-
Notifications
You must be signed in to change notification settings - Fork 19
/
D3QN.py
309 lines (248 loc) · 14.3 KB
/
D3QN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from collections import deque
from tensorflow.python.framework import ops
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
class DuelingDoubleDeepQNetwork:
def __init__(self,
n_actions,
n_features,
n_lstm_features,
n_time,
learning_rate = 0.01,
reward_decay = 0.9,
e_greedy = 0.99,
replace_target_iter = 200,
memory_size = 500,
batch_size=32,
e_greedy_increment= 0.00025,
n_lstm_step = 10,
dueling = True,
double_q = True,
N_L1 = 20,
N_lstm = 20):
self.n_actions = n_actions
self.n_features = n_features
self.n_time = n_time
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size # select self.batch_size number of time sequence for learning
self.epsilon_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
self.dueling = dueling
self.double_q = double_q
self.learn_step_counter = 0
self.N_L1 = N_L1
# lstm
self.N_lstm = N_lstm
self.n_lstm_step = n_lstm_step # step_size in lstm
self.n_lstm_state = n_lstm_features # [fog1, fog2, ...., fogn, M_n(t)]
# initialize zero memory np.hstack((s, [a, r], s_, lstm_s, lstm_s_))
self.memory = np.zeros((self.memory_size, self.n_features + 1 + 1
+ self.n_features + self.n_lstm_state + self.n_lstm_state))
# consist of [target_net, evaluate_net]
self._build_net()
# replace the parameters in target net
t_params = tf.get_collection('target_net_params') # obtain the parameters in target_net
e_params = tf.get_collection('eval_net_params') # obtain the parameters in eval_net
self.replace_target_op = [tf.assign(t, e) for t, e in
zip(t_params, e_params)] # update the parameters in target_net
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
self.reward_store = list()
self.action_store = list()
self.delay_store = list()
self.energy_store = list()
self.lstm_history = deque(maxlen=self.n_lstm_step)
for ii in range(self.n_lstm_step):
self.lstm_history.append(np.zeros([self.n_lstm_state]))
self.store_q_value = list()
def _build_net(self):
tf.reset_default_graph()
def build_layers(s,lstm_s,c_names, n_l1, n_lstm, w_initializer, b_initializer):
# lstm for load levels
with tf.variable_scope('l0'):
lstm_dnn = tf.compat.v1.nn.rnn_cell.BasicLSTMCell(n_lstm)
lstm_dnn.zero_state(self.batch_size, tf.float32)
lstm_output,lstm_state = tf.nn.dynamic_rnn(lstm_dnn, lstm_s, dtype=tf.float32)
lstm_output_reduced = tf.reshape(lstm_output[:, -1, :], shape=[-1, n_lstm])
# first layer
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1',[n_lstm + self.n_features, n_l1], initializer=w_initializer,
collections=c_names)
b1 = tf.get_variable('b1',[1,n_l1],initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(tf.concat([lstm_output_reduced, s],1), w1) + b1)
# second layer
with tf.variable_scope('l12'):
w12 = tf.get_variable('w12', [n_l1, n_l1], initializer=w_initializer,
collections=c_names)
b12 = tf.get_variable('b12', [1, n_l1], initializer=b_initializer, collections=c_names)
l12 = tf.nn.relu(tf.matmul(l1, w12) + b12)
# the second layer is different
if self.dueling:
# Dueling DQN
# a single output n_l1 -> 1
with tf.variable_scope('Value'):
w2 = tf.get_variable('w2',[n_l1,1],initializer=w_initializer,collections=c_names)
b2 = tf.get_variable('b2',[1,1],initializer=b_initializer,collections=c_names)
self.V = tf.matmul(l12,w2) + b2
# n_l1 -> n_actions
with tf.variable_scope('Advantage'):
w2 = tf.get_variable('w2',[n_l1,self.n_actions],initializer=w_initializer,collections=c_names)
b2 = tf.get_variable('b2',[1,self.n_actions],initializer=b_initializer,collections=c_names)
self.A = tf.matmul(l12,w2) + b2
with tf.variable_scope('Q'):
out = self.V + (self.A - tf.reduce_mean(self.A,axis=1,keep_dims=True)) # Q = V(s) +A(s,a)
else:
with tf.variable_scope('Q'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
out = tf.matmul(l1, w2) + b2
return out
# input for eval_net
self.s = tf.placeholder(tf.float32,[None,self.n_features], name = 's') # state (observation)
self.lstm_s = tf.placeholder(tf.float32,[None,self.n_lstm_step,self.n_lstm_state], name='lstm1_s')
self.q_target = tf.placeholder(tf.float32,[None,self.n_actions], name = 'Q_target') # q_target
# input for target_net
self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')
self.lstm_s_ = tf.placeholder(tf.float32,[None,self.n_lstm_step,self.n_lstm_state], name='lstm1_s_')
# generate EVAL_NET, update parameters
with tf.variable_scope('eval_net'):
# c_names(collections_names), will be used when update target_net
# tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32), return a initializer
c_names, n_l1, n_lstm, w_initializer, b_initializer = \
['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], self.N_L1, self.N_lstm,\
tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers
# input (n_feature) -> l1 (n_l1) -> l2 (n_actions)
self.q_eval = build_layers(self.s, self.lstm_s, c_names, n_l1, n_lstm, w_initializer, b_initializer)
# generate TARGET_NET
with tf.variable_scope('target_net'):
c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
self.q_next = build_layers(self.s_, self.lstm_s_, c_names, n_l1, n_lstm, w_initializer, b_initializer)
# loss and train
with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.squared_difference(self.q_target,self.q_eval))
with tf.variable_scope('train'):
