-
Notifications
You must be signed in to change notification settings - Fork 1
/
faceses.py
49 lines (35 loc) · 1.21 KB
/
faceses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
import os
import numpy as np
from numpy import genfromtxt
import pandas as pd
name = pd.read_csv("names.csv")
name.set_index('name',inplace=True)
print(name)
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
face_detector = cv2.CascadeClassifier('opencv-files/haarcascade_frontalface_default.xml')
face_id = len(name)
print("\n [INFO] Look the camera and wait ...")
print(face_id)
count = 0
while(True):
ret, img = cam.read()
# img = cv2.flip(img, -1) # flip video image vertically
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
count += 1
# Save the captured image into the datasets folder
cv2.imwrite("training-data/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h,x:x+w])
cv2.imshow('image', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
elif count >= 30: # Take 30 face sample and stop video
break
# Do a bit of cleanup
print("\n Exiting Program ")
cam.release()
cv2.destroyAllWindows()