From 2416939dadf55e16da873b0e5c44902d3a39c774 Mon Sep 17 00:00:00 2001 From: tariqksoliman Date: Wed, 17 May 2023 17:47:18 -0700 Subject: [PATCH 1/6] #383 gdal2tiles_3.5.2_v2 for raster support --- .../gdal2customtiles/gdal2tiles_3.5.2_v2.py | 5022 +++++++++++++++++ 1 file changed, 5022 insertions(+) create mode 100644 auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py diff --git a/auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py b/auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py new file mode 100644 index 00000000..6bcfd105 --- /dev/null +++ b/auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py @@ -0,0 +1,5022 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +# ****************************************************************************** +# $Id$ +# +# Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/) +# Support: BRGM (http://www.brgm.fr) +# Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory. +# - generate Google Earth metadata (KML SuperOverlay) +# - generate simple HTML viewer based on Google Maps and OpenLayers +# - support of global tiles (Spherical Mercator) for compatibility +# with interactive web maps a la Google Maps +# Author: Klokan Petr Pridal, klokan at klokan dot cz +# +############################################################################### +# Copyright (c) 2008, Klokan Petr Pridal +# Copyright (c) 2010-2013, Even Rouault +# Copyright (c) 2021, Idan Miara +# +# Permission is hereby granted, free of charge, to any person obtaining a +# copy of this software and associated documentation files (the "Software"), +# to deal in the Software without restriction, including without limitation +# the rights to use, copy, modify, merge, publish, distribute, sublicense, +# and/or sell copies of the Software, and to permit persons to whom the +# Software is furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included +# in all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL +# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +# DEALINGS IN THE SOFTWARE. +# ****************************************************************************** + +from __future__ import division, print_function +import struct + +import contextlib +import glob +import json +import math +import optparse +import os +import shutil +import stat +import sys +import tempfile +import threading +from functools import partial +from typing import Any, List, NoReturn, Optional, Tuple +from uuid import uuid4 +from xml.etree import ElementTree + +from osgeo import gdal, osr + +Options = Any + +# MMGIS +def binary(num): + return ''.join(bin(c).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) + +def getTilePxBounds(self, tx, ty, tz, ds): + + querysize = self.tile_size + + if self.isRasterBounded: # 'raster' profile: + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.out_ds.fWorldXSize + ysize = self.out_ds.fWorldYSize + if tz >= self.tmaxz: + querysize = self.tile_size + + rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld + #print("rx", rx) + rxsize = 0 + rxsize = tsize + + rysize = 0 + rysize = tsize + + ry = ysize - (ty * tsize) - rysize - \ + self.out_ds.fRasterYOriginWorld + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tile_size) + wysize = int(rysize/float(tsize) * self.tile_size) + if wysize != self.tile_size: + wy = self.tile_size - wysize + + if rx < 0: + rxsize = tsize + rx + wx = -rx + wxsize = int(rxsize/float(tsize) * self.tile_size) + rx = 0 + if ry < 0: + rysize = tsize + ry + wy = -ry + wysize = int(rysize/float(tsize) * self.tile_size) + ry = 0 + if rx + rxsize > self.out_ds.fRasterXSizeWorld: + rxsize = self.out_ds.fRasterXSizeWorld - rx + wxsize = int(rxsize/float(tsize) * self.tile_size) + if ry + rysize > self.out_ds.fRasterYSizeWorld: + rysize = self.out_ds.fRasterYSizeWorld - ry + wysize = int(rysize/float(tsize) * self.tile_size) + + # Convert rx, ry back to non-world coordinates + rx = int(float(self.out_ds.RasterXSize) * + (float(rx) / self.out_ds.fRasterXSizeWorld)) + ry = int(float(self.out_ds.RasterYSize) * + (float(ry) / self.out_ds.fRasterYSizeWorld)) + rxsize = int(float(self.out_ds.RasterXSize) * + (float(rxsize) / self.out_ds.fRasterXSizeWorld)) + rysize = int(float(self.out_ds.RasterYSize) * + (float(rysize) / self.out_ds.fRasterYSizeWorld)) + else: + b = self.mercator.TileBounds(tx, ty, tz) + rb, wb = self.geo_query( + ds, b[0], b[3], b[2], b[1], querysize=querysize) + rx, ry, rxsize, rysize = rb + wx, wy, wxsize, wysize = wb + + return [rx, ry, rxsize, rysize, wxsize, wysize] + + +try: + import numpy + from PIL import Image + + import osgeo.gdal_array as gdalarray + + numpy_available = True +except ImportError: + # 'antialias' resampling is not available + numpy_available = False + +__version__ = "$Id$" + +resampling_list = ( + "average", + "near", + "near-composite", + "bilinear", + "cubic", + "cubicspline", + "lanczos", + "antialias", + "mode", + "max", + "min", + "med", + "q1", + "q3", +) +webviewer_list = ("all", "google", "openlayers", "leaflet", "mapml", "none") + + +def makedirs(path): + """Wrapper for os.makedirs() that can work with /vsi files too""" + if path.startswith("/vsi"): + if gdal.MkdirRecursive(path, 0o755) != 0: + raise Exception(f"Cannot create {path}") + else: + os.makedirs(path, exist_ok=True) + + +def isfile(path): + """Wrapper for os.path.isfile() that can work with /vsi files too""" + if path.startswith("/vsi"): + stat_res = gdal.VSIStatL(path) + if stat is None: + return False + return stat.S_ISREG(stat_res.mode) + else: + return os.path.isfile(path) + + +class VSIFile: + """Expose a simplistic file-like API for a /vsi file""" + + def __init__(self, filename, f): + self.filename = filename + self.f = f + + def write(self, content): + if gdal.VSIFWriteL(content, 1, len(content), self.f) != len(content): + raise Exception("Error while writing into %s" % self.filename) + + +@contextlib.contextmanager +def my_open(filename, mode): + """Wrapper for open() built-in method that can work with /vsi files too""" + if filename.startswith("/vsi"): + f = gdal.VSIFOpenL(filename, mode) + if f is None: + raise Exception(f"Cannot open {filename} in {mode}") + try: + yield VSIFile(filename, f) + finally: + if gdal.VSIFCloseL(f) != 0: + raise Exception(f"Cannot close {filename}") + else: + yield open(filename, mode) + + +class UnsupportedTileMatrixSet(Exception): + pass + + +class TileMatrixSet(object): + def __init__(self) -> None: + self.identifier = None + self.srs = None + self.topleft_x = None + self.topleft_y = None + self.matrix_width = None # at zoom 0 + self.matrix_height = None # at zoom 0 + self.tile_size = None + self.resolution = None # at zoom 0 + self.level_count = None + + def GeorefCoordToTileCoord(self, x, y, z, overriden_tile_size): + res = self.resolution * self.tile_size / overriden_tile_size / (2**z) + tx = int((x - self.topleft_x) / (res * overriden_tile_size)) + # In default mode, we use a bottom-y origin + ty = int( + ( + y + - ( + self.topleft_y + - self.matrix_height * self.tile_size * self.resolution + ) + ) + / (res * overriden_tile_size) + ) + return tx, ty + + def ZoomForPixelSize(self, pixelSize, overriden_tile_size): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(self.level_count): + res = self.resolution * self.tile_size / \ + overriden_tile_size / (2**i) + if pixelSize > res: + return max(0, i - 1) # We don't want to scale up + return self.level_count - 1 + + def PixelsToMeters(self, px, py, zoom, overriden_tile_size): + "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" + + res = self.resolution * self.tile_size / \ + overriden_tile_size / (2**zoom) + mx = px * res + self.topleft_x + my = py * res + ( + self.topleft_y - self.matrix_height * self.tile_size * self.resolution + ) + return mx, my + + def TileBounds(self, tx, ty, zoom, overriden_tile_size): + "Returns bounds of the given tile in georef coordinates" + + minx, miny = self.PixelsToMeters( + tx * overriden_tile_size, + ty * overriden_tile_size, + zoom, + overriden_tile_size, + ) + maxx, maxy = self.PixelsToMeters( + (tx + 1) * overriden_tile_size, + (ty + 1) * overriden_tile_size, + zoom, + overriden_tile_size, + ) + return (minx, miny, maxx, maxy) + + @staticmethod + def parse(j: dict) -> "TileMatrixSet": + assert "identifier" in j + assert "supportedCRS" in j + assert "tileMatrix" in j + assert isinstance(j["tileMatrix"], list) + srs = osr.SpatialReference() + assert srs.SetFromUserInput(str(j["supportedCRS"])) == 0 + swapaxis = srs.EPSGTreatsAsLatLong() or srs.EPSGTreatsAsNorthingEasting() + metersPerUnit = 1.0 + if srs.IsProjected(): + metersPerUnit = srs.GetLinearUnits() + elif srs.IsGeographic(): + metersPerUnit = srs.GetSemiMajor() * math.pi / 180 + tms = TileMatrixSet() + tms.srs = srs + tms.identifier = str(j["identifier"]) + for i, tileMatrix in enumerate(j["tileMatrix"]): + assert "topLeftCorner" in tileMatrix + assert isinstance(tileMatrix["topLeftCorner"], list) + topLeftCorner = tileMatrix["topLeftCorner"] + assert len(topLeftCorner) == 2 + assert "scaleDenominator" in tileMatrix + assert "tileWidth" in tileMatrix + assert "tileHeight" in tileMatrix + + topleft_x = topLeftCorner[0] + topleft_y = topLeftCorner[1] + tileWidth = tileMatrix["tileWidth"] + tileHeight = tileMatrix["tileHeight"] + if tileWidth != tileHeight: + raise UnsupportedTileMatrixSet("Only square tiles supported") + # Convention in OGC TileMatrixSet definition. See gcore/tilematrixset.cpp + resolution = tileMatrix["scaleDenominator"] * \ + 0.28e-3 / metersPerUnit + if swapaxis: + topleft_x, topleft_y = topleft_y, topleft_x + if i == 0: + tms.topleft_x = topleft_x + tms.topleft_y = topleft_y + tms.resolution = resolution + tms.tile_size = tileWidth + + assert "matrixWidth" in tileMatrix + assert "matrixHeight" in tileMatrix + tms.matrix_width = tileMatrix["matrixWidth"] + tms.matrix_height = tileMatrix["matrixHeight"] + else: + if topleft_x != tms.topleft_x or topleft_y != tms.topleft_y: + raise UnsupportedTileMatrixSet( + "All levels should have same origin") + if abs(tms.resolution / (1 << i) - resolution) > 1e-8 * resolution: + raise UnsupportedTileMatrixSet( + "Only resolutions varying as power-of-two supported" + ) + if tileWidth != tms.tile_size: + raise UnsupportedTileMatrixSet( + "All levels should have same tile size" + ) + tms.level_count = len(j["tileMatrix"]) + return tms + + +tmsMap = {} + +profile_list = ["mercator", "geodetic", "raster"] + +# Read additional tile matrix sets from GDAL data directory +filename = gdal.FindFile("gdal", "tms_MapML_APSTILE.json") +if filename and False: + dirname = os.path.dirname(filename) + for tmsfilename in glob.glob(os.path.join(dirname, "tms_*.json")): + data = open(tmsfilename, "rb").read() + try: + j = json.loads(data.decode("utf-8")) + except Exception: + j = None + if j is None: + print("Cannot parse " + tmsfilename) + continue + try: + tms = TileMatrixSet.parse(j) + except UnsupportedTileMatrixSet: + continue + except Exception: + print("Cannot parse " + tmsfilename) + continue + tmsMap[tms.identifier] = tms + profile_list.append(tms.identifier) + +threadLocal = threading.local() + +# ============================================================================= +# ============================================================================= +# ============================================================================= + +__doc__globalmaptiles = """ +globalmaptiles.py + +Global Map Tiles as defined in Tile Map Service (TMS) Profiles +============================================================== + +Functions necessary for generation of global tiles used on the web. +It contains classes implementing coordinate conversions for: + + - GlobalMercator (based on EPSG:3857) + for Google Maps, Yahoo Maps, Bing Maps compatible tiles + - GlobalGeodetic (based on EPSG:4326) + for OpenLayers Base Map and Google Earth compatible tiles + +More info at: + +http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification +http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation +http://msdn.microsoft.com/en-us/library/bb259689.aspx +http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates + +Created by Klokan Petr Pridal on 2008-07-03. +Google Summer of Code 2008, project GDAL2Tiles for OSGEO. + +In case you use this class in your product, translate it to another language +or find it useful for your project please let me know. +My email: klokan at klokan dot cz. +I would like to know where it was used. + +Class is available under the open-source GDAL license (www.gdal.org). +""" + +MAXZOOMLEVEL = 32 + + +class GlobalMercator(object): + r""" + TMS Global Mercator Profile + --------------------------- + + Functions necessary for generation of tiles in Spherical Mercator projection, + EPSG:3857. + + Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps, + UK Ordnance Survey OpenSpace API, ... + and you can overlay them on top of base maps of those web mapping applications. + + Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). + + What coordinate conversions do we need for TMS Global Mercator tiles:: + + LatLon <-> Meters <-> Pixels <-> Tile + + WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid + lat/lon XY in meters XY pixels Z zoom XYZ from TMS + EPSG:4326 EPSG:387 + .----. --------- -- TMS + / \ <-> | | <-> /----/ <-> Google + \ / | | /--------/ QuadTree + ----- --------- /------------/ + KML, public WebMapService Web Clients TileMapService + + What is the coordinate extent of Earth in EPSG:3857? + + [-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244] + Constant 20037508.342789244 comes from the circumference of the Earth in meters, + which is 40 thousand kilometers, the coordinate origin is in the middle of extent. + In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 + $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857 + Polar areas with abs(latitude) bigger then 85.05112878 are clipped off. + + What are zoom level constants (pixels/meter) for pyramid with EPSG:3857? + + whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile, + every lower zoom level resolution is always divided by two + initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062 + + What is the difference between TMS and Google Maps/QuadTree tile name convention? + + The tile raster itself is the same (equal extent, projection, pixel size), + there is just different identification of the same raster tile. + Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ. + Google placed the origin [0,0] to the top-left corner, reference is XYZ. + Microsoft is referencing tiles by a QuadTree name, defined on the website: + http://msdn2.microsoft.com/en-us/library/bb259689.aspx + + The lat/lon coordinates are using WGS84 datum, yes? + + Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum. + Well, the web clients like Google Maps are projecting those coordinates by + Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if + the were on the WGS84 ellipsoid. + + From MSDN documentation: + To simplify the calculations, we use the spherical form of projection, not + the ellipsoidal form. Since the projection is used only for map display, + and not for displaying numeric coordinates, we don't need the extra precision + of an ellipsoidal projection. The spherical projection causes approximately + 0.33 percent scale distortion in the Y direction, which is not visually + noticeable. + + How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4? + + You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform. + All of the tools supports -t_srs 'epsg:3857'. + + For other GIS programs check the exact definition of the projection: + More info at http://spatialreference.org/ref/user/google-projection/ + The same projection is designated as EPSG:3857. WKT definition is in the + official EPSG database. + + Proj4 Text: + +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 + +k=1.0 +units=m +nadgrids=@null +no_defs + + Human readable WKT format of EPSG:3857: + PROJCS["Google Maps Global Mercator", + GEOGCS["WGS 84", + DATUM["WGS_1984", + SPHEROID["WGS 84",6378137,298.257223563, + AUTHORITY["EPSG","7030"]], + AUTHORITY["EPSG","6326"]], + PRIMEM["Greenwich",0], + UNIT["degree",0.0174532925199433], + AUTHORITY["EPSG","4326"]], + PROJECTION["Mercator_1SP"], + PARAMETER["central_meridian",0], + PARAMETER["scale_factor",1], + PARAMETER["false_easting",0], + PARAMETER["false_northing",0], + UNIT["metre",1, + AUTHORITY["EPSG","9001"]]] + """ + + def __init__(self, tile_size: int = 256) -> None: + "Initialize the TMS Global Mercator pyramid" + self.tile_size = tile_size + self.initialResolution = 2 * math.pi * 6378137 / self.tile_size + # 156543.03392804062 for tile_size 256 pixels + self.originShift = 2 * math.pi * 6378137 / 2.0 + # 20037508.342789244 + + def LatLonToMeters(self, lat, lon): + "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857" + + mx = lon * self.originShift / 180.0 + my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / \ + (math.pi / 180.0) + + my = my * self.originShift / 180.0 + return mx, my + + def MetersToLatLon(self, mx, my): + "Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum" + + lon = (mx / self.originShift) * 180.0 + lat = (my / self.originShift) * 180.0 + + lat = ( + 180 + / math.pi + * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) + ) + return lat, lon + + def PixelsToMeters(self, px, py, zoom): + "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" + + res = self.Resolution(zoom) + mx = px * res - self.originShift + my = py * res - self.originShift + return mx, my + + def MetersToPixels(self, mx, my, zoom): + "Converts EPSG:3857 to pyramid pixel coordinates in given zoom level" + + res = self.Resolution(zoom) + px = (mx + self.originShift) / res + py = (my + self.originShift) / res + return px, py + + def PixelsToTile(self, px, py): + "Returns a tile covering region in given pixel coordinates" + + tx = int(math.ceil(px / float(self.tile_size)) - 1) + ty = int(math.ceil(py / float(self.tile_size)) - 1) + return tx, ty + + def PixelsToRaster(self, px, py, zoom): + "Move the origin of pixel coordinates to top-left corner" + + mapSize = self.tile_size << zoom + return px, mapSize - py + + def MetersToTile(self, mx, my, zoom): + "Returns tile for given mercator coordinates" + + px, py = self.MetersToPixels(mx, my, zoom) + return self.PixelsToTile(px, py) + + def TileBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in EPSG:3857 coordinates" + + minx, miny = self.PixelsToMeters( + tx * self.tile_size, ty * self.tile_size, zoom) + maxx, maxy = self.PixelsToMeters( + (tx + 1) * self.tile_size, (ty + 1) * self.tile_size, zoom + ) + return (minx, miny, maxx, maxy) + + def TileLatLonBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in latitude/longitude using WGS84 datum" + + bounds = self.TileBounds(tx, ty, zoom) + minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) + maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) + + return (minLat, minLon, maxLat, maxLon) + + def Resolution(self, zoom): + "Resolution (meters/pixel) for given zoom level (measured at Equator)" + + # return (2 * math.pi * 6378137) / (self.tile_size * 2**zoom) + return self.initialResolution / (2**zoom) + + def ZoomForPixelSize(self, pixelSize): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(MAXZOOMLEVEL): + if pixelSize > self.Resolution(i): + return max(0, i - 1) # We don't want to scale up + return MAXZOOMLEVEL - 1 + + def GoogleTile(self, tx, ty, zoom): + "Converts TMS tile coordinates to Google Tile coordinates" + + # coordinate origin is moved from bottom-left to top-left corner of the extent + return tx, (2**zoom - 1) - ty + + def QuadTree(self, tx, ty, zoom): + "Converts TMS tile coordinates to Microsoft QuadTree" + + quadKey = "" + ty = (2**zoom - 1) - ty + for i in range(zoom, 0, -1): + digit = 0 + mask = 1 << (i - 1) + if (tx & mask) != 0: + digit += 1 + if (ty & mask) != 0: + digit += 2 + quadKey += str(digit) + + return quadKey + + +class GlobalGeodetic(object): + r""" + TMS Global Geodetic Profile + --------------------------- + + Functions necessary for generation of global tiles in Plate Carre projection, + EPSG:4326, "unprojected profile". + + Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters) + and you can overlay the tiles on top of OpenLayers base map. + + Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). + + What coordinate conversions do we need for TMS Global Geodetic tiles? + + Global Geodetic tiles are using geodetic coordinates (latitude,longitude) + directly as planar coordinates XY (it is also called Unprojected or Plate + Carre). We need only scaling to pixel pyramid and cutting to tiles. + Pyramid has on top level two tiles, so it is not square but rectangle. + Area [-180,-90,180,90] is scaled to 512x256 pixels. + TMS has coordinate origin (for pixels and tiles) in bottom-left corner. + Rasters are in EPSG:4326 and therefore are compatible with Google Earth. + + LatLon <-> Pixels <-> Tiles + + WGS84 coordinates Pixels in pyramid Tiles in pyramid + lat/lon XY pixels Z zoom XYZ from TMS + EPSG:4326 + .----. ---- + / \ <-> /--------/ <-> TMS + \ / /--------------/ + ----- /--------------------/ + WMS, KML Web Clients, Google Earth TileMapService + """ + + def __init__(self, tmscompatible: Optional[bool], tile_size: int = 256) -> None: + self.tile_size = tile_size + if tmscompatible: + # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) + # Adhers to OSGeo TMS spec + # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic + self.resFact = 180.0 / self.tile_size + else: + # Defaults the resolution factor to 1.40625 (1 tile @ level 0) + # Adheres OpenLayers, MapProxy, etc default resolution for WMTS + self.resFact = 360.0 / self.tile_size + + def LonLatToPixels(self, lon, lat, zoom): + "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" + + res = self.resFact / 2**zoom + px = (180 + lon) / res + py = (90 + lat) / res + return px, py + + def PixelsToTile(self, px, py): + "Returns coordinates of the tile covering region in pixel coordinates" + + tx = int(math.ceil(px / float(self.tile_size)) - 1) + ty = int(math.ceil(py / float(self.tile_size)) - 1) + return tx, ty + + def LonLatToTile(self, lon, lat, zoom): + "Returns the tile for zoom which covers given lon/lat coordinates" + + px, py = self.LonLatToPixels(lon, lat, zoom) + return self.PixelsToTile(px, py) + + def Resolution(self, zoom): + "Resolution (arc/pixel) for given zoom level (measured at Equator)" + + return self.resFact / 2**zoom + + def ZoomForPixelSize(self, pixelSize): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(MAXZOOMLEVEL): + if pixelSize > self.Resolution(i): + return max(0, i - 1) # We don't want to scale up + return MAXZOOMLEVEL - 1 + + def TileBounds(self, tx, ty, zoom): + "Returns bounds of the given tile" + res = self.resFact / 2**zoom + return ( + tx * self.tile_size * res - 180, + ty * self.tile_size * res - 90, + (tx + 1) * self.tile_size * res - 180, + (ty + 1) * self.tile_size * res - 90, + ) + + def TileLatLonBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in the SWNE form" + b = self.TileBounds(tx, ty, zoom) + return (b[1], b[0], b[3], b[2]) + + +class Zoomify(object): + """ + Tiles compatible with the Zoomify viewer + ---------------------------------------- + """ + + def __init__(self, width, height, tile_size=256, tileformat="jpg"): + """Initialization of the Zoomify tile tree""" + + self.tile_size = tile_size + self.tileformat = tileformat + imagesize = (width, height) + tiles = (math.ceil(width / tile_size), math.ceil(height / tile_size)) + + # Size (in tiles) for each tier of pyramid. + self.tierSizeInTiles = [] + self.tierSizeInTiles.append(tiles) + + # Image size in pixels for each pyramid tierself + self.tierImageSize = [] + self.tierImageSize.append(imagesize) + + while imagesize[0] > tile_size or imagesize[1] > tile_size: + imagesize = (math.floor( + imagesize[0] / 2), math.floor(imagesize[1] / 2)) + tiles = ( + math.ceil(imagesize[0] / tile_size), + math.ceil(imagesize[1] / tile_size), + ) + self.tierSizeInTiles.append(tiles) + self.tierImageSize.append(imagesize) + + self.tierSizeInTiles.reverse() + self.tierImageSize.reverse() + + # Depth of the Zoomify pyramid, number of tiers (zoom levels) + self.numberOfTiers = len(self.tierSizeInTiles) + + # Number of tiles up to the given tier of pyramid. + self.tileCountUpToTier = [] + self.tileCountUpToTier[0] = 0 + for i in range(1, self.numberOfTiers + 1): + self.tileCountUpToTier.append( + self.tierSizeInTiles[i - 1][0] * self.tierSizeInTiles[i - 1][1] + + self.tileCountUpToTier[i - 1] + ) + + def tilefilename(self, x, y, z): + """Returns filename for tile with given coordinates""" + + tileIndex = x + y * \ + self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] + return os.path.join( + "TileGroup%.0f" % math.floor(tileIndex / 256), + "%s-%s-%s.%s" % (z, x, y, self.tileformat), + ) + + +class GDALError(Exception): + pass + + +def exit_with_error(message: str, details: str = "") -> NoReturn: + # Message printing and exit code kept from the way it worked using the OptionParser (in case + # someone parses the error output) + sys.stderr.write("Usage: gdal2tiles.py [options] input_file [output]\n\n") + sys.stderr.write("gdal2tiles.py: error: %s\n" % message) + if details: + sys.stderr.write("\n\n%s\n" % details) + + sys.exit(2) + + +def set_cache_max(cache_in_bytes: int) -> None: + # We set the maximum using `SetCacheMax` and `GDAL_CACHEMAX` to support both fork and spawn as multiprocessing start methods. + # https://github.com/OSGeo/gdal/pull/2112 + os.environ["GDAL_CACHEMAX"] = "%d" % int(cache_in_bytes / 1024 / 1024) + gdal.SetCacheMax(cache_in_bytes) + + +def generate_kml( + tx, ty, tz, tileext, tile_size, tileswne, options, children=None, **args +): + """ + Template for the KML. Returns filled string. + """ + if not children: + children = [] + + args["tx"], args["ty"], args["tz"] = tx, ty, tz + args["tileformat"] = tileext + if "tile_size" not in args: + args["tile_size"] = tile_size + + if "minlodpixels" not in args: + args["minlodpixels"] = int(args["tile_size"] / 2) + if "maxlodpixels" not in args: + args["maxlodpixels"] = int(args["tile_size"] * 8) + if children == []: + args["maxlodpixels"] = -1 + + if tx is None: + tilekml = False + args["xml_escaped_title"] = gdal.EscapeString( + options.title, gdal.CPLES_XML) + else: + tilekml = True + args["realtiley"] = GDAL2Tiles.getYTile(ty, tz, options) + args["xml_escaped_title"] = "%d/%d/%d.kml" % ( + tz, tx, args["realtiley"]) + args["south"], args["west"], args["north"], args["east"] = tileswne( + tx, ty, tz) + + if tx == 0: + args["drawOrder"] = 2 * tz + 1 + elif tx is not None: + args["drawOrder"] = 2 * tz + else: + args["drawOrder"] = 0 + + url = options.url + if not url: + if tilekml: + url = "../../" + else: + url = "" + + s = ( + """ + + + %(xml_escaped_title)s + + """ + % args + ) + if tilekml: + s += ( + """ + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + + %(minlodpixels)d + %(maxlodpixels)d + + + + %(drawOrder)d + + %(realtiley)d.%(tileformat)s + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + +""" + % args + ) + + for cx, cy, cz in children: + csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz) + ytile = GDAL2Tiles.getYTile(cy, cz, options) + s += """ + + %d/%d/%d.%s + + + %.14f + %.14f + %.14f + %.14f + + + %d + -1 + + + + %s%d/%d/%d.kml + onRegion + + + + """ % ( + cz, + cx, + ytile, + args["tileformat"], + cnorth, + csouth, + ceast, + cwest, + args["minlodpixels"], + url, + cz, + cx, + ytile, + ) + + s += """ + + """ + return s + + +def scale_query_to_tile(dsquery, dstile, options, tilefilename=""): + """Scales down query dataset to the tile dataset""" + + querysize = dsquery.RasterXSize + tile_size = dstile.RasterXSize + tilebands = dstile.RasterCount + + if options.resampling == "average": + + # Function: gdal.RegenerateOverview() + for i in range(1, tilebands + 1): + # Black border around NODATA + res = gdal.RegenerateOverview( + dsquery.GetRasterBand(i), dstile.GetRasterBand(i), "average" + ) + if res != 0: + exit_with_error( + "RegenerateOverview() failed on %s, error %d" % (tilefilename, res) + ) + + elif options.resampling == "antialias" and numpy_available: + + if tilefilename.startswith("/vsi"): + raise Exception( + "Outputting to /vsi file systems with antialias mode is not supported" + ) + + # Scaling by PIL (Python Imaging Library) - improved Lanczos + array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) + for i in range(tilebands): + array[:, :, i] = gdalarray.BandReadAsArray( + dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize + ) + im = Image.fromarray(array, "RGBA") # Always four bands + im1 = im.resize((tile_size, tile_size), Image.LANCZOS) + if os.path.exists(tilefilename): + im0 = Image.open(tilefilename) + im1 = Image.composite(im1, im0, im1) + + params = {} + if options.tiledriver == "WEBP": + if options.webp_lossless: + params["lossless"] = True + else: + params["quality"] = options.webp_quality + im1.save(tilefilename, options.tiledriver, **params) + + # MMGIS + elif options.resampling == "near-composite" and numpy_available: + + if tilefilename.startswith("/vsi"): + raise Exception( + "Outputting to /vsi file systems with near-composite mode is not supported" + ) + + # Scaling by PIL (Python Imaging Library) - nearest + array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) + for i in range(tilebands): + array[:, :, i] = gdalarray.BandReadAsArray( + dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize + ) + im = Image.fromarray(array, "RGBA") # Always four bands + im1 = im.resize((tile_size, tile_size), Image.NEAREST) + + if os.path.exists(tilefilename): + im0 = Image.open(tilefilename) + + # Make mask, nodatas to alpha + nodataPixel = False + if options.srcnodata is not None: + f = str(binary(float(options.srcnodata))) + nodataPixel = [int(f[:8], 2), int(f[8:16], 2), + (int(f[16:24], 2)), int(f[24:], 2)] + + if nodataPixel is not False: + for rowI in range(len(array)): + for pixelI in range(len(array[rowI])): + if array[rowI][pixelI][0] == nodataPixel[0] and array[rowI][pixelI][1] == nodataPixel[1] and array[rowI][pixelI][2] == nodataPixel[2] and array[rowI][pixelI][3] == nodataPixel[3]: + array[rowI][pixelI] = [0, 0, 0, 0] + elif array[rowI][pixelI][0] == 0 and array[rowI][pixelI][1] == 0 and array[rowI][pixelI][2] == 0 and array[rowI][pixelI][3] == 0: + array[rowI][pixelI] = [0, 0, 0, 0] + else: + array[rowI][pixelI] = [255, 255, 255, 255] + + imMask = Image.fromarray(array, "RGBA") # Always four bands + im1Mask = imMask.resize((tile_size, tile_size), Image.NEAREST) + + im1 = Image.composite(im1, im0, im1Mask) + + params = {} + if options.tiledriver == "WEBP": + if options.webp_lossless: + params["lossless"] = True + else: + params["quality"] = options.webp_quality + im1.save(tilefilename, options.tiledriver, **params) + + else: + + if options.resampling == "near": + gdal_resampling = gdal.GRA_NearestNeighbour + + elif options.resampling == "bilinear": + gdal_resampling = gdal.GRA_Bilinear + + elif options.resampling == "cubic": + gdal_resampling = gdal.GRA_Cubic + + elif options.resampling == "cubicspline": + gdal_resampling = gdal.GRA_CubicSpline + + elif options.resampling == "lanczos": + gdal_resampling = gdal.GRA_Lanczos + + elif options.resampling == "mode": + gdal_resampling = gdal.GRA_Mode + + elif options.resampling == "max": + gdal_resampling = gdal.GRA_Max + + elif options.resampling == "min": + gdal_resampling = gdal.GRA_Min + + elif options.resampling == "med": + gdal_resampling = gdal.GRA_Med + + elif options.resampling == "q1": + gdal_resampling = gdal.GRA_Q1 + + elif options.resampling == "q3": + gdal_resampling = gdal.GRA_Q3 + + # Other algorithms are implemented by gdal.ReprojectImage(). + dsquery.SetGeoTransform( + ( + 0.0, + tile_size / float(querysize), + 0.0, + 0.0, + 0.0, + tile_size / float(querysize), + ) + ) + dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) + + res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) + if res != 0: + exit_with_error( + "ReprojectImage() failed on %s, error %d" % (tilefilename, res) + ) + + +def setup_no_data_values(input_dataset: gdal.Dataset, options: Options) -> List[float]: + """ + Extract the NODATA values from the dataset or use the passed arguments as override if any + """ + in_nodata = [] + if options.srcnodata: + nds = list(map(float, options.srcnodata.split(","))) + if len(nds) < input_dataset.RasterCount: + in_nodata = ( + nds * input_dataset.RasterCount)[: input_dataset.RasterCount] + else: + in_nodata = nds + else: + for i in range(1, input_dataset.RasterCount + 1): + band = input_dataset.GetRasterBand(i) + raster_no_data = band.GetNoDataValue() + if raster_no_data is not None: + # Ignore nodata values that are not in the range of the band