-
Notifications
You must be signed in to change notification settings - Fork 293
/
demo_global_scale_log.py
94 lines (77 loc) · 3.4 KB
/
demo_global_scale_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import scattertext as st
import numpy as np
df = st.SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences)
).assign(party=lambda df: df['party'].apply({'democrat': 'Democratic',
'republican': 'Republican'}.get))
corpus = st.CorpusFromParsedDocuments(
df, category_col='party', parsed_col='parse'
).build().get_unigram_corpus()
category_name = 'Democratic'
not_category_name = 'Republican'
def get_log_scale_df(corpus, y_category, x_category):
term_coord_df = corpus.get_term_freq_df('')
# Log scale term counts (with a smoothing constant) as the initial coordinates
coord_columns = []
for category in [y_category, x_category]:
col_name = category + '_coord'
term_coord_df[col_name] = np.log(term_coord_df[category] + 1e-6) / np.log(2)
coord_columns.append(col_name)
# Scale these coordinates to between 0 and 1
min_offset = term_coord_df[coord_columns].min(axis=0).min()
for coord_column in coord_columns:
term_coord_df[coord_column] -= min_offset
max_offset = term_coord_df[coord_columns].max(axis=0).max()
for coord_column in coord_columns:
term_coord_df[coord_column] /= max_offset
return term_coord_df
# Get term coordinates from original corpus
term_coordinates = get_log_scale_df(corpus, category_name, not_category_name)
print(term_coordinates)
# The tooltip JS function. Note that d is is the term data object, and ox and oy are the original x- and y-
# axis counts.
get_tooltip_content = ('(function(d) {return d.term + "<br/>' + not_category_name + ' Count: " ' +
'+ d.ox +"<br/>' + category_name + ' Count: " + d.oy})')
html_orig = st.produce_scattertext_explorer(
corpus,
category=category_name,
not_category_name=not_category_name,
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
metadata=corpus.get_df()['speaker'],
show_diagonal=True,
original_y=term_coordinates[category_name],
original_x=term_coordinates[not_category_name],
x_coords=term_coordinates[category_name + '_coord'],
y_coords=term_coordinates[not_category_name + '_coord'],
max_overlapping=3,
use_global_scale=True,
get_tooltip_content=get_tooltip_content,
)
open('./demo_global_scale_log_orig.html', 'w').write(html_orig)
print('open ./demo_global_scale_log_orig.html in Chrome')
# Select terms which appear a minimum threshold in both corpora
compact_corpus = corpus.compact(st.ClassPercentageCompactor(term_count=2))
# Only take term coordinates of terms remaining in corpus
term_coordinates = term_coordinates.loc[compact_corpus.get_terms()]
print(term_coordinates)
html = st.produce_scattertext_explorer(
compact_corpus,
category=category_name,
not_category_name=not_category_name,
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
metadata=corpus.get_df()['speaker'],
show_diagonal=True,
original_y=term_coordinates[category_name],
original_x=term_coordinates[not_category_name],
x_coords=term_coordinates[category_name + '_coord'],
y_coords=term_coordinates[not_category_name + '_coord'],
max_overlapping=3,
use_global_scale=True,
get_tooltip_content=get_tooltip_content,
)
open('./demo_global_scale_log.html', 'w').write(html)
print('open ./demo_global_scale_log.html in Chrome')