From 26e305f9c509b0624616e59ff6b15dd976605bfd Mon Sep 17 00:00:00 2001 From: KOSASIH Date: Mon, 15 Jul 2024 09:51:51 +0700 Subject: [PATCH] Create entanglement_model.py --- quantum_models/entanglement_model.py | 84 ++++++++++++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 quantum_models/entanglement_model.py diff --git a/quantum_models/entanglement_model.py b/quantum_models/entanglement_model.py new file mode 100644 index 0000000..5148e8a --- /dev/null +++ b/quantum_models/entanglement_model.py @@ -0,0 +1,84 @@ +import numpy as np +from scipy.linalg import expm + +class EntanglementModel: + def __init__(self, num_qubits, entanglement_threshold): + self.num_qubits = num_qubits + self.entanglement_threshold = entanglement_threshold + + def generate_entangled_state(self, num_qubits): + """ + Generate an entangled state using the GHZ state. + + Args: + num_qubits (int): The number of qubits. + + Returns: + numpy array: The entangled state. + """ + ghz_state = np.zeros(2 ** num_qubits) + ghz_state[0] = 1 / np.sqrt(2) + ghz_state[-1] = 1 / np.sqrt(2) + return ghz_state + + def calculate_entanglement_entropy(self, state_vector): + """ + Calculate the entanglement entropy using the von Neumann entropy. + + Args: + state_vector (numpy array): The state vector. + + Returns: + float: The entanglement entropy. + """ + # Calculate the density matrix + density_matrix = np.outer(state_vector, state_vector) + + # Calculate the von Neumann entropy + entropy = -np.trace(np.dot(density_matrix, np.log2(density_matrix))) + + return entropy + + def optimize_entanglement(self, initial_state, target_state): + """ + Optimize the entanglement using a genetic algorithm. + + Args: + initial_state (numpy array): The initial state. + target_state (numpy array): The target state. + + Returns: + numpy array: The optimized entangled state. + """ + def objective_function(params): + # Simulate the entanglement using the GHZ state + entangled_state = self.generate_entangled_state(self.num_qubits) + # Calculate the objective function (e.g. minimize entanglement entropy) + objective = np.abs(np.dot(entangled_state, target_state)) + return objective + + result = minimize(objective_function, initial_state, method="SLSQP") + optimized_state = result.x + return optimized_state + + def simulate_entanglement(self, state_vector, time_span): + """ + Simulate the entanglement using the Schrödinger equation. + + Args: + state_vector (numpy array): The state vector. + time_span (list): The time span for the simulation. + + Returns: + numpy array: The simulated entanglement data. + """ + # Define the Schrödinger equation + def schrodinger_equation(t, y): + dydt = np.zeros_like(y) + for i in range(self.num_qubits): + dydt[i] = 1j * y[i] + return dydt + + # Simulate the entanglement + solution = odeint(schrodinger_equation, state_vector, time_span) + return solution