data type (see https://github.com/OSGeo/gdal/pull/2299) + if band.DataType == gdal.GDT_Byte and ( + raster_no_data != int(raster_no_data) + or raster_no_data < 0 + or raster_no_data > 255 + ): + # We should possibly do similar check for other data types + in_nodata = [] + break + in_nodata.append(raster_no_data) + + if options.verbose: + print("NODATA: %s" % in_nodata) + + return in_nodata + + +def setup_input_srs( + input_dataset: gdal.Dataset, options: Options +) -> Tuple[Optional[osr.SpatialReference], Optional[str]]: + """ + Determines and returns the Input Spatial Reference System (SRS) as an osr object and as a + WKT representation + + Uses in priority the one passed in the command line arguments. If None, tries to extract them + from the input dataset + """ + + input_srs = None + input_srs_wkt = None + + if options.s_srs: + input_srs = osr.SpatialReference() + input_srs.SetFromUserInput(options.s_srs) + input_srs_wkt = input_srs.ExportToWkt() + else: + input_srs_wkt = input_dataset.GetProjection() + if not input_srs_wkt and input_dataset.GetGCPCount() != 0: + input_srs_wkt = input_dataset.GetGCPProjection() + if input_srs_wkt: + input_srs = osr.SpatialReference() + input_srs.ImportFromWkt(input_srs_wkt) + + if input_srs is not None: + input_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + + return input_srs, input_srs_wkt + + +def setup_output_srs( + input_srs: Optional[osr.SpatialReference], options: Options +) -> Optional[osr.SpatialReference]: + """ + Setup the desired SRS (based on options) + """ + output_srs = osr.SpatialReference() + + if options.profile == "mercator": + output_srs.ImportFromEPSG(3857) + elif options.profile == "geodetic": + output_srs.ImportFromEPSG(4326) + elif options.profile == "raster": + output_srs = input_srs + else: + output_srs = tmsMap[options.profile].srs.Clone() + + if output_srs: + output_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + + return output_srs + + +def has_georeference(dataset: gdal.Dataset) -> bool: + return ( + dataset.GetGeoTransform() != (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) + or dataset.GetGCPCount() != 0 + ) + + +def reproject_dataset( + from_dataset: gdal.Dataset, + from_srs: Optional[osr.SpatialReference], + to_srs: Optional[osr.SpatialReference], + options: Optional[Options] = None, +) -> gdal.Dataset: + """ + Returns the input dataset in the expected "destination" SRS. + If the dataset is already in the correct SRS, returns it unmodified + """ + if not from_srs or not to_srs: + raise GDALError( + "from and to SRS must be defined to reproject the dataset") + + if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or ( + from_dataset.GetGCPCount() != 0 + ): + + if ( + from_srs.IsGeographic() + and to_srs.GetAuthorityName(None) == "EPSG" + and to_srs.GetAuthorityCode(None) == "3857" + ): + from_gt = from_dataset.GetGeoTransform(can_return_null=True) + if from_gt and from_gt[2] == 0 and from_gt[4] == 0 and from_gt[5] < 0: + maxlat = from_gt[3] + minlat = from_gt[3] + from_dataset.RasterYSize * from_gt[5] + MAX_LAT = 85.0511287798066 + adjustBounds = False + if maxlat > MAX_LAT: + maxlat = MAX_LAT + adjustBounds = True + if minlat < -MAX_LAT: + minlat = -MAX_LAT + adjustBounds = True + if adjustBounds: + ct = osr.CoordinateTransformation(from_srs, to_srs) + west, south = ct.TransformPoint(from_gt[0], minlat)[:2] + east, north = ct.TransformPoint( + from_gt[0] + from_dataset.RasterXSize * + from_gt[1], maxlat + )[:2] + return gdal.Warp( + "", + from_dataset, + format="VRT", + outputBounds=[west, south, east, north], + dstSRS="EPSG:3857", + ) + + to_dataset = gdal.AutoCreateWarpedVRT( + from_dataset, from_srs.ExportToWkt(), to_srs.ExportToWkt() + ) + + if options and options.verbose: + print( + "Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')" + ) + to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset) + + return to_dataset + else: + return from_dataset + + +def add_gdal_warp_options_to_string(vrt_string, warp_options): + if not warp_options: + return vrt_string + + vrt_root = ElementTree.fromstring(vrt_string) + options = vrt_root.find("GDALWarpOptions") + + if options is None: + return vrt_string + + for key, value in warp_options.items(): + tb = ElementTree.TreeBuilder() + tb.start("Option", {"name": key}) + tb.data(value) + tb.end("Option") + elem = tb.close() + options.insert(0, elem) + + return ElementTree.tostring(vrt_root).decode() + + +def update_no_data_values( + warped_vrt_dataset: gdal.Dataset, + nodata_values: List[float], + options: Optional[Options] = None, +) -> gdal.Dataset: + """ + Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed + """ + # TODO: gbataille - Seems that I forgot tests there + assert nodata_values != [] + + vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] + + vrt_string = add_gdal_warp_options_to_string( + vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"} + ) + + # TODO: gbataille - check the need for this replacement. Seems to work without + # # replace BandMapping tag for NODATA bands.... + # for i in range(len(nodata_values)): + # s = s.replace( + # '' % ((i+1), (i+1)), + # """ + # + # %i + # 0 + # %i + # 0 + # + # """ % ((i+1), (i+1), nodata_values[i], nodata_values[i])) + + corrected_dataset = gdal.Open(vrt_string) + + # set NODATA_VALUE metadata + corrected_dataset.SetMetadataItem( + "NODATA_VALUES", " ".join([str(i) for i in nodata_values]) + ) + + if options and options.verbose: + print("Modified warping result saved into 'tiles1.vrt'") + + with open("tiles1.vrt", "w") as f: + f.write(corrected_dataset.GetMetadata("xml:VRT")[0]) + + return corrected_dataset + + +def add_alpha_band_to_string_vrt(vrt_string: str) -> str: + # TODO: gbataille - Old code speak of this being equivalent to gdalwarp -dstalpha + # To be checked + + vrt_root = ElementTree.fromstring(vrt_string) + + index = 0 + nb_bands = 0 + for subelem in list(vrt_root): + if subelem.tag == "VRTRasterBand": + nb_bands += 1 + color_node = subelem.find("./ColorInterp") + if color_node is not None and color_node.text == "Alpha": + raise Exception("Alpha band already present") + else: + if nb_bands: + # This means that we are one element after the Band definitions + break + + index += 1 + + tb = ElementTree.TreeBuilder() + tb.start( + "VRTRasterBand", + { + "dataType": "Byte", + "band": str(nb_bands + 1), + "subClass": "VRTWarpedRasterBand", + }, + ) + tb.start("ColorInterp", {}) + tb.data("Alpha") + tb.end("ColorInterp") + tb.end("VRTRasterBand") + elem = tb.close() + + vrt_root.insert(index, elem) + + warp_options = vrt_root.find(".//GDALWarpOptions") + tb = ElementTree.TreeBuilder() + tb.start("DstAlphaBand", {}) + tb.data(str(nb_bands + 1)) + tb.end("DstAlphaBand") + elem = tb.close() + warp_options.append(elem) + + # TODO: gbataille - this is a GDALWarpOptions. Why put it in a specific place? + tb = ElementTree.TreeBuilder() + tb.start("Option", {"name": "INIT_DEST"}) + tb.data("0") + tb.end("Option") + elem = tb.close() + warp_options.append(elem) + + return ElementTree.tostring(vrt_root).decode() + + +def update_alpha_value_for_non_alpha_inputs( + warped_vrt_dataset: gdal.Dataset, options: Optional[Options] = None +) -> gdal.Dataset: + """ + Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has + not been forced by options + """ + if warped_vrt_dataset.RasterCount in [1, 3]: + + vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] + + vrt_string = add_alpha_band_to_string_vrt(vrt_string) + + warped_vrt_dataset = gdal.Open(vrt_string) + + if options and options.verbose: + print("Modified -dstalpha warping result saved into 'tiles1.vrt'") + + with open("tiles1.vrt", "w") as f: + f.write(warped_vrt_dataset.GetMetadata("xml:VRT")[0]) + + return warped_vrt_dataset + + +def nb_data_bands(dataset: gdal.Dataset) -> int: + """ + Return the number of data (non-alpha) bands of a gdal dataset + """ + alphaband = dataset.GetRasterBand(1).GetMaskBand() + if ( + (alphaband.GetMaskFlags() & gdal.GMF_ALPHA) + or dataset.RasterCount == 4 + or dataset.RasterCount == 2 + ): + return dataset.RasterCount - 1 + return dataset.RasterCount + + +def _get_creation_options(options): + copts = [] + if options.tiledriver == "WEBP": + if options.webp_lossless: + copts = ["LOSSLESS=True"] + else: + copts = ["QUALITY=" + str(options.webp_quality)] + return copts + + +def create_base_tile(tile_job_info: "TileJobInfo", tile_detail: "TileDetail") -> None: + + dataBandsCount = tile_job_info.nb_data_bands + output = tile_job_info.output_file_path + tileext = tile_job_info.tile_extension + tile_size = tile_job_info.tile_size + options = tile_job_info.options + + cached_ds = getattr(threadLocal, "cached_ds", None) + if cached_ds and cached_ds.GetDescription() == tile_job_info.src_file: + ds = cached_ds + else: + ds = gdal.Open(tile_job_info.src_file, gdal.GA_ReadOnly) + threadLocal.cached_ds = ds + + mem_drv = gdal.GetDriverByName("MEM") + out_drv = gdal.GetDriverByName(tile_job_info.tile_driver) + alphaband = ds.GetRasterBand(1).GetMaskBand() + + tx = tile_detail.tx + ty = tile_detail.ty + tz = tile_detail.tz + rx = tile_detail.rx + ry = tile_detail.ry + rxsize = tile_detail.rxsize + rysize = tile_detail.rysize + wx = tile_detail.wx + wy = tile_detail.wy + wxsize = tile_detail.wxsize + wysize = tile_detail.wysize + querysize = tile_detail.querysize + # MMGIS + isDEMtile = tile_detail.isDEMtile + + tilebands = dataBandsCount + 1 + + # MMGIS + if isDEMtile == True: + tilebands = 4 + + # Tile dataset in memory + tilefilename = os.path.join(output, str( + tz), str(tx), "%s.%s" % (ty, tileext)) + dstile = mem_drv.Create("", tile_size, tile_size, tilebands) + + data = alpha = None + + if options.verbose: + print( + "\tReadRaster Extent: ", (rx, ry, rxsize, + rysize), (wx, wy, wxsize, wysize) + ) + + # Query is in 'nearest neighbour' but can be bigger in then the tile_size + # We scale down the query to the tile_size by supplied algorithm. + + if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: + try: + alpha = alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize) + + # Detect totally transparent tile and skip its creation + if tile_job_info.exclude_transparent and len(alpha) == alpha.count( + "\x00".encode("ascii") + ): + return + + data = ds.ReadRaster( + rx, + ry, + rxsize, + rysize, + wxsize, + wysize, + band_list=list(range(1, dataBandsCount + 1)), + ) + except: + pass + + # The tile in memory is a transparent file by default. Write pixel values into it if + # any + if data: + # MMGIS + if isDEMtile: + dsquery = mem_drv.Create( + '', querysize, querysize, tilebands, gdal.GDT_Byte) # 1bto4b + + data = ds.GetRasterBand(1).ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) + + data = struct.unpack('f' * wxsize * wysize, data) + data1 = [] + data2 = [] + data3 = [] + data4 = [] + for f in data: + # Because 0 is a valid value in many datasets yet still special in images being fully transparent, + # we're going to encode zero's as 2^31 (2147483648) (79, 0, 0, 0) and have the reader parse it back to 0 + if f == 0: + f = pow(2, 31) + f = str(binary(f)) + data1.append(int(f[:8], 2)) + data2.append(int(f[8:16], 2)) + data3.append(int(f[16:24], 2)) + data4.append(int(f[24:], 2)) + + data1s = b'' + data2s = b'' + data3s = b'' + data4s = b'' + indx = 0 + for v in data1: + data1s += struct.pack('B', data1[indx]) + data2s += struct.pack('B', data2[indx]) + data3s += struct.pack('B', data3[indx]) + data4s += struct.pack('B', data4[indx]) + indx += 1 + + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data1s, band_list=[1], buf_type=gdal.GDT_Byte) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data2s, band_list=[2], buf_type=gdal.GDT_Byte) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data3s, band_list=[3], buf_type=gdal.GDT_Byte) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data4s, band_list=[4], buf_type=gdal.GDT_Byte) + # sys.exit('done') + + scale_query_to_tile( + dsquery, dstile, options, tilefilename=tilefilename) + del dsquery + elif tile_size == querysize: + # Use the ReadRaster result directly in tiles ('nearest neighbour' query) + dstile.WriteRaster( + wx, + wy, + wxsize, + wysize, + data, + band_list=list(range(1, dataBandsCount + 1)), + ) + dstile.WriteRaster(wx, wy, wxsize, wysize, + alpha, band_list=[tilebands]) + + # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, + # MrSID) the ReadRaster function returns high-quality raster (not ugly + # nearest neighbour) + # TODO: Use directly 'near' for WaveLet files + else: + # Big ReadRaster query in memory scaled to the tile_size - all but 'near' + # algo + dsquery = mem_drv.Create("", querysize, querysize, tilebands) + # TODO: fill the null value in case a tile without alpha is produced (now + # only png tiles are supported) + dsquery.WriteRaster( + wx, + wy, + wxsize, + wysize, + data, + band_list=list(range(1, dataBandsCount + 1)), + ) + dsquery.WriteRaster(wx, wy, wxsize, wysize, + alpha, band_list=[tilebands]) + + scale_query_to_tile(dsquery, dstile, options, + tilefilename=tilefilename) + del dsquery + + del data + + if options.resampling != "antialias" and options.resampling != "near-composite": + # Write a copy of tile to png/jpg + out_drv.CreateCopy( + tilefilename, dstile, strict=0, options=_get_creation_options(options) + ) + + del dstile + + # Create a KML file for this tile. + if tile_job_info.kml: + swne = get_tile_swne(tile_job_info, options) + if swne is not None: + kmlfilename = os.path.join( + output, + str(tz), + str(tx), + "%d.kml" % GDAL2Tiles.getYTile(ty, tz, options), + ) + if not options.resume or not isfile(kmlfilename): + with my_open(kmlfilename, "wb") as f: + f.write( + generate_kml( + tx, + ty, + tz, + tile_job_info.tile_extension, + tile_job_info.tile_size, + swne, + tile_job_info.options, + ).encode("utf-8") + ) + + +def create_overview_tile( + base_tz: int, + base_tiles: List[Tuple[int, int]], + output_folder: str, + tile_job_info: "TileJobInfo", + options: Options, +): + """Generating an overview tile from no more than 4 underlying tiles(base tiles)""" + + overview_tz = base_tz - 1 + overview_tx = base_tiles[0][0] >> 1 + overview_ty = base_tiles[0][1] >> 1 + overview_ty_real = GDAL2Tiles.getYTile(overview_ty, overview_tz, options) + + tilefilename = os.path.join( + output_folder, + str(overview_tz), + str(overview_tx), + "%s.%s" % (overview_ty_real, tile_job_info.tile_extension), + ) + if options.verbose: + print(tilefilename) + if options.resume and isfile(tilefilename): + if options.verbose: + print("Tile generation skipped because of --resume") + return + + mem_driver = gdal.GetDriverByName("MEM") + tile_driver = tile_job_info.tile_driver + out_driver = gdal.GetDriverByName(tile_driver) + + tilebands = tile_job_info.nb_data_bands + 1 + + # MMGIS + if options.isDEMtile == True: + tilebands = 4 + + dsquery = mem_driver.Create( + "", 2 * tile_job_info.tile_size, 2 * tile_job_info.tile_size, tilebands + ) + # TODO: fill the null value + dstile = mem_driver.Create( + "", tile_job_info.tile_size, tile_job_info.tile_size, tilebands + ) + + usable_base_tiles = [] + + for base_tile in base_tiles: + base_tx = base_tile[0] + base_ty = base_tile[1] + base_ty_real = GDAL2Tiles.getYTile(base_ty, base_tz, options) + + base_tile_path = os.path.join( + output_folder, + str(base_tz), + str(base_tx), + "%s.