-
Notifications
You must be signed in to change notification settings - Fork 572
/
Copy pathspirv_parser.cpp
1337 lines (1127 loc) · 34.8 KB
/
spirv_parser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2018-2021 Arm Limited
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* At your option, you may choose to accept this material under either:
* 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
*/
#include "spirv_parser.hpp"
#include <assert.h>
using namespace std;
using namespace spv;
namespace SPIRV_CROSS_NAMESPACE
{
Parser::Parser(vector<uint32_t> spirv)
{
ir.spirv = std::move(spirv);
}
Parser::Parser(const uint32_t *spirv_data, size_t word_count)
{
ir.spirv = vector<uint32_t>(spirv_data, spirv_data + word_count);
}
static bool decoration_is_string(Decoration decoration)
{
switch (decoration)
{
case DecorationHlslSemanticGOOGLE:
return true;
default:
return false;
}
}
static inline uint32_t swap_endian(uint32_t v)
{
return ((v >> 24) & 0x000000ffu) | ((v >> 8) & 0x0000ff00u) | ((v << 8) & 0x00ff0000u) | ((v << 24) & 0xff000000u);
}
static bool is_valid_spirv_version(uint32_t version)
{
switch (version)
{
// Allow v99 since it tends to just work.
case 99:
case 0x10000: // SPIR-V 1.0
case 0x10100: // SPIR-V 1.1
case 0x10200: // SPIR-V 1.2
case 0x10300: // SPIR-V 1.3
case 0x10400: // SPIR-V 1.4
case 0x10500: // SPIR-V 1.5
case 0x10600: // SPIR-V 1.6
return true;
default:
return false;
}
}
void Parser::parse()
{
auto &spirv = ir.spirv;
auto len = spirv.size();
if (len < 5)
SPIRV_CROSS_THROW("SPIRV file too small.");
auto s = spirv.data();
// Endian-swap if we need to.
if (s[0] == swap_endian(MagicNumber))
transform(begin(spirv), end(spirv), begin(spirv), [](uint32_t c) { return swap_endian(c); });
if (s[0] != MagicNumber || !is_valid_spirv_version(s[1]))
SPIRV_CROSS_THROW("Invalid SPIRV format.");
uint32_t bound = s[3];
const uint32_t MaximumNumberOfIDs = 0x3fffff;
if (bound > MaximumNumberOfIDs)
SPIRV_CROSS_THROW("ID bound exceeds limit of 0x3fffff.\n");
ir.set_id_bounds(bound);
uint32_t offset = 5;
SmallVector<Instruction> instructions;
while (offset < len)
{
Instruction instr = {};
instr.op = spirv[offset] & 0xffff;
instr.count = (spirv[offset] >> 16) & 0xffff;
if (instr.count == 0)
SPIRV_CROSS_THROW("SPIR-V instructions cannot consume 0 words. Invalid SPIR-V file.");
instr.offset = offset + 1;
instr.length = instr.count - 1;
offset += instr.count;
if (offset > spirv.size())
SPIRV_CROSS_THROW("SPIR-V instruction goes out of bounds.");
instructions.push_back(instr);
}
for (auto &i : instructions)
parse(i);
for (auto &fixup : forward_pointer_fixups)
{
auto &target = get<SPIRType>(fixup.first);
auto &source = get<SPIRType>(fixup.second);
target.member_types = source.member_types;
target.basetype = source.basetype;
target.self = source.self;
}
forward_pointer_fixups.clear();
if (current_function)
SPIRV_CROSS_THROW("Function was not terminated.");
if (current_block)
SPIRV_CROSS_THROW("Block was not terminated.");
if (ir.default_entry_point == 0)
SPIRV_CROSS_THROW("There is no entry point in the SPIR-V module.");
}
const uint32_t *Parser::stream(const Instruction &instr) const
{
// If we're not going to use any arguments, just return nullptr.
// We want to avoid case where we return an out of range pointer
// that trips debug assertions on some platforms.
if (!instr.length)
return nullptr;
if (instr.offset + instr.length > ir.spirv.size())
SPIRV_CROSS_THROW("Compiler::stream() out of range.");
return &ir.spirv[instr.offset];
}
static string extract_string(const vector<uint32_t> &spirv, uint32_t offset)
{
string ret;
for (uint32_t i = offset; i < spirv.size(); i++)
{
uint32_t w = spirv[i];
for (uint32_t j = 0; j < 4; j++, w >>= 8)
{
char c = w & 0xff;
if (c == '\0')
return ret;
ret += c;
}
}
SPIRV_CROSS_THROW("String was not terminated before EOF");
}
void Parser::parse(const Instruction &instruction)
{
auto *ops = stream(instruction);
auto op = static_cast<Op>(instruction.op);
uint32_t length = instruction.length;
// HACK for glslang that might emit OpEmitMeshTasksEXT followed by return / branch.
