-
Notifications
You must be signed in to change notification settings - Fork 1
/
imbalance_KNN_weight.py
181 lines (145 loc) · 4.81 KB
/
imbalance_KNN_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import matplotlib.pyplot as plt
from sklearn.metrics import (
ConfusionMatrixDisplay,
accuracy_score,
auc,
classification_report,
f1_score,
plot_confusion_matrix,
roc_auc_score,
roc_curve,
)
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import LabelBinarizer, LabelEncoder
import utils
# FUNCTION
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("KNN with ClassWeight confusion matrix", "true"),
]
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="PuBu", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
def conf_mat_disp(confusion_matrix, disp_labels):
disp = ConfusionMatrixDisplay(
confusion_matrix=confusion_matrix, display_labels=disp_labels
)
disp.plot(cmap="PuBu")
# DATASET
df = utils.load_tracks(
"data/tracks.csv", dummies=True, buckets="continuous", fill=True, outliers=True
)
column2drop = [
("track", "language_code"),
]
df.drop(column2drop, axis=1, inplace=True)
print(df["album", "type"].unique())
# feature to reshape
label_encoders = dict()
column2encode = [
("album", "listens"),
("album", "type"),
("track", "license"),
("album", "comments"),
("album", "date_created"),
("album", "favorites"),
("artist", "comments"),
("artist", "date_created"),
("artist", "favorites"),
("track", "comments"),
("track", "date_created"),
("track", "duration"),
("track", "favorites"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
df[col] = le.fit_transform(df[col])
label_encoders[col] = le
print(df.info())
# Create KNN Object.
knn = KNeighborsClassifier(
n_neighbors=5, p=1
) # valori migliori dalla gridsearch n = 5, p=1, levarli per avere la standard
x = df.drop(columns=[("album", "type")])
y = df[("album", "type")]
X_train, X_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.25)
print(X_train.shape, X_test.shape)
knn.fit(X_train, y_train)
# Apply the KNN on the test set and evaluate the performance
print("Apply the KNN on the test set and evaluate the performance: \n")
Y_pred = knn.predict(X_test)
print("Accuracy %s" % accuracy_score(y_test, Y_pred))
print("F1-score %s" % f1_score(y_test, Y_pred, average=None))
print(classification_report(y_test, Y_pred))
"""EMBALANCE LEARNING"""
"""CLASS WEIGHT"""
print("\033[1m" "Making KNN with Class Weight" "\033[0m")
# gidsearch: weights': 'distance', 'p': 1, 'n_neighbors': 7}
clf = KNeighborsClassifier(n_neighbors=7, p=1, weights="distance")
clf.fit(X_train, y_train)
# Apply the knn on the training set
print("Apply the KNN-WEIGHT on the training set: \n")
y_pred = clf.predict(X_train)
print("Accuracy KNN-WEIGHT %s" % accuracy_score(y_train, y_pred))
print("F1-score KNN-WEIGHT %s" % f1_score(y_train, y_pred, average=None))
print(classification_report(y_train, y_pred))
# Apply the KNN on the test set and evaluate the performance
print("Apply the KNN-WEIGHT on the test set and evaluate the performance: \n")
y_pred = clf.predict(X_test)
print("Accuracy KNN-WEIGHT %s" % accuracy_score(y_test, y_pred))
print("F1-score KNN-WEIGHT %s" % f1_score(y_test, y_pred, average=None))
print(classification_report(y_test, y_pred))
draw_confusion_matrix(clf, X_test, y_test)
"""ROC Curve"""
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(y_pred)
for i in range(4):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
plt.figure(figsize=(8, 5))
for i in range(4):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.title("KNN-Weight Roc-Curve")
plt.xlabel("False Positive Rate", fontsize=10)
plt.ylabel("True Positive Rate", fontsize=10)
plt.tick_params(axis="both", which="major", labelsize=12)
plt.legend(loc="lower right", fontsize=7, frameon=False)
plt.show()
"""RANDOM SEARCH PIU' VELOCE
print("STA FACENDO LA GRIDSEARCH")
param_list = {
"n_neighbors": list(np.arange(1, 10)),
"p": [1, 2],
"weights": ["uniform", "distance"],
}
random_search = RandomizedSearchCV(clf, param_distributions=param_list, n_iter=20, cv=5)
random_search.fit(X_train, y_train)
clf = random_search.best_estimator_
y_pred = clf.predict(X_test)
# Print The value of best Hyperparameters
print(
"Best:",
random_search.cv_results_["params"][
random_search.cv_results_["rank_test_score"][0]
],
)
"""