-
Notifications
You must be signed in to change notification settings - Fork 28
/
MultistepLB.cpp
557 lines (461 loc) · 14.5 KB
/
MultistepLB.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
#include <charm++.h>
#include "cklists.h"
#include "MultistepLB.h"
#include "TopoManager.h"
#include "ParallelGravity.h"
#include "Vector3D.h"
#include <queue>
extern CProxy_TreePiece treeProxy;
CkpvExtern(int, _lb_obj_index);
using namespace std;
#if CHARM_VERSION > 61002
static void lbinit()
{
LBRegisterBalancer<MultistepLB>("MultistepLB",
"Works best with multistepped runs; uses Orb3D for large steps, greedy otherwise");
}
#else
CreateLBFunc_Def(MultistepLB, "Works best with multistepped runs; uses Orb3D for larger steps, greedy otherwise");
#endif
//**************************************
// ORB3DLB functions
//**************************************
static int comparx(const void *a, const void *b){
const TPObject *ta = reinterpret_cast<const TPObject*>(a);
const TPObject *tb = reinterpret_cast<const TPObject*>(b);
return ta->centroid.x < tb->centroid.x ? -1 : ta->centroid.x > tb->centroid.x ? 1 : 0;
}
static int compary(const void *a, const void *b){
const TPObject *ta = reinterpret_cast<const TPObject*>(a);
const TPObject *tb = reinterpret_cast<const TPObject*>(b);
return ta->centroid.y < tb->centroid.y ? -1 : ta->centroid.y > tb->centroid.y ? 1 : 0;
}
static int comparz(const void *a, const void *b){
const TPObject *ta = reinterpret_cast<const TPObject*>(a);
const TPObject *tb = reinterpret_cast<const TPObject*>(b);
return ta->centroid.z < tb->centroid.z ? -1 : ta->centroid.z > tb->centroid.z ? 1 : 0;
}
static int pcx(const void *a, const void *b){
const Node *ta = reinterpret_cast<const Node*>(a);
const Node *tb = reinterpret_cast<const Node*>(b);
return ta->x < tb->x ? -1 : ta->x > tb->x ? 1 : 0;
}
static int pcy(const void *a, const void *b){
const Node *ta = reinterpret_cast<const Node*>(a);
const Node *tb = reinterpret_cast<const Node*>(b);
return ta->y < tb->y ? -1 : ta->y > tb->y ? 1 : 0;
}
static int pcz(const void *a, const void *b){
const Node *ta = reinterpret_cast<const Node*>(a);
const Node *tb = reinterpret_cast<const Node*>(b);
return ta->z < tb->z ? -1 : ta->z > tb->z ? 1 : 0;
}
void MultistepLB::init() {
lbname = "MultistepLB";
if (CkpvAccess(_lb_obj_index) == -1)
CkpvAccess(_lb_obj_index) = LBRegisterObjUserData(sizeof(TaggedVector3D));
compares[0] = comparx;
compares[1] = compary;
compares[2] = comparz;
pc[0] = pcx;
pc[1] = pcy;
pc[2] = pcz;
}
MultistepLB::MultistepLB(const CkLBOptions &opt): CBase_MultistepLB(opt)
{
init();
if (CkMyPe() == 0){
CkPrintf("[%d] MultistepLB created\n",CkMyPe());
}
TopoManager tmgr;
int ppn = tmgr.getDimNT();
int nx = tmgr.getDimNX();
int ny = tmgr.getDimNY();
int nz = tmgr.getDimNZ();
int numnodes = nx*ny*nz;
if (CkMyPe() == 0){
CkPrintf("[%d] Multistep Topo %d %d %d %d %d \n",CkMyPe(), nx, ny, nz, numnodes, ppn);
}
}
bool MultistepLB::QueryBalanceNow(int step){
if(step == 0){
return false;
}
if (_lb_args.debug()>=1) {
if(CkMyPe() == 0){
CkPrintf("MultistepLB: Step %d\n", step);
}
}
return true;
}
// helper functions for multistepping
#ifdef MCLBMS
void MultistepLB::makeActiveProcessorList(BaseLB::LDStats *stats, int numActiveObjs){
int objsPerProc = 8;
int expandFactor = 4;
int procsNeeded;
procsNeeded = expandFactor*numActiveObjs/objsPerProc > stats->nprocs() ? stats->nprocs() : expandFactor*numActiveObjs/objsPerProc;
