-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
randmtzig.c
822 lines (757 loc) · 44.4 KB
/
randmtzig.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*
A C-program for MT19937, with initialization improved 2002/2/10.
Coded by Takuji Nishimura and Makoto Matsumoto.
This is a faster version by taking Shawn Cokus's optimization,
Matthe Bellew's simplification, Isaku Wada's real version.
David Bateman added normal and exponential distributions following
Marsaglia and Tang's Ziggurat algorithm.
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
Copyright (C) 2004, David Bateman
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp
*/
/*
Modified by Viral B. Shah for julia to support dsfmt and only __LP64__
systems. 52-bits of randomness are used from the mantissa of random double
precision numbers generated by dsfmt.
*/
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <time.h>
#ifndef _MSC_VER
#include <sys/time.h>
#endif
#include <stdlib.h>
#include <string.h>
#define DSFMT_DO_NOT_USE_OLD_NAMES
#define DSFMT_MEXP 19937
#include <dSFMT.h>
typedef ptrdiff_t randmtzig_idx_type;
typedef signed char randmtzig_int8_t;
typedef unsigned char randmtzig_uint8_t;
typedef short randmtzig_int16_t;
typedef unsigned short randmtzig_uint16_t;
typedef int randmtzig_int32_t;
typedef unsigned int randmtzig_uint32_t;
typedef long long randmtzig_int64_t;
typedef unsigned long long randmtzig_uint64_t;
/* Declarations */
extern double randmtzig_randn (dsfmt_t *dsfmt);
extern double randmtzig_gv_randn (void);
extern double randmtzig_gv_exprnd (void);
/* ===== Uniform generators ===== */
inline static randmtzig_uint64_t gv_randi (void)
{
double r = dsfmt_gv_genrand_close1_open2();
return *((uint64_t *) &r) & 0x000fffffffffffff;
}
/* generates a random number on (0,1) with 53-bit resolution */
inline static double gv_randu (void)
{
return dsfmt_gv_genrand_open_open();
}
inline static randmtzig_uint64_t randi (dsfmt_t *dsfmt)
{
double r = dsfmt_genrand_close1_open2(dsfmt);
return *((uint64_t *) &r) & 0x000fffffffffffff;
}
/* generates a random number on (0,1) with 53-bit resolution */
inline static double randu (dsfmt_t *dsfmt)
{
return dsfmt_genrand_open_open(dsfmt);
}
/* ===== Ziggurat normal and exponential generators ===== */
# define ZIGINT randmtzig_uint64_t
# define EMANTISSA 4503599627370496 /* 52 bit mantissa */
# define ERANDI gv_randi() /* 52 bits for mantissa */
# define NMANTISSA 2251799813685248
# define NRANDI gv_randi() /* 51 bits for mantissa + 1 bit sign */
# define RANDU gv_randu()
#define ZIGGURAT_TABLE_SIZE 256
#define ZIGGURAT_NOR_R 3.6541528853610088
#define ZIGGURAT_NOR_INV_R 0.27366123732975828
#define NOR_SECTION_AREA 0.00492867323399
#define ZIGGURAT_EXP_R 7.69711747013104972
#define ZIGGURAT_EXP_INV_R 0.129918765548341586
#define EXP_SECTION_AREA 0.0039496598225815571993
/*
This code is based on the paper Marsaglia and Tsang, "The ziggurat method
for generating random variables", Journ. Statistical Software. Code was
presented in this paper for a Ziggurat of 127 levels and using a 32 bit
integer random number generator. This version of the code, uses the
Mersenne Twister as the integer generator and uses 256 levels in the
Ziggurat. This has several advantages.
1) As Marsaglia and Tsang themselves states, the more levels the few
times the expensive tail algorithm must be called
2) The cycle time of the generator is determined by the integer
generator, thus the use of a Mersenne Twister for the core random
generator makes this cycle extremely long.
3) The license on the original code was unclear, thus rewriting the code
from the article means we are free of copyright issues.
4) Compile flag for full 53-bit random mantissa.
It should be stated that the authors made my life easier, by the fact that
the algorithm developed in the text of the article is for a 256 level
ziggurat, even if the code itself isn't...
One modification to the algorithm developed in the article, is that it is
assumed that 0 <= x < Inf, and "unsigned long"s are used, thus resulting in
terms like 2^32 in the code. As the normal distribution is defined between
-Inf < x < Inf, we effectively only have 31 bit integers plus a sign. Thus
in Marsaglia and Tsang, terms like 2^32 become 2^31. We use NMANTISSA for
this term. The exponential distribution is one sided so we use the
full 32 bits. We use EMANTISSA for this term.
It appears that I'm slightly slower than the code in the article, this
is partially due to a better generator of random integers than they
use. But might also be that the case of rapid return was optimized by
inlining the relevant code with a #define. As the basic Mersenne
Twister is only 25% faster than this code I suspect that the main
reason is just the use of the Mersenne Twister and not the inlining,
so I'm not going to try and optimize further.
*/
// void randmtzig_create_ziggurat_tables (void)
// {
// int i;
// double x, x1;
// /* Ziggurat tables for the normal distribution */
// x1 = ZIGGURAT_NOR_R;
// wi[255] = x1 / NMANTISSA;
// fi[255] = exp (-0.5 * x1 * x1);
// /* Index zero is special for tail strip, where Marsaglia and Tsang
// * defines this as
// * k_0 = 2^31 * r * f(r) / v, w_0 = 0.5^31 * v / f(r), f_0 = 1,
// * where v is the area of each strip of the ziggurat.