%s" % (base_ty_real, tile_job_info.tile_extension), + ) + if not isfile(base_tile_path): + continue + + dsquerytile = gdal.Open(base_tile_path, gdal.GA_ReadOnly) + + if base_tx % 2 == 0: + tileposx = 0 + else: + tileposx = tile_job_info.tile_size + + if options.xyz and options.profile == "raster": + if base_ty % 2 == 0: + tileposy = 0 + else: + tileposy = tile_job_info.tile_size + else: + if base_ty % 2 == 0: + tileposy = tile_job_info.tile_size + else: + tileposy = 0 + + if dsquerytile.RasterCount == tilebands - 1: + # assume that the alpha band is missing and add it + tmp_ds = mem_driver.CreateCopy("", dsquerytile, 0) + tmp_ds.AddBand() + mask = bytearray( + [255] * (tile_job_info.tile_size * tile_job_info.tile_size) + ) + tmp_ds.WriteRaster( + 0, + 0, + tile_job_info.tile_size, + tile_job_info.tile_size, + mask, + band_list=[tilebands], + ) + dsquerytile = tmp_ds + elif dsquerytile.RasterCount != tilebands: + raise Exception("Unexpected number of bands in base tile") + + base_data = dsquerytile.ReadRaster( + 0, 0, tile_job_info.tile_size, tile_job_info.tile_size + ) + + dsquery.WriteRaster( + tileposx, + tileposy, + tile_job_info.tile_size, + tile_job_info.tile_size, + base_data, + band_list=list(range(1, tilebands + 1)), + ) + + usable_base_tiles.append(base_tile) + + if not usable_base_tiles: + return + + scale_query_to_tile(dsquery, dstile, options, tilefilename=tilefilename) + # Write a copy of tile to png/jpg + if options.resampling != "antialias" and options.resampling != "near-composite": + # Write a copy of tile to png/jpg + out_driver.CreateCopy( + tilefilename, dstile, strict=0, options=_get_creation_options(options) + ) + # Remove useless side car file + aux_xml = tilefilename + ".aux.xml" + if gdal.VSIStatL(aux_xml) is not None: + gdal.Unlink(aux_xml) + + if options.verbose: + print("\tbuild from zoom", base_tz, " tiles:", *base_tiles) + + # Create a KML file for this tile. + if tile_job_info.kml: + swne = get_tile_swne(tile_job_info, options) + if swne is not None: + with my_open( + os.path.join( + output_folder, + "%d/%d/%d.kml" % (overview_tz, overview_tx, + overview_ty_real), + ), + "wb", + ) as f: + f.write( + generate_kml( + overview_tx, + overview_ty, + overview_tz, + tile_job_info.tile_extension, + tile_job_info.tile_size, + swne, + options, + [(t[0], t[1], base_tz) for t in base_tiles], + ).encode("utf-8") + ) + + +def group_overview_base_tiles( + base_tz: int, output_folder: str, tile_job_info: "TileJobInfo" +) -> List[List[Tuple[int, int]]]: + """Group base tiles that belong to the same overview tile""" + + overview_to_bases = {} + tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[base_tz] + for ty in range(tmaxy, tminy - 1, -1): + overview_ty = ty >> 1 + for tx in range(tminx, tmaxx + 1): + overview_tx = tx >> 1 + base_tile = (tx, ty) + overview_tile = (overview_tx, overview_ty) + + if overview_tile not in overview_to_bases: + overview_to_bases[overview_tile] = [] + + overview_to_bases[overview_tile].append(base_tile) + + # Create directories for the tiles + overview_tz = base_tz - 1 + for tx in range(tminx, tmaxx + 1): + overview_tx = tx >> 1 + tiledirname = os.path.join( + output_folder, str(overview_tz), str(overview_tx)) + makedirs(tiledirname) + + return list(overview_to_bases.values()) + + +def count_overview_tiles(tile_job_info: "TileJobInfo") -> int: + tile_number = 0 + for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): + tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] + tile_number += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) + + return tile_number + + +def optparse_init() -> optparse.OptionParser: + """Prepare the option parser for input (argv)""" + + usage = "Usage: %prog [options] input_file [output]" + p = optparse.OptionParser(usage, version="%prog " + __version__) + p.add_option( + "-p", + "--profile", + dest="profile", + type="choice", + choices=profile_list, + help=( + "Tile cutting profile (%s) - default 'mercator' " + "(Google Maps compatible)" % ",".join(profile_list) + ), + ) + p.add_option( + "-r", + "--resampling", + dest="resampling", + type="choice", + choices=resampling_list, + help="Resampling method (%s) - default 'average'" % ",".join(resampling_list), + ) + p.add_option( + "-s", + "--s_srs", + dest="s_srs", + metavar="SRS", + help="The spatial reference system used for the source input data", + ) + p.add_option( + "-z", + "--zoom", + dest="zoom", + help="Zoom levels to render (format:'2-5', '10-' or '10').", + ) + p.add_option( + "-e", + "--resume", + dest="resume", + action="store_true", + help="Resume mode. Generate only missing files.", + ) + p.add_option( + "-a", + "--srcnodata", + dest="srcnodata", + metavar="NODATA", + help="Value in the input dataset considered as transparent", + ) + p.add_option( + "-d", + "--tmscompatible", + dest="tmscompatible", + action="store_true", + help=( + "When using the geodetic profile, specifies the base resolution " + "as 0.703125 or 2 tiles at zoom level 0." + ), + ) + p.add_option( + "--xyz", + action="store_true", + dest="xyz", + help="Use XYZ tile numbering (OSM Slippy Map tiles) instead of TMS", + ) + p.add_option( + "-v", + "--verbose", + action="store_true", + dest="verbose", + help="Print status messages to stdout", + ) + p.add_option( + "-x", + "--exclude", + action="store_true", + dest="exclude_transparent", + help="Exclude transparent tiles from result tileset", + ) + p.add_option( + "-q", + "--quiet", + action="store_true", + dest="quiet", + help="Disable messages and status to stdout", + ) + # MMGIS + p.add_option("--extentworld", dest="extentworld", + help="The full world meter extent (comma-separated as minx,maxx,miny,maxy,pixelsize) of an inner raster profile.") + # MMGIS + p.add_option("--dem", action="store_true", dest="isDEMtile", + help="Indicate if the input is a Digital Elevation Model") + p.add_option( + "--processes", + dest="nb_processes", + type="int", + help="Number of processes to use for tiling", + ) + p.add_option( + "--mpi", + action="store_true", + dest="mpi", + help="Assume launched by mpiexec and ignore --processes. " + "User should set GDAL_CACHEMAX to size per process.", + ) + p.add_option( + "--tilesize", + dest="tilesize", + metavar="PIXELS", + type="int", + help="Width and height in pixel of a tile", + ) + p.add_option( + "--tiledriver", + dest="tiledriver", + choices=["PNG", "WEBP"], + default="PNG", + type="choice", + help="which tile driver to use for the tiles", + ) + + # KML options + g = optparse.OptionGroup( + p, + "KML (Google Earth) options", + "Options for generated Google Earth SuperOverlay metadata", + ) + g.add_option( + "-k", + "--force-kml", + dest="kml", + action="store_true", + help=( + "Generate KML for Google Earth - default for 'geodetic' profile and " + "'raster' in EPSG:4326. For a dataset with different projection use " + "with caution!" + ), + ) + g.add_option( + "-n", + "--no-kml", + dest="kml", + action="store_false", + help="Avoid automatic generation of KML files for EPSG:4326", + ) + g.add_option( + "-u", + "--url", + dest="url", + help="URL address where the generated tiles are going to be published", + ) + p.add_option_group(g) + + # HTML options + g = optparse.OptionGroup( + p, "Web viewer options", "Options for generated HTML viewers a la Google Maps" + ) + g.add_option( + "-w", + "--webviewer", + dest="webviewer", + type="choice", + choices=webviewer_list, + help="Web viewer to generate (%s) - default 'all'" % ",".join( + webviewer_list), + ) + g.add_option("-t", "--title", dest="title", help="Title of the map") + g.add_option("-c", "--copyright", dest="copyright", + help="Copyright for the map") + g.add_option( + "-g", + "--googlekey", + dest="googlekey", + help="Google Maps API key from https://developers.google.com/maps/faq?csw=1#using-google-maps-apis", + ) + g.add_option( + "-b", + "--bingkey", + dest="bingkey", + help="Bing Maps API key from https://www.bingmapsportal.com/", + ) + p.add_option_group(g) + + # MapML options + g = optparse.OptionGroup( + p, "MapML options", "Options for generated MapML file") + g.add_option( + "--mapml-template", + dest="mapml_template", + action="store_true", + help=( + "Filename of a template mapml file where variables will " + "be substituted. If not specified, the generic " + "template_tiles.mapml file from GDAL data resources " + "will be used" + ), + ) + p.add_option_group(g) + + # Webp options + g = optparse.OptionGroup(p, "WEBP options", "Options for WEBP tiledriver") + g.add_option( + "--webp-quality", + dest="webp_quality", + type=int, + default=75, + help="quality of webp image, integer between 1 and 100, default is 75", + ) + g.add_option( + "--webp-lossless", + dest="webp_lossless", + action="store_true", + help="use lossless compression for the webp image", + ) + p.add_option_group(g) + + p.set_defaults( + verbose=False, + profile="mercator", + kml=None, + url="", + webviewer="all", + copyright="", + resampling="average", + resume=False, + googlekey="INSERT_YOUR_KEY_HERE", + bingkey="INSERT_YOUR_KEY_HERE", + processes=1, + ) + + return p + + +def process_args(argv: List[str]) -> Tuple[str, str, Options]: + parser = optparse_init() + options, args = parser.parse_args(args=argv) + + # Args should be either an input file OR an input file and an output folder + if not args: + exit_with_error( + "You need to specify at least an input file as argument to the script" + ) + if len(args) > 2: + exit_with_error( + "Processing of several input files is not supported.", + "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " + "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(args), + ) + + input_file = args[0] + if not isfile(input_file): + exit_with_error( + "The provided input file %s does not exist or is not a file" % input_file + ) + + if len(args) == 2: + output_folder = args[1] + else: + # Directory with input filename without extension in actual directory + output_folder = os.path.splitext(os.path.basename(input_file))[0] + + if options.webviewer == "mapml": + options.xyz = True + if options.profile == "geodetic": + options.tmscompatible = True + + options = options_post_processing(options, input_file, output_folder) + + return input_file, output_folder, options + + +def options_post_processing( + options: Options, input_file: str, output_folder: str +) -> Options: + if not options.title: + options.title = os.path.basename(input_file) + + # User specified zoom levels + tminz = None + tmaxz = None + if hasattr(options, "zoom") and options.zoom and isinstance(options.zoom, str): + minmax = options.zoom.split("-", 1) + zoom_min = minmax[0] + tminz = int(zoom_min) + + if len(minmax) == 2: + # Min-max zoom value + zoom_max = minmax[1] + if zoom_max: + # User-specified (non-automatically calculated) + tmaxz = int(zoom_max) + if tmaxz < tminz: + raise Exception( + "max zoom (%d) less than min zoom (%d)" % ( + tmaxz, tminz) + ) + else: + # Single zoom value (min = max) + tmaxz = tminz + options.zoom = [tminz, tmaxz] + + if options.url and not options.url.endswith("/"): + options.url += "/" + if options.url: + out_path = output_folder + if out_path.endswith("/"): + out_path = out_path[:-1] + options.url += os.path.basename(out_path) + "/" + + # Supported options + if options.resampling == "antialias" and not numpy_available: + exit_with_error( + "'antialias' resampling algorithm is not available.", + "Install PIL (Python Imaging Library) and numpy.", + ) + + if options.resampling == "near-composite" and not numpy_available: + exit_with_error( + "'near-composite' resampling algorithm is not available.", + "Install PIL (Python Imaging Library) and numpy.", + ) + + if options.tiledriver == "WEBP": + if gdal.GetDriverByName(options.tiledriver) is None: + exit_with_error("WEBP driver is not available") + + if not options.webp_lossless: + if options.webp_quality <= 0 or options.webp_quality > 100: + exit_with_error("webp_quality should be in the range [1-100]") + options.webp_quality = int(options.webp_quality) + + # Output the results + if options.verbose: + print("Options:", options) + print("Input:", input_file) + print("Output:", output_folder) + print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) + print("") + + return options + + +class TileDetail(object): + tx = 0 + ty = 0 + tz = 0 + rx = 0 + ry = 0 + rxsize = 0 + rysize = 0 + wx = 0 + wy = 0 + wxsize = 0 + wysize = 0 + querysize = 0 + isDEMtile = False + + def __init__(self, **kwargs): + for key in kwargs: + if hasattr(self, key): + setattr(self, key, kwargs[key]) + + def __unicode__(self): + return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) + + def __str__(self): + return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) + + def __repr__(self): + return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) + + +class TileJobInfo(object): + """ + Plain object to hold tile job configuration for a dataset + """ + + src_file = "" + nb_data_bands = 0 + output_file_path = "" + tile_extension = "" + tile_size = 0 + tile_driver = None + kml = False + tminmax = [] + tminz = 0 + tmaxz = 0 + in_srs_wkt = 0 + out_geo_trans = [] + ominy = 0 + is_epsg_4326 = False + options = None + exclude_transparent = False + + def __init__(self, **kwargs): + for key in kwargs: + if hasattr(self, key): + setattr(self, key, kwargs[key]) + + def __unicode__(self): + return "TileJobInfo %s\n" % (self.src_file) + + def __str__(self): + return "TileJobInfo %s\n" % (self.src_file) + + def __repr__(self): + return "TileJobInfo %s\n" % (self.src_file) + + +class Gdal2TilesError(Exception): + pass + + +class GDAL2Tiles(object): + def __init__(self, input_file: str, output_folder: str, options: Options) -> None: + """Constructor function - initialization""" + self.out_drv = None + self.mem_drv = None + self.warped_input_dataset = None + self.out_srs = None + self.nativezoom = None + self.tminmax = None + self.tsize = None + self.mercator = None + self.geodetic = None + self.dataBandsCount = None + self.out_gt = None + self.tileswne = None + self.swne = None + self.ominx = None + self.omaxx = None + self.omaxy = None + self.ominy = None + + # MMGIS + self.isRasterBounded = False + self.isDEMtile = False + self.fminx = None + self.fmaxx = None + self.fminy = None + self.fmaxy = None + self.fPixelSize = None + + self.input_file = None + self.output_folder = None + + self.isepsg4326 = None + self.in_srs = None + self.in_srs_wkt = None + + # Tile format + self.tile_size = 256 + if options.isDEMtile: + self.tile_size = 32 + if options.tilesize: + self.tile_size = options.tilesize + + self.tiledriver = options.tiledriver + if options.tiledriver == "PNG": + self.tileext = "png" + else: + self.tileext = "webp" + if options.mpi: + makedirs(output_folder) + self.tmp_dir = tempfile.mkdtemp(dir=output_folder) + else: + self.tmp_dir = tempfile.mkdtemp() + self.tmp_vrt_filename = os.path.join( + self.tmp_dir, str(uuid4()) + ".vrt") + + # Should we read bigger window of the input raster and scale it down? + # Note: Modified later by open_input() + # Not for 'near' resampling + # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) + # Not for 'raster' profile + self.scaledquery = True + # How big should be query window be for scaling down + # Later on reset according the chosen resampling algorithm + self.querysize = 4 * self.tile_size + + # Should we use Read on the input file for generating overview tiles? + # Note: Modified later by open_input() + # Otherwise the overview tiles are generated from existing underlying tiles + self.overviewquery = False + + self.input_file = input_file + self.output_folder = output_folder + self.options = options + + # MMGIS + if self.options.extentworld: + extentworld = self.options.extentworld.split(",") + self.isRasterBounded = True + self.fminx = float(extentworld[0]) + self.fmaxx = float(extentworld[2]) + self.fminy = float(extentworld[3]) + self.fmaxy = float(extentworld[1]) + self.fPixelSize = float(extentworld[4]) + + if self.options.resampling == "near": + self.querysize = self.tile_size + + elif self.options.resampling == "bilinear": + self.querysize = self.tile_size * 2 + + self.tminz, self.tmaxz = self.options.zoom + + # MMGIS + if self.options.isDEMtile: + self.isDEMtile = True + + # KML generation + self.kml = self.options.kml + + # ------------------------------------------------------------------------- + def open_input(self) -> None: + """Initialization of the input raster, reprojection if necessary""" + gdal.AllRegister() + + self.out_drv = gdal.GetDriverByName(self.tiledriver) + self.mem_drv = gdal.GetDriverByName("MEM") + + if not self.out_drv: + raise Exception( + "The '%s' driver was not found, is it available in this GDAL build?" + % self.tiledriver + ) + if not self.mem_drv: + raise Exception( + "The 'MEM' driver was not found, is it available in this GDAL build?" + ) + + # Open the input file + + if self.input_file: + input_dataset: gdal.Dataset = gdal.Open( + self.input_file, gdal.GA_ReadOnly) + else: + raise Exception("No input file was specified") + + if self.options.verbose: + print( + "Input file:", + "( %sP x %sL - %s bands)" + % ( + input_dataset.RasterXSize, + input_dataset.RasterYSize, + input_dataset.RasterCount, + ), + ) + + if not input_dataset: + # Note: GDAL prints the ERROR message too + exit_with_error( + "It is not possible to open the input file '%s'." % self.input_file + ) + + # Read metadata from the input file + if input_dataset.RasterCount == 0: + exit_with_error("Input file '%s' has no raster band" % + self.input_file) + + if