-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUSubst.thy
590 lines (513 loc) · 42.9 KB
/
USubst.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
theory "USubst"
imports
Ordinary_Differential_Equations.ODE_Analysis
"./Ids"
"./Lib"
"./Syntax"
"./Denotational_Semantics"
"./Static_Semantics"
begin
section \<open>Uniform Substitution Definitions\<close>
text\<open>This section defines substitutions and implements the substitution operation.
Every part of substitution comes in two flavors. The "Nsubst" variant of each function
returns a term/formula/ode/program which (as encoded in the type system) has less symbols
that the input. We use this operation when substitution into functions and function-like
constructs to make it easy to distinguish identifiers that stand for arguments to functions
from other identifiers. In order to expose a simpler interface, we also have a "subst" variant
which does not delete variables.
Naive substitution without side conditions would not always be sound. The various admissibility
predicates *admit describe conditions under which the various substitution operations are sound.
\<close>
text\<open>
Explicit data structure for substitutions.
The RHS of a function or predicate substitution is a term or formula
with extra variables, which are used to refer to arguments. \<close>
record subst =
SFunctions :: "ident \<rightharpoonup> trm"
SFunls :: "ident \<rightharpoonup> trm"
SPredicates :: "ident \<rightharpoonup> formula"
SContexts :: "ident \<rightharpoonup> formula"
SPrograms :: "ident \<rightharpoonup> hp"
SODEs :: "ident \<Rightarrow> space \<Rightarrow> ODE option"
(* ident_expose *)
(*
record subst =
SFunctions :: "'a \<rightharpoonup> ('a + 'c, 'c) trm"
SFunls :: "'a \<rightharpoonup> ('a, 'c) trm"
SPredicates :: "'c \<rightharpoonup> ('a + 'c, 'b, 'c) formula"
SContexts :: "'b \<rightharpoonup> ('a, 'b + unit, 'c) formula"
SPrograms :: "'c \<rightharpoonup> ('a, 'b, 'c) hp"
SODEs :: "'c \<Rightarrow> 'c space \<Rightarrow> ('a, 'c) ODE option"*)
(* definition NTUadmit :: "('d \<Rightarrow> ('a, 'c) trm) \<Rightarrow> ('a + 'd, 'c) trm \<Rightarrow> ('c + 'c) set \<Rightarrow> bool" *)
definition NTUadmit :: "(ident \<Rightarrow> trm) \<Rightarrow> trm \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "NTUadmit \<sigma> \<theta> U \<longleftrightarrow> ((\<Union> i \<in> {i. (debase i) \<in> SIGT \<theta> \<or> (Debase i) \<in> SIGT \<theta>}. FVT (\<sigma> i)) \<inter> U) = {}"
(* TadmitFFO :: "('d \<Rightarrow> ('a, 'c) trm) \<Rightarrow> ('a + 'd, 'c) trm \<Rightarrow> bool *)
inductive TadmitFFO :: "(ident \<Rightarrow> trm) \<Rightarrow> trm \<Rightarrow> bool"
where
TadmitFFO_Diff:"TadmitFFO \<sigma> \<theta> \<Longrightarrow> NTUadmit \<sigma> \<theta> UNIV \<Longrightarrow> TadmitFFO \<sigma> (Differential \<theta>)"
| TadmitFFO_Fun:"(\<forall>i. TadmitFFO \<sigma> (args i)) \<Longrightarrow> ilength f < MAX_STR \<Longrightarrow> nonbase f \<Longrightarrow> dfree (\<sigma> (rebase f)) \<Longrightarrow> TadmitFFO \<sigma> (Function f args)"
(*| TadmitFFO_Fun2:"(\<forall>i. TadmitFFO \<sigma> (args i)) \<Longrightarrow> ilength f < MAX_STR \<Longrightarrow> nonbase f \<Longrightarrow> dfree (\<sigma> (rebase f)) \<Longrightarrow> TadmitFFO \<sigma> (Function f args)"*)
| TadmitFFO_Plus:"TadmitFFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFFO \<sigma> (Plus \<theta>1 \<theta>2)"
| TadmitFFO_Times:"TadmitFFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFFO \<sigma> (Times \<theta>1 \<theta>2)"
| TadmitFFO_Max:"TadmitFFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFFO \<sigma> (Max \<theta>1 \<theta>2)"
| TadmitFFO_Min:"TadmitFFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFFO \<sigma> (Min \<theta>1 \<theta>2)"
| TadmitFFO_Abs:"TadmitFFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFFO \<sigma> (Abs \<theta>1)"
| TadmitFFO_Div:"TadmitFFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFFO \<sigma> (Div \<theta>1 \<theta>2)"
| TadmitFFO_Neg:"TadmitFFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFFO \<sigma> (Neg \<theta>1)"
| TadmitFFO_Var:"TadmitFFO \<sigma> (Var x)"
| TadmitFFO_Const:"TadmitFFO \<sigma> (Const r)"
inductive_simps
TadmitFFO_Diff_simps[simp]: "TadmitFFO \<sigma> (Differential \<theta>)"
and TadmitFFO_Fun_simps[simp]: "TadmitFFO \<sigma> (Function f args)"
and TadmitFFO_Plus_simps[simp]: "TadmitFFO \<sigma> (Plus t1 t2)"
and TadmitFFO_Times_simps[simp]: "TadmitFFO \<sigma> (Times t1 t2)"
and TadmitFFO_Div_simps[simp]: "TadmitFFO \<sigma> (Div t1 t2)"
and TadmitFFO_Var_simps[simp]: "TadmitFFO \<sigma> (Var x)"
and TadmitFFO_Abs_simps[simp]: "TadmitFFO \<sigma> (Abs x)"
and TadmitFFO_Neg_simps[simp]: "TadmitFFO \<sigma> (Neg x)"
and TadmitFFO_Const_simps[simp]: "TadmitFFO \<sigma> (Const r)"
(* primrec TsubstFO::"('a + 'b, 'c) trm \<Rightarrow> ('b \<Rightarrow> ('a, 'c) trm) \<Rightarrow> ('a, 'c) trm" *)
primrec TsubstFO::" trm \<Rightarrow> (ident \<Rightarrow> trm) \<Rightarrow> trm"
where
TFO_Var:"TsubstFO (Var v) \<sigma> = Var v"
| TFO_DiffVar:"TsubstFO (DiffVar v) \<sigma> = DiffVar v"
| TFO_Const:"TsubstFO (Const r) \<sigma> = Const r"
(* TODO: So weird to replicate between function vs. funl case but might actually work*)
| TFO_Funl:"TsubstFO ($$F f) \<sigma> = (case args_to_id f of Some (Inl ff) \<Rightarrow> ($$F f) | Some (Inr ff) \<Rightarrow> \<sigma> ff)"