// */
// ki[0] = (ZIGINT) (x1 * fi[255] / NOR_SECTION_AREA * NMANTISSA);
// wi[0] = NOR_SECTION_AREA / fi[255] / NMANTISSA;
// fi[0] = 1.;
// for (i = 254; i > 0; i--)
// {
// /* New x is given by x = f^{-1}(v/x_{i+1} + f(x_{i+1})), thus
// * need inverse operator of y = exp(-0.5*x*x) -> x = sqrt(-2*ln(y))
// */
// x = sqrt(-2. * log(NOR_SECTION_AREA / x1 + fi[i+1]));
// ki[i+1] = (ZIGINT)(x / x1 * NMANTISSA);
// wi[i] = x / NMANTISSA;
// fi[i] = exp (-0.5 * x * x);
// x1 = x;
// }
// ki[1] = 0;
// /* Zigurrat tables for the exponential distribution */
// x1 = ZIGGURAT_EXP_R;
// we[255] = x1 / EMANTISSA;
// fe[255] = exp (-x1);
// /* Index zero is special for tail strip, where Marsaglia and Tsang
// * defines this as
// * k_0 = 2^32 * r * f(r) / v, w_0 = 0.5^32 * v / f(r), f_0 = 1,
// * where v is the area of each strip of the ziggurat.
// */
// ke[0] = (ZIGINT) (x1 * fe[255] / EXP_SECTION_AREA * EMANTISSA);
// we[0] = EXP_SECTION_AREA / fe[255] / EMANTISSA;
// fe[0] = 1.;
// for (i = 254; i > 0; i--)
// {
// /* New x is given by x = f^{-1}(v/x_{i+1} + f(x_{i+1})), thus
// * need inverse operator of y = exp(-x) -> x = -ln(y)
// */
// x = - log(EXP_SECTION_AREA / x1 + fe[i+1]);
// ke[i+1] = (ZIGINT)(x / x1 * EMANTISSA);
// we[i] = x / EMANTISSA;
// fe[i] = exp (-x);
// x1 = x;
// }
// ke[1] = 0;
// }
// Tables for randn
static ZIGINT ki[ZIGGURAT_TABLE_SIZE] =
{2104047571230236, 0,1693657211688499,1919380038164751,
2015384402142420,2068365869415708,2101878624030987,2124958784087614,
2141808670783638,2154644611559370,2164744887580145,2172897953690771,
2179616279367521,2185247251864556,2190034623104318,2194154434518163,
2197736978772008,2200880740889623,2203661538008543,2206138681107245,
2208359231804928,2210361007256700,2212174742387166,2213825672703393,
2215334711001466,2216719334486539,2217994262138197,2219171977964129,
2220263139537873,2221276900116549,2222221164932202,2223102796828387,
2223927782546019,2224701368169460,2225428170203747,2226112267247709,
2226757276104752,2227366415327922,2227942558554233,2228488279492093,
2229005890046815,2229497472774805,2229964908626691,2230409900758245,
2230833995044249,2231238597815812,2231624991249884,2231994346765634,
2232347736722468,2232686144665663,2233010474325699,2233321557544631,
2233620161275830,2233906993781039,2234182710130112,2234447917093281,
2234703177502812,2234949014149981,2235185913274123,2235414327692697,
2235634679614740,2235847363174420,2236052746716668,2236251174862705,
2236442970379808,2236628435876608,2236807855342616,2236981495548416,
2237149607321006,2237312426707072,2237470176035519,2237623064889274,
2237771290995262,2237915041040474,2238054491421185,2238189808931596,
2238321151397547,2238448668260322,2238572501115061,2238692784207837,
2238809644895031,2238923204068302,2239033576548092,2239140871448347,
2239245192514865,2239346638439450,2239445303151863,2239541276091355,
2239634642459413,2239725483455210,2239813876495104,2239899895417414,
2239983610673598,2240065089506859,2240144396119109,2240221591827156,
2240296735208897,2240369882240222,2240441086423317,2240510398906937,
2240577868599239,2240643542273660,2240707464668327,2240769678579424,
2240830224948918,2240889142947021,2240946470049710,2241002242111632,
2241056493434688,2241109256832545,2241160563691345,2241210444026824,
2241258926538069,2241306038658085,2241351806601384,2241396255408737,
2241439408989263,2241481290159988,2241521920683014,2241561321300414,
2241599511766981,2241636510880914,2241672336512567,2241707005631317,
2241740534330669,2241772937851645,2241804230604542,2241834426189118,
2241863537413270,2241891576310240,2241918554154426,2241944481475803,
2241969368073032,2241993223025259,2242016054702647,2242037870775672,
2242058678223188,2242078483339294,2242097291739004,2242115108362739,
2242131937479636,2242147782689690,2242162646924702,2242176532448058,
2242189440853303,2242201373061504,2242212329317384,2242222309184204,
2242231311537365,2242239334556685,2242246375717338,2242252431779384,
2242257498775863,2242261571999386,2242264645987166,2242266714504423,
2242267770526080,2242267806216682,2242266812908434,2242264781077261,
2242261700316790,2242257559310117,2242252345799249,2242246046552055,
2242238647326588,2242230132832599,2242220486690050,2242209691384432,
2242197728218658,2242184577261284,2242170217290794,2242154625735654,
2242137778609814,2242119650443302,2242100214207531,2242079441234882,
2242057301132111,2242033761687055,2242008788768083,2241982346215658,
2241954395725333,2241924896721420,2241893806220494,2241861078683807,
2241826665857576,2241790516600019,2241752576693859,2241712788642894,
2241671091451056,2241627420382213,2241581706698751,2241533877376746,
2241483854795259,2241431556397014,2241376894317324,2241319774977796,
2241260098640839,2241197758920517,2241132642244683,2241064627262631,
2240993584191722,2240919374095516,2240841848084869,2240760846432212,
2240676197587764,2240587717084761,2240495206318733,2240398451183547,
2240297220544145,2240191264522592,2240080312570135,2239964071293311,