input_dataset.GetRasterBand(1).GetRasterColorTable(): + exit_with_error( + "Please convert this file to RGB/RGBA and run gdal2tiles on the result.", + "From paletted file you can create RGBA file (temp.vrt) by:\n" + "gdal_translate -of vrt -expand rgba %s temp.vrt\n" + "then run:\n" + "gdal2tiles temp.vrt" % self.input_file, + ) + + if self.isDEMtile != True and input_dataset.GetRasterBand(1).DataType != gdal.GDT_Byte: + exit_with_error( + "Please convert this file to 8-bit and run gdal2tiles on the result.", + "To scale pixel values you can use:\n" + "gdal_translate -of VRT -ot Byte -scale %s temp.vrt\n" + "then run:\n" + "gdal2tiles temp.vrt" % self.input_file, + ) + + if self.isDEMtile == True and input_dataset.GetRasterBand(1).DataType != gdal.GDT_Float32: + exit_with_error( + "Please convert this file to 32-bit for its first band and run gdal2tiles on the result.", + ) + + in_nodata = setup_no_data_values(input_dataset, self.options) + + if self.options.verbose: + print( + "Preprocessed file:", + "( %sP x %sL - %s bands)" + % ( + input_dataset.RasterXSize, + input_dataset.RasterYSize, + input_dataset.RasterCount, + ), + ) + + self.in_srs, self.in_srs_wkt = setup_input_srs( + input_dataset, self.options) + + self.out_srs = setup_output_srs(self.in_srs, self.options) + + # If input and output reference systems are different, we reproject the input dataset into + # the output reference system for easier manipulation + + self.warped_input_dataset = None + + if self.options.profile != "raster": + + if not self.in_srs: + exit_with_error( + "Input file has unknown SRS.", + "Use --s_srs EPSG:xyz (or similar) to provide source reference system.", + ) + + if not has_georeference(input_dataset): + exit_with_error( + "There is no georeference - neither affine transformation (worldfile) " + "nor GCPs. You can generate only 'raster' profile tiles.", + "Either gdal2tiles with parameter -p 'raster' or use another GIS " + "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs", + ) + + if (self.in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or ( + input_dataset.GetGCPCount() != 0 + ): + self.warped_input_dataset = reproject_dataset( + input_dataset, self.in_srs, self.out_srs + ) + + if in_nodata: + self.warped_input_dataset = update_no_data_values( + self.warped_input_dataset, in_nodata, options=self.options + ) + else: + self.warped_input_dataset = update_alpha_value_for_non_alpha_inputs( + self.warped_input_dataset, options=self.options + ) + + if self.warped_input_dataset and self.options.verbose: + print( + "Projected file:", + "tiles.vrt", + "( %sP x %sL - %s bands)" + % ( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + self.warped_input_dataset.RasterCount, + ), + ) + + if not self.warped_input_dataset: + self.warped_input_dataset = input_dataset + + gdal.GetDriverByName("VRT").CreateCopy( + self.tmp_vrt_filename, self.warped_input_dataset + ) + + self.dataBandsCount = nb_data_bands(self.warped_input_dataset) + + # KML test + self.isepsg4326 = False + srs4326 = osr.SpatialReference() + srs4326.ImportFromEPSG(4326) + srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): + self.isepsg4326 = True + if self.kml is None: + self.kml = True + if self.kml and self.options.verbose: + print("KML autotest OK!") + + if self.kml is None: + self.kml = False + + # Read the georeference + self.out_gt = self.warped_input_dataset.GetGeoTransform() + + # Test the size of the pixel + + # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) + if (self.out_gt[2], self.out_gt[4]) != (0, 0): + exit_with_error( + "Georeference of the raster contains rotation or skew. " + "Such raster is not supported. Please use gdalwarp first." + ) + + # Here we expect: pixel is square, no rotation on the raster + + # Output Bounds - coordinates in the output SRS + self.ominx = self.out_gt[0] + self.omaxx = ( + self.out_gt[0] + + self.warped_input_dataset.RasterXSize * self.out_gt[1] + ) + self.omaxy = self.out_gt[3] + self.ominy = ( + self.out_gt[3] - + self.warped_input_dataset.RasterYSize * self.out_gt[1] + ) + # Note: maybe round(x, 14) to avoid the gdal_translate behavior, when 0 becomes -1e-15 + + # MMGIS + def linearScale(domain, rang, value): + return ( + ((rang[1] - rang[0]) * (value - domain[0])) / + (domain[1] - domain[0]) + + rang[0] + ) + # MMGIS + self.warped_input_dataset.fRasterXSize = self.warped_input_dataset.RasterXSize + self.warped_input_dataset.fRasterYSize = self.warped_input_dataset.RasterYSize + self.warped_input_dataset.fRasterXOrigin = 0 + self.warped_input_dataset.fRasterYOrigin = 0 + self.warped_input_dataset.PixelSize = self.out_gt[1] + self.warped_input_dataset.fPixelSize = self.fPixelSize + # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) + # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) + if self.isRasterBounded: + self.warped_input_dataset.fRasterXSize = int(math.floor(self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( + self.omaxx - self.ominx) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) + self.warped_input_dataset.fRasterYSize = int(math.ceil(self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( + self.omaxy - self.ominy) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) + self.warped_input_dataset.fRasterXSizeRaw = int(math.floor( + self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) + self.warped_input_dataset.fRasterYSizeRaw = int(math.ceil( + self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) + # print("Full Raster Size: ", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize ) + self.warped_input_dataset.fRasterXOrigin = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]))) + self.warped_input_dataset.fRasterYOrigin = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]))) + self.warped_input_dataset.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ + 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) + self.warped_input_dataset.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ + self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) + self.warped_input_dataset.fRasterXWidth = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin + self.warped_input_dataset.fRasterYHeight = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin + + if self.options.verbose: + print( + "Bounds (output srs):", + round(self.ominx, 13), + self.ominy, + self.omaxx, + self.omaxy, + ) + + # Calculating ranges for tiles in different zoom levels + if self.options.profile == "mercator": + + self.mercator = GlobalMercator(tile_size=self.tile_size) + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.mercator.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, MAXZOOMLEVEL)) + for tz in range(0, MAXZOOMLEVEL): + tminx, tminy = self.mercator.MetersToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.mercator.MetersToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2**tz - 1, tmaxx), min(2**tz - 1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the minimal zoom level (map covers area equivalent to one tile) + if self.tminz is None: + self.tminz = self.mercator.ZoomForPixelSize( + self.out_gt[1] + * max( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + ) + / float(self.tile_size) + ) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) + self.tmaxz = max(self.tminz, self.tmaxz) + + self.tminz = min(self.tminz, self.tmaxz) + + if self.options.verbose: + print( + "Bounds (latlong):", + self.mercator.MetersToLatLon(self.ominx, self.ominy), + self.mercator.MetersToLatLon(self.omaxx, self.omaxy), + ) + print("MinZoomLevel:", self.tminz) + print( + "MaxZoomLevel:", + self.tmaxz, + "(", + self.mercator.Resolution(self.tmaxz), + ")", + ) + + elif self.options.profile == "geodetic": + + self.geodetic = GlobalGeodetic( + self.options.tmscompatible, tile_size=self.tile_size + ) + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.geodetic.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, MAXZOOMLEVEL)) + for tz in range(0, MAXZOOMLEVEL): + tminx, tminy = self.geodetic.LonLatToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.geodetic.LonLatToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2 ** (tz + 1) - 1, + tmaxx), min(2**tz - 1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tminz is None: + self.tminz = self.geodetic.ZoomForPixelSize( + self.out_gt[1] + * max( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + ) + / float(self.tile_size) + ) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) + self.tmaxz = max(self.tminz, self.tmaxz) + + self.tminz = min(self.tminz, self.tmaxz) + + if self.options.verbose: + print( + "Bounds (latlong):", self.ominx, self.ominy, self.omaxx, self.omaxy + ) + + # MMGIS + elif self.options.profile == 'raster' and self.isRasterBounded: + + def log2(x): + return math.log10(x) / math.log10(2) + + # MMGIS + self.nativezoom = int( + max(math.ceil(log2(self.warped_input_dataset.fRasterXSizeRaw/float(self.tile_size))), + math.ceil(log2(self.warped_input_dataset.fRasterYSizeRaw/float(self.tile_size))))) + + self.basenativezoom = int( + max(math.ceil(log2(self.warped_input_dataset.fRasterXSize/float(self.tile_size))), + math.ceil(log2(self.warped_input_dataset.fRasterYSize/float(self.tile_size))))) + + # MMGIS + self.warped_input_dataset.fWorldXSize = int( + float(self.warped_input_dataset.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) + self.warped_input_dataset.fWorldYSize = int( + float(self.warped_input_dataset.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) + self.warped_input_dataset.fRasterXOriginWorld = int(float( + self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXOrigin) / self.warped_input_dataset.fRasterXSize)) + self.warped_input_dataset.fRasterYOriginWorld = int(float( + self.warped_input_dataset.fWorldYSize) * (float(self.warped_input_dataset.fRasterYOrigin) / self.warped_input_dataset.fRasterYSize)) + self.warped_input_dataset.fRasterXSizeWorld = int(float( + self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXWidth) / self.warped_input_dataset.fRasterXSize)) + self.warped_input_dataset.fRasterYSizeWorld = int(float( + self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize)) + # print("World Size", self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize) + # print("Raster Origin World", self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld) + # print("Raster Size World", self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld) + + if self.options.verbose: + print("Native zoom of the raster:", self.nativezoom) + + # Get the minimal zoom level (whole raster in one tile) + if self.tminz is None: + self.tminz = 0 + + # Get the maximal zoom level (native resolution of the raster) + if self.tmaxz is None: + self.tmaxz = self.nativezoom + + # MMGIS + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, self.tmaxz+1)) + self.tsize = list(range(0, self.tmaxz+1)) + # print("Raster Size:", self.out_ds.RasterXSize,self.out_ds.RasterYSize) + # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) + # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) + for tz in range(0, self.tmaxz+1): + tsize = 2.0**(self.tmaxz-tz)*self.tile_size + toffsetx = int(math.floor( + 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) + toffsety = int(math.floor( + 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw) / self.warped_input_dataset.fRasterYSizeRaw)) + # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + toffsetx = int(math.floor( + self.warped_input_dataset.fRasterXOriginWorld / tsize)) + toffsety = int(math.floor( + self.warped_input_dataset.fRasterYOriginWorld / tsize)) + # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + tmaxx = int(math.floor( + self.warped_input_dataset.fRasterXSizeWorld / tsize)) + toffsetx + 1 + + tmaxy = int(math.floor( + self.warped_input_dataset.fRasterYSizeWorld / tsize)) + toffsety + 1 + self.tsize[tz] = math.ceil(tsize) + #tminx = toffsetx + tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 + tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 + + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + # print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) + + elif self.options.profile == "raster": + + def log2(x): + return math.log10(x) / math.log10(2) + + self.nativezoom = max( + 0, + int( + max( + math.ceil( + log2( + self.warped_input_dataset.RasterXSize + / float(self.tile_size) + ) + ), + math.ceil( + log2( + self.warped_input_dataset.RasterYSize + / float(self.tile_size) + ) + ), + ) + ), + ) + + if self.options.verbose: + print("Native zoom of the raster:", self.nativezoom) + + # Get the minimal zoom level (whole raster in one tile) + if self.tminz is None: + self.tminz = 0 + + # Get the maximal zoom level (native resolution of the raster) + if self.tmaxz is None: + self.tmaxz = self.nativezoom + self.tmaxz = max(self.tminz, self.tmaxz) + + elif self.tmaxz > self.nativezoom: + # If the user requests at a higher precision than the native + # one, generate an oversample temporary VRT file, and tile from + # it + oversample_factor = 1 << (self.tmaxz - self.nativezoom) + if self.options.resampling in ("average", "antialias", "near-composite"): + resampleAlg = "average" + elif self.options.resampling in ( + "near", + "bilinear", + "cubic", + "cubicspline", + "lanczos", + "mode", + ): + resampleAlg = self.options.resampling + else: + resampleAlg = "bilinear" # fallback + gdal.Translate( + self.tmp_vrt_filename, + input_dataset, + width=self.warped_input_dataset.RasterXSize * oversample_factor, + height=self.warped_input_dataset.RasterYSize * oversample_factor, + resampleAlg=resampleAlg, + ) + self.warped_input_dataset = gdal.Open(self.tmp_vrt_filename) + self.out_gt = self.warped_input_dataset.GetGeoTransform() + self.nativezoom = self.tmaxz + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, self.tmaxz + 1)) + self.tsize = list(range(0, self.tmaxz + 1)) + for tz in range(0, self.tmaxz + 1): + tsize = 2.0 ** (self.nativezoom - tz) * self.tile_size + tminx, tminy = 0, 0 + tmaxx = ( + int(math.ceil(self.warped_input_dataset.RasterXSize / tsize)) - 1 + ) + tmaxy = ( + int(math.ceil(self.warped_input_dataset.RasterYSize / tsize)) - 1 + ) + self.tsize[tz] = math.ceil(tsize) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # Function which generates SWNE in LatLong for given tile + if self.kml and self.in_srs_wkt: + ct = osr.CoordinateTransformation(self.in_srs, srs4326) + + def rastertileswne(x, y, z): + pixelsizex = ( + 2 ** (self.tmaxz - z) * self.out_gt[1] + ) # X-pixel size in level + west = self.out_gt[0] + x * self.tile_size * pixelsizex + east = west + self.tile_size * pixelsizex + if self.options.xyz: + north = self.omaxy - y * self.tile_size * pixelsizex + south = north - self.tile_size * pixelsizex + else: + south = self.ominy + y * self.tile_size * pixelsizex + north = south + self.tile_size * pixelsizex + if not self.isepsg4326: + # Transformation to EPSG:4326 (WGS84 datum) + west, south = ct.TransformPoint(west, south)[:2] + east, north = ct.TransformPoint(east, north)[:2] + return south, west, north, east + + self.tileswne = rastertileswne + else: + self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa + + else: + + tms = tmsMap[self.options.profile] + + # Function which generates SWNE in LatLong for given tile + self.tileswne = None # not implemented + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, tms.level_count + 1)) + for tz in range(0, tms.level_count + 1): + tminx, tminy = tms.GeorefCoordToTileCoord( + self.ominx, self.ominy, tz, self.tile_size + ) + tmaxx, tmaxy = tms.GeorefCoordToTileCoord( + self.omaxx, self.omaxy, tz, self.tile_size + ) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(tms.matrix_width * 2**tz - 1, tmaxx), min( + tms.matrix_height * 2**tz - 1, tmaxy + ) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # Get the minimal zoom level (map covers area equivalent to one tile) + if self.tminz is None: + self.tminz = tms.ZoomForPixelSize( + self.out_gt[1] + * max( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + ) + / float(self.tile_size), + self.tile_size, + ) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = tms.ZoomForPixelSize( + self.out_gt[1], self.tile_size) + self.tmaxz = max(self.tminz, self.tmaxz) + + self.tminz = min(self.tminz, self.tmaxz) + + if self.options.verbose: + print( + "Bounds (georef):", self.ominx, self.ominy, self.omaxx, self.omaxy + ) + print("MinZoomLevel:", self.tminz) + print("MaxZoomLevel:", self.tmaxz) + + def