| TFO_Funl_rep:"TsubstFO (Function f args) \<sigma> =
(case args_to_id f of
Some (Inl f') \<Rightarrow> Function f (\<lambda> i. TsubstFO (args i) \<sigma>)
| Some (Inr f') \<Rightarrow> \<sigma> f')"
| TFO_Neg:"TsubstFO (Neg \<theta>1) \<sigma> = Neg (TsubstFO \<theta>1 \<sigma>)"
| TFO_Plus:"TsubstFO (Plus \<theta>1 \<theta>2) \<sigma> = Plus (TsubstFO \<theta>1 \<sigma>) (TsubstFO \<theta>2 \<sigma>)"
| TFO_Times:"TsubstFO (Times \<theta>1 \<theta>2) \<sigma> = Times (TsubstFO \<theta>1 \<sigma>) (TsubstFO \<theta>2 \<sigma>)"
| TFO_Div:"TsubstFO (Div \<theta>1 \<theta>2) \<sigma> = Div (TsubstFO \<theta>1 \<sigma>) (TsubstFO \<theta>2 \<sigma>)"
| TFO_Max:"TsubstFO (Max \<theta>1 \<theta>2) \<sigma> = Max (TsubstFO \<theta>1 \<sigma>) (TsubstFO \<theta>2 \<sigma>)"
| TFO_Min:"TsubstFO (Min \<theta>1 \<theta>2) \<sigma> = Min (TsubstFO \<theta>1 \<sigma>) (TsubstFO \<theta>2 \<sigma>)"
| TFO_Abs:"TsubstFO (Abs \<theta>1) \<sigma> = Abs (TsubstFO \<theta>1 \<sigma>)"
| TFO_Diff:"TsubstFO (Differential \<theta>) \<sigma> = Differential (TsubstFO \<theta> \<sigma>)"
inductive TadmitFO :: "(ident \<Rightarrow> trm) \<Rightarrow> trm \<Rightarrow> bool"
where
TadmitFO_Diff:"TadmitFFO \<sigma> \<theta> \<Longrightarrow> NTUadmit \<sigma> \<theta> UNIV \<Longrightarrow> dfree (TsubstFO \<theta> \<sigma>) \<Longrightarrow> TadmitFO \<sigma> (Differential \<theta>)"
| TadmitFO_Fun:"(\<forall>i. TadmitFO \<sigma> (args i)) \<Longrightarrow> TadmitFO \<sigma> (Function f args)"
| TadmitFO_Funl:"TadmitFO \<sigma> ($$F f)" (*Inl *)
| TadmitFO_Neg:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> (Neg \<theta>1)"
| TadmitFO_Plus:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFO \<sigma> (Plus \<theta>1 \<theta>2)"
| TadmitFO_Times:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFO \<sigma> (Times \<theta>1 \<theta>2)"
| TadmitFO_Div:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFO \<sigma> (Div \<theta>1 \<theta>2)"
| TadmitFO_Max:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFO \<sigma> (Max \<theta>1 \<theta>2)"
| TadmitFO_Min:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> \<theta>2 \<Longrightarrow> TadmitFO \<sigma> (Min \<theta>1 \<theta>2)"
| TadmitFO_Abs:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> (Abs \<theta>1)"
| TadmitFO_DiffVar:"TadmitFO \<sigma> (DiffVar x)"
| TadmitFO_Var:"TadmitFO \<sigma> (Var x)"
| TadmitFO_Const:"TadmitFO \<sigma> (Const r)"
inductive_simps
TadmitFO_Plus_simps[simp]: "TadmitFO \<sigma> (Plus a b)"
and TadmitFO_Times_simps[simp]: "TadmitFO \<sigma> (Times a b)"
and TadmitFO_Max_simps[simp]: "TadmitFO \<sigma> (Max a b)"
and TadmitFO_Div_simps[simp]: "TadmitFO \<sigma> (Div a b)"
and TadmitFO_Min_simps[simp]: "TadmitFO \<sigma> (Min a b)"
and TadmitFO_Abs_simps[simp]: "TadmitFO \<sigma> (Abs a)"
and TadmitFO_Var_simps[simp]: "TadmitFO \<sigma> (Var x)"
and TadmitFO_DiffVar_simps[simp]: "TadmitFO \<sigma> (DiffVar x)"
and TadmitFO_Differential_simps[simp]: "TadmitFO \<sigma> (Differential \<theta>)"
and TadmitFO_Const_simps[simp]: "TadmitFO \<sigma> (Const r)"
and TadmitFO_Fun_simps[simp]: "TadmitFO \<sigma> (Function i args)"
and TadmitFO_Funl_simps[simp]: "TadmitFO \<sigma> ($$F f)"
primrec Tsubst::" trm \<Rightarrow> subst \<Rightarrow> trm"
where
TVar:"Tsubst (Var x) \<sigma> = Var x"
| TDiffVar:"Tsubst (DiffVar x) \<sigma> = DiffVar x"
| TConst:"Tsubst (Const r) \<sigma> = Const r"
| TFun:"Tsubst (Function f args) \<sigma> = (case SFunctions \<sigma> f of Some f' \<Rightarrow> TsubstFO f' | None \<Rightarrow> Function f) (\<lambda> i. Tsubst (args i) \<sigma>)"
| TFunl:"Tsubst ($$F f) \<sigma> = (case SFunls \<sigma> f of Some f' \<Rightarrow> f' | None \<Rightarrow> ($$F f))"
| TNeg:"Tsubst (Neg \<theta>1) \<sigma> = Neg (Tsubst \<theta>1 \<sigma>)"
| TPlus:"Tsubst (Plus \<theta>1 \<theta>2) \<sigma> = Plus (Tsubst \<theta>1 \<sigma>) (Tsubst \<theta>2 \<sigma>)"
| TTimes:"Tsubst (Times \<theta>1 \<theta>2) \<sigma> = Times (Tsubst \<theta>1 \<sigma>) (Tsubst \<theta>2 \<sigma>)"
| TDiv:"Tsubst (Div \<theta>1 \<theta>2) \<sigma> = Div (Tsubst \<theta>1 \<sigma>) (Tsubst \<theta>2 \<sigma>)"
| TMax:"Tsubst (Max \<theta>1 \<theta>2) \<sigma> = Max (Tsubst \<theta>1 \<sigma>) (Tsubst \<theta>2 \<sigma>)"
| TMin:"Tsubst (Min \<theta>1 \<theta>2) \<sigma> = Min (Tsubst \<theta>1 \<sigma>) (Tsubst \<theta>2 \<sigma>)"
| TAbs:"Tsubst (Abs \<theta>1) \<sigma> = Abs (Tsubst \<theta>1 \<sigma>) "
| TDiff:"Tsubst (Differential \<theta>) \<sigma> = Differential (Tsubst \<theta> \<sigma>)"
lemma TZero[simp]: "Tsubst \<^bold>0 \<sigma> = \<^bold>0"
unfolding Zero_def by simp
lemma TOne[simp]: "Tsubst \<^bold>1 \<sigma> = \<^bold>1"
unfolding One_def by simp
primrec OsubstFO::"ODE \<Rightarrow> (ident \<Rightarrow> trm) \<Rightarrow> ODE"
where
"OsubstFO (OVar c sp) \<sigma> = OVar c sp"
| "OsubstFO (OSing x \<theta>) \<sigma> = OSing x (TsubstFO \<theta> \<sigma>)"
| "OsubstFO (OProd ODE1 ODE2) \<sigma> = oprod (OsubstFO ODE1 \<sigma>) (OsubstFO ODE2 \<sigma>)"
primrec Osubst::"ODE \<Rightarrow> subst \<Rightarrow> ODE"
where
"Osubst (OVar c sp ) \<sigma> = (case SODEs \<sigma> c sp of Some c' \<Rightarrow> c' | None \<Rightarrow> OVar c sp)"
| "Osubst (OSing x \<theta>) \<sigma> = OSing x (Tsubst \<theta> \<sigma>)"