2239842221996510,2239714417896679,2239580280957705,2239439398282173,
2239291317986176,2239135544468183,2238971532964959,2238798683265249,
2238616332424332,2238423746288075,2238220109591870,2238004514345197,
2237775946143192,2237533267957802,2237275200846732,2237000300869931,
2236706931309079,2236393229029127,2236057063479481,2235695986373225,
2235307169458838,2234887326941556,2234432617919425,2233938522519742,
2233399683022654,2232809697779175,2232160850599794,2231443750584617,
2230646845562145,2229755753817960,2228752329126507,2227613325162477,
2226308442121145,2224797391720369,2223025347823800,2220915633329775,
2218357446086993,2215184158448627,2211132412537323,2205758503851011,
2198248265654920,2186916352102052,2167562552481677,2125549880839429};
static double wi[ZIGGURAT_TABLE_SIZE] =
{17367254121656703e-31,9558660348275145e-32,12708704832820278e-32,
14909740960986864e-32,16658733630346416e-32,18136120809053487e-32,
1942972015219358e-31,20589500627632916e-32,21646860576118966e-32,
2262294039150043e-31,23532718913376864e-32,24387234556800803e-32,
25194879828681465e-32,2596219977196592e-31,26694407473112964e-32,
2739572968463095e-31,280696460019946e-30,28719058903642897e-32,
29346417484275224e-32,29953809336344285e-32,30543030006769113e-32,
3111563633851158e-31,3167298801818414e-31,3221628035016365e-31,
32746570407564125e-32,33264798116476e-29,337718034169968e-30,
34268340352771636e-32,34755088731390227e-32,3523266384567022e-31,
3570162463362898e-31,3616248057128073e-31,36615697529342477e-32,
3706170277693123e-31,37500889278448874e-32,3793361940125627e-31,
38360228129389374e-32,3878102586096749e-31,3919630085297984e-31,
39606321365983254e-32,40011337552278087e-32,4041158312387907e-31,
4080727683070036e-31,4119862377455137e-31,41585816580575855e-32,
41969036444492247e-32,4234845407127582e-31,42724230518658345e-32,
43096517956924877e-32,4346546035489394e-31,4383119410062289e-31,
4419384856424202e-31,4455354660935343e-31,4491040505860591e-31,
4526453511835132e-31,45616042766683e-29,4596502910863464e-31,
4631159070186941e-31,4665581985579899e-31,469978049067346e-30,
4733763047137822e-31,4767537768070579e-31,4801112439606964e-31,
4834494540915173e-31,4867691262722585e-31,4900709524503576e-31,
4933555990446197e-31,4966237084303158e-31,499875900322208e-30,
5031127730640677e-31,5063349048324261e-31,5095428547615612e-31,
5127371639960692e-31,5159183566767805e-31,5190869408652579e-31,
5222434094116442e-31,52538824077020155e-32,5285218997665102e-31,
5316448383199491e-31,5347574961247755e-31,5378603012928409e-31,
5409536709607314e-31,5440380118638932e-31,5471137208800966e-31,
550181185544408e-30,5532407845376661e-31,5562928881503102e-31,
5593378587232605e-31,5623760510674315e-31,5654078128633358e-31,
5684334850421336e-31,5714534021493849e-31,5744678926926726e-31,
5774772794741848e-31,5804818799092685e-31,5834820063319006e-31,
5864779662879593e-31,589470062817121e-30,5924585947241581e-31,
5954438568403615e-31,598426140275769e-30,601405732662843e-30,
6043829183921996e-31,6073579788409578e-31,6103311925942512e-31,
6133028356604082e-31,6162731816802865e-31,6192425021312213e-31,
6222110665260248e-31,6251791426074554e-31,6281469965385542e-31,
6311148930892342e-31,6340830958194888e-31,6370518672595733e-31,
640021469087503e-30,6429921623041988e-31,645964207406601e-30,
648937864559066e-30,6519133937633505e-31,6548910550274845e-31,
6578711085338253e-31,6608538148065851e-31,6638394348791179e-31,
6668282304612498e-31,6698204641069389e-31,6728163993825439e-31,
6758163010359885e-31,6788204351671041e-31,681829069399439e-30,
6848424730538249e-31,6878609173239948e-31,6908846754545526e-31,
6939140229215998e-31,696949237616333e-30,6999906000319335e-31,
7030383934540792e-31,7060929041554193e-31,7091544215943653e-31,
7122232386185626e-31,7152996516734219e-31,7183839610161045e-31,
7214764709353755e-31,7245774899777502e-31,72768733118038725e-32,
7308063123111988e-31,7339347561166714e-31,7370729905779203e-31,
7402213491755235e-31,7433801711637146e-31,7465498018545449e-31,
7497305929126601e-31,7529229026613742e-31,7561270964007667e-31,
7593435467385694e-31,7625726339346621e-31,7658147462600412e-31,
7690702803711903e-31,7723396417008341e-31,7756232448661274e-31,
778921514095401e-30,7822348836746627e-31,7855637984151357e-31,
7889087141432085e-31,7922700982142658e-31,7956484300519808e-31,
7990442017147628e-31,8024579184911813e-31,8058900995263265e-31,
8093412784812165e-31,812812004227522e-30,8163028415800651e-31,
8198143720697359e-31,8233471947596931e-31,8269019271079405e-31,
8304792058796362e-31,834079688112767e-30,8377040521411316e-31,
8413529986789175e-31,8450272519715296e-31,8487275610177406e-31,
85245470086869e-29,8562094740097588e-31,8599927118319072e-31,
86380527619967175e-32,8676480611237092e-31,8715219945465259e-31,
8754280402508787e-31,8793671999012706e-31,8833405152300122e-31,
88734907038049e-29,8913939944215902e-31,8954764640486935e-31,
8995977064883017e-31,9037590026252085e-31,9079616903732087e-31,
9122071683126914e-31,9164968996211253e-31,9208324163254476e-31,
9252153239087913e-31,9296473063078686e-31,9341301313417584e-31,