generate_metadata(self) -> None: + """ + Generation of main metadata files and HTML viewers (metadata related to particular + tiles are generated during the tile processing). + """ + + makedirs(self.output_folder) + + if self.options.profile == "mercator": + + south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) + north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) + south, west = max(-85.05112878, south), max(-180.0, west) + north, east = min(85.05112878, north), min(180.0, east) + self.swne = (south, west, north, east) + + # Generate googlemaps.html + if ( + self.options.webviewer in ("all", "google") + and self.options.profile == "mercator" + ): + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "googlemaps.html") + ): + with my_open( + os.path.join(self.output_folder, + "googlemaps.html"), "wb" + ) as f: + f.write(self.generate_googlemaps().encode("utf-8")) + + # Generate leaflet.html + if self.options.webviewer in ("all", "leaflet"): + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "leaflet.html") + ): + with my_open( + os.path.join(self.output_folder, "leaflet.html"), "wb" + ) as f: + f.write(self.generate_leaflet().encode("utf-8")) + + elif self.options.profile == "geodetic": + + west, south = self.ominx, self.ominy + east, north = self.omaxx, self.omaxy + south, west = max(-90.0, south), max(-180.0, west) + north, east = min(90.0, north), min(180.0, east) + self.swne = (south, west, north, east) + + elif self.options.profile == "raster": + + west, south = self.ominx, self.ominy + east, north = self.omaxx, self.omaxy + + # MMGIS + if self.isRasterBounded: + west = self.fminx + east = self.fmaxx + south = self.fminy + north = self.fmaxy + + self.swne = (south, west, north, east) + + else: + self.swne = None + + # Generate openlayers.html + if self.options.webviewer in ("all", "openlayers"): + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "openlayers.html") + ): + with my_open( + os.path.join(self.output_folder, "openlayers.html"), "wb" + ) as f: + f.write(self.generate_openlayers().encode("utf-8")) + + # Generate tilemapresource.xml. + if ( + not self.options.xyz + and self.swne is not None + and ( + not self.options.resume + or not isfile(os.path.join(self.output_folder, "tilemapresource.xml")) + ) + ): + with my_open( + os.path.join(self.output_folder, "tilemapresource.xml"), "wb" + ) as f: + f.write(self.generate_tilemapresource().encode("utf-8")) + + # Generate mapml file + if ( + self.options.webviewer in ("all", "mapml") + and self.options.xyz + and self.options.profile != "raster" + and (self.options.profile != "geodetic" or self.options.tmscompatible) + and ( + not self.options.resume + or not isfile(os.path.join(self.output_folder, "mapml.mapml")) + ) + ): + with my_open(os.path.join(self.output_folder, "mapml.mapml"), "wb") as f: + f.write(self.generate_mapml().encode("utf-8")) + + if self.kml and self.tileswne is not None: + # TODO: Maybe problem for not automatically generated tminz + # The root KML should contain links to all tiles in the tminz level + children = [] + xmin, ymin, xmax, ymax = self.tminmax[self.tminz] + for x in range(xmin, xmax + 1): + for y in range(ymin, ymax + 1): + children.append([x, y, self.tminz]) + # Generate Root KML + if self.kml: + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "doc.kml") + ): + with my_open( + os.path.join(self.output_folder, "doc.kml"), "wb" + ) as f: + f.write( + generate_kml( + None, + None, + None, + self.tileext, + self.tile_size, + self.tileswne, + self.options, + children, + ).encode("utf-8") + ) + + def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: + """ + Generation of the base tiles (the lowest in the pyramid) directly from the input raster + """ + + if not self.options.quiet: + print("Generating Base Tiles:") + + if self.options.verbose: + print("") + print("Tiles generated from the max zoom level:") + print("----------------------------------------") + print("") + + # Set the bounds + tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] + + ds = self.warped_input_dataset + tilebands = self.dataBandsCount + 1 + querysize = self.querysize + isDEMtile = self.isDEMtile + + if self.options.verbose: + print("dataBandsCount: ", self.dataBandsCount) + print("tilebands: ", tilebands) + + tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) + ti = 0 + + tile_details = [] + + tz = self.tmaxz + + # Create directories for the tiles + for tx in range(tminx, tmaxx + 1): + tiledirname = os.path.join(self.output_folder, str(tz), str(tx)) + makedirs(tiledirname) + + for ty in range(tmaxy, tminy - 1, -1): + for tx in range(tminx, tmaxx + 1): + + ti += 1 + ytile = GDAL2Tiles.getYTile(ty, tz, self.options) + tilefilename = os.path.join( + self.output_folder, + str(tz), + str(tx), + "%s.%s" % (ytile, self.tileext), + ) + if self.options.verbose: + print(ti, "/", tcount, tilefilename) + + if self.options.resume and isfile(tilefilename): + if self.options.verbose: + print("Tile generation skipped because of --resume") + continue + + if self.options.profile == "mercator": + # Tile bounds in EPSG:3857 + b = self.mercator.TileBounds(tx, ty, tz) + elif self.options.profile == "geodetic": + b = self.geodetic.TileBounds(tx, ty, tz) + elif self.options.profile != "raster": + b = tmsMap[self.options.profile].TileBounds( + tx, ty, tz, self.tile_size + ) + + # Don't scale up by nearest neighbour, better change the querysize + # to the native resolution (and return smaller query tile) for scaling + + if self.options.profile != "raster": + rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) + + # Pixel size in the raster covering query geo extent + nativesize = wb[0] + wb[2] + if self.options.verbose: + print("\tNative Extent (querysize", + nativesize, "): ", rb, wb) + + # Tile bounds in raster coordinates for ReadRaster query + rb, wb = self.geo_query( + ds, b[0], b[3], b[2], b[1], querysize=querysize + ) + + rx, ry, rxsize, rysize = rb + wx, wy, wxsize, wysize = wb + + # MMGIS + elif self.isRasterBounded: # 'raster' profile: + + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.warped_input_dataset.fWorldXSize + ysize = self.warped_input_dataset.fWorldYSize + if tz >= self.tmaxz: + querysize = self.tile_size + + rx = (tx) * tsize - self.warped_input_dataset.fRasterXOriginWorld + #print("rx", rx) + rxsize = 0 + rxsize = tsize + + rysize = 0 + rysize = tsize + + ry = ysize - (ty * tsize) - rysize - \ + self.warped_input_dataset.fRasterYOriginWorld + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tile_size) + wysize = int(rysize/float(tsize) * self.tile_size) + if wysize != self.tile_size: + wy = self.tile_size - wysize + + if rx < 0: + rxsize = tsize + rx + wx = -rx + wxsize = int(rxsize/float(tsize) * self.tile_size) + rx = 0 + if ry < 0: + rysize = tsize + ry + wy = -ry + wysize = int(rysize/float(tsize) * self.tile_size) + ry = 0 + if rx + rxsize > self.warped_input_dataset.fRasterXSizeWorld: + rxsize = self.warped_input_dataset.fRasterXSizeWorld - rx + wxsize = int(rxsize/float(tsize) * self.tile_size) + if ry + rysize > self.warped_input_dataset.fRasterYSizeWorld: + rysize = self.warped_input_dataset.fRasterYSizeWorld - ry + wysize = int(rysize/float(tsize) * self.tile_size) + + # Convert rx, ry back to non-world coordinates + rx = int(float(self.warped_input_dataset.RasterXSize) * + (float(rx) / self.warped_input_dataset.fRasterXSizeWorld)) + ry = int(float(self.warped_input_dataset.RasterYSize) * + (float(ry) / self.warped_input_dataset.fRasterYSizeWorld)) + rxsize = int(float(self.warped_input_dataset.RasterXSize) * + (float(rxsize) / self.warped_input_dataset.fRasterXSizeWorld)) + rysize = int(float(self.warped_input_dataset.RasterYSize) * + (float(rysize) / self.warped_input_dataset.fRasterYSizeWorld)) + if self.isDEMtile: + wxsize -= 1 # 1bto4b + wysize -= 1 # 1bto4b + + #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin)) + else: # 'raster' profile: + + tsize = int( + self.tsize[tz] + ) # tile_size in raster coordinates for actual zoom + xsize = ( + self.warped_input_dataset.RasterXSize + ) # size of the raster in pixels + ysize = self.warped_input_dataset.RasterYSize + querysize = self.tile_size + + rx = tx * tsize + rxsize = 0 + if tx == tmaxx: + rxsize = xsize % tsize + if rxsize == 0: + rxsize = tsize + + ry = ty * tsize + rysize = 0 + if ty == tmaxy: + rysize = ysize % tsize + if rysize == 0: + rysize = tsize + + wx, wy = 0, 0 + wxsize = int(rxsize / float(tsize) * self.tile_size) + wysize = int(rysize / float(tsize) * self.tile_size) + + if not self.options.xyz: + ry = ysize - (ty * tsize) - rysize + if wysize != self.tile_size: + wy = self.tile_size - wysize + + # Read the source raster if anything is going inside the tile as per the computed + # geo_query + tile_details.append( + TileDetail( + tx=tx, + ty=ytile, + tz=tz, + rx=rx, + ry=ry, + rxsize=rxsize, + rysize=rysize, + wx=wx, + wy=wy, + wxsize=wxsize, + wysize=wysize, + querysize=querysize, + isDEMtile=isDEMtile + ) + ) + + conf = TileJobInfo( + src_file=self.tmp_vrt_filename, + nb_data_bands=self.dataBandsCount, + output_file_path=self.output_folder, + tile_extension=self.tileext, + tile_driver=self.tiledriver, + tile_size=self.tile_size, + kml=self.kml, + tminmax=self.tminmax, + tminz=self.tminz, + tmaxz=self.tmaxz, + in_srs_wkt=self.in_srs_wkt, + out_geo_trans=self.out_gt, + ominy=self.ominy, + is_epsg_4326=self.isepsg4326, + options=self.options, + exclude_transparent=self.options.exclude_transparent, + ) + + return conf, tile_details + + def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): + """ + For given dataset and query in cartographic coordinates returns parameters for ReadRaster() + in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the + extent is returned in the native resolution of dataset ds. + + raises Gdal2TilesError if the dataset does not contain anything inside this geo_query + """ + geotran = ds.GetGeoTransform() + rx = int((ulx - geotran[0]) / geotran[1] + 0.001) + ry = int((uly - geotran[3]) / geotran[5] + 0.001) + rxsize = max(1, int((lrx - ulx) / geotran[1] + 0.5)) + rysize = max(1, int((lry - uly) / geotran[5] + 0.5)) + + if not querysize: + wxsize, wysize = rxsize, rysize + else: + wxsize, wysize = querysize, querysize + + # Coordinates should not go out of the bounds of the raster + wx = 0 + if rx < 0: + rxshift = abs(rx) + wx = int(wxsize * (float(rxshift) / rxsize)) + wxsize = wxsize - wx + rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) + rx = 0 + if rx + rxsize > ds.RasterXSize: + wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) + rxsize = ds.RasterXSize - rx + + wy = 0 + if ry < 0: + ryshift = abs(ry) + wy = int(wysize * (float(ryshift) / rysize)) + wysize = wysize - wy + rysize = rysize - int(rysize * (float(ryshift) / rysize)) + ry = 0 + if ry + rysize > ds.RasterYSize: + wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) + rysize = ds.RasterYSize - ry + + return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) + + def generate_tilemapresource(self) -> str: + """ + Template for tilemapresource.xml. Returns filled string. Expected variables: + title, north, south, east, west, isepsg4326, projection, publishurl, + zoompixels, tile_size, tileformat, profile + """ + + args = {} + args["xml_escaped_title"] = gdal.EscapeString( + self.options.title, gdal.CPLES_XML + ) + args["south"], args["west"], args["north"], args["east"] = self.swne + args["tile_size"] = self.tile_size + args["tileformat"] = self.tileext + args["publishurl"] = self.options.url + args["profile"] = self.options.profile + + if self.options.profile == "mercator": + args["srs"] = "EPSG:3857" + elif self.options.profile == "geodetic": + args["srs"] = "EPSG:4326" + elif self.options.s_srs: + args["srs"] = self.options.s_srs + elif self.out_srs: + args["srs"] = self.out_srs.ExportToWkt() + else: + args["srs"] = "" + + s = ( + """ + + %(xml_escaped_title)s + + %(srs)s + + + + +""" + % args + ) # noqa + for z in range(self.tminz, self.tmaxz + 1): + if self.options.profile == "raster": + s += ( + """ \n""" + % ( + args["publishurl"], + z, + (2 ** (self.nativezoom - z) * self.out_gt[1]), + z, + ) + ) + elif self.options.profile == "mercator": + s += ( + """ \n""" + % (args["publishurl"], z, 156543.0339 / 2**z, z) + ) + elif self.options.profile == "geodetic": + s += ( + """ \n""" + % (args["publishurl"], z, 0.703125 / 2**z, z) + ) + s += """ + + """ + return s + + def generate_googlemaps(self) -> str: + """ + Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. + It returns filled string. Expected variables: + title, googlemapskey, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, + publishurl + """ + args = {} + args["xml_escaped_title"] = gdal.EscapeString( + self.options.title, gdal.CPLES_XML + ) + args["googlemapsurl"] = "https://maps.googleapis.com/maps/api/js" + if self.options.googlekey != "INSERT_YOUR_KEY_HERE": + args["googlemapsurl"] += "?key=" + self.options.googlekey + args["googlemapsurl_hint"] = "" + else: + args[ + "googlemapsurl_hint" + ] = "" + args["south"], args["west"], args["north"], args["east"] = self.swne + args["minzoom"] = self.tminz + args["maxzoom"] = self.tmaxz + args["tile_size"] = self.tile_size + args["tileformat"] = self.tileext + args["publishurl"] = self.options.url + args["copyright"] = self.options.copyright + + # Logic below inspired from https://www.gavinharriss.com/code/opacity-control + # which borrowed on gdal2tiles itself to migrate from Google Maps V2 to V3 + + args[ + "custom_tile_overlay_js" + ] = """ +// Beginning of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/CustomTileOverlay.js +// with CustomTileOverlay.prototype.getTileUrl() method customized for gdal2tiles needs. + +/******************************************************************************* +Copyright (c) 2010-2012. Gavin Harriss +Site: http://www.gavinharriss.com/ +Originally developed for: http://www.topomap.co.nz/ +Licences: Creative Commons Attribution 3.0 New Zealand License +http://creativecommons.org/licenses/by/3.0/nz/ +******************************************************************************/ + +CustomTileOverlay = function (map, opacity) { + this.tileSize = new google.maps.Size(256, 256); // Change to tile size being used + + this.map = map; + this.opacity = opacity; + this.tiles = []; + + this.visible = false; + this.initialized = false; + + this.self = this; +} + +CustomTileOverlay.prototype = new google.maps.OverlayView(); + +CustomTileOverlay.prototype.getTile = function (p, z, ownerDocument) { + // If tile already exists then use it + for (var n = 0; n < this.tiles.length; n++) { + if (this.tiles[n].id == 't_' + p.x + '_' + p.y + '_' + z) { + return this.tiles[n]; + } + } + + // If tile doesn't exist then create it + var tile = ownerDocument.createElement('div'); + var tp = this.getTileUrlCoord(p, z); + tile.id = 't_' + tp.x + '_' + tp.y + '_' + z + tile.style.width = this.tileSize.width + 'px'; + tile.style.height = this.tileSize.height + 'px'; + tile.style.backgroundImage = 'url(' + this.getTileUrl(tp, z) + ')'; + tile.style.backgroundRepeat = 'no-repeat'; + + if (!this.visible) { + tile.style.display = 'none'; + } + + this.tiles.push(tile) + + this.setObjectOpacity(tile); + + return tile; +} + +// Save memory / speed up the display by deleting tiles out of view +// Essential for use on iOS devices such as iPhone and iPod! +CustomTileOverlay.prototype.deleteHiddenTiles = function (zoom) { + var bounds = this.map.getBounds(); + var tileNE = this.getTileUrlCoordFromLatLng(bounds.getNorthEast(), zoom); + var tileSW = this.getTileUrlCoordFromLatLng(bounds.getSouthWest(), zoom); + + var minX = tileSW.x - 1; + var maxX = tileNE.x + 1; + var minY = tileSW.y - 1; + var maxY = tileNE.y + 1; + + var tilesToKeep = []; + var tilesLength = this.tiles.length; + for (var i = 0; i < tilesLength; i++) { + var idParts = this.tiles[i].id.split("_"); + var tileX = Number(idParts[1]); + var tileY = Number(idParts[2]); + var tileZ = Number(idParts[3]); + if (( + (minX < maxX && (tileX >= minX && tileX <= maxX)) + || (minX > maxX && ((tileX >= minX && tileX <= (Math.pow(2, zoom) - 1)) || (tileX >= 0 && tileX <= maxX))) // Lapped the earth! + ) + && (tileY >= minY && tileY <= maxY) + && tileZ == zoom) { + tilesToKeep.push(this.tiles[i]); + } + else { + delete this.tiles[i]; + } + } + + this.tiles = tilesToKeep; +}; + +CustomTileOverlay.prototype.pointToTile = function (point, z) { + var