| "Osubst (OProd ODE1 ODE2) \<sigma> = oprod (Osubst ODE1 \<sigma>) (Osubst ODE2 \<sigma>)"
fun PsubstFO::"hp \<Rightarrow> (ident \<Rightarrow> trm) \<Rightarrow> hp"
and FsubstFO::"formula \<Rightarrow> (ident \<Rightarrow> trm) \<Rightarrow> formula"
where
"PsubstFO (Pvar a) \<sigma> = Pvar a"
| "PsubstFO (Assign x \<theta>) \<sigma> = Assign x (TsubstFO \<theta> \<sigma>)"
| "PsubstFO (AssignAny x) \<sigma> = AssignAny x"
| "PsubstFO (DiffAssign x \<theta>) \<sigma> = DiffAssign x (TsubstFO \<theta> \<sigma>)"
| "PsubstFO (Test \<phi>) \<sigma> = Test (FsubstFO \<phi> \<sigma>)"
| "PsubstFO (EvolveODE ODE \<phi>) \<sigma> = EvolveODE (OsubstFO ODE \<sigma>) (FsubstFO \<phi> \<sigma>)"
| "PsubstFO (Choice \<alpha> \<beta>) \<sigma> = Choice (PsubstFO \<alpha> \<sigma>) (PsubstFO \<beta> \<sigma>)"
| "PsubstFO (Sequence \<alpha> \<beta>) \<sigma> = Sequence (PsubstFO \<alpha> \<sigma>) (PsubstFO \<beta> \<sigma>)"
| "PsubstFO (Loop \<alpha>) \<sigma> = Loop (PsubstFO \<alpha> \<sigma>)"
| "FsubstFO (Geq \<theta>1 \<theta>2) \<sigma> = Geq (TsubstFO \<theta>1 \<sigma>) (TsubstFO \<theta>2 \<sigma>)"
| "FsubstFO (Prop p args) \<sigma> = Prop p (\<lambda>i. TsubstFO (args i) \<sigma>)"
| "FsubstFO (Not \<phi>) \<sigma> = Not (FsubstFO \<phi> \<sigma>)"
| "FsubstFO (And \<phi> \<psi>) \<sigma> = And (FsubstFO \<phi> \<sigma>) (FsubstFO \<psi> \<sigma>)"
| "FsubstFO (Exists x \<phi>) \<sigma> = Exists x (FsubstFO \<phi> \<sigma>)"
| "FsubstFO (Diamond \<alpha> \<phi>) \<sigma> = Diamond (PsubstFO \<alpha> \<sigma>) (FsubstFO \<phi> \<sigma>)"
| "FsubstFO (InContext C \<phi>) \<sigma> = InContext C (FsubstFO \<phi> \<sigma>)"
fun PPsubst::"hp \<Rightarrow> (ident \<Rightarrow> formula) \<Rightarrow> hp"
and PFsubst::"formula \<Rightarrow> (ident \<Rightarrow> formula) \<Rightarrow> formula"
where
"PPsubst (Pvar a) \<sigma> = Pvar a"
| "PPsubst (Assign x \<theta>) \<sigma> = Assign x \<theta>"
| "PPsubst (AssignAny x) \<sigma> = AssignAny x"
| "PPsubst (DiffAssign x \<theta>) \<sigma> = DiffAssign x \<theta>"
| "PPsubst (Test \<phi>) \<sigma> = Test (PFsubst \<phi> \<sigma>)"
| "PPsubst (EvolveODE ODE \<phi>) \<sigma> = EvolveODE ODE (PFsubst \<phi> \<sigma>)"
| "PPsubst (Choice \<alpha> \<beta>) \<sigma> = Choice (PPsubst \<alpha> \<sigma>) (PPsubst \<beta> \<sigma>)"
| "PPsubst (Sequence \<alpha> \<beta>) \<sigma> = Sequence (PPsubst \<alpha> \<sigma>) (PPsubst \<beta> \<sigma>)"
| "PPsubst (Loop \<alpha>) \<sigma> = Loop (PPsubst \<alpha> \<sigma>)"
| "PFsubst (Geq \<theta>1 \<theta>2) \<sigma> = (Geq \<theta>1 \<theta>2)"
| "PFsubst (Prop p args) \<sigma> = Prop p args"
| "PFsubst (Not \<phi>) \<sigma> = Not (PFsubst \<phi> \<sigma>)"
| "PFsubst (And \<phi> \<psi>) \<sigma> = And (PFsubst \<phi> \<sigma>) (PFsubst \<psi> \<sigma>)"
| "PFsubst (Exists x \<phi>) \<sigma> = Exists x (PFsubst \<phi> \<sigma>)"
| "PFsubst (Diamond \<alpha> \<phi>) \<sigma> = Diamond (PPsubst \<alpha> \<sigma>) (PFsubst \<phi> \<sigma>)"
| "PFsubst (InContext C \<phi>) \<sigma> = (case args_to_id C of Some (Inl C') \<Rightarrow> InContext C' (PFsubst \<phi> \<sigma>) | Some (Inr p') \<Rightarrow> \<sigma> p')"
fun Psubst::"hp \<Rightarrow> subst \<Rightarrow> hp"
and Fsubst::"formula \<Rightarrow> subst \<Rightarrow> formula"
where
"Psubst (Pvar a) \<sigma> = (case SPrograms \<sigma> a of Some a' \<Rightarrow> a' | None \<Rightarrow> Pvar a)"
| "Psubst (Assign x \<theta>) \<sigma> = Assign x (Tsubst \<theta> \<sigma>)"
| "Psubst (AssignAny x) \<sigma> = AssignAny x"
| "Psubst (DiffAssign x \<theta>) \<sigma> = DiffAssign x (Tsubst \<theta> \<sigma>)"
| "Psubst (Test \<phi>) \<sigma> = Test (Fsubst \<phi> \<sigma>)"
| "Psubst (EvolveODE ODE \<phi>) \<sigma> = EvolveODE (Osubst ODE \<sigma>) (Fsubst \<phi> \<sigma>)"
| "Psubst (Choice \<alpha> \<beta>) \<sigma> = Choice (Psubst \<alpha> \<sigma>) (Psubst \<beta> \<sigma>)"
| "Psubst (Sequence \<alpha> \<beta>) \<sigma> = Sequence (Psubst \<alpha> \<sigma>) (Psubst \<beta> \<sigma>)"
| "Psubst (Loop \<alpha>) \<sigma> = Loop (Psubst \<alpha> \<sigma>)"
| "Fsubst (Geq \<theta>1 \<theta>2) \<sigma> = Geq (Tsubst \<theta>1 \<sigma>) (Tsubst \<theta>2 \<sigma>)"
| "Fsubst (Prop p args) \<sigma> = (case SPredicates \<sigma> p of Some p' \<Rightarrow> FsubstFO p' (\<lambda>i. Tsubst (args i) \<sigma>) | None \<Rightarrow> Prop p (\<lambda>i. Tsubst (args i) \<sigma>))"
| "Fsubst (Not \<phi>) \<sigma> = Not (Fsubst \<phi> \<sigma>)"
| "Fsubst (And \<phi> \<psi>) \<sigma> = And (Fsubst \<phi> \<sigma>) (Fsubst \<psi> \<sigma>)"
| "Fsubst (Exists x \<phi>) \<sigma> = Exists x (Fsubst \<phi> \<sigma>)"
| "Fsubst (Diamond \<alpha> \<phi>) \<sigma> = Diamond (Psubst \<alpha> \<sigma>) (Fsubst \<phi> \<sigma>)"
| "Fsubst (InContext C \<phi>) \<sigma> = (case SContexts \<sigma> C of Some C' \<Rightarrow> PFsubst C' (\<lambda> _. (Fsubst \<phi> \<sigma>)) | None \<Rightarrow> InContext C (Fsubst \<phi> \<sigma>))"
definition FVA :: "(ident \<Rightarrow> trm) \<Rightarrow> (ident + ident) set"
where "FVA args = (\<Union> i. FVT (args i))"
fun SFV :: "subst \<Rightarrow> (ident + ident + ident) \<Rightarrow> (ident + ident) set"
where "SFV \<sigma> (Inl i) = (case SFunctions \<sigma> i of Some f' \<Rightarrow> FVT f' | None \<Rightarrow> {}) " (* \<union> (case SFunls \<sigma> i of Some f' \<Rightarrow> FVT f' | None \<Rightarrow> {}) *)