self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
def store_transition(self, s, lstm_s, a, r, s_, lstm_s_):
# RL.store_transition(observation,action,reward,observation_)
# hasattr(object, name), if object has name attribute
if not hasattr(self, 'memory_counter'):
self.memory_counter = 0
# store np.hstack((s, [a, r], s_, lstm_s, lstm_s_))
transition = np.hstack((s, [a, r], s_, lstm_s, lstm_s_)) # stack in horizontal direction
# if memory overflows, replace old memory with new one
index = self.memory_counter % self.memory_size
# print(transition)
self.memory[index, :] = transition
self.memory_counter += 1
def update_lstm(self, lstm_s):
self.lstm_history.append(lstm_s)
def choose_action(self, observation):
# the shape of the observation (1, size_of_observation)
# x1 = np.array([1, 2, 3, 4, 5]), x1_new = x1[np.newaxis, :], now, the shape of x1_new is (1, 5)
observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon:
# lstm only contains history, there is no current observation
lstm_observation = np.array(self.lstm_history)
actions_value = self.sess.run(self.q_eval,
feed_dict={self.s: observation,
self.lstm_s: lstm_observation.reshape(1, self.n_lstm_step,
self.n_lstm_state),
})
self.store_q_value.append({'observation': observation, 'q_value': actions_value})
action = np.argmax(actions_value)
else:
if np.random.randint(0,100)>101:
action = 0
else:
action = np.random.randint(1, self.n_actions)
return action
def learn(self):
# check if replace target_net parameters
if self.learn_step_counter % self.replace_target_iter == 0:
# run the self.replace_target_op in __int__
self.sess.run(self.replace_target_op)
print('\ntarget_params_replaced\n')
# randomly pick [batch_size] memory from memory np.hstack((s, [a, r], s_, lstm_s, lstm_s_))
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size - self.n_lstm_step, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter - self.n_lstm_step, size=self.batch_size)\
# transition = np.hstack(s, [a, r], s_, lstm_s, lstm_s_)
batch_memory = self.memory[sample_index, :self.n_features+1+1+self.n_features]
lstm_batch_memory = np.zeros([self.batch_size, self.n_lstm_step, self.n_lstm_state * 2])
for ii in range(len(sample_index)):
for jj in range(self.n_lstm_step):
lstm_batch_memory[ii,jj,:] = self.memory[sample_index[ii]+jj,
self.n_features+1+1+self.n_features:]
# obtain q_next (from target_net) (to q_target) and q_eval (from eval_net)
# minimize(target_q - q_eval)^2
# q_target = reward + gamma * q_next
# in the size of bacth_memory
# q_next, given the next state from batch, what will be the q_next from q_next
# q_eval4next, given the next state from batch, what will be the q_eval4next from q_eval
q_next, q_eval4next = self.sess.run(
[self.q_next, self.q_eval], # output
feed_dict={
# [s, a, r, s_]
# input for target_q (last)
self.s_: batch_memory[:, -self.n_features:], self.lstm_s_: lstm_batch_memory[:,:,self.n_lstm_state:],
# input for eval_q (last)
self.s: batch_memory[:, -self.n_features:], self.lstm_s: lstm_batch_memory[:,:,self.n_lstm_state:],
}
)
# q_eval, given the current state from batch, what will be the q_eval from q_eval
q_eval = self.sess.run(self.q_eval, {self.s: batch_memory[:, :self.n_features],
self.lstm_s: lstm_batch_memory[:,:,:self.n_lstm_state]})
q_target = q_eval.copy()
batch_index = np.arange(self.batch_size, dtype=np.int32)
eval_act_index = batch_memory[:, self.n_features].astype(int) # action with a single value (int action)
reward = batch_memory[:, self.n_features + 1] # reward with a single value
# update the q_target at the particular batch at the correponding action
if self.double_q:
max_act4next = np.argmax(q_eval4next, axis=1)
selected_q_next = q_next[batch_index, max_act4next]
else:
selected_q_next = np.max(q_next, axis=1)
q_target[batch_index, eval_act_index] = reward + self.gamma * selected_q_next
# both self.s and self.q_target belong to eval_q
# input self.s and self.q_target, output self._train_op, self.loss (to minimize the gap)
# self.sess.run: given input (feed), output the required element
_, self.cost = self.sess.run([self._train_op, self.loss],
feed_dict={self.s: batch_memory[:, :self.n_features],
self.lstm_s: lstm_batch_memory[:, :, :self.n_lstm_state],
self.q_target: q_target})
# gradually increase epsilon
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1
return self.cost
def do_store_reward(self, episode, time, reward):
while episode >= len(self.reward_store):
self.reward_store.append(np.zeros([self.n_time]))
self.reward_store[episode][time] = reward
def do_store_action(self,episode,time, action):
while episode >= len(self.action_store):
self.action_store.append(- np.ones([self.n_time]))
self.action_store[episode][time] = action
def do_store_delay(self, episode, time, delay):
while episode >= len(self.delay_store):
self.delay_store.append(np.zeros([self.n_time]))
self.delay_store[episode][time] = delay
def do_store_energy(self, episode, time, energy, energy2, energy3, energy4):
fog_energy = 0
for i in range(len(energy3)):
if energy3[i] != 0:
fog_energy = energy3[i]
idle_energy = 0
for i in range(len(energy4)):
if energy4[i] != 0:
idle_energy = energy4[i]
while episode >= len(self.energy_store):
self.energy_store.append(np.zeros([self.n_time]))
self.energy_store[episode][time] = energy + energy2 + fog_energy + idle_energy