938665656617903e-30,9432558359669126e-31,9479027264644209e-31,
95260849610588e-29,957375432209002e-30,962205950628746e-30,
9671026058815726e-31,972068102289435e-30,9771053062699983e-31,
9822172599183368e-31,9874071960473548e-31,9926785548800904e-31,
9980350026176626e-31,10034804521429213e-31,10090190861630543e-31,
10146553831460223e-31,10203941464676316e-31,1026240537260681e-30,
10322001115479755e-31,10382788623508751e-31,10444832675993878e-31,
10508203448348659e-31,1057297713900341e-30,10639236690670377e-31,
10707072623626628e-31,107765840026618e-29,10847879564397177e-31,
10921079038143372e-31,109963147017795e-29,11073733224929686e-31,
11153497865847152e-31,11235791107104895e-31,11320817840158973e-31,
11408809242576976e-31,1150002753783406e-30,11594771891443527e-31,
11693385786905373e-31,1179626635295029e-30,11903876299277459e-31,
1201675939253847e-30,12135560818661637e-31,12261054417445396e-31,
12394179789158183e-31,12536093926597603e-31,1268824481425016e-30,
12852479319091384e-31,13031206634685398e-31,13227655770190893e-31,
13446300925006917e-31,13693606835124475e-31,13979436672771461e-31,
14319989869657897e-31,14744848603594667e-31,1531787274160907e-30,
16227698675312968e-31};
static double fi[ZIGGURAT_TABLE_SIZE] =
{1.,.9771017012827331,.9598790918124174,.9451989534530794,
.9320600759689914,.9199915050483614,.9087264400605639,.898095921906305,
.8879846607634008,.8783096558161477,.869008688043794,.8600336212030095,
.8513462584651245,.842915653118442,.8347162929929313,.8267268339520951,
.8189291916094156,.8113078743182208,.8038494831763903,.7965423304282554,
.7893761435711993,.7823418326598627,.775431304986139,.7686373158033355,
.7619533468415471,.7553735065117552,.7488924472237273,.7425052963446368,
.7362075981312672,.729995264565803,.7238645334728822,.717811932634902,
.711834248882359,.7059285013367979,.7000919181404905,.694321916130033,
.6886160830085275,.6829721616487918,.6773880362225135,.6718617199007669,
.6663913439123812,.6609751477802419,.6556114705832252,.650298743114295,
.6450354808242524,.6398202774564395,.6346517992909606,.6295287799281287,
.6244500155502747,.6194143606090396,.6144207238920772,.6094680649288958,
.6045553907005499,.599681752622168,.5948462437709915,.5900479963357922,
.5852861792663006,.5805599961036837,.5758686829752109,.5712115067380753,
.5665877632589521,.5619967758172782,.5574378936214867,.5529104904285204,
.5484139632579217,.5439477311926505,.5395112342595453,.5351039323830201,
.5307253044061945,.5263748471741873,.5220520746747954,.5177565172322012,
.5134877207497434,.5092452459981365,.5050286679458292,.5008375751284826,
.49667156905479676,.4925302636461491,.4884132847077125,.48432026942891204,
.48025086591125016,.4762047327216842,.4721815384698837,.46818096140782267,
.4642026890502793,.460246417814924,.45631185268077407,.4523987068638829,
.4485067015092144,.4446355653977281,.4407850346677702,.43695485254992955,
.43314476911457434,.42935454103134185,.42558393133990086,.4218327092313535,
.41810064983968476,.4143875340427069,.41069314827198344,.40701728433124823,
.4033597392228692,.399720314981932,.3960988185175474,.39249506146101104,
.3889088600204649,.38534003484173424,.3817884108750316,.37825381724723833,
.37473608713949164,.37123505766982157,.3677505697805964,.36428246813054976,
.36083060099117586,.3573948201472906,.35397498080156936,.35057094148288126,
.34718256395825153,.3438097131482915,.3404522570459456,.33711006663841303,
.33378301583210873,.3304709813805373,.32717384281495887,.32389148237773235,
.3206237849582305,.3173706380312227,.3141319315976305,.310907558127564,
.307697412505554,.30450139197789644,.30131939610203423,.29815132669790145,
.2949970878011627,.2918565856182811,.28872972848335393,.28561642681665805,
.28251659308484933,.27943014176276515,.2763569892967811,.27329705406967564,
.2702502563669598,.26721651834463167,.2641957639983174,.2611879191337636,
.25819291133864797,.2552106699556771,.25224112605694377,.2492842124195167,
.24633986350223877,.24340801542371202,.24048860594144916,.23758157443217368,
.2346868618732527,.23180441082524855,.22893416541557743,.22607607132326474,
.22323007576478943,.22039612748101145,.21757417672517823,.2147641752520084,
.21196607630785277,.20917983462193548,.20640540639867916,.20364274931112133,
.20089182249543117,.19815258654653795,.1954250035148854,.19270903690432864,
.19000465167119293,.18731181422451676,.18463049242750437,.18196065560021638,
.17930227452353026,.17665532144440646,.17401977008249914,.17139559563815535,
.16878277480185,.1661812857651097,.1635911082329826,.16101222343811727,
.1584446141565199,.15588826472506426,.15334316106083742,.15080929068240986,
.1482866427331284,.14577520800653765,.14327497897404687,.14078594981496803,
.138308116449064,.13584147657175705,.13338602969216254,.13094177717412792,
.12850872228047336,.12608687022065,.12367622820205106,.12127680548523516,
.11888861344334545,.11651166562603685,.11414597782825504,.1117915681642454,
.10944845714720981,.10711666777507266,.10479622562286683,.10248715894230599,