/* currently, only the first procsNeeded procs are used - could do something more sophisticated here in the future - FIXME */
#ifdef MCLBMSV
CkPrintf("Processors 0 to %d active\n", procsNeeded-1);
#endif
}
#endif
#define LARGE_PHASE_THRESHOLD 0.10
void MultistepLB::work(BaseLB::LDStats* stats)
{
#if CMK_LBDB_ON
// find active objects - mark the inactive ones as non-migratable
int count;
const auto numObjs = stats->objData.size();
int numActiveObjects = 0;
int numInactiveObjects = 0;
// to calculate ratio of active particles in phase
int64_t numActiveParticles = 0;
int64_t totalNumParticles = 0;
for(int i = 0; i < numObjs; i++){
stats->to_proc[i] = stats->from_proc[i];
}
for(int i = 0; i < numObjs; i++){
if (!stats->objData[i].migratable) continue;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata = (TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
numActiveParticles += udata->numActiveParticles;
totalNumParticles += udata->myNumParticles;
if(udata->numActiveParticles == 0){
numInactiveObjects++;
if(stats->objData[i].migratable){
stats->objData[i].migratable = 0;
#ifdef MCLBMSV
CkPrintf("marking object %d non-migratable (inactive)\n", i);
#endif
stats->n_migrateobjs--;
}
}
else{
numActiveObjects++;
}
}
#ifdef MCLBMSV
CkPrintf("numActiveObjects: %d, numInactiveObjects: %d\n", numActiveObjects, numInactiveObjects);
#endif
/*
CkPrintf("**********************************************\n");
CkPrintf("Object load predictions phase %d\n", phase);
CkPrintf("**********************************************\n");
for(int i = 0; i < numObjs; i++){
int tp = tpCentroids[i].tp;
int lb = tpCentroids[i].tag;
CkPrintf("tp %d load %f\n",tp,stats->objData[lb].wallTime);
}
CkPrintf("**********************************************\n");
CkPrintf("Done object load predictions phase %d\n", prevPhase);
CkPrintf("**********************************************\n");
*/
// select processors
#ifdef MCLBMSV
//printData(*stats, phase, NULL);
CkPrintf("making active processor list\n");
#endif
makeActiveProcessorList(stats, numActiveObjects);
count = stats->nprocs();
// let the strategy take over on this modified instrumented data and processor information
if((float)numActiveParticles/totalNumParticles > LARGE_PHASE_THRESHOLD){
//if(true){
if (_lb_args.debug()>=2) {
CkPrintf("******** BIG STEP *********!\n");
}
work2(stats,count);
} // end if phase == 0
else{
greedy(stats,count);
}
#endif //CMK_LDB_ON
}
//**************************************
// ORB3DLB functions
//**************************************
//
void MultistepLB::greedy(BaseLB::LDStats *stats, int count){
const int numobjs = stats->objData.size();
int nmig = stats->n_migrateobjs;
CkPrintf("[GREEDY] objects total %d active %d\n", numobjs,nmig);
TPObject *tp_array = new TPObject[nmig];
int j = 0;
for(int i = 0; i < numobjs; i++){
if(!stats->objData[i].migratable) continue;
tp_array[j].migratable = stats->objData[i].migratable;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata = (TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
if(step() == 0){
tp_array[j].load = udata->myNumParticles;
}
else{
tp_array[j].load = stats->objData[i].wallTime;
}
tp_array[j].lbindex = i;
j++;
}
mapping = &stats->to_proc;
CkAssert(j==nmig);
std::priority_queue<TPObject> objects;
std::priority_queue<Processor> processors;
for(int i = 0; i < nmig; i++){