// Instead of failing hard, just ignore it.
if (ignore_trailing_block_opcodes)
{
ignore_trailing_block_opcodes = false;
if (op == OpReturn || op == OpBranch || op == OpUnreachable)
return;
}
switch (op)
{
case OpSourceContinued:
case OpSourceExtension:
case OpNop:
case OpModuleProcessed:
break;
case OpString:
{
set<SPIRString>(ops[0], extract_string(ir.spirv, instruction.offset + 1));
break;
}
case OpMemoryModel:
ir.addressing_model = static_cast<AddressingModel>(ops[0]);
ir.memory_model = static_cast<MemoryModel>(ops[1]);
break;
case OpSource:
{
auto lang = static_cast<SourceLanguage>(ops[0]);
switch (lang)
{
case SourceLanguageESSL:
ir.source.es = true;
ir.source.version = ops[1];
ir.source.known = true;
ir.source.hlsl = false;
break;
case SourceLanguageGLSL:
ir.source.es = false;
ir.source.version = ops[1];
ir.source.known = true;
ir.source.hlsl = false;
break;
case SourceLanguageHLSL:
// For purposes of cross-compiling, this is GLSL 450.
ir.source.es = false;
ir.source.version = 450;
ir.source.known = true;
ir.source.hlsl = true;
break;
default:
ir.source.known = false;
break;
}
break;
}
case OpUndef:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
set<SPIRUndef>(id, result_type);
if (current_block)
current_block->ops.push_back(instruction);
break;
}
case OpCapability:
{
uint32_t cap = ops[0];
if (cap == CapabilityKernel)
SPIRV_CROSS_THROW("Kernel capability not supported.");
ir.declared_capabilities.push_back(static_cast<Capability>(ops[0]));
break;
}
case OpExtension:
{
auto ext = extract_string(ir.spirv, instruction.offset);
ir.declared_extensions.push_back(std::move(ext));
break;
}
case OpExtInstImport:
{
uint32_t id = ops[0];
SPIRExtension::Extension spirv_ext = SPIRExtension::Unsupported;
auto ext = extract_string(ir.spirv, instruction.offset + 1);
if (ext == "GLSL.std.450")
spirv_ext = SPIRExtension::GLSL;
else if (ext == "DebugInfo")
spirv_ext = SPIRExtension::SPV_debug_info;
else if (ext == "SPV_AMD_shader_ballot")
spirv_ext = SPIRExtension::SPV_AMD_shader_ballot;
else if (ext == "SPV_AMD_shader_explicit_vertex_parameter")
spirv_ext = SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter;
else if (ext == "SPV_AMD_shader_trinary_minmax")
spirv_ext = SPIRExtension::SPV_AMD_shader_trinary_minmax;
else if (ext == "SPV_AMD_gcn_shader")
spirv_ext = SPIRExtension::SPV_AMD_gcn_shader;
else if (ext == "NonSemantic.DebugPrintf")
spirv_ext = SPIRExtension::NonSemanticDebugPrintf;
else if (ext == "NonSemantic.Shader.DebugInfo.100")
spirv_ext = SPIRExtension::NonSemanticShaderDebugInfo;
else if (ext.find("NonSemantic.") == 0)
spirv_ext = SPIRExtension::NonSemanticGeneric;
set<SPIRExtension>(id, spirv_ext);
// Other SPIR-V extensions which have ExtInstrs are currently not supported.
break;
}
case OpExtInst:
{
// The SPIR-V debug information extended instructions might come at global scope.
if (current_block)
{
current_block->ops.push_back(instruction);
if (length >= 2)
{
const auto *type = maybe_get<SPIRType>(ops[0]);
if (type)
ir.load_type_width.insert({ ops[1], type->width });
}
}
break;
}
case OpEntryPoint:
{
auto itr =
ir.entry_points.insert(make_pair(ops[1], SPIREntryPoint(ops[1], static_cast<ExecutionModel>(ops[0]),
extract_string(ir.spirv, instruction.offset + 2))));
auto &e = itr.first->second;
// Strings need nul-terminator and consume the whole word.