.10018949876917177,.09790327903921535,.09562853671335306,.09336531191302634,
.09111364806670041,.08887359206859394,.08664519445086755,.08442850957065445,
.0822235958134955,.08003051581494733,.07784933670237201,.07568013035919481,
.07352297371424082,.07137794905914183,.06924514439725017,.06712465382802392,
.06501657797147035,.06292102443797778,.06083810834975175,.05876795292113793,
.056710690106399425,.05466646132507786,.05263541827697361,.05061772386112175,
.04861355321603513,.04662309490208967,.044646552251446515,.042684144916619336,
.04073611065607874,.0388027074046569,.03688421568869112,.034980941461833046,
.033093219458688684,.031221417192023686,.02936593975823011,.027527235669693315,
.02570580400863265,.023902203305873237,.022117062707379908,.020351096230109344,
.018605121275783343,.016880083152595836,.015177088307982065,.013497450601780796,
.0118427578579431,.0102149714397311,.008616582769422912,.007050875471392109,
.005522403299264755,.0040379725933718715,.002609072746106362,.0012602859304985975};
// Tables for exprnd
static ZIGINT ke[ZIGGURAT_TABLE_SIZE] =
{3985772928715748, 0,2742928985168065,3438700186803721,
3744780257810519,3914896975372863,4022625697542798,4096776410635450,
4150853606149210,4192001604687417,4224344877584101,4250427292531740,
4271901371161554,4289886428824118,4305167164135199,4318309783140431,
4329732973408940,4339752937704679,4348612900760388,4356502988721768,
4363573953227346,4369946852445020,4375720012348349,4380974119031481,
4385776001930298,4390181484145305,4394237557465219,4397984061535398,
4401454994146430,4404679543790856,4407682910787985,4410486965794400,
4413110782053579,4415571068741702,4417882526198713,4420058138987325,
4422109419110772,4424046609003130,4425878851844253,4427614335173868,
4429260412563040,4430823707156475,4432310200160197,4433725306767517,
4435073941555377,4436360575016074,4437589282595121,4438763787369085,
4439887497305303,4440963537889317,4441994780778252,4442983869033585,
4443933239400428,4444845142028910,4445721657973833,4446564714759241,
4447376100252993,4448157475061632,4448910383626429,4449636264176642,
4450336457674983,4451012215872352,4451664708573597,4452295030203006,
4452904205747010,4453493196141906,4454062903166143,4454614173889474,
4455147804725090,4455664545125435,4456165100957688,4456650137590828,
4457120282722585,4457576128971459,4458018236256245,4458447133983073,
4458863323057847,4459267277740095,4459659447352586,4460040257859578,
4460410113325310,4460769397263133,4461118473884710,4461457689257740,
4461787372379910,4462107836175980,4462419378424319,4462722282618581,
4463016818769709,4463303244152965,4463581804004301,4463852732169940,
4464116251712773,4464372575478779,4464621906626490,4464864439122178,
4465100358203284,4465329840812355,4465553056003596,4465770165323939,
4465981323170417,4466186677125455,4466386368271563,4466580531486827,
4466769295722448,4466952784263502,4467131114974006,4467304400527265,
4467472748622447,4467636262188208,4467795039574164,4467949174730939,
4468098757379442,4468243873170018,4468384603832024,4468521027314373,
4468653217917530,4468781246417428,4468905180181701,4469025083278642,
4469141016579234,4469253037852582,4469361201855066,4469465560413474,
4469566162502383,4469663054316032,4469756279334881,4469845878387080,
4469931889704995,4470014348976986,4470093289394551,4470168741694984,
4470240734199652,4470309292847996,4470374441227332,4470436200598525,
4470494589917605,4470549625853344,4470601322800852,4470649692891185,
4470694745996980,4470736489734116,4470774929459349,4470810068263924,
4470841906963074,4470870444081369,4470895675833821,4470917596102651,
4470936196409614,4470951465883737,4470963391224346,4470971956659198,
4470977143897542,4470978932077904,4470977297710362,4470972214613072,
4470963653842747,4470951583618802,4470935969240827,4470916772999009,
4470893954077117,4470867468447603,4470837268758338,4470803304210460,
4470765520426769,4470723859310029,4470678258890503,4470628653161980,
4470574971905457,4470517140499614,4470455079717082,4470388705505446,
4470317928751818,4470242655029689,4470162784326669,4470078210751556,
4469988822219058,4469894500110287,4469795118907000,4469690545797298,
4469580640250319,4469465253557163,4469344228335006,4469217397991048,
4469084586142556,4468945605988875,4468800259630802,4468648337332217,
4468489616718259,4468323861903709,4468150822544456,4467970232804102,
4467781810226787,4467585254506222,4467380246139658,4467166444954116,
4466943488490515,4466710990229518,4466468537640691,4466215690034133,
4465951976190801,4465676891744455,4465389896284247,4465090410142477,
4464777810826750,4464451429049612,4464110544301482,4463754379904174,
4463382097472202,4462992790697122,4462585478355953,4462159096427753,
4461712489182116,4461244399078944,4460753455289386,4460238160612098,
4459696876515553,4459127805983956,4458528973779075,4457898203649722,
4457233091920646,4456530976767892,4455788902331217,4455003576616607,
4454171321891082,4453288015951104,4452349022232651,4451349106194827,
4450282334707462,4449141954247903,4447920242480611,4446608326137821,
