-
Notifications
You must be signed in to change notification settings - Fork 7
/
LightOj 1070.cpp
197 lines (155 loc) · 3.22 KB
/
LightOj 1070.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
Problem name : 1070 - Algebraic Problem
Algorithm : Matrix Exponential
Contest/Practice : Off Line Practice
Source : Light Oj
Comment : Whenever you start to believe yourself, people also start to believe in you
Date : 24-Nov-14
*/
#include<bits/stdc++.h>
#define pause system("pause");
#define FOR(s,e,inc) for(int i=s;i<=e;i+=inc)
#define mod 1000000007
#define inf 1<<30
#define pb push_back
#define ppb pop_back
#define mp make_pair
#define F first
#define S second
#define sz(x) ((int)x.size())
#define sqr(x) ( (x)* (x) )
#define eps 1e-9
#define gcd(x,y) __gcd(x,y)
#define lcm(x,y) (x/gcd(x,y))*y
#define on(x,w) x=x|(1<<w)
#define check(x,w) (x&(1<<w))
#define all(x) (x).begin(),(x).end()
#define pf printf
#define pi acos(-1.0)
#define reset(x,v) memset(x,v,sizeof(x));
#define AND &&
#define OR ||
typedef long long ll;
typedef unsigned long long llu;
using namespace std;
template<class T>
inline T mod_v(T num)
{
if(num>=0)
return num%mod;
else
return (num%mod+mod)%mod;
}
template<class T>
T fast_pow(T n , T p)
{
if(p==0) return 1;
if(p%2)
{
T g=mod_v ( mod_v(n) * mod_v(fast_pow(n,p-1)) );
return g;
}
else
{
T g=fast_pow(n,p/2);
g=mod_v( mod_v(g) * mod_v(g) ) ;
return g;
}
}
template<class T>
inline T modInverse(T n)
{
return fast_pow(n,mod-2);
}
template<class T>
inline void debug(string S1,T S2,string S3)
{
cout<<S1<<S2<<S3;
}
template<class T>
inline T in()
{
register char c=0;
register T num=0;
bool n=false;
while(c<33)c=getchar();
while(c>33){
if(c=='-')
n=true;
else num=num*10+c-'0';
c=getchar();
}
return n?-num:num;
}
#ifndef ONLINE_JUDGE
# define p(x) cout<<x<<endl;
#else if
# define p(x) 0;
#endif
/*...... ! Code start from here ! ......*/
llu p,q;
int n;
class matrix
{
public:
llu mat[2][2];
matrix()
{
mat[0][0]=1,mat[0][1]=1;
mat[1][0]=1,mat[1][1]=0;
}
inline matrix mul(matrix a)
{
matrix res;
reset(res.mat,0);
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{
for(int k=0;k<2;k++)
{
res.mat[i][j]+=(mat[i][k]*a.mat[k][j]);
}
}
}
return res;
}
};
matrix expo(matrix x,int n)
{
if(n==1) return x;
if(n%2)
{
return x.mul(expo(x,n-1));
}
else
{
matrix sm=expo(x,n/2);
return sm.mul(sm);
}
}
int main()
{
int t,tcase=1;
t=in<int>();
while(t--)
{
p=in<llu>();
q=in<llu>();
n=in<int>();
matrix sol;
sol.mat[0][0]=p;
sol.mat[0][1]=-q;
printf("Case %d: ",tcase++);
if(n==0)
printf("2\n");
else if(n==1)
printf("%llu\n",p);
else
{
sol=expo(sol,n-1);
printf("%llu\n", sol.mat[0][0]*p+sol.mat[0][1]*2 );
}
}
return 0;
}