uint32_t strlen_words = uint32_t((e.name.size() + 1 + 3) >> 2);
for (uint32_t i = strlen_words + 2; i < instruction.length; i++)
e.interface_variables.push_back(ops[i]);
// Set the name of the entry point in case OpName is not provided later.
ir.set_name(ops[1], e.name);
// If we don't have an entry, make the first one our "default".
if (!ir.default_entry_point)
ir.default_entry_point = ops[1];
break;
}
case OpExecutionMode:
{
auto &execution = ir.entry_points[ops[0]];
auto mode = static_cast<ExecutionMode>(ops[1]);
execution.flags.set(mode);
switch (mode)
{
case ExecutionModeInvocations:
execution.invocations = ops[2];
break;
case ExecutionModeLocalSize:
execution.workgroup_size.x = ops[2];
execution.workgroup_size.y = ops[3];
execution.workgroup_size.z = ops[4];
break;
case ExecutionModeOutputVertices:
execution.output_vertices = ops[2];
break;
case ExecutionModeOutputPrimitivesEXT:
execution.output_primitives = ops[2];
break;
default:
break;
}
break;
}
case OpExecutionModeId:
{
auto &execution = ir.entry_points[ops[0]];
auto mode = static_cast<ExecutionMode>(ops[1]);
execution.flags.set(mode);
if (mode == ExecutionModeLocalSizeId)
{
execution.workgroup_size.id_x = ops[2];
execution.workgroup_size.id_y = ops[3];
execution.workgroup_size.id_z = ops[4];
}
break;
}
case OpName:
{
uint32_t id = ops[0];
ir.set_name(id, extract_string(ir.spirv, instruction.offset + 1));
break;
}
case OpMemberName:
{
uint32_t id = ops[0];
uint32_t member = ops[1];
ir.set_member_name(id, member, extract_string(ir.spirv, instruction.offset + 2));
break;
}
case OpDecorationGroup:
{
// Noop, this simply means an ID should be a collector of decorations.
// The meta array is already a flat array of decorations which will contain the relevant decorations.
break;
}
case OpGroupDecorate:
{
uint32_t group_id = ops[0];
auto &decorations = ir.meta[group_id].decoration;
auto &flags = decorations.decoration_flags;
// Copies decorations from one ID to another. Only copy decorations which are set in the group,
// i.e., we cannot just copy the meta structure directly.
for (uint32_t i = 1; i < length; i++)
{
uint32_t target = ops[i];
flags.for_each_bit([&](uint32_t bit) {
auto decoration = static_cast<Decoration>(bit);
if (decoration_is_string(decoration))
{
ir.set_decoration_string(target, decoration, ir.get_decoration_string(group_id, decoration));
}
else
{
ir.meta[target].decoration_word_offset[decoration] =
ir.meta[group_id].decoration_word_offset[decoration];
ir.set_decoration(target, decoration, ir.get_decoration(group_id, decoration));
}
});
}
break;
}
case OpGroupMemberDecorate:
{
uint32_t group_id = ops[0];
auto &flags = ir.meta[group_id].decoration.decoration_flags;
// Copies decorations from one ID to another. Only copy decorations which are set in the group,
// i.e., we cannot just copy the meta structure directly.
for (uint32_t i = 1; i + 1 < length; i += 2)
{
uint32_t target = ops[i + 0];
uint32_t index = ops[i + 1];
flags.for_each_bit([&](uint32_t bit) {
auto decoration = static_cast<Decoration>(bit);
if (decoration_is_string(decoration))
ir.set_member_decoration_string(target, index, decoration,
ir.get_decoration_string(group_id, decoration));
else
ir.set_member_decoration(target, index, decoration, ir.get_decoration(group_id, decoration));
});
}
break;
}
case OpDecorate:
case OpDecorateId:
{
// OpDecorateId technically supports an array of arguments, but our only supported decorations are single uint,
// so merge decorate and decorate-id here.