| "SFV \<sigma> (Inr (Inl i)) = {}"
| "SFV \<sigma> (Inr (Inr i)) = (case SPredicates \<sigma> i of Some p' \<Rightarrow> FVF p' | None \<Rightarrow> {})"
definition FVS :: "subst \<Rightarrow> (ident + ident) set"
where "FVS \<sigma> = (\<Union>i. SFV \<sigma> i)"
definition SDom :: "subst \<Rightarrow> (ident + ident + ident) set"
where "SDom \<sigma> =
{Inl x | x. x \<in> dom (SFunctions \<sigma>)}
\<union> {Inl x | x. x \<in> dom (SFunls \<sigma>)}
\<union> {Inr (Inl x) | x. x \<in> dom (SContexts \<sigma>)}
\<union> {Inr (Inr x) | x. x \<in> dom (SPredicates \<sigma>)}
\<union> {Inr (Inr x) | x. x \<in> dom (SPrograms \<sigma>)}"
definition TUadmit :: "subst \<Rightarrow> trm \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "TUadmit \<sigma> \<theta> U \<longleftrightarrow>
((\<Union> i \<in> SIGT \<theta>. (case SFunctions \<sigma> i of Some f' \<Rightarrow> FVT f' | None \<Rightarrow> {})
\<union> (case SFunls \<sigma> i of Some f' \<Rightarrow> FVT f' | None \<Rightarrow> {})) \<inter> U) = {}"
inductive Tadmit :: "subst \<Rightarrow> trm \<Rightarrow> bool"
where
Tadmit_Diff:"Tadmit \<sigma> \<theta> \<Longrightarrow> TUadmit \<sigma> \<theta> UNIV \<Longrightarrow> Tadmit \<sigma> (Differential \<theta>)"
| Tadmit_Fun1:"(\<forall>i. Tadmit \<sigma> (args i)) \<Longrightarrow> SFunctions \<sigma> f = Some f' \<Longrightarrow> TadmitFO (\<lambda> i. Tsubst (args i) \<sigma>) f' \<Longrightarrow> Tadmit \<sigma> (Function f args)"
| Tadmit_Fun2:"(\<forall>i. Tadmit \<sigma> (args i)) \<Longrightarrow> SFunctions \<sigma> f = None \<Longrightarrow> Tadmit \<sigma> (Function f args)"
| Tadmit_Funl:"SFunls \<sigma> f = Some f' \<Longrightarrow> Tadmit \<sigma> f' \<Longrightarrow> Tadmit \<sigma> ($$F f)"
| Tadmit_Neg:"Tadmit \<sigma> \<theta>1 \<Longrightarrow> Tadmit \<sigma> (Neg \<theta>1)"
| Tadmit_Plus:"Tadmit \<sigma> \<theta>1 \<Longrightarrow> Tadmit \<sigma> \<theta>2 \<Longrightarrow> Tadmit \<sigma> (Plus \<theta>1 \<theta>2)"
| Tadmit_Times:"Tadmit \<sigma> \<theta>1 \<Longrightarrow> Tadmit \<sigma> \<theta>2 \<Longrightarrow> Tadmit \<sigma> (Times \<theta>1 \<theta>2)"
| Tadmit_Max:"Tadmit \<sigma> \<theta>1 \<Longrightarrow> Tadmit \<sigma> \<theta>2 \<Longrightarrow> Tadmit \<sigma> (Max \<theta>1 \<theta>2)"
| Tadmit_Min:"Tadmit \<sigma> \<theta>1 \<Longrightarrow> Tadmit \<sigma> \<theta>2 \<Longrightarrow> Tadmit \<sigma> (Min \<theta>1 \<theta>2)"
| Tadmit_Abs:"Tadmit \<sigma> \<theta>1 \<Longrightarrow> Tadmit \<sigma> (Abs \<theta>1)"
| Tadmit_DiffVar:"Tadmit \<sigma> (DiffVar x)"
| Tadmit_Var:"Tadmit \<sigma> (Var x)"
| Tadmit_Const:"Tadmit \<sigma> (Const r)"
inductive_simps
Tadmit_Plus_simps[simp]: "Tadmit \<sigma> (Plus a b)"
and Tadmit_Neg_simps[simp]: "Tadmit \<sigma> (Neg a)"
and Tadmit_Times_simps[simp]: "Tadmit \<sigma> (Times a b)"
and Tadmit_Max_simps[simp]: "Tadmit \<sigma> (Max a b)"
and Tadmit_Min_simps[simp]: "Tadmit \<sigma> (Min a b)"
and Tadmit_Abs_simps[simp]: "Tadmit \<sigma> (Abs a)"
and Tadmit_Var_simps[simp]: "Tadmit \<sigma> (Var x)"
and Tadmit_DiffVar_simps[simp]: "Tadmit \<sigma> (DiffVar x)"
and Tadmit_Differential_simps[simp]: "Tadmit \<sigma> (Differential \<theta>)"
and Tadmit_Const_simps[simp]: "Tadmit \<sigma> (Const r)"
and Tadmit_Fun_simps[simp]: "Tadmit \<sigma> (Function i args)"
and Tadmit_Funl_simps[simp]: "Tadmit \<sigma> ($$F i)"
inductive TadmitF :: "subst \<Rightarrow> trm \<Rightarrow> bool"
where
TadmitF_Diff:"TadmitF \<sigma> \<theta> \<Longrightarrow> TUadmit \<sigma> \<theta> UNIV \<Longrightarrow> TadmitF \<sigma> (Differential \<theta>)"
| TadmitF_Fun1:"(\<forall>i. TadmitF \<sigma> (args i)) \<Longrightarrow> SFunctions \<sigma> f = Some f' \<Longrightarrow> nonbase f \<Longrightarrow> ilength f < MAX_STR \<Longrightarrow> (\<forall>i. dfree (Tsubst (args i) \<sigma>)) \<Longrightarrow> TadmitFFO (\<lambda> i. Tsubst (args i) \<sigma>) f' \<Longrightarrow> TadmitF \<sigma> (Function f args)"
| TadmitF_Fun2:"(\<forall>i. TadmitF \<sigma> (args i)) \<Longrightarrow> SFunctions \<sigma> f = None \<Longrightarrow> nonbase f \<Longrightarrow> ilength f < MAX_STR \<Longrightarrow> TadmitF \<sigma> (Function f args)"
| TadmitF_Neg:"TadmitF \<sigma> \<theta>1 \<Longrightarrow> TadmitF \<sigma> (Neg \<theta>1)"
| TadmitF_Plus:"TadmitF \<sigma> \<theta>1 \<Longrightarrow> TadmitF \<sigma> \<theta>2 \<Longrightarrow> TadmitF \<sigma> (Plus \<theta>1 \<theta>2)"
| TadmitF_Times:"TadmitF \<sigma> \<theta>1 \<Longrightarrow> TadmitF \<sigma> \<theta>2 \<Longrightarrow> TadmitF \<sigma> (Times \<theta>1 \<theta>2)"
| TadmitF_Max:"TadmitF \<sigma> \<theta>1 \<Longrightarrow> TadmitF \<sigma> \<theta>2 \<Longrightarrow> TadmitF \<sigma> (Max \<theta>1 \<theta>2)"
| TadmitF_Min:"TadmitF \<sigma> \<theta>1 \<Longrightarrow> TadmitF \<sigma> \<theta>2 \<Longrightarrow> TadmitF \<sigma> (Min \<theta>1 \<theta>2)"
| TadmitF_Abs:"TadmitF \<sigma> \<theta>1 \<Longrightarrow> TadmitF \<sigma> (Abs \<theta>1)"
| TadmitF_DiffVar:"TadmitF \<sigma> (DiffVar x)"
| TadmitF_Var:"TadmitF \<sigma> (Var x)"
| TadmitF_Const:"TadmitF \<sigma> (Const r)"
inductive_simps
TadmitF_Plus_simps[simp]: "TadmitF \<sigma> (Plus a b)"
and TadmitF_Times_simps[simp]: "TadmitF \<sigma> (Times a b)"
and TadmitF_Neg_simps[simp]: "TadmitF \<sigma> (Neg a)"
and TadmitF_Max_simps[simp]: "TadmitF \<sigma> (Max a b)"