4445195955871677,4443671225661690,4442020220072463,4440226566619900,
4438270861888260,4436129927556552,4433775834104270,4431174602388627,
4428284451100006,4425053392146958,4421415870372502,4417287970124084,
4412560416174562,4407088078325945,4400673742272494,4393042098597073,
4383796248451589,4372341169422858,4357740343059956,4338425130125967,
4311541827049177,4271262897902398,4203411844498905,4061213381260384};
static double we[ZIGGURAT_TABLE_SIZE] =
{19311480126418366e-31,1417802848791084e-32,23278824993382457e-33,
30487830247064326e-33,3666569771447489e-32,4217930218928974e-32,
4722256155686277e-32,51911915446217885e-33,5632347108395505e-32,
6051008260642765e-32,645101650967275e-31,6835264680370054e-32,
7205993957468906e-32,7564981553739299e-32,7913664396195108e-32,
8253223556351894e-32,8584643616885051e-32,8908755486564743e-32,
9226267962966373e-32,9537791450529272e-32,9843856087455926e-32,
10144925809006294e-32,10441409405585343e-32,10733669323436384e-32,
1102202874567019e-31,11306777346479334e-32,11588176009705533e-32,
11866460730417886e-32,1214184586569436e-31,12414526862326387e-32,
12684682560606153e-32,12952477151912284e-32,1321806185153881e-31,
13481576335745447e-32,13743149982367625e-32,14002902946807862e-32,
14260947099321287e-32,14517386844829297e-32,14772319842763584e-32,
15025837641447456e-32,15278026239101652e-32,15528966581595696e-32,
1577873500545958e-31,1602740363335091e-31,16275040728083524e-32,
16521711010420076e-32,16767475945078279e-32,17012393998770646e-32,
17256520873568226e-32,17499909718432365e-32,17742611321380505e-32,
17984674284430714e-32,18226145183195818e-32,18467068712763576e-32,
18707487821298258e-32,18947443832625902e-32,19186976558915997e-32,
19426124404443042e-32,19664924461299023e-32,19903412597830144e-32,
20141623540485899e-32,20379590949693882e-32,2061734749030844e-31,
2085492489712377e-31,21092354035891528e-32,21329664960238294e-32,
21566886964838972e-32,2180404863516701e-31,22041177894111562e-32,
2227830204572395e-31,2251544781633135e-31,22752641393233694e-32,
22989908461180186e-32,23227274236804366e-32,23464763501180916e-32,
2370240063065339e-31,23940209626069303e-32,2417821414054771e-31,
24416437505894123e-32,24654902757768304e-32,2489363265970225e-31,
2513264972605797e-31,2537197624400795e-31,2561163429461499e-31,
2585164577308239e-31,26092032408240577e-32,2633281578133145e-31,
2657401734414762e-31,2681565843657999e-31,2705776030362351e-31,
27300344111887955e-32,27543430965657624e-32,2778704192254128e-31,
2803119800875143e-31,28275920234049704e-32,2852122960639331e-31,
28767147146315804e-32,29013693901073754e-32,29260890958589514e-32,
29508759461219033e-32,2975732061937252e-31,3000659572501474e-31,
3025660616507079e-31,3050737343476251e-31,3075891915089994e-31,
31011265065151543e-32,3126443307731675e-31,31518445248623523e-32,
31773323815073683e-32,32029091200858335e-32,32285770031865573e-32,
3254338314930261e-31,3280195362345436e-31,3306150476760074e-31,
3332206015211484e-31,33583643618764577e-32,33846279295240445e-32,
34109991609932597e-32,34374805306980633e-32,34640745461620167e-32,
3490783749585068e-31,3517610719444983e-31,3544558072136013e-31,
3571628463647465e-31,35988245912849274e-32,3626149195437003e-31,
36536050613905045e-32,36811950211971757e-32,3708921955595139e-31,
37367887959883854e-32,3764798526487784e-31,37929541860172334e-32,
3821258870488753e-31,38497157350504876e-32,3878327996411799e-31,
39070989352498183e-32,3936031898702075e-31,3965130302950038e-31,
3994397635898684e-31,40238374599574693e-32,40534534149283966e-32,
4083249221007178e-31,41132286819038357e-32,4143395688089474e-31,
417375422017632e-30,42043083524385856e-32,4235062256482152e-31,
4266020205071558e-31,42971865761233266e-32,43285658568752094e-32,
4360162648241568e-31,43919816693657415e-32,4424027762380992e-31,
4456305897392361e-31,4488821177692617e-31,4521578845226347e-31,
4554584286317242e-31,4587843037674623e-31,4621360792696427e-31,
4655143408087069e-31,4689196910809916e-31,4723527505395548e-31,
4758141581628553e-31,4793045722637247e-31,4828246713412587e-31,
4863751549784512e-31,489956744788614e-30,4935701854138577e-31,
4972162455791703e-31,5008957192059114e-31,5046094265888434e-31,
5083582156411624e-31,5121429632123542e-31,5159645764841062e-31,
5198239944499494e-31,5237221894847848e-31,5276601690109886e-31,
531638977268369e-30,535659697195905e-30,5397234524338979e-31,
5438314094559637e-31,547984779841163e-30,5521848226975234e-31,
5564328472492872e-31,5607302156013967e-31,5650783456960506e-31,
5694787144776348e-31,5739328612839635e-31,5784423914835991e-31,
5830089803810586e-31,5876343774140057e-31,5923204106690931e-31,
5970689917460091e-31,6018821210025236e-31,6067618932170007e-31,
6117105037089722e-31,616730254963062e-30,6218235638068533e-31,
6269929691993326e-31,6322411406934211e-31,6375708876439426e-31,
6429851692413595e-31,6484871054618903e-31,6540799890364481e-31,
6597672985544566e-31,6655527128343343e-31,6714401267106488e-31,
677433668409101e-30,6835377187051274e-31,6897569320906848e-31,