projection = this.map.getProjection(); + var worldCoordinate = projection.fromLatLngToPoint(point); + var pixelCoordinate = new google.maps.Point(worldCoordinate.x * Math.pow(2, z), worldCoordinate.y * Math.pow(2, z)); + var tileCoordinate = new google.maps.Point(Math.floor(pixelCoordinate.x / this.tileSize.width), Math.floor(pixelCoordinate.y / this.tileSize.height)); + return tileCoordinate; +} + +CustomTileOverlay.prototype.getTileUrlCoordFromLatLng = function (latlng, zoom) { + return this.getTileUrlCoord(this.pointToTile(latlng, zoom), zoom) +} + +CustomTileOverlay.prototype.getTileUrlCoord = function (coord, zoom) { + var tileRange = 1 << zoom; + var y = tileRange - coord.y - 1; + var x = coord.x; + if (x < 0 || x >= tileRange) { + x = (x % tileRange + tileRange) % tileRange; + } + return new google.maps.Point(x, y); +} + +// Modified for gdal2tiles needs +CustomTileOverlay.prototype.getTileUrl = function (tile, zoom) { + + if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) { + return "https://gdal.org/resources/gdal2tiles/none.png"; + } + var ymax = 1 << zoom; + var y = ymax - tile.y -1; + var tileBounds = new google.maps.LatLngBounds( + fromMercatorPixelToLatLng( new google.maps.Point( (tile.x)*256, (y+1)*256 ) , zoom ), + fromMercatorPixelToLatLng( new google.maps.Point( (tile.x+1)*256, (y)*256 ) , zoom ) + ); + if (mapBounds.intersects(tileBounds)) { + return zoom+"/"+tile.x+"/"+tile.y+".png"; + } else { + return "https://gdal.org/resources/gdal2tiles/none.png"; + } + +} + +CustomTileOverlay.prototype.initialize = function () { + if (this.initialized) { + return; + } + var self = this.self; + this.map.overlayMapTypes.insertAt(0, self); + this.initialized = true; +} + +CustomTileOverlay.prototype.hide = function () { + this.visible = false; + + var tileCount = this.tiles.length; + for (var n = 0; n < tileCount; n++) { + this.tiles[n].style.display = 'none'; + } +} + +CustomTileOverlay.prototype.show = function () { + this.initialize(); + this.visible = true; + var tileCount = this.tiles.length; + for (var n = 0; n < tileCount; n++) { + this.tiles[n].style.display = ''; + } +} + +CustomTileOverlay.prototype.releaseTile = function (tile) { + tile = null; +} + +CustomTileOverlay.prototype.setOpacity = function (op) { + this.opacity = op; + + var tileCount = this.tiles.length; + for (var n = 0; n < tileCount; n++) { + this.setObjectOpacity(this.tiles[n]); + } +} + +CustomTileOverlay.prototype.setObjectOpacity = function (obj) { + if (this.opacity > 0) { + if (typeof (obj.style.filter) == 'string') { obj.style.filter = 'alpha(opacity:' + this.opacity + ')'; } + if (typeof (obj.style.KHTMLOpacity) == 'string') { obj.style.KHTMLOpacity = this.opacity / 100; } + if (typeof (obj.style.MozOpacity) == 'string') { obj.style.MozOpacity = this.opacity / 100; } + if (typeof (obj.style.opacity) == 'string') { obj.style.opacity = this.opacity / 100; } + } +} + +// End of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/CustomTileOverlay.js +""" + + args[ + "ext_draggable_object_js" + ] = """ +// Beginning of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/ExtDraggableObject.js + +/** + * @name ExtDraggableObject + * @version 1.0 + * @author Gabriel Schneider + * @copyright (c) 2009 Gabriel Schneider + * @fileoverview This sets up a given DOM element to be draggable + * around the page. + */ + +/* + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + * Sets up a DOM element to be draggable. The options available + * within {@link ExtDraggableObjectOptions} are: top, left, container, + * draggingCursor, draggableCursor, intervalX, intervalY, + * toleranceX, toleranceY, restrictX, and restrictY. + * @param {HTMLElement} src The element to make draggable + * @param {ExtDraggableObjectOptions} [opts] options + * @constructor + */ +function ExtDraggableObject(src, opt_drag) { + var me = this; + var event_ = (window["GEvent"]||google.maps.Event||google.maps.event); + var opt_drag_=opt_drag||{}; + var draggingCursor_ = opt_drag_.draggingCursor||"default"; + var draggableCursor_ = opt_drag_.draggableCursor||"default"; + var moving_ = false, preventDefault_; + var currentX_, currentY_, formerY_, formerX_, formerMouseX_, formerMouseY_; + var top_, left_; + var mouseDownEvent_, mouseUpEvent_, mouseMoveEvent_; + var originalX_, originalY_; + var halfIntervalX_ = Math.round(opt_drag_.intervalX/2); + var halfIntervalY_ = Math.round(opt_drag_.intervalY/2); + var target_ = src.setCapture?src:document; + + if (typeof opt_drag_.intervalX !== "number") { + opt_drag_.intervalX = 1; + } + if (typeof opt_drag_.intervalY !== "number") { + opt_drag_.intervalY = 1; + } + if (typeof opt_drag_.toleranceX !== "number") { + opt_drag_.toleranceX = Infinity; + } + if (typeof opt_drag_.toleranceY !== "number") { + opt_drag_.toleranceY = Infinity; + } + + mouseDownEvent_ = event_.addDomListener(src, "mousedown", mouseDown_); + mouseUpEvent_ = event_.addDomListener(target_, "mouseup", mouseUp_); + + setCursor_(false); + if (opt_drag_.container) { + + } + src.style.position = "absolute"; + opt_drag_.left = opt_drag_.left||src.offsetLeft; + opt_drag_.top = opt_drag_.top||src.offsetTop; + opt_drag_.interval = opt_drag_.interval||1; + moveTo_(opt_drag_.left, opt_drag_.top, false); + + /** + * Set the cursor for {@link src} based on whether or not + * the element is currently being dragged. + * @param {Boolean} a Is the element being dragged? + * @private + */ + function setCursor_(a) { + if(a) { + src.style.cursor = draggingCursor_; + } else { + src.style.cursor = draggableCursor_; + } + } + + /** + * Moves the element {@link src} to the given + * location. + * @param {Number} x The left position to move to. + * @param {Number} y The top position to move to. + * @param {Boolean} prevent Prevent moving? + * @private + */ + function moveTo_(x, y, prevent) { + var roundedIntervalX_, roundedIntervalY_; + left_ = Math.round(x); + top_ = Math.round(y); + if (opt_drag_.intervalX>1) { + roundedIntervalX_ = Math.round(left_%opt_drag_.intervalX); + left_ = (roundedIntervalX_1) { + roundedIntervalY_ = Math.round(top_%opt_drag_.intervalY); + top_ = (roundedIntervalY_opt_drag_.toleranceX||(currentX_-(left_+src.offsetWidth))>opt_drag_.toleranceX)||((top_-currentY_)>opt_drag_.toleranceY||(currentY_-(top_+src.offsetHeight))>opt_drag_.toleranceY)) { + left_ = originalX_; + top_ = originalY_; + } + } + if(!opt_drag_.restrictX&&!prevent) { + src.style.left = left_ + "px"; + } + if(!opt_drag_.restrictY&&!prevent) { + src.style.top = top_ + "px"; + } + } + + /** + * Handles the mousemove event. + * @param {event} ev The event data sent by the browser. + * @private + */ + function mouseMove_(ev) { + var e=ev||event; + currentX_ = formerX_+((e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft))-formerMouseX_); + currentY_ = formerY_+((e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop))-formerMouseY_); + formerX_ = currentX_; + formerY_ = currentY_; + formerMouseX_ = e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft); + formerMouseY_ = e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop); + if (moving_) { + moveTo_(currentX_,currentY_, preventDefault_); + event_.trigger(me, "drag", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); + } + } + + /** + * Handles the mousedown event. + * @param {event} ev The event data sent by the browser. + * @private + */ + function mouseDown_(ev) { + var e=ev||event; + setCursor_(true); + event_.trigger(me, "mousedown", e); + if (src.style.position !== "absolute") { + src.style.position = "absolute"; + return; + } + formerMouseX_ = e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft); + formerMouseY_ = e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop); + originalX_ = src.offsetLeft; + originalY_ = src.offsetTop; + formerX_ = originalX_; + formerY_ = originalY_; + mouseMoveEvent_ = event_.addDomListener(target_, "mousemove", mouseMove_); + if (src.setCapture) { + src.setCapture(); + } + if (e.preventDefault) { + e.preventDefault(); + e.stopPropagation(); + } else { + e.cancelBubble=true; + e.returnValue=false; + } + moving_ = true; + event_.trigger(me, "dragstart", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); + } + + /** + * Handles the mouseup event. + * @param {event} ev The event data sent by the browser. + * @private + */ + function mouseUp_(ev) { + var e=ev||event; + if (moving_) { + setCursor_(false); + event_.removeListener(mouseMoveEvent_); + if (src.releaseCapture) { + src.releaseCapture(); + } + moving_ = false; + event_.trigger(me, "dragend", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); + } + currentX_ = currentY_ = null; + event_.trigger(me, "mouseup", e); + } + + /** + * Move the element {@link src} to the given location. + * @param {Point} point An object with an x and y property + * that represents the location to move to. + */ + me.moveTo = function(point) { + moveTo_(point.x, point.y, false); + }; + + /** + * Move the element {@link src} by the given amount. + * @param {Size} size An object with an x and y property + * that represents distance to move the element. + */ + me.moveBy = function(size) { + moveTo_(src.offsetLeft + size.width, src.offsetHeight + size.height, false); + } + + /** + * Sets the cursor for the dragging state. + * @param {String} cursor The name of the cursor to use. + */ + me.setDraggingCursor = function(cursor) { + draggingCursor_ = cursor; + setCursor_(moving_); + }; + + /** + * Sets the cursor for the draggable state. + * @param {String} cursor The name of the cursor to use. + */ + me.setDraggableCursor = function(cursor) { + draggableCursor_ = cursor; + setCursor_(moving_); + }; + + /** + * Returns the current left location. + * @return {Number} + */ + me.left = function() { + return left_; + }; + + /** + * Returns the current top location. + * @return {Number} + */ + me.top = function() { + return top_; + }; + + /** + * Returns the number of intervals the element has moved + * along the X axis. Useful for scrollbar type + * applications. + * @return {Number} + */ + me.valueX = function() { + var i = opt_drag_.intervalX||1; + return Math.round(left_ / i); + }; + + /** + * Returns the number of intervals the element has moved + * along the Y axis. Useful for scrollbar type + * applications. + * @return {Number} + */ + me.valueY = function() { + var i = opt_drag_.intervalY||1; + return Math.round(top_ / i); + }; + + /** + * Sets the left position of the draggable object based on + * intervalX. + * @param {Number} value The location to move to. + */ + me.setValueX = function(value) { + moveTo_(value * opt_drag_.intervalX, top_, false); + }; + + /** + * Sets the top position of the draggable object based on + * intervalY. + * @param {Number} value The location to move to. + */ + me.setValueY = function(value) { + moveTo_(left_, value * opt_drag_.intervalY, false); + }; + + /** + * Prevents the default movement behavior of the object. + * The object can still be moved by other methods. + */ + me.preventDefaultMovement = function(prevent) { + preventDefault_ = prevent; + }; +} + /** + * @name ExtDraggableObjectOptions + * @class This class represents the optional parameter passed into constructor of + * ExtDraggableObject. + * @property {Number} [top] Top pixel + * @property {Number} [left] Left pixel + * @property {HTMLElement} [container] HTMLElement as container. + * @property {String} [draggingCursor] Dragging Cursor + * @property {String} [draggableCursor] Draggable Cursor + * @property {Number} [intervalX] Interval in X direction + * @property {Number} [intervalY] Interval in Y direction + * @property {Number} [toleranceX] Tolerance X in pixel + * @property {Number} [toleranceY] Tolerance Y in pixel + * @property {Boolean} [restrictX] Whether to restrict move in X direction + * @property {Boolean} [restrictY] Whether to restrict move in Y direction + */ + + // End of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/ExtDraggableObject.js +""" + + s = ( + r""" + + + %(xml_escaped_title)s + + + + %(googlemapsurl_hint)s + + + + + +
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC + +
+
+ + + """ + % args + ) # noqa + + # TODO? when there is self.kml, before the transition to GoogleMapsV3 API, + # we used to offer a way to display the KML file in Google Earth + # cf https://github.com/OSGeo/gdal/blob/32f32a69bbf5c408c6c8ac2cc6f1d915a7a1c576/swig/python/gdal-utils/osgeo_utils/gdal2tiles.py#L3203 to #L3243 + + return s + + def generate_leaflet(self) -> str: + """ + Template for leaflet.html implementing overlay of tiles for 'mercator' profile. + It returns filled string. Expected variables: + title, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl + """ + + args = {} + args["double_quote_escaped_title"] = self.options.title.replace( + '"', '\\"') + args["xml_escaped_title"] = gdal.EscapeString( + self.options.title, gdal.CPLES_XML + ) + args["south"], args["west"], args["north"], args["east"] = self.swne + args["centerlon"] = (args["north"] + args["south"]) / 2.0 + args["centerlat"] = (args["west"] + args["east"]) / 2.0 + args["minzoom"] = self.tminz + args["maxzoom"] = self.tmaxz + args["beginzoom"] = self.tmaxz + args["tile_size"] = self.tile_size # not used + args["tileformat"] = self.tileext + args["publishurl"] = self.options.url # not used + args["copyright"] = self.options.copyright.replace('"', '\\"') + + if self.options.xyz: + args["tms"] = 0 + else: + args["tms"] = 1 + + s = ( + """ + + + + + %(xml_escaped_title)s + + + + + + + + + + +
+ + + + + + + """ + % args + ) # noqa + + return s + + def generate_openlayers(self) -> str: + """ + Template for openlayers.html, with the tiles as overlays, and base layers. + + It returns filled string. + """ + + args = {} + args["xml_escaped_title"] = gdal.EscapeString( + self.options.title, gdal.CPLES_XML + ) + args["bingkey"] = self.options.bingkey + args["minzoom"] = self.tminz + args["maxzoom"] = self.tmaxz + args["tile_size"] = self.tile_size + args["tileformat"] = self.tileext + args["publishurl"] = self.options.url + args["copyright"] = self.options.copyright + if self.options.xyz: + args["sign_y"] = "" + else: + args["sign_y"] = "-" + + args["ominx"] = self.ominx + args["ominy"] = self.ominy + args["omaxx"] = self.omaxx + args["omaxy"] = self.omaxy + args["center_x"] = (self.ominx + self.omaxx) / 2 + args["center_y"] = (self.ominy + self.omaxy) / 2 + + s = ( + r""" + + + %(xml_escaped_title)s + + + + + + + + + +
Generated by GDAL2Tiles    
+
+