and TadmitF_Min_simps[simp]: "TadmitF \<sigma> (Min a b)"
and TadmitF_Abs_simps[simp]: "TadmitF \<sigma> (Abs a)"
and TadmitF_Var_simps[simp]: "TadmitF \<sigma> (Var x)"
and TadmitF_DiffVar_simps[simp]: "TadmitF \<sigma> (DiffVar x)"
and TadmitF_Differential_simps[simp]: "TadmitF \<sigma> (Differential \<theta>)"
and TadmitF_Const_simps[simp]: "TadmitF \<sigma> (Const r)"
and TadmitF_Fun_simps[simp]: "TadmitF \<sigma> (Function i args)"
and TadmitF_Funl_simps[simp]: "TadmitF \<sigma> ($$F i)"
inductive Oadmit:: "subst \<Rightarrow> ODE \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where
Oadmit_Var:"Oadmit \<sigma> (OVar c None) U"
| Oadmit_VarNB:"(case SODEs \<sigma> c (Some x) of Some ode \<Rightarrow> Inl x \<notin> BVO ode | None \<Rightarrow> False) \<Longrightarrow> Oadmit \<sigma> (OVar c (Some x)) U"
| Oadmit_Sing:"TUadmit \<sigma> \<theta> U \<Longrightarrow> TadmitF \<sigma> \<theta> \<Longrightarrow> Oadmit \<sigma> (OSing x \<theta>) U"
| Oadmit_Prod:"Oadmit \<sigma> ODE1 U \<Longrightarrow> Oadmit \<sigma> ODE2 U \<Longrightarrow> ODE_dom (Osubst ODE1 \<sigma>) \<inter> ODE_dom (Osubst ODE2 \<sigma>) = {} \<Longrightarrow> Oadmit \<sigma> (OProd ODE1 ODE2) U"
inductive_simps
Oadmit_Var_simps[simp]: "Oadmit \<sigma> (OVar c sp) U"
and Oadmit_Sing_simps[simp]: "Oadmit \<sigma> (OSing x e) U"
and Oadmit_Prod_simps[simp]: "Oadmit \<sigma> (OProd ODE1 ODE2) U"
definition PUadmit :: "subst \<Rightarrow> hp \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "PUadmit \<sigma> \<theta> U \<longleftrightarrow> ((\<Union> i \<in> (SDom \<sigma> \<inter> SIGP \<theta>). SFV \<sigma> i) \<inter> U) = {}"
definition FUadmit :: "subst \<Rightarrow> formula \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "FUadmit \<sigma> \<theta> U \<longleftrightarrow> ((\<Union> i \<in> (SDom \<sigma> \<inter> SIGF \<theta>). SFV \<sigma> i) \<inter> U) = {}"
definition OUadmitFO :: "(ident \<Rightarrow> trm) \<Rightarrow> ODE \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "OUadmitFO \<sigma> \<theta> U \<longleftrightarrow> ((\<Union> i \<in> {i. Inl (debase i) \<in> SIGO \<theta>}. FVT (\<sigma> i)) \<inter> U) = {}"
inductive OadmitFO :: "(ident \<Rightarrow> trm) \<Rightarrow> ODE \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where
OadmitFO_OVar:"OUadmitFO \<sigma> (OVar c sp) U \<Longrightarrow> OadmitFO \<sigma> (OVar c sp) U"
| OadmitFO_OSing:"OUadmitFO \<sigma> (OSing x \<theta>) U \<Longrightarrow> TadmitFFO \<sigma> \<theta> \<Longrightarrow> OadmitFO \<sigma> (OSing x \<theta>) U"
| OadmitFO_OProd:"OadmitFO \<sigma> ODE1 U \<Longrightarrow> OadmitFO \<sigma> ODE2 U \<Longrightarrow> OadmitFO \<sigma> (OProd ODE1 ODE2) U"
inductive_simps
OadmitFO_OVar_simps[simp]: "OadmitFO \<sigma> (OVar a sp) U"
and OadmitFO_OProd_simps[simp]: "OadmitFO \<sigma> (OProd ODE1 ODE2) U"
and OadmitFO_OSing_simps[simp]: "OadmitFO \<sigma> (OSing x e) U"
definition FUadmitFO :: "(ident \<Rightarrow> trm) \<Rightarrow> formula \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "FUadmitFO \<sigma> \<theta> U \<longleftrightarrow> ((\<Union> i \<in> {i. Inl (debase i) \<in> SIGF \<theta> \<or> Inl (Debase i) \<in> SIGF \<theta>}. FVT (\<sigma> i)) \<inter> U) = {}"
definition PUadmitFO :: "(ident \<Rightarrow> trm) \<Rightarrow> hp \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "PUadmitFO \<sigma> \<theta> U \<longleftrightarrow> ((\<Union> i \<in> {i. Inl (debase i) \<in> SIGP \<theta> \<or> Inl (Debase i) \<in> SIGP \<theta>}. FVT (\<sigma> i)) \<inter> U) = {}"
inductive NPadmit :: "(ident \<Rightarrow> trm) \<Rightarrow> hp \<Rightarrow> bool"
and NFadmit :: "(ident \<Rightarrow> trm) \<Rightarrow> formula \<Rightarrow> bool"
where
NPadmit_Pvar:"NPadmit \<sigma> (Pvar a)"
| NPadmit_Sequence:"NPadmit \<sigma> a \<Longrightarrow> NPadmit \<sigma> b \<Longrightarrow> PUadmitFO \<sigma> b (BVP (PsubstFO a \<sigma>))\<Longrightarrow> hpsafe (PsubstFO a \<sigma>) \<Longrightarrow> NPadmit \<sigma> (Sequence a b)"
| NPadmit_Loop:"NPadmit \<sigma> a \<Longrightarrow> PUadmitFO \<sigma> a (BVP (PsubstFO a \<sigma>)) \<Longrightarrow> hpsafe (PsubstFO a \<sigma>) \<Longrightarrow> NPadmit \<sigma> (Loop a)"
| NPadmit_ODE:"OadmitFO \<sigma> ODE (BVO ODE) \<Longrightarrow> NFadmit \<sigma> \<phi> \<Longrightarrow> FUadmitFO \<sigma> \<phi> (BVO ODE) \<Longrightarrow> fsafe (FsubstFO \<phi> \<sigma>) \<Longrightarrow> osafe (OsubstFO ODE \<sigma>) \<Longrightarrow> NPadmit \<sigma> (EvolveODE ODE \<phi>)"
| NPadmit_Choice:"NPadmit \<sigma> a \<Longrightarrow> NPadmit \<sigma> b \<Longrightarrow> NPadmit \<sigma> (Choice a b)"
| NPadmit_Assign:"TadmitFO \<sigma> \<theta> \<Longrightarrow> NPadmit \<sigma> (Assign x \<theta>)"
| NPadmit_AssignAny:" NPadmit \<sigma> (AssignAny x)"
| NPadmit_DiffAssign:"TadmitFO \<sigma> \<theta> \<Longrightarrow> NPadmit \<sigma> (DiffAssign x \<theta>)"
| NPadmit_Test:"NFadmit \<sigma> \<phi> \<Longrightarrow> NPadmit \<sigma> (Test \<phi>)"
| NFadmit_Geq:"TadmitFO \<sigma> \<theta>1 \<Longrightarrow> TadmitFO \<sigma> \<theta>2 \<Longrightarrow> NFadmit \<sigma> (Geq \<theta>1 \<theta>2)"
| NFadmit_Prop:"(\<forall>i. TadmitFO \<sigma> (args i)) \<Longrightarrow> NFadmit \<sigma> (Prop f args)"
| NFadmit_Not:"NFadmit \<sigma> \<phi> \<Longrightarrow> NFadmit \<sigma> (Not \<phi>)"
