Skip to content

Latest commit

 

History

History
63 lines (37 loc) · 2.3 KB

File metadata and controls

63 lines (37 loc) · 2.3 KB

TP-Final-Procesos-Markovianos-para-el-Aprendizaje-Automatico-2019-1C

Continues from here: https://github.com/LecJackS/Procesos-Markovianos-Para-el-Aprendizaje-Automatico-2019-1C/

Very Quick Roadmap to

Asynchronous Advantage Actor Critic (A3C)

input-to-nn-channel-combined

Installation

git clone this-repo
cd this-repo
jupyter notebook

Requires

conda create --name myenv
conda activate myenv

conda install pytorch-cpu torchvision-cpu -c pytorch
# To allow GPU use (not required for this project)
#conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

Other systems: https://pytorch.org/get-started/locally/

# Other needed packages
conda install numpy matplotlib jupyter tensorboard
conda install -c conda-forge opencv
pip install gym

Highly recommended (for this and ather projects on notebooks):

# Jupyter notebook extensions
conda install -c conda-forge jupyter_contrib_nbextensions

To see pretty loss plots (needs tensorboard, but not tensorflow)

tensorboard --logdir=./gym_pacman/tensorboard

Index