objects.push(tp_array[i]);
}
for(int i = 0; i < count; i++){
processors.push(Processor(i));
}
while(!objects.empty()){
TPObject obj = objects.top();
objects.pop();
Processor p = processors.top();
processors.pop();
p.load += obj.load;
(*mapping)[obj.lbindex] = p.t;
processors.push(p);
}
// diagnostics
/*
CkPrintf("**********************************\n");
CkPrintf("GREEDY CPU LOAD PREDICTIONS phase %d\n", phase);
CkPrintf("**********************************\n");
while(!processors.empty()){
Processor p = processors.top();
processors.pop();
CkPrintf("proc %d load %f\n", p.t, p.load);
}
*/
CkPrintf("**********************************\n");
CkPrintf("GREEDY MEASURED CPU LOAD\n");
CkPrintf("**********************************\n");
for(int i = 0; i < stats->nprocs(); i++){
CkPrintf("[pestats] %d %g %g\n",
i,
stats->procs[i].total_walltime,
stats->procs[i].idletime);
}
delete []tp_array;
}
void MultistepLB::work2(BaseLB::LDStats *stats, int count){
const int numobjs = stats->objData.size();
int nmig = stats->n_migrateobjs;
if (_lb_args.debug()>=2) {
CkPrintf("[work2] %d objects allocating %lu bytes for tp\n", nmig, nmig*sizeof(TPObject));
}
CkPrintf("[ORB3D] objects total %d active %d\n", numobjs,nmig);
// this data structure is used by the orb3d strategy
// to balance objects. it is NOT indexed by tree piece index
// there are as many entries in it as there are
// migratable (active) tree pieces
TPObject *tp_array = new TPObject[nmig];
if (_lb_args.debug()>=2) {
CkPrintf("[work2] ready tp_array data structure\n");
}
int j = 0;
for(int i = 0; i < numobjs; i++){
if(!stats->objData[i].migratable) continue;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata = (TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
tp_array[j].centroid = udata->vec;
tp_array[j].migratable = true;
if(step() == 0){
tp_array[j].load = udata->myNumParticles;
}
else{
tp_array[j].load = stats->objData[i].wallTime;
}
tp_array[j].lbindex = i;
j++;
}
CkAssert(j==nmig);
mapping = &stats->to_proc;
int dim = 0;
TopoManager tmgr;
procsPerNode = tmgr.getDimNT();
int nx = tmgr.getDimNX();
int ny = tmgr.getDimNY();
int nz = tmgr.getDimNZ();
int numnodes = nx*ny*nz;
if (_lb_args.debug()>=2) {
CkPrintf("[work2] %d numnodes allocating %lu bytes for nodes\n", numnodes, numnodes*sizeof(Node));
}
Node *nodes = new Node[numnodes];
for(int i = 0; i < stats->nprocs(); i++){
int t;
int x,y,z;
int node;
tmgr.rankToCoordinates(i,x,y,z,t);
node = z*nx*ny + y*nx + x;
nodes[node].x = x;
nodes[node].y = y;
nodes[node].z = z;
nodes[node].procRanks.push_back(i);
//CkPrintf("node %d,%d,%d (%d) gets t %d\n", nodes[node].x, nodes[node].y, nodes[node].z, node, t);
}
if (_lb_args.debug()>=2) {
CkPrintf("[work2] map\n");
}
map(tp_array,nmig,numnodes,nodes,nx,ny,nz,dim);
float *objload = new float[stats->nprocs()];
for(int i = 0; i < stats->nprocs(); i++){
objload[i] = 0.0;
}
for(j = 0; j < nmig; j++){
float load = tp_array[j].load;
int lb = tp_array[j].lbindex;
int pe = stats->to_proc[lb];
objload[pe] += load;
}
/*
CkPrintf("******************************\n");
CkPrintf("CPU LOAD PREDICTIONS phase %d\n", phase);
CkPrintf("******************************\n");
for(int i = 0; i < stats->nprocs(); i++){
CkPrintf("[pestats] %d %g \n",
i,
objload[i]);
}
*/
CkPrintf("******************************\n");
CkPrintf("MEASURED CPU LOAD\n");
CkPrintf("******************************\n");
