-
Notifications
You must be signed in to change notification settings - Fork 1
/
ts_classification_3.5.py
189 lines (153 loc) · 5.24 KB
/
ts_classification_3.5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import (
accuracy_score,
auc,
classification_report,
f1_score,
plot_confusion_matrix,
roc_auc_score,
roc_curve,
)
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
from tslearn.piecewise import SymbolicAggregateApproximation
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.shapelets import ShapeletModel
from music import MusicDB
"""CLASSIFICAZIONE CON SAX E SHAPLET RANDOM FOREST"""
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("RandomForest-Shaplet-Sax Confusion matrix", "true"),
]
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="GnBu", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
# Carico il dataframe
musi = MusicDB()
print(musi.df.info())
print(musi.feat["enc_genre"].unique())
X_no = musi.df
y = musi.feat["enc_genre"] # classe targed ovvero genere con l'encoding
# normalizzazione con mean variance
scaler = TimeSeriesScalerMeanVariance()
X_no = pd.DataFrame(
scaler.fit_transform(musi.df.values).reshape(
musi.df.values.shape[0], musi.df.values.shape[1]
)
)
X_no.index = musi.df.index
# approssimazione con sax
sax = SymbolicAggregateApproximation(n_segments=130, alphabet_size_avg=20)
X1 = sax.fit_transform(X_no)
print(X1.shape)
X = np.squeeze(X1)
print(X.shape)
# Classification
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=100, stratify=y
)
n_ts, ts_sz = X_train.shape
n_classes = len(set(y))
shapelet_sizes = {15: 24}
print("n_ts", n_ts)
print("ts_sz", ts_sz)
print("n_classes", n_classes)
print("shapelet_sizes", shapelet_sizes)
# Define the model using parameters provided by the authors (except that we use
# fewer iterations here)
shp_clf = ShapeletModel(
n_shapelets_per_size=shapelet_sizes,
optimizer="sgd",
weight_regularizer=0.01,
max_iter=50,
verbose=1,
)
shp_clf.fit(X_train, y_train)
# Apply on the test set and evaluate the performance
print("Apply on the test set and evaluate the performance: \n")
y_pred = shp_clf.predict(X_test)
print("Accuracy %s" % accuracy_score(y_test, y_pred))
print("F1-score %s" % f1_score(y_test, y_pred, average=None))
print(classification_report(y_test, y_pred))
""" SHAPLET BASED Random Forest"""
X_train2 = shp_clf.transform(X_train)
print("train shape:", X_train2.shape)
X_test2 = shp_clf.transform(X_test)
# 2 Best Hyperparameters: 'min_samples_split': 2, 'min_samples_leaf': 25, 'max_features': 'auto',
# 'max_depth': 22, 'criterion': 'gini', 'class_weight': None
# 3 Best Hyperparameters: {'min_samples_split': 2, 'min_samples_leaf': 30, 'max_features': 'auto',
# 'max_depth': 25, 'criterion': 'gini', 'class_weight': None}
# 1 Best Hyperparameters: {'min_samples_split': 2,
# 'min_samples_leaf': 10, 'max_features': 'auto',
# 'max_depth': 14, 'criterion': 'gini', 'class_weight': 'balanced'}
clf_rf = RandomForestClassifier(
n_estimators=100,
criterion="gini",
max_depth=25,
min_samples_split=2,
min_samples_leaf=30,
max_features="auto",
class_weight=None,
random_state=5,
)
clf_rf.fit(X_train2, y_train)
# Apply on the test set and evaluate the performance
print("Apply on the test set and evaluate the performance-KNN: \n")
y_pred2 = clf_rf.predict(X_test2)
print("Accuracy %s" % accuracy_score(y_test, y_pred2))
print("F1-score %s" % f1_score(y_test, y_pred2, average=None))
print(classification_report(y_test, y_pred2))
draw_confusion_matrix(clf_rf, X_test2, y_test)
"""Random SEARCH Random Forest
clf2 = RandomForestClassifier()
print("STA FACENDO LA RandomSEARCH")
param_list = {
"criterion": ["gini"],
"max_depth": [None] + list(np.arange(20, 30)),
"min_samples_split": [2],
"min_samples_leaf": [25, 26, 28, 33, 32, 30, 35],
"max_features": ["auto"],
"class_weight": [None, "balanced", "balanced_subsample"],
}
random_search = RandomizedSearchCV(
clf2, param_distributions=param_list, scoring="accuracy", n_iter=20, cv=5
)
res = random_search.fit(X_train2, y_train)
# Print The value of best Hyperparameters
print("Best Score: %s" % res.best_score_)
print("Best Hyperparameters: %s" % res.best_params_)
"""
"""ROC CURVE"""
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(y_pred2)
for i in range(8):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
plt.figure(figsize=(8, 5))
for i in range(8):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.title("Random Forest-Shaplet-Sax Roc-Curve")
plt.xlabel("False Positive Rate", fontsize=10)
plt.ylabel("True Positive Rate", fontsize=10)
plt.tick_params(axis="both", which="major", labelsize=12)
plt.legend(loc="lower right", fontsize=7, frameon=False)
plt.show()