| NFadmit_And:"NFadmit \<sigma> \<phi> \<Longrightarrow> NFadmit \<sigma> \<psi> \<Longrightarrow> NFadmit \<sigma> (And \<phi> \<psi>)"
| NFadmit_Exists:"NFadmit \<sigma> \<phi> \<Longrightarrow> FUadmitFO \<sigma> \<phi> {Inl x} \<Longrightarrow> NFadmit \<sigma> (Exists x \<phi>)"
| NFadmit_Diamond:"NFadmit \<sigma> \<phi> \<Longrightarrow> NPadmit \<sigma> a \<Longrightarrow> FUadmitFO \<sigma> \<phi> (BVP (PsubstFO a \<sigma>)) \<Longrightarrow> hpsafe (PsubstFO a \<sigma>) \<Longrightarrow> NFadmit \<sigma> (Diamond a \<phi>)"
| NFadmit_Context:"NFadmit \<sigma> \<phi> \<Longrightarrow> FUadmitFO \<sigma> \<phi> UNIV \<Longrightarrow> NFadmit \<sigma> (InContext C \<phi>)"
inductive_simps
NPadmit_Pvar_simps[simp]: "NPadmit \<sigma> (Pvar a)"
and NPadmit_Sequence_simps[simp]: "NPadmit \<sigma> (a ;; b)"
and NPadmit_Loop_simps[simp]: "NPadmit \<sigma> (a**)"
and NPadmit_ODE_simps[simp]: "NPadmit \<sigma> (EvolveODE ODE p)"
and NPadmit_Choice_simps[simp]: "NPadmit \<sigma> (a \<union>\<union> b)"
and NPadmit_Assign_simps[simp]: "NPadmit \<sigma> (Assign x e)"
and NPadmit_AssignAny_simps[simp]: "NPadmit \<sigma> (AssignAny x)"
and NPadmit_DiffAssign_simps[simp]: "NPadmit \<sigma> (DiffAssign x e)"
and NPadmit_Test_simps[simp]: "NPadmit \<sigma> (? p)"
and NFadmit_Geq_simps[simp]: "NFadmit \<sigma> (Geq t1 t2)"
and NFadmit_Prop_simps[simp]: "NFadmit \<sigma> (Prop p args)"
and NFadmit_Not_simps[simp]: "NFadmit \<sigma> (Not p)"
and NFadmit_And_simps[simp]: "NFadmit \<sigma> (And p q)"
and NFadmit_Exists_simps[simp]: "NFadmit \<sigma> (Exists x p)"
and NFadmit_Diamond_simps[simp]: "NFadmit \<sigma> (Diamond a p)"
and NFadmit_Context_simps[simp]: "NFadmit \<sigma> (InContext C p)"
definition PFUadmit :: "(ident \<Rightarrow> formula) \<Rightarrow> formula \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "PFUadmit \<sigma> \<theta> U \<longleftrightarrow> True"
definition PPUadmit :: "(ident \<Rightarrow> formula) \<Rightarrow> hp \<Rightarrow> (ident + ident) set \<Rightarrow> bool"
where "PPUadmit \<sigma> \<theta> U \<longleftrightarrow> ((\<Union> i \<in> {i | i. Inr(Inl(debase i)) \<in> SIGP \<theta>}. FVF (\<sigma> i)) \<inter> U) = {}"
inductive PPadmit:: "(ident \<Rightarrow> formula) \<Rightarrow> hp \<Rightarrow> bool"
and PFadmit:: "(ident \<Rightarrow> formula) \<Rightarrow> formula \<Rightarrow> bool"
where
PPadmit_Pvar:"PPadmit \<sigma> (Pvar a)"
| PPadmit_Sequence:"PPadmit \<sigma> a \<Longrightarrow> PPadmit \<sigma> b \<Longrightarrow> PPUadmit \<sigma> b (BVP (PPsubst a \<sigma>))\<Longrightarrow> hpsafe (PPsubst a \<sigma>) \<Longrightarrow> PPadmit \<sigma> (Sequence a b)"
| PPadmit_Loop:"PPadmit \<sigma> a \<Longrightarrow> PPUadmit \<sigma> a (BVP (PPsubst a \<sigma>)) \<Longrightarrow> hpsafe (PPsubst a \<sigma>) \<Longrightarrow> PPadmit \<sigma> (Loop a)"
| PPadmit_ODE:"PFadmit \<sigma> \<phi> \<Longrightarrow> PFUadmit \<sigma> \<phi> (BVO ODE) \<Longrightarrow> PPadmit \<sigma> (EvolveODE ODE \<phi>)"
| PPadmit_Choice:"PPadmit \<sigma> a \<Longrightarrow> PPadmit \<sigma> b \<Longrightarrow> PPadmit \<sigma> (Choice a b)"
| PPadmit_Assign:"PPadmit \<sigma> (Assign x \<theta>)"
| PPadmit_AssignAny:"PPadmit \<sigma> (AssignAny x)"
| PPadmit_DiffAssign:"PPadmit \<sigma> (DiffAssign x \<theta>)"
| PPadmit_Test:"PFadmit \<sigma> \<phi> \<Longrightarrow> PPadmit \<sigma> (Test \<phi>)"
| PFadmit_Geq:"PFadmit \<sigma> (Geq \<theta>1 \<theta>2)"
| PFadmit_Prop:"PFadmit \<sigma> (Prop f args)"
| PFadmit_Not:"PFadmit \<sigma> \<phi> \<Longrightarrow> PFadmit \<sigma> (Not \<phi>)"
| PFadmit_And:"PFadmit \<sigma> \<phi> \<Longrightarrow> PFadmit \<sigma> \<psi> \<Longrightarrow> PFadmit \<sigma> (And \<phi> \<psi>)"
| PFadmit_Exists:"PFadmit \<sigma> \<phi> \<Longrightarrow> PFUadmit \<sigma> \<phi> {Inl x} \<Longrightarrow> PFadmit \<sigma> (Exists x \<phi>)"
| PFadmit_Diamond:"PFadmit \<sigma> \<phi> \<Longrightarrow> PPadmit \<sigma> a \<Longrightarrow> PFUadmit \<sigma> \<phi> (BVP (PPsubst a \<sigma>)) \<Longrightarrow> PFadmit \<sigma> (Diamond a \<phi>)"
| PFadmit_Context:"PFadmit \<sigma> \<phi> \<Longrightarrow> PFUadmit \<sigma> \<phi> UNIV \<Longrightarrow> PFadmit \<sigma> (InContext C \<phi>)"
inductive_simps
PPadmit_Pvar_simps[simp]: "PPadmit \<sigma> (Pvar a)"
and PPadmit_Sequence_simps[simp]: "PPadmit \<sigma> (a ;; b)"
and PPadmit_Loop_simps[simp]: "PPadmit \<sigma> (a**)"
and PPadmit_ODE_simps[simp]: "PPadmit \<sigma> (EvolveODE ODE p)"
and PPadmit_Choice_simps[simp]: "PPadmit \<sigma> (a \<union>\<union> b)"
and PPadmit_Assign_simps[simp]: "PPadmit \<sigma> (Assign x e)"
and PPadmit_AssignAny_simps[simp]: "PPadmit \<sigma> (AssignAny x)"
and PPadmit_DiffAssign_simps[simp]: "PPadmit \<sigma> (DiffAssign x e)"
and PPadmit_Test_simps[simp]: "PPadmit \<sigma> (? p)"
and PFadmit_Geq_simps[simp]: "PFadmit \<sigma> (Geq t1 t2)"
and PFadmit_Prop_simps[simp]: "PFadmit \<sigma> (Prop p args)"
and PFadmit_Not_simps[simp]: "PFadmit \<sigma> (Not p)"
and PFadmit_And_simps[simp]: "PFadmit \<sigma> (And p q)"
and PFadmit_Exists_simps[simp]: "PFadmit \<sigma> (Exists x p)"
and PFadmit_Diamond_simps[simp]: "PFadmit \<sigma> (Diamond a p)"
and PFadmit_Context_simps[simp]: "PFadmit \<sigma> (InContext C p)"
inductive Padmit:: "subst \<Rightarrow> hp \<Rightarrow> bool"
and Fadmit:: "subst \<Rightarrow> formula \<Rightarrow> bool"
where
