np.random.randn(num_movies, num_features)\n", + "Theta = np.random.randn(num_users, num_features)\n", + "\n", + "initial_parameters = np.concatenate([X.ravel(), Theta.ravel()])\n", + "\n", + "# Set options for scipy.optimize.minimize\n", + "options = {'maxiter': 100}\n", + "\n", + "# Set Regularization\n", + "lambda_ = 10\n", + "res = optimize.minimize(lambda x: cofiCostFunc(x, Ynorm, R, num_users,\n", + " num_movies, num_features, lambda_),\n", + " initial_parameters,\n", + " method='TNC',\n", + " jac=True,\n", + " options=options)\n", + "theta = res.x\n", + "\n", + "# Unfold the returned theta back into U and W\n", + "X = theta[:num_movies*num_features].reshape(num_movies, num_features)\n", + "Theta = theta[num_movies*num_features:].reshape(num_users, num_features)\n", + "\n", + "print('Recommender system learning completed.')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top recommendations for you:\n", + "----------------------------\n", + "Predicting rating 5.0 for movie Entertaining Angels: The Dorothy Day Story (1996)\n", + "Predicting rating 5.0 for movie Someone Else's America (1995)\n", + "Predicting rating 5.0 for movie Star Kid (1997)\n", + "Predicting rating 5.0 for movie Great Day in Harlem, A (1994)\n", + "Predicting rating 5.0 for movie Aiqing wansui (1994)\n", + "Predicting rating 5.0 for movie Saint of Fort Washington, The (1993)\n", + "Predicting rating 5.0 for movie Prefontaine (1997)\n", + "Predicting rating 5.0 for movie Santa with Muscles (1996)\n", + "Predicting rating 5.0 for movie They Made Me a Criminal (1939)\n", + "Predicting rating 5.0 for movie Marlene Dietrich: Shadow and Light (1996)\n", + "\n", + "Original ratings provided:\n", + "--------------------------\n", + "Rated 4 for Toy Story (1995)\n", + "Rated 3 for Twelve Monkeys (1995)\n", + "Rated 5 for Usual Suspects, The (1995)\n", + "Rated 4 for Outbreak (1995)\n", + "Rated 5 for Shawshank Redemption, The (1994)\n", + "Rated 3 for While You Were Sleeping (1995)\n", + "Rated 5 for Forrest Gump (1994)\n", + "Rated 2 for Silence of the Lambs, The (1991)\n", + "Rated 4 for Alien (1979)\n", + "Rated 5 for Die Hard 2 (1990)\n", + "Rated 5 for Sphere (1998)\n" + ] + } + ], + "source": [ + "p = np.dot(X, Theta.T)\n", + "my_predictions = p[:, 0] + Ymean\n", + "\n", + "movieList = utils.loadMovieList()\n", + "\n", + "ix = np.argsort(my_predictions)[::-1]\n", + "\n", + "print('Top recommendations for you:')\n", + "print('----------------------------')\n", + "for i in range(10):\n", + " j = ix[i]\n", + " print('Predicting rating %.1f for movie %s' % (my_predictions[j], movieList[j]))\n", + "\n", + "print('\\nOriginal ratings provided:')\n", + "print('--------------------------')\n", + "for i in range(len(my_ratings)):\n", + " if my_ratings[i] > 0:\n", + " print('Rated %d for %s' % (my_ratings[i], movieList[i]))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}