uint32_t id = ops[0];
auto decoration = static_cast<Decoration>(ops[1]);
if (length >= 3)
{
ir.meta[id].decoration_word_offset[decoration] = uint32_t(&ops[2] - ir.spirv.data());
ir.set_decoration(id, decoration, ops[2]);
}
else
ir.set_decoration(id, decoration);
break;
}
case OpDecorateStringGOOGLE:
{
uint32_t id = ops[0];
auto decoration = static_cast<Decoration>(ops[1]);
ir.set_decoration_string(id, decoration, extract_string(ir.spirv, instruction.offset + 2));
break;
}
case OpMemberDecorate:
{
uint32_t id = ops[0];
uint32_t member = ops[1];
auto decoration = static_cast<Decoration>(ops[2]);
if (length >= 4)
ir.set_member_decoration(id, member, decoration, ops[3]);
else
ir.set_member_decoration(id, member, decoration);
break;
}
case OpMemberDecorateStringGOOGLE:
{
uint32_t id = ops[0];
uint32_t member = ops[1];
auto decoration = static_cast<Decoration>(ops[2]);
ir.set_member_decoration_string(id, member, decoration, extract_string(ir.spirv, instruction.offset + 3));
break;
}
// Build up basic types.
case OpTypeVoid:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Void;
break;
}
case OpTypeBool:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Boolean;
type.width = 1;
break;
}
case OpTypeFloat:
{
uint32_t id = ops[0];
uint32_t width = ops[1];
auto &type = set<SPIRType>(id, op);
if (width == 64)
type.basetype = SPIRType::Double;
else if (width == 32)
type.basetype = SPIRType::Float;
else if (width == 16)
type.basetype = SPIRType::Half;
else
SPIRV_CROSS_THROW("Unrecognized bit-width of floating point type.");
type.width = width;
break;
}
case OpTypeInt:
{
uint32_t id = ops[0];
uint32_t width = ops[1];
bool signedness = ops[2] != 0;
auto &type = set<SPIRType>(id, op);
type.basetype = signedness ? to_signed_basetype(width) : to_unsigned_basetype(width);
type.width = width;
break;
}
// Build composite types by "inheriting".
// NOTE: The self member is also copied! For pointers and array modifiers this is a good thing
// since we can refer to decorations on pointee classes which is needed for UBO/SSBO, I/O blocks in geometry/tess etc.
case OpTypeVector:
{
uint32_t id = ops[0];
uint32_t vecsize = ops[2];
auto &base = get<SPIRType>(ops[1]);
auto &vecbase = set<SPIRType>(id, base);
vecbase.op = op;
vecbase.vecsize = vecsize;
vecbase.self = id;
vecbase.parent_type = ops[1];
break;
}
case OpTypeMatrix:
{
uint32_t id = ops[0];
uint32_t colcount = ops[2];
auto &base = get<SPIRType>(ops[1]);
auto &matrixbase = set<SPIRType>(id, base);
matrixbase.op = op;
matrixbase.columns = colcount;
matrixbase.self = id;
matrixbase.parent_type = ops[1];
break;
}
case OpTypeArray:
{
uint32_t id = ops[0];
uint32_t tid = ops[1];
auto &base = get<SPIRType>(tid);
auto &arraybase = set<SPIRType>(id, base);
arraybase.op = op;
arraybase.parent_type = tid;
uint32_t cid = ops[2];
ir.mark_used_as_array_length(cid);
auto *c = maybe_get<SPIRConstant>(cid);
bool literal = c && !c->specialization;
// We're copying type information into Array types, so we'll need a fixup for any physical pointer
// references.
if (base.forward_pointer)
forward_pointer_fixups.push_back({ id, tid });
arraybase.array_size_literal.push_back(literal);
arraybase.array.push_back(literal ? c->scalar() : cid);
// .self resolves down to non-array/non-pointer type.
arraybase.self = base.self;
break;
}
case OpTypeRuntimeArray:
{
uint32_t id = ops[0];
auto &base = get<SPIRType>(ops[1]);
auto &arraybase = set<SPIRType>(id, base);
// We're copying type information into Array types, so we'll need a fixup for any physical pointer
// references.
if (base.forward_pointer)
forward_pointer_fixups.push_back({ id, ops[1] });
arraybase.op = op;
arraybase.array.push_back(0);
arraybase.array_size_literal.push_back(true);
arraybase.parent_type = ops[1];
// .self resolves down to non-array/non-pointer type.
arraybase.self = base.self;
break;
}
case OpTypeImage:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Image;
type.image.type = ops[1];
type.image.dim = static_cast<Dim>(ops[2]);
type.image.depth = ops[3] == 1;
type.image.arrayed = ops[4] != 0;
type.image.ms = ops[5] != 0;
type.image.sampled = ops[6];
type.image.format = static_cast<ImageFormat>(ops[7]);
type.image.access = (length >= 9) ? static_cast<AccessQualifier>(ops[8]) : AccessQualifierMax;
break;
}
case OpTypeSampledImage:
{
uint32_t id = ops[0];
uint32_t imagetype = ops[1];
auto &type = set<SPIRType>(id, op);
type = get<SPIRType>(imagetype);
type.basetype = SPIRType::SampledImage;
type.self = id;
break;
}
case OpTypeSampler:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Sampler;
break;
}
case OpTypePointer:
{
uint32_t id = ops[0];
// Very rarely, we might receive a FunctionPrototype here.