Padmit_Pvar:"Padmit \<sigma> (Pvar a)"
| Padmit_Sequence:"Padmit \<sigma> a \<Longrightarrow> Padmit \<sigma> b \<Longrightarrow> PUadmit \<sigma> b (BVP (Psubst a \<sigma>))\<Longrightarrow> hpsafe (Psubst a \<sigma>) \<Longrightarrow> Padmit \<sigma> (Sequence a b)"
| Padmit_Loop:"Padmit \<sigma> a \<Longrightarrow> PUadmit \<sigma> a (BVP (Psubst a \<sigma>)) \<Longrightarrow> hpsafe (Psubst a \<sigma>) \<Longrightarrow> Padmit \<sigma> (Loop a)"
| Padmit_ODE:"Oadmit \<sigma> ODE (BVO ODE) \<Longrightarrow> Fadmit \<sigma> \<phi> \<Longrightarrow> FUadmit \<sigma> \<phi> (BVO ODE) \<Longrightarrow> Padmit \<sigma> (EvolveODE ODE \<phi>)"
| Padmit_Choice:"Padmit \<sigma> a \<Longrightarrow> Padmit \<sigma> b \<Longrightarrow> Padmit \<sigma> (Choice a b)"
| Padmit_Assign:"Tadmit \<sigma> \<theta> \<Longrightarrow> Padmit \<sigma> (Assign x \<theta>)"
| Padmit_AssignAny:" Padmit \<sigma> (AssignAny x)"
| Padmit_DiffAssign:"Tadmit \<sigma> \<theta> \<Longrightarrow> Padmit \<sigma> (DiffAssign x \<theta>)"
| Padmit_Test:"Fadmit \<sigma> \<phi> \<Longrightarrow> Padmit \<sigma> (Test \<phi>)"
| Fadmit_Geq:"Tadmit \<sigma> \<theta>1 \<Longrightarrow> Tadmit \<sigma> \<theta>2 \<Longrightarrow> Fadmit \<sigma> (Geq \<theta>1 \<theta>2)"
| Fadmit_Prop1:"(\<forall>i. Tadmit \<sigma> (args i)) \<Longrightarrow> SPredicates \<sigma> p = Some p' \<Longrightarrow> NFadmit (\<lambda> i. Tsubst (args i) \<sigma>) p' \<Longrightarrow> (\<forall>i. dsafe (Tsubst (args i) \<sigma>))\<Longrightarrow> Fadmit \<sigma> (Prop p args)"
| Fadmit_Prop2:"(\<forall>i. Tadmit \<sigma> (args i)) \<Longrightarrow> SPredicates \<sigma> p = None \<Longrightarrow> Fadmit \<sigma> (Prop p args)"
| Fadmit_Not:"Fadmit \<sigma> \<phi> \<Longrightarrow> Fadmit \<sigma> (Not \<phi>)"
| Fadmit_And:"Fadmit \<sigma> \<phi> \<Longrightarrow> Fadmit \<sigma> \<psi> \<Longrightarrow> Fadmit \<sigma> (And \<phi> \<psi>)"
| Fadmit_Exists:"Fadmit \<sigma> \<phi> \<Longrightarrow> FUadmit \<sigma> \<phi> {Inl x} \<Longrightarrow> Fadmit \<sigma> (Exists x \<phi>)"
| Fadmit_Diamond:"Fadmit \<sigma> \<phi> \<Longrightarrow> Padmit \<sigma> a \<Longrightarrow> FUadmit \<sigma> \<phi> (BVP (Psubst a \<sigma>)) \<Longrightarrow> hpsafe (Psubst a \<sigma>) \<Longrightarrow> Fadmit \<sigma> (Diamond a \<phi>)"
| Fadmit_Context1:"Fadmit \<sigma> \<phi> \<Longrightarrow> FUadmit \<sigma> \<phi> UNIV \<Longrightarrow> SContexts \<sigma> C = Some C' \<Longrightarrow> PFadmit (\<lambda> _. Fsubst \<phi> \<sigma>) C' \<Longrightarrow> fsafe(Fsubst \<phi> \<sigma>) \<Longrightarrow> Fadmit \<sigma> (InContext C \<phi>)"
| Fadmit_Context2:"Fadmit \<sigma> \<phi> \<Longrightarrow> FUadmit \<sigma> \<phi> UNIV \<Longrightarrow> SContexts \<sigma> C = None \<Longrightarrow> Fadmit \<sigma> (InContext C \<phi>)"
inductive_simps
Padmit_Pvar_simps[simp]: "Padmit \<sigma> (Pvar a)"
and Padmit_Sequence_simps[simp]: "Padmit \<sigma> (a ;; b)"
and Padmit_Loop_simps[simp]: "Padmit \<sigma> (a**)"
and Padmit_ODE_simps[simp]: "Padmit \<sigma> (EvolveODE ODE p)"
and Padmit_Choice_simps[simp]: "Padmit \<sigma> (a \<union>\<union> b)"
and Padmit_Assign_simps[simp]: "Padmit \<sigma> (Assign x e)"
and Padmit_AssignAny_simps[simp]: "Padmit \<sigma> (AssignAny x)"
and Padmit_DiffAssign_simps[simp]: "Padmit \<sigma> (DiffAssign x e)"
and Padmit_Test_simps[simp]: "Padmit \<sigma> (? p)"
and Fadmit_Geq_simps[simp]: "Fadmit \<sigma> (Geq t1 t2)"
and Fadmit_Prop_simps[simp]: "Fadmit \<sigma> (Prop p args)"
and Fadmit_Not_simps[simp]: "Fadmit \<sigma> (Not p)"
and Fadmit_And_simps[simp]: "Fadmit \<sigma> (And p q)"
and Fadmit_Exists_simps[simp]: "Fadmit \<sigma> (Exists x p)"
and Fadmit_Diamond_simps[simp]: "Fadmit \<sigma> (Diamond a p)"
and Fadmit_Context_simps[simp]: "Fadmit \<sigma> (InContext C p)"
fun extendf :: "interp \<Rightarrow> Rvec \<Rightarrow> interp"
where "extendf I R =
\<lparr>Functions = (\<lambda>f. case args_to_id f of Some (Inl f') \<Rightarrow> Functions I f | Some (Inr f') \<Rightarrow> (\<lambda>_. R $ f') | None \<Rightarrow> Functions I f),
Funls = (\<lambda>f. case args_to_id f of Some (Inl f') \<Rightarrow> Funls I f | Some (Inr f') \<Rightarrow> (\<lambda>_. R $ f') | None \<Rightarrow> Funls I f),
Predicates = Predicates I,
Contexts = Contexts I,
Programs = Programs I,
ODEs = ODEs I,
ODEBV = ODEBV I
\<rparr>"
fun extendc :: "interp \<Rightarrow> state set \<Rightarrow> interp"
where "extendc I R =
\<lparr>Functions = Functions I,
Funls = Funls I,
Predicates = Predicates I,
Contexts = (\<lambda>C. case args_to_id C of Some (Inl C') \<Rightarrow> Contexts I C' | Some (Inr _) \<Rightarrow> (\<lambda>_. R) | None \<Rightarrow> Contexts I C),
Programs = Programs I,
ODEs = ODEs I,
ODEBV = ODEBV I\<rparr>"
definition adjoint :: "interp \<Rightarrow> subst \<Rightarrow> state \<Rightarrow> interp"
where adjoint_def:"adjoint I \<sigma> \<nu> =
\<lparr>Functions = (\<lambda>f. case SFunctions \<sigma> f of Some f' \<Rightarrow> (\<lambda>R. dterm_sem (extendf I R) f' \<nu>) | None \<Rightarrow> Functions I f),
Funls = (\<lambda>f. case SFunls \<sigma> f of Some f' \<Rightarrow> (\<lambda>R. dterm_sem I f' R) | None \<Rightarrow> Funls I f),
Predicates = (\<lambda>p. case SPredicates \<sigma> p of Some p' \<Rightarrow> (\<lambda>R. \<nu> \<in> fml_sem (extendf I R) p') | None \<Rightarrow> Predicates I p),