for(int i = 0; i < stats->nprocs(); i++){
CkPrintf("[pestats] %d %g %g\n",
i,
stats->procs[i].total_walltime,
stats->procs[i].idletime
);
}
delete[] objload;
delete[] tp_array;
delete[] nodes;
}
void MultistepLB::map(TPObject *tp, int ntp, int nn, Node *nodes, int xs, int ys, int zs, int dim){
//CkPrintf("ntp: %d np: %d dim: %d path: 0x%x\n",ntp,np,dim,path);
if(nn == 1){
directMap(tp,ntp,nodes);
}
else{
int totalTp = ntp;
qsort(tp,ntp,sizeof(TPObject),compares[dim]);
qsort(nodes,nn,sizeof(Node),pc[dim]);
// tp and ntp are modified to hold the particulars of
// the left/dn/near partitions
// tp2 and totalTp-ntp hold the objects in the
// right/up/far partitions
TPObject *tp2 = partitionEvenLoad(tp,ntp);
Node *nodes2 = halveNodes(nodes,nn);
int d = nextDim(dim,xs,ys,zs);
if(d == 0){
xs >>= 1;
}
else if(d == 1){
ys >>= 1;
}
else{
zs >>= 1;
}
map(tp,ntp,nn/2,nodes,xs,ys,zs,d);
map(tp2,totalTp-ntp,nn/2,nodes2,xs,ys,zs,d);
}
}
#define ZERO_THRESHOLD 0.00001
void MultistepLB::directMap(TPObject *tp, int ntp, Node *nodes){
float load = 0.0;
for(int i = 0; i < ntp; i++){
//CkPrintf("obj %d thisindex %d %d %f %f %f %f to node %d %d %d\n", tp[i].lbindex, tp[i].index, tp[i].nparticles, tp[i].load, tp[i].centroid.x, tp[i].centroid.y, tp[i].centroid.z, nodes[0].x, nodes[0].y, nodes[0].z);
load += tp[i].load;
}
//CkPrintf("node %d %d %d total load %f\n", nodes[0].x, nodes[0].y, nodes[0].z, load);
std::priority_queue<TPObject> pq_obj;
std::priority_queue<Processor> pq_proc;
for(int i = 0; i < ntp; i++){
pq_obj.push(tp[i]);
}
for(int i = 0; i < procsPerNode; i++){
Processor p;
p.load = 0.0;
p.t = i;
pq_proc.push(p);
}
int currentZeroProc = 0;
while(!pq_obj.empty()){
TPObject tp = pq_obj.top();
pq_obj.pop();
// spread around zero-load objects
if(tp.load < ZERO_THRESHOLD){
(*mapping)[tp.lbindex] = nodes[0].procRanks[currentZeroProc];
currentZeroProc = currentZeroProc+1;
if(currentZeroProc == procsPerNode){
currentZeroProc = 0;
}
}
else{
// if object has some non-zero load, assign it to a proc greedily
Processor p = pq_proc.top();
pq_proc.pop();
//CkPrintf("proc %d load %f gets obj %d load %f\n", p.t, p.load, tp.lbindex, tp.load);
p.load += tp.load;
(*mapping)[tp.lbindex] = nodes[0].procRanks[p.t];
pq_proc.push(p);
}
}
}
int MultistepLB::nextDim(int dim_, int xs, int ys, int zs){
int max = xs;
int dim = 0;
if(max < ys){
max = ys;
dim = 1;
}
if(max < zs){
max = zs;
dim = 2;
}
return dim;
}
TPObject *MultistepLB::partitionEvenLoad(TPObject *tp, int &ntp){
float totalLoad = 0.0;
for(int i = 0; i < ntp; i++){
totalLoad += tp[i].load;
}
float lload = 0.0;
float rload = totalLoad;
float prevDiff = lload-rload;
if(prevDiff < 0.0){
prevDiff = -prevDiff;
}
int consider;
for(consider = 0; consider < ntp;){
float newll = lload + tp[consider].load;
float newrl = rload - tp[consider].load;
float newdiff = newll-newrl;
if(newdiff < 0.0){
newdiff = -newdiff;
}
//CkPrintf("consider load %f newdiff %f prevdiff %f\n", tp[consider].load, newdiff, prevDiff);
if(newdiff > prevDiff){
break;
}
else{
consider++;
lload = newll;
rload = newrl;
prevDiff = newdiff;
}
}
//CkPrintf("partitionEvenLoad lload %f rload %f\n", lload, rload);
ntp = consider;
return (tp+consider);
}
Node *MultistepLB::halveNodes(Node *start, int np){
Node *ret = start;
ret = start+np/2;
return ret;
}
void MultistepLB::pup(PUP::er &p){
CBase_MultistepLB::pup(p);
p | procsPerNode;
}
#include "MultistepLB.def.h"