-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
305_tensorboard.py
49 lines (38 loc) · 1.65 KB
/
305_tensorboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
tensorflow: 1.1.0
numpy
"""
import tensorflow as tf
import numpy as np
tf.set_random_seed(1)
np.random.seed(1)
# fake data
x = np.linspace(-1, 1, 100)[:, np.newaxis] # shape (100, 1)
noise = np.random.normal(0, 0.1, size=x.shape)
y = np.power(x, 2) + noise # shape (100, 1) + some noise
with tf.variable_scope('Inputs'):
tf_x = tf.placeholder(tf.float32, x.shape, name='x')
tf_y = tf.placeholder(tf.float32, y.shape, name='y')
with tf.variable_scope('Net'):
l1 = tf.layers.dense(tf_x, 10, tf.nn.relu, name='hidden_layer')
output = tf.layers.dense(l1, 1, name='output_layer')
# add to histogram summary
tf.summary.histogram('h_out', l1)
tf.summary.histogram('pred', output)
loss = tf.losses.mean_squared_error(tf_y, output, scope='loss')
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss)
tf.summary.scalar('loss', loss) # add loss to scalar summary
sess = tf.Session()
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter('./log', sess.graph) # write to file
merge_op = tf.summary.merge_all() # operation to merge all summary
for step in range(100):
# train and net output
_, result = sess.run([train_op, merge_op], {tf_x: x, tf_y: y})
writer.add_summary(result, step)
# Lastly, in your terminal or CMD, type this :
# $ tensorboard --logdir path/to/log
# open you google chrome, type the link shown on your terminal or CMD. (something like this: http://localhost:6006)