6960962602074885e-31,7025609778445959e-31,7091567118449584e-31,
7158894733208553e-31,7227656936438121e-31,7297922647529085e-31,
7369765844191243e-31,7443266072160415e-31,7518509020832513e-31,
7595587175337749e-31,7674600557578427e-31,7755657571215791e-31,
7838875968622858e-31,792438396157355e-30,8012321502113083e-31,
8102841765913146e-31,8196112877806125e-31,8292319928581809e-31,
8391667344146798e-31,849438168364877e-30,8600714963334941e-31,
8710948629387904e-31,882539833807214e-30,8944419748519865e-31,
9068415597131669e-31,9197844409811865e-31,9333231329422952e-31,
9475181706524984e-31,9624398345658476e-31,978170365478442e-30,
994806847238388e-30,1012465014428832e-30,10312843657756166e-31,
1051435160404455e-30,10731281954224043e-31,10966288068517408e-31,
1122277490935032e-30,11505212963006663e-31,11819635283304206e-31,
12174462832361815e-31,12581958069755114e-31,13060984107128082e-31,
13642786158057857e-31,14384889932178723e-31,15412190700064194e-31,
17091034077168055e-31};
static double fe[ZIGGURAT_TABLE_SIZE] =
{ 1.0,.9381436808621746,.9004699299257464,.8717043323812036,
.8477855006239896,.8269932966430503,.8084216515230084,.7915276369724956,
.7759568520401156,.7614633888498963,.7478686219851951,.7350380924314235,
.722867659593572,.711274760805076,.7001926550827882,.689566496117078,
.6793505722647654,.6695063167319247,.6600008410789997,.650805833414571,
.6418967164272661,.6332519942143661,.6248527387036659,.6166821809152077,
.608725382079622,.6009689663652322,.5934009016917334,.586010318477268,
.578787358602845,.5717230486648258,.5648091929124002,.5580382822625874,
.5514034165406413,.5448982376724396,.5385168720028619,.5322538802630432,
.5261042139836197,.5200631773682336,.5141263938147486,.5082897764106429,
.5025495018413477,.49690198724154955,.49134386959403253,.4858719873418849,
.4804833639304542,.4751751930373774,.46994482528396,.4647897562504262,
.4597076156421377,.45469615747461545,.449753251162755,.4448768734145485,
.4400651008423539,.4353161032156366,.43062813728845883,.42599954114303434,
.4214287289976166,.4169141864330029,.4124544659971612,.4080481831520324,
.4036940125305303,.3993906844752311,.39513698183329016,.3909317369847971,
.38677382908413765,.38266218149600983,.3785957594095808,.37457356761590216,
.370594648435146,.36665807978151416,.3627629733548178,.3589084729487498,
.35509375286678746,.35131801643748334,.347580494621637,.3438804447045024,
.34021714906678,.33658991402867755,.332998068761809,.3294409642641363,
.3259179723935562,.3224284849560891,.31897191284495724,.31554768522712895,
.31215524877417955,.3087940669345602,.30546361924459026,.3021634006756935,
.2988929210155818,.2956517042812612,.2924392881618926,.28925522348967775,
.2860990737370768,.28297041453878075,.27986883323697287,.27679392844851736,
.27374530965280297,.27072259679906,.2677254199320448,.2647534188350622,
.2618062426893629,.25888354974901623,.2559850070304154,.25311029001562946,
.2502590823688623,.24743107566532763,.2446259691318921,.24184346939887721,
.23908329026244918,.23634515245705964,.23362878343743335,.2309339171696274,
.2282602939307167,.22560766011668407,.22297576805812017,.2203643758433595,
.21777324714870053,.21520215107537868,.21265086199297828,.21011915938898826,
.20760682772422204,.2051136562938377,.20263943909370902,.20018397469191127,
.19774706610509887,.19532852067956322,.19292814997677132,.1905457696631954,
.1881811994042543,.1858342627621971,.18350478709776746,.1811926034754963,
.1788975465724783,.17661945459049488,.1743581691713535,.17211353531532006,
.16988540130252766,.1676736186172502,.165478041874936,.16329852875190182,
.16113493991759203,.1589871389693142,.15685499236936523,.15473836938446808,
.15263714202744286,.1505511850010399,.1484803756438668,.14642459387834494,
.14438372216063478,.1423576454324722,.14034625107486245,.1383494288635802,
.13636707092642886,.13439907170221363,.13244532790138752,.13050573846833077,
.12858020454522817,.12666862943751067,.12477091858083096,.12288697950954514,
.12101672182667483,.11916005717532768,.11731689921155557,.11548716357863353,
.11367076788274431,.1118676316700563,.11007767640518538,.1083008254510338,
.10653700405000166,.10478613930657017,.10304816017125772,.10132299742595363,
.09961058367063713,.0979108533114922,.0962237425504328,.09454918937605586,
.09288713355604354,.09123751663104016,.08960028191003286,.08797537446727022,
.08636274114075691,.08476233053236812,.08317409300963238,.08159798070923742,
.0800339475423199,.07848194920160642,.0769419431704805,.07541388873405841,
.07389774699236475,.07239348087570874,.07090105516237183,.06942043649872875,
.0679515934219366,.06649449638533977,.06504911778675375,.06361543199980733,
.062193415408540995,.06078304644547963,.059384305633420266,.05799717563120066,
.05662164128374288,.05525768967669704,.05390531019604609,.05256449459307169,
.05123523705512628,.04991753428270637,.0486113855733795,.04731679291318155,
.04603376107617517,.04476229773294328,.04350241356888818,.042254122413316234,
.04101744138041482,.039792391023374125,.03857899550307486,.03737728277295936,