// We won't be able to compile it, but we shouldn't crash when parsing.
// We should be able to reflect.
auto *base = maybe_get<SPIRType>(ops[2]);
auto &ptrbase = set<SPIRType>(id, op);
if (base)
{
ptrbase = *base;
ptrbase.op = op;
}
ptrbase.pointer = true;
ptrbase.pointer_depth++;
ptrbase.storage = static_cast<StorageClass>(ops[1]);
if (ptrbase.storage == StorageClassAtomicCounter)
ptrbase.basetype = SPIRType::AtomicCounter;
if (base && base->forward_pointer)
forward_pointer_fixups.push_back({ id, ops[2] });
ptrbase.parent_type = ops[2];
// Do NOT set ptrbase.self!
break;
}
case OpTypeForwardPointer:
{
uint32_t id = ops[0];
auto &ptrbase = set<SPIRType>(id, op);
ptrbase.pointer = true;
ptrbase.pointer_depth++;
ptrbase.storage = static_cast<StorageClass>(ops[1]);
ptrbase.forward_pointer = true;
if (ptrbase.storage == StorageClassAtomicCounter)
ptrbase.basetype = SPIRType::AtomicCounter;
break;
}
case OpTypeStruct:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Struct;
for (uint32_t i = 1; i < length; i++)
type.member_types.push_back(ops[i]);
// Check if we have seen this struct type before, with just different
// decorations.
//
// Add workaround for issue #17 as well by looking at OpName for the struct
// types, which we shouldn't normally do.
// We should not normally have to consider type aliases like this to begin with
// however ... glslang issues #304, #307 cover this.
// For stripped names, never consider struct type aliasing.
// We risk declaring the same struct multiple times, but type-punning is not allowed
// so this is safe.
bool consider_aliasing = !ir.get_name(type.self).empty();
if (consider_aliasing)
{
for (auto &other : global_struct_cache)
{
if (ir.get_name(type.self) == ir.get_name(other) &&
types_are_logically_equivalent(type, get<SPIRType>(other)))
{
type.type_alias = other;
break;
}
}
if (type.type_alias == TypeID(0))
global_struct_cache.push_back(id);
}
break;
}
case OpTypeFunction:
{
uint32_t id = ops[0];
uint32_t ret = ops[1];
auto &func = set<SPIRFunctionPrototype>(id, ret);
for (uint32_t i = 2; i < length; i++)
func.parameter_types.push_back(ops[i]);
break;
}
case OpTypeAccelerationStructureKHR:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::AccelerationStructure;
break;
}
case OpTypeRayQueryKHR:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::RayQuery;
break;
}
// Variable declaration
// All variables are essentially pointers with a storage qualifier.
case OpVariable:
{
uint32_t type = ops[0];
uint32_t id = ops[1];
auto storage = static_cast<StorageClass>(ops[2]);
uint32_t initializer = length == 4 ? ops[3] : 0;
if (storage == StorageClassFunction)
{
if (!current_function)
SPIRV_CROSS_THROW("No function currently in scope");
current_function->add_local_variable(id);
}
set<SPIRVariable>(id, type, storage, initializer);
break;
}
// OpPhi
// OpPhi is a fairly magical opcode.
// It selects temporary variables based on which parent block we *came from*.
// In high-level languages we can "de-SSA" by creating a function local, and flush out temporaries to this function-local
// variable to emulate SSA Phi.
case OpPhi:
{
if (!current_function)
SPIRV_CROSS_THROW("No function currently in scope");
if (!current_block)
SPIRV_CROSS_THROW("No block currently in scope");
uint32_t result_type = ops[0];
uint32_t id = ops[1];
// Instead of a temporary, create a new function-wide temporary with this ID instead.