Contexts = (\<lambda>c. case SContexts \<sigma> c of Some c' \<Rightarrow> (\<lambda>R. fml_sem (extendc I R) c') | None \<Rightarrow> Contexts I c),
Programs = (\<lambda>a. case SPrograms \<sigma> a of Some a' \<Rightarrow> prog_sem I a' | None \<Rightarrow> Programs I a),
ODEs = (\<lambda>ode sp. case SODEs \<sigma> ode sp of Some ode' \<Rightarrow> ODE_sem I ode' | None \<Rightarrow> ODEs I ode sp),
ODEBV = (\<lambda>ode sp . case SODEs \<sigma> ode sp of Some ode' \<Rightarrow> ODE_vars I ode' | None \<Rightarrow> ODEBV I ode sp)
\<rparr>"
lemma dsem_to_ssem:"dfree \<theta> \<Longrightarrow> dterm_sem I \<theta> \<nu> = sterm_sem I \<theta> (fst \<nu>)"
by (induct rule: dfree.induct) (auto)
definition adjointFO::"interp \<Rightarrow> (ident \<Rightarrow> trm) \<Rightarrow> state \<Rightarrow> interp"
where "adjointFO I \<sigma> \<nu> =
\<lparr>Functions = (\<lambda>f. case args_to_id f of Some (Inl f') \<Rightarrow> Functions I f | Some (Inr f') \<Rightarrow> (\<lambda>_. dterm_sem I (\<sigma> f') \<nu>) | None \<Rightarrow> Functions I f),
Funls = (\<lambda>f. case args_to_id f of Some (Inl f') \<Rightarrow> Funls I f | Some (Inr f') \<Rightarrow> (\<lambda>_. dterm_sem I (\<sigma> f') \<nu>) | None \<Rightarrow> Funls I f),
Predicates = Predicates I,
Contexts = Contexts I,
Programs = Programs I,
ODEs = ODEs I,
ODEBV = ODEBV I
\<rparr>"
lemma adjoint_free:
assumes sfree:"(\<And>i f'. SFunctions \<sigma> i = Some f' \<Longrightarrow> dfree f')"
shows "adjoint I \<sigma> \<nu> =
\<lparr>Functions = (\<lambda>f. case SFunctions \<sigma> f of Some f' \<Rightarrow> (\<lambda>R. sterm_sem (extendf I R) f' (fst \<nu>)) | None \<Rightarrow> Functions I f),
Funls = (\<lambda>f. case SFunls \<sigma> f of Some f' \<Rightarrow> (\<lambda>R. dterm_sem I f' R) | None \<Rightarrow> Funls I f),
Predicates = (\<lambda>p. case SPredicates \<sigma> p of Some p' \<Rightarrow> (\<lambda>R. \<nu> \<in> fml_sem (extendf I R) p') | None \<Rightarrow> Predicates I p),
Contexts = (\<lambda>c. case SContexts \<sigma> c of Some c' \<Rightarrow> (\<lambda>R. fml_sem (extendc I R) c') | None \<Rightarrow> Contexts I c),
Programs = (\<lambda>a. case SPrograms \<sigma> a of Some a' \<Rightarrow> prog_sem I a' | None \<Rightarrow> Programs I a),
ODEs = (\<lambda>ode sp. case SODEs \<sigma> ode sp of Some ode' \<Rightarrow> ODE_sem I ode' | None \<Rightarrow> ODEs I ode sp),
ODEBV = (\<lambda>ode sp. case SODEs \<sigma> ode sp of Some ode' \<Rightarrow> ODE_vars I ode' | None \<Rightarrow> ODEBV I ode sp)\<rparr>"
using dsem_to_ssem[OF sfree]
apply (cases \<nu>)
by (auto simp add: adjoint_def fun_eq_iff dsem_to_ssem sfree split: option.split)
(* subgoal for a b x x2
(* apply (simp add: dsem_to_ssem sfree)*)
using sfree[of x ] sledgehammer*)
lemma adjointFO_free:"(\<And>i. dfree (\<sigma> i)) \<Longrightarrow> (adjointFO I \<sigma> \<nu> =
\<lparr>Functions = (\<lambda>f. case args_to_id f of Some (Inl f') \<Rightarrow> Functions I f | Some (Inr f') \<Rightarrow> (\<lambda>_. sterm_sem I (\<sigma> f') (fst \<nu>)) | None \<Rightarrow> Functions I f),
Funls = (\<lambda>f. case args_to_id f of Some (Inl f') \<Rightarrow> Funls I f | Some (Inr f') \<Rightarrow> (\<lambda>_. sterm_sem I (\<sigma> f') (fst \<nu>)) | None \<Rightarrow> Funls I f),
Predicates = Predicates I,
Contexts = Contexts I,
Programs = Programs I,
ODEs = ODEs I,
ODEBV = ODEBV I\<rparr>)"
apply (auto simp add: dsem_to_ssem adjointFO_def)
using dsem_to_ssem by presburger+
definition PFadjoint::"interp \<Rightarrow> (ident \<Rightarrow> formula) \<Rightarrow> interp"
where "PFadjoint I \<sigma> =
\<lparr>Functions = Functions I,
Funls = Funls I,
Predicates = Predicates I,
Contexts = (\<lambda>f. case args_to_id f of Some (Inl f') \<Rightarrow> Contexts I f' | Some (Inr f') \<Rightarrow> (\<lambda>_. fml_sem I (\<sigma> f')) | None \<Rightarrow> Contexts I f),
Programs = Programs I,
ODEs = ODEs I,
ODEBV = ODEBV I\<rparr>"
fun Ssubst::"sequent \<Rightarrow> subst \<Rightarrow> sequent"
where "Ssubst (\<Gamma>,\<Delta>) \<sigma> = (map (\<lambda> \<phi>. Fsubst \<phi> \<sigma>) \<Gamma>, map (\<lambda> \<phi>. Fsubst \<phi> \<sigma>) \<Delta>)"
fun Rsubst::"rule \<Rightarrow> subst \<Rightarrow> rule"
where "Rsubst (SG,C) \<sigma> = (map (\<lambda> \<phi>. Ssubst \<phi> \<sigma>) SG, Ssubst C \<sigma>)"
definition Sadmit::"subst \<Rightarrow> sequent \<Rightarrow> bool"
where "Sadmit \<sigma> S \<longleftrightarrow> ((\<forall>i. i \<ge> 0 \<longrightarrow> i < length (fst S) \<longrightarrow> Fadmit \<sigma> (nth (fst S) i))
\<and>(\<forall>i. i \<ge> 0 \<longrightarrow> i < length (snd S) \<longrightarrow> Fadmit \<sigma> (nth (snd S) i)))"
lemma Sadmit_code[code]:"Sadmit \<sigma> (A,S) \<longleftrightarrow> (list_all (Fadmit \<sigma>) A \<and> list_all (Fadmit \<sigma>) S)"
apply (auto simp add: Sadmit_def)
using list_all_length by blast+
definition Radmit::"subst \<Rightarrow> rule \<Rightarrow> bool"
where "Radmit \<sigma> R \<longleftrightarrow> (((\<forall>i. i \<ge> 0 \<longrightarrow> i < length (fst R) \<longrightarrow> Sadmit \<sigma> (nth (fst R) i))
\<and> Sadmit \<sigma> (snd R)))"
lemma Radmit_code[code]:"
Radmit \<sigma> R \<longleftrightarrow> (list_all (Sadmit \<sigma>) (fst R) \<and> Sadmit \<sigma> (snd R))"
apply (auto simp add: Radmit_def)
using list_all_length by blast+
end