.03618728478193142,.03500903769739741,.03384258215087433,.032687963508959535,
.03154523217289361,.030414443910466604,.029295660224637393,.028188948763978636,
.0270943837809558,.026012046645134217,.024942026419731783,.02388442051155817,
.02283933540638524,.02180688750428358,.020787204072578117,.019780424338009743,
.01878670074469603,.01780620041091136,.016839106826039948,.015885621839973163,
.014945968011691148,.014020391403181938,.013109164931254991,.012212592426255381,
.011331013597834597,.010464810181029979,.00961441364250221,.008780314985808975,
.00796307743801704,.007163353183634984,.006381905937319179,.005619642207205483,
.004877655983542392,.004157295120833795,.003460264777836904,.002788798793574076,
.0021459677437189063,.0015362997803015724,.0009672692823271745,.00045413435384149677};
/*
* Here is the guts of the algorithm. As Marsaglia and Tsang state the
* algorithm in their paper
*
* 1) Calculate a random signed integer j and let i be the index
* provided by the rightmost 8-bits of j
* 2) Set x = j * w_i. If j < k_i return x
* 3) If i = 0, then return x from the tail
* 4) If [f(x_{i-1}) - f(x_i)] * U < f(x) - f(x_i), return x
* 5) goto step 1
*
* Where f is the functional form of the distribution, which for a normal
* distribution is exp(-0.5*x*x)
*/
/* NOTE: This is identical to randmtzig_gv_randn() below except for the random number generation */
double randmtzig_randn (dsfmt_t *dsfmt)
{
while (1)
{
/* arbitrary mantissa (selected by randi, with 1 bit for sign) */
const randmtzig_uint64_t r = randi(dsfmt);
const randmtzig_int64_t rabs=r>>1;
const int idx = (int)(rabs&0xFF);
const double x = ( r&1 ? -rabs : rabs) * wi[idx];
if (rabs < (randmtzig_int64_t)ki[idx]) {
return x; /* 99.3% of the time we return here 1st try */
} else if (idx == 0) {
/* As stated in Marsaglia and Tsang
*
* For the normal tail, the method of Marsaglia[5] provides:
* generate x = -ln(U_1)/r, y = -ln(U_2), until y+y > x*x,
* then return r+x. Except that r+x is always in the positive
* tail!!!! Any thing random might be used to determine the
* sign, but as we already have r we might as well use it
*
* [PAK] but not the bottom 8 bits, since they are all 0 here!
*/
double xx, yy;
do {
xx = - ZIGGURAT_NOR_INV_R * log (randu(dsfmt));
yy = - log (randu(dsfmt));
}
while ( yy+yy <= xx*xx);
return (rabs&0x100 ? -ZIGGURAT_NOR_R-xx : ZIGGURAT_NOR_R+xx);
} else if ((fi[idx-1] - fi[idx]) * randu(dsfmt) + fi[idx] < exp(-0.5*x*x)) {
return x;
}
}
}
/* NOTE: This is identical to randmtzig_randn() above except for the random number generation */
double randmtzig_gv_randn (void)
{
while (1)
{
/* arbitrary mantissa (selected by NRANDI, with 1 bit for sign) */
const randmtzig_uint64_t r = NRANDI;
const randmtzig_int64_t rabs=r>>1;
const int idx = (int)(rabs&0xFF);
const double x = ( r&1 ? -rabs : rabs) * wi[idx];
if (rabs < (randmtzig_int64_t)ki[idx]) {
return x; /* 99.3% of the time we return here 1st try */
} else if (idx == 0) {
/* As stated in Marsaglia and Tsang
*
* For the normal tail, the method of Marsaglia[5] provides:
* generate x = -ln(U_1)/r, y = -ln(U_2), until y+y > x*x,
* then return r+x. Except that r+x is always in the positive
* tail!!!! Any thing random might be used to determine the
* sign, but as we already have r we might as well use it
*
* [PAK] but not the bottom 8 bits, since they are all 0 here!
*/
double xx, yy;
do {
xx = - ZIGGURAT_NOR_INV_R * log (RANDU);
yy = - log (RANDU);
}
while ( yy+yy <= xx*xx);
return (rabs&0x100 ? -ZIGGURAT_NOR_R-xx : ZIGGURAT_NOR_R+xx);
} else if ((fi[idx-1] - fi[idx]) * RANDU + fi[idx] < exp(-0.5*x*x)) {
return x;
}
}
}
double randmtzig_gv_exprnd (void)
{
while (1)
{
ZIGINT ri = ERANDI;
const int idx = (int)(ri & 0xFF);
const double x = ri * we[idx];
if (ri < ke[idx])
return x; // 98.9% of the time we return here 1st try
else if (idx == 0)
{
/* As stated in Marsaglia and Tsang
*
* For the exponential tail, the method of Marsaglia[5] provides:
* x = r - ln(U);
*/
return ZIGGURAT_EXP_R - log(RANDU);
}
else if ((fe[idx-1] - fe[idx]) * RANDU + fe[idx] < exp(-x))
return x;
}
}
#ifdef STANDALONE
int main(int ac, char *av[]) {
if (ac == 1) {
printf("Usage: randmtzig <n>\n");
return (-1);
}
int n = atoi(av[1]);
time_t t1;
dsfmt_gv_init_gen_rand(0);
double *p; posix_memalign((void **)&p, 16, n*sizeof(double));
uint32_t *u; posix_memalign((void **)&u, 16, 2*n*sizeof(uint32_t));
t1 = clock();
dsfmt_gv_fill_array_close_open(p, n);
printf("Uniform fill (n): %f\n", (clock() - t1) / (double) CLOCKS_PER_SEC);
t1 = clock();
for (int i = 0; i < n; i++) p[i] = dsfmt_gv_genrand_close_open();
printf("Uniform (n): %f\n", (clock() - t1) / (double) CLOCKS_PER_SEC);
t1 = clock();
for (int i = 0; i < 2*n; i++) u[i] = dsfmt_gv_genrand_uint32();
printf("Uniform 32-bit ints (2*n): %f\n", (clock() - t1) / (double) CLOCKS_PER_SEC);
memset((void *)p, 0, n*sizeof(double));
t1 = clock();
for (int i = 0; i < n; i++) p[i] = randmtzig_gv_randn();
printf("Normal (n): %f\n", (clock() - t1) / (double) CLOCKS_PER_SEC);
for (int i = 0; i < 10; i++) printf("%lf\n", p[i]);
return 0;
}
#endif