auto &var = set<SPIRVariable>(id, result_type, spv::StorageClassFunction);
var.phi_variable = true;
current_function->add_local_variable(id);
for (uint32_t i = 2; i + 2 <= length; i += 2)
current_block->phi_variables.push_back({ ops[i], ops[i + 1], id });
break;
}
// Constants
case OpSpecConstant:
case OpConstant:
{
uint32_t id = ops[1];
auto &type = get<SPIRType>(ops[0]);
if (type.width > 32)
set<SPIRConstant>(id, ops[0], ops[2] | (uint64_t(ops[3]) << 32), op == OpSpecConstant);
else
set<SPIRConstant>(id, ops[0], ops[2], op == OpSpecConstant);
break;
}
case OpSpecConstantFalse:
case OpConstantFalse:
{
uint32_t id = ops[1];
set<SPIRConstant>(id, ops[0], uint32_t(0), op == OpSpecConstantFalse);
break;
}
case OpSpecConstantTrue:
case OpConstantTrue:
{
uint32_t id = ops[1];
set<SPIRConstant>(id, ops[0], uint32_t(1), op == OpSpecConstantTrue);
break;
}
case OpConstantNull:
{
uint32_t id = ops[1];
uint32_t type = ops[0];
ir.make_constant_null(id, type, true);
break;
}
case OpSpecConstantComposite:
case OpConstantComposite:
{
uint32_t id = ops[1];
uint32_t type = ops[0];
auto &ctype = get<SPIRType>(type);
// We can have constants which are structs and arrays.
// In this case, our SPIRConstant will be a list of other SPIRConstant ids which we
// can refer to.
if (ctype.basetype == SPIRType::Struct || !ctype.array.empty())
{
set<SPIRConstant>(id, type, ops + 2, length - 2, op == OpSpecConstantComposite);
}
else
{
uint32_t elements = length - 2;
if (elements > 4)
SPIRV_CROSS_THROW("OpConstantComposite only supports 1, 2, 3 and 4 elements.");
SPIRConstant remapped_constant_ops[4];
const SPIRConstant *c[4];
for (uint32_t i = 0; i < elements; i++)
{
// Specialization constants operations can also be part of this.
// We do not know their value, so any attempt to query SPIRConstant later
// will fail. We can only propagate the ID of the expression and use to_expression on it.
auto *constant_op = maybe_get<SPIRConstantOp>(ops[2 + i]);
auto *undef_op = maybe_get<SPIRUndef>(ops[2 + i]);
if (constant_op)
{
if (op == OpConstantComposite)
SPIRV_CROSS_THROW("Specialization constant operation used in OpConstantComposite.");
remapped_constant_ops[i].make_null(get<SPIRType>(constant_op->basetype));
remapped_constant_ops[i].self = constant_op->self;
remapped_constant_ops[i].constant_type = constant_op->basetype;
remapped_constant_ops[i].specialization = true;
c[i] = &remapped_constant_ops[i];
}
else if (undef_op)
{
// Undefined, just pick 0.
remapped_constant_ops[i].make_null(get<SPIRType>(undef_op->basetype));
remapped_constant_ops[i].constant_type = undef_op->basetype;
c[i] = &remapped_constant_ops[i];
}
else
c[i] = &get<SPIRConstant>(ops[2 + i]);
}
set<SPIRConstant>(id, type, c, elements, op == OpSpecConstantComposite);
}
break;
}
// Functions
case OpFunction:
{
uint32_t res = ops[0];
uint32_t id = ops[1];
// Control
uint32_t type = ops[3];
if (current_function)
SPIRV_CROSS_THROW("Must end a function before starting a new one!");
current_function = &set<SPIRFunction>(id, res, type);
break;
}
case OpFunctionParameter:
{
uint32_t type = ops[0];
uint32_t id = ops[1];
if (!current_function)
SPIRV_CROSS_THROW("Must be in a function!");
current_function->add_parameter(type, id);
set<SPIRVariable>(id, type, StorageClassFunction);
break;
}
case OpFunctionEnd:
{
if (current_block)
{
// Very specific error message, but seems to come up quite often.
SPIRV_CROSS_THROW(
"Cannot end a function before ending the current block.\n"
"Likely cause: If this SPIR-V was created from glslang HLSL, make sure the entry point is valid.");
}
current_function = nullptr;
break;
}
// Blocks
case OpLabel:
{
// OpLabel always starts a block.
if (!current_function)
SPIRV_CROSS_THROW("Blocks cannot exist outside functions!");
uint32_t id = ops[0];
current_function->blocks.push_back(id);
if (!current_function->entry_block)
current_function->entry_block = id;
if (current_block)
SPIRV_CROSS_THROW("Cannot start a block before ending the current block.");
current_block = &set<SPIRBlock>(id);
break;
}
// Branch instructions end blocks.
case OpBranch:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
uint32_t target = ops[0];
current_block->terminator = SPIRBlock::Direct;