+ + +""" + + return s + + def generate_mapml(self) -> str: + + if self.options.mapml_template: + template = self.options.mapml_template + else: + template = gdal.FindFile("gdal", "template_tiles.mapml") + s = open(template, "rb").read().decode("utf-8") + + if self.options.profile == "mercator": + tiling_scheme = "OSMTILE" + elif self.options.profile == "geodetic": + tiling_scheme = "WGS84" + else: + tiling_scheme = self.options.profile + + s = s.replace("${TILING_SCHEME}", tiling_scheme) + s = s.replace("${URL}", self.options.url if self.options.url else "./") + tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] + s = s.replace("${MINTILEX}", str(tminx)) + s = s.replace( + "${MINTILEY}", str(GDAL2Tiles.getYTile( + tmaxy, self.tmaxz, self.options)) + ) + s = s.replace("${MAXTILEX}", str(tmaxx)) + s = s.replace( + "${MAXTILEY}", str(GDAL2Tiles.getYTile( + tminy, self.tmaxz, self.options)) + ) + s = s.replace("${CURZOOM}", str(self.tmaxz)) + s = s.replace("${MINZOOM}", str(self.tminz)) + s = s.replace("${MAXZOOM}", str(self.tmaxz)) + s = s.replace("${TILEEXT}", str(self.tileext)) + + return s + + @staticmethod + def getYTile(ty, tz, options): + """ + Calculates the y-tile number based on whether XYZ or TMS (default) system is used + :param ty: The y-tile number + :param tz: The z-tile number + :return: The transformed y-tile number + """ + if options.xyz and options.profile != "raster": + if options.profile in ("mercator", "geodetic"): + # Convert from TMS to XYZ numbering system + return (2**tz - 1) - ty + + tms = tmsMap[options.profile] + return ( + tms.matrix_height * 2**tz - 1 + ) - ty # Convert from TMS to XYZ numbering system + + return ty + + +def worker_tile_details( + input_file: str, output_folder: str, options: Options +) -> Tuple[TileJobInfo, List[TileDetail]]: + gdal2tiles = GDAL2Tiles(input_file, output_folder, options) + gdal2tiles.open_input() + gdal2tiles.generate_metadata() + tile_job_info, tile_details = gdal2tiles.generate_base_tiles() + return tile_job_info, tile_details + + +class ProgressBar(object): + def __init__(self, total_items: int) -> None: + self.total_items = total_items + self.nb_items_done = 0 + self.current_progress = 0 + self.STEP = 2.5 + + def start(self) -> None: + sys.stdout.write("0") + + def log_progress(self, nb_items: int = 1) -> None: + self.nb_items_done += nb_items + progress = float(self.nb_items_done) / self.total_items * 100 + if progress >= self.current_progress + self.STEP: + done = False + while not done: + if self.current_progress + self.STEP <= progress: + self.current_progress += self.STEP + if self.current_progress % 10 == 0: + sys.stdout.write(str(int(self.current_progress))) + if self.current_progress == 100: + sys.stdout.write("\n") + else: + sys.stdout.write(".") + else: + done = True + sys.stdout.flush() + + +def get_tile_swne(tile_job_info, options): + if options.profile == "mercator": + mercator = GlobalMercator() + tile_swne = mercator.TileLatLonBounds + elif options.profile == "geodetic": + geodetic = GlobalGeodetic(options.tmscompatible) + tile_swne = geodetic.TileLatLonBounds + elif options.profile == "raster": + srs4326 = osr.SpatialReference() + srs4326.ImportFromEPSG(4326) + srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + if tile_job_info.kml and tile_job_info.in_srs_wkt: + in_srs = osr.SpatialReference() + in_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + in_srs.ImportFromWkt(tile_job_info.in_srs_wkt) + ct = osr.CoordinateTransformation(in_srs, srs4326) + + def rastertileswne(x, y, z): + pixelsizex = ( + 2 ** (tile_job_info.tmaxz - z) * + tile_job_info.out_geo_trans[1] + ) + west = ( + tile_job_info.out_geo_trans[0] + + x * tile_job_info.tile_size * pixelsizex + ) + east = west + tile_job_info.tile_size * pixelsizex + if options.xyz: + north = ( + tile_job_info.out_geo_trans[3] + - y * tile_job_info.tile_size * pixelsizex + ) + south = north - tile_job_info.tile_size * pixelsizex + else: + south = ( + tile_job_info.ominy + y * tile_job_info.tile_size * pixelsizex + ) + north = south + tile_job_info.tile_size * pixelsizex + if not tile_job_info.is_epsg_4326: + # Transformation to EPSG:4326 (WGS84 datum) + west, south = ct.TransformPoint(west, south)[:2] + east, north = ct.TransformPoint(east, north)[:2] + return south, west, north, east + + tile_swne = rastertileswne + else: + def tile_swne(x, y, z): return (0, 0, 0, 0) # noqa + else: + tile_swne = None + + return tile_swne + + +def single_threaded_tiling( + input_file: str, output_folder: str, options: Options +) -> None: + """ + Keep a single threaded version that stays clear of multiprocessing, for platforms that would not + support it + """ + if options.verbose: + print("Begin tiles details calc") + conf, tile_details = worker_tile_details( + input_file, output_folder, options) + + if options.verbose: + print("Tiles details calc complete.") + + if not options.verbose and not options.quiet: + base_progress_bar = ProgressBar(len(tile_details)) + base_progress_bar.start() + + for tile_detail in tile_details: + create_base_tile(conf, tile_detail) + + if not options.verbose and not options.quiet: + base_progress_bar.log_progress() + + if getattr(threadLocal, "cached_ds", None): + del threadLocal.cached_ds + + if not options.quiet: + count = count_overview_tiles(conf) + if count: + print("Generating Overview Tiles:") + + if not options.verbose: + overview_progress_bar = ProgressBar(count) + overview_progress_bar.start() + + for base_tz in range(conf.tmaxz, conf.tminz, -1): + base_tile_groups = group_overview_base_tiles( + base_tz, output_folder, conf) + for base_tiles in base_tile_groups: + create_overview_tile(base_tz, base_tiles, + output_folder, conf, options) + if not options.verbose and not options.quiet: + overview_progress_bar.log_progress() + + shutil.rmtree(os.path.dirname(conf.src_file)) + + +def multi_threaded_tiling( + input_file: str, output_folder: str, options: Options, pool +) -> None: + nb_processes = options.nb_processes or 1 + + if options.verbose: + print("Begin tiles details calc") + + conf, tile_details = worker_tile_details( + input_file, output_folder, options) + + if options.verbose: + print("Tiles details calc complete.") + + if not options.verbose and not options.quiet: + base_progress_bar = ProgressBar(len(tile_details)) + base_progress_bar.start() + + # TODO: gbataille - check the confs for which each element is an array... one useless level? + # TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..." + chunksize = max(1, min(128, len(tile_details) // nb_processes)) + for _ in pool.imap_unordered( + partial(create_base_tile, conf), tile_details, chunksize=chunksize + ): + if not options.verbose and not options.quiet: + base_progress_bar.log_progress() + + if not options.quiet: + count = count_overview_tiles(conf) + if count: + print("Generating Overview Tiles:") + + if not options.verbose: + overview_progress_bar = ProgressBar(count) + overview_progress_bar.start() + + for base_tz in range(conf.tmaxz, conf.tminz, -1): + base_tile_groups = group_overview_base_tiles( + base_tz, output_folder, conf) + chunksize = max(1, min(128, len(base_tile_groups) // nb_processes)) + for _ in pool.imap_unordered( + partial( + create_overview_tile, + base_tz, + output_folder=output_folder, + tile_job_info=conf, + options=options, + ), + base_tile_groups, + chunksize=chunksize, + ): + if not options.verbose and not options.quiet: + overview_progress_bar.log_progress() + + shutil.rmtree(os.path.dirname(conf.src_file)) + + +class UseExceptions(object): + def __enter__(self): + self.old_used_exceptions = gdal.GetUseExceptions() + if not self.old_used_exceptions: + gdal.UseExceptions() + + def __exit__(self, type, value, tb): + if not self.old_used_exceptions: + gdal.DontUseExceptions() + + +class DividedCache(object): + def __init__(self, nb_processes): + self.nb_processes = nb_processes + + def __enter__(self): + self.gdal_cache_max = gdal.GetCacheMax() + # Make sure that all processes do not consume more than `gdal.GetCacheMax()` + gdal_cache_max_per_process = max( + 1024 * 1024, math.floor(self.gdal_cache_max / self.nb_processes) + ) + set_cache_max(gdal_cache_max_per_process) + + def __exit__(self, type, value, tb): + # Set the maximum cache back to the original value + set_cache_max(self.gdal_cache_max) + + +def main(argv: List[str] = sys.argv) -> int: + # TODO: gbataille - use mkdtemp to work in a temp directory + # TODO: gbataille - debug intermediate tiles.vrt not produced anymore? + # TODO: gbataille - Refactor generate overview tiles to not depend on self variables + + # For multiprocessing, we need to propagate the configuration options to + # the environment, so that forked processes can inherit them. + for i in range(len(argv)): + if argv[i] == "--config" and i + 2 < len(argv): + os.environ[argv[i + 1]] = argv[i + 2] + + if "--mpi" in argv: + from mpi4py import MPI + from mpi4py.futures import MPICommExecutor + + with UseExceptions(), MPICommExecutor(MPI.COMM_WORLD, root=0) as pool: + if pool is None: + return 0 + # add interface of multiprocessing.Pool to MPICommExecutor + pool.imap_unordered = partial(pool.map, unordered=True) + return submain(argv, pool, MPI.COMM_WORLD.Get_size()) + else: + return submain(argv) + + +def submain(argv: List[str], pool=None, pool_size=0) -> int: + + argv = gdal.GeneralCmdLineProcessor(argv) + if argv is None: + return 0 + input_file, output_folder, options = process_args(argv[1:]) + if pool_size: + options.nb_processes = pool_size + nb_processes = options.nb_processes or 1 + + with UseExceptions(): + if pool is not None: # MPI + multi_threaded_tiling(input_file, output_folder, options, pool) + elif nb_processes == 1: + single_threaded_tiling(input_file, output_folder, options) + else: + # Trick inspired from https://stackoverflow.com/questions/45720153/python-multiprocessing-error-attributeerror-module-main-has-no-attribute + # and https://bugs.python.org/issue42949 + import __main__ + + if not hasattr(__main__, "__spec__"): + __main__.__spec__ = None + from multiprocessing import Pool + + with DividedCache(nb_processes), Pool(processes=nb_processes) as pool: + multi_threaded_tiling(input_file, output_folder, options, pool) + + return 0 + + +# vim: set tabstop=4 shiftwidth=4 expandtab: + +# Running main() must be protected that way due to use of multiprocessing on Windows: +# https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods +if __name__ == "__main__": + sys.exit(main(sys.argv)) From 58d250977f0e023eb9baa32e6f6213fc5e9b23e5 Mon Sep 17 00:00:00 2001 From: tariqksoliman Date: Thu, 18 May 2023 12:28:47 -0700 Subject: [PATCH 2/6] #383 Cleanup gdal2tiles scripts and improve documentation --- .../gdal2customtiles/gdal2customtiles.py | 6140 ++++++++++------ .../gdal2customtiles/gdal2tiles_3.5.2_v2.py | 5022 ------------- .../legacy/gdal2customtiles.py | 3218 +++++++++ .../{ => legacy}/gdal2customtiles_py27.py | 6436 ++++++++--------- .../{ => legacy}/gdal2tiles_3.5.2.py | 0 .../{ => legacy}/rasters2customtiles_3.5.2.py | 0 auxiliary/gdal2customtiles/legacy/readme.md | 68 + .../gdal2customtiles/rasters2customtiles.py | 151 + auxiliary/gdal2customtiles/readme.md | 56 +- docs/pages/Scripts/scripts.markdown | 65 +- 10 files changed, 10715 insertions(+), 10441 deletions(-) delete mode 100644 auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py create mode 100644 auxiliary/gdal2customtiles/legacy/gdal2customtiles.py rename auxiliary/gdal2customtiles/{ => legacy}/gdal2customtiles_py27.py (97%) rename auxiliary/gdal2customtiles/{ => legacy}/gdal2tiles_3.5.2.py (100%) rename auxiliary/gdal2customtiles/{ => legacy}/rasters2customtiles_3.5.2.py (100%) create mode 100644 auxiliary/gdal2customtiles/legacy/readme.md create mode 100644 auxiliary/gdal2customtiles/rasters2customtiles.py diff --git a/auxiliary/gdal2customtiles/gdal2customtiles.py b/auxiliary/gdal2customtiles/gdal2customtiles.py index 2e4c1655..e11a77f5 100644 --- a/auxiliary/gdal2customtiles/gdal2customtiles.py +++ b/auxiliary/gdal2customtiles/gdal2customtiles.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python +#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ****************************************************************************** # $Id$ @@ -11,12 +11,11 @@ # - support of global tiles (Spherical Mercator) for compatibility # with interactive web maps a la Google Maps # Author: Klokan Petr Pridal, klokan at klokan dot cz -# Web: http://www.klokan.cz/projects/gdal2tiles/ -# GUI: http://www.maptiler.org/ # ############################################################################### # Copyright (c) 2008, Klokan Petr Pridal -# Copyright (c) 2010-2013, Even Rouault +# Copyright (c) 2010-2013, Even Rouault +# Copyright (c) 2021, Idan Miara # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), @@ -37,25 +36,36 @@ # DEALINGS IN THE SOFTWARE. # ****************************************************************************** +from __future__ import division, print_function +import struct + +import contextlib +import glob +import json import math +import optparse import os +import shutil +import stat import sys +import tempfile +import threading +from functools import partial +from typing import Any, List, NoReturn, Optional, Tuple +from uuid import uuid4 +from xml.etree import ElementTree -from osgeo import gdal -from osgeo import osr - -import struct # 1bto4b +from osgeo import gdal, osr +Options = Any -def binary(num): # 1bto4b - # 1bto4b +# MMGIS +def binary(num): return ''.join(bin(c).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) -# 1bto4b - def getTilePxBounds(self, tx, ty, tz, ds): - querysize = self.tilesize + querysize = self.tile_size if self.isRasterBounded: # 'raster' profile: # tilesize in raster coordinates for actual zoom @@ -63,7 +73,7 @@ def getTilePxBounds(self, tx, ty, tz, ds): xsize = self.out_ds.fWorldXSize ysize = self.out_ds.fWorldYSize if tz >= self.tmaxz: - querysize = self.tilesize + querysize = self.tile_size rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld #print("rx", rx) @@ -77,27 +87,27 @@ def getTilePxBounds(self, tx, ty, tz, ds): self.out_ds.fRasterYOriginWorld wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tilesize) - wysize = int(rysize/float(tsize) * self.tilesize) - if wysize != self.tilesize: - wy = self.tilesize - wysize + wxsize = int(rxsize/float(tsize) * self.tile_size) + wysize = int(rysize/float(tsize) * self.tile_size) + if wysize != self.tile_size: + wy = self.tile_size - wysize if rx < 0: rxsize = tsize + rx wx = -rx - wxsize = int(rxsize/float(tsize) * self.tilesize) + wxsize = int(rxsize/float(tsize) * self.tile_size) rx = 0 if ry < 0: rysize = tsize + ry wy = -ry - wysize = int(rysize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tile_size) ry = 0 if rx + rxsize > self.out_ds.fRasterXSizeWorld: rxsize = self.out_ds.fRasterXSizeWorld - rx - wxsize = int(rxsize/float(tsize) * self.tilesize) + wxsize = int(rxsize/float(tsize) * self.tile_size) if ry + rysize > self.out_ds.fRasterYSizeWorld: rysize = self.out_ds.fRasterYSizeWorld - ry - wysize = int(rysize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tile_size) # Convert rx, ry back to non-world coordinates rx = int(float(self.out_ds.RasterXSize) * @@ -119,19 +129,246 @@ def getTilePxBounds(self, tx, ty, tz, ds): try: - from PIL import Image import numpy + from PIL import Image + import osgeo.gdal_array as gdalarray -except Exception: + + numpy_available = True +except ImportError: # 'antialias' resampling is not available - pass + numpy_available = False __version__ = "$Id$" -resampling_list = ('average', 'near', 'bilinear', 'cubic', - 'cubicspline', 'lanczos', 'antialias') -profile_list = ('mercator', 'geodetic', 'raster') -webviewer_list = ('all', 'google', 'openlayers', 'leaflet', 'none') +resampling_list = ( + "average", + "near", + "near-composite", + "bilinear", + "cubic", + "cubicspline", + "lanczos", + "antialias", + "mode", + "max", + "min", + "med", + "q1", + "q3", +) +webviewer_list = ("all", "google", "openlayers", "leaflet", "mapml", "none") + + +def makedirs(path): + """Wrapper for os.makedirs() that can work with /vsi files too""" + if path.startswith("/vsi"): + if gdal.MkdirRecursive(path, 0o755) != 0: + raise Exception(f"Cannot create {path}") + else: + os.makedirs(path, exist_ok=True) + + +def isfile(path): + """Wrapper for os.path.isfile() that can work with /vsi files too""" + if path.startswith("/vsi"): + stat_res = gdal.VSIStatL(path) + if stat is None: + return False + return stat.S_ISREG(stat_res.mode) + else: + return os.path.isfile(path) + + +class VSIFile: + """Expose a simplistic file-like API for a /vsi file""" + + def __init__(self, filename, f): + self.filename = filename + self.f = f + + def write(self, content): + if gdal.VSIFWriteL(content, 1, len(content), self.f) != len(content): + raise Exception("Error while writing into %s" % self.filename) + + +@contextlib.contextmanager +def my_open(filename, mode): + """Wrapper for open() built-in method that can work with /vsi files too""" + if filename.startswith("/vsi"): + f = gdal.VSIFOpenL(filename, mode) + if f is None: + raise Exception(f"Cannot open {filename} in {mode}") + try: + yield VSIFile(filename, f) + finally: + if gdal.VSIFCloseL(f) != 0: + raise Exception(f"Cannot close {filename}") + else: + yield open(filename, mode) + + +class UnsupportedTileMatrixSet(Exception): + pass + + +class TileMatrixSet(object): + def __init__(self) -> None: + self.identifier = None + self.srs = None + self.topleft_x = None + self.topleft_y = None + self.matrix_width = None # at zoom 0 + self.matrix_height = None # at zoom 0 + self.tile_size = None + self.resolution = None # at zoom 0 + self.level_count = None + + def GeorefCoordToTileCoord(self, x, y, z, overriden_tile_size): + res = self.resolution * self.tile_size / overriden_tile_size / (2**z) + tx = int((x - self.topleft_x) / (res * overriden_tile_size)) + # In default mode, we use a bottom-y origin + ty = int( + ( + y + - ( + self.topleft_y + - self.matrix_height * self.tile_size * self.resolution + ) + ) + / (res * overriden_tile_size) + ) + return tx, ty + + def ZoomForPixelSize(self, pixelSize, overriden_tile_size): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(self.level_count): + res = self.resolution * self.tile_size / \ + overriden_tile_size / (2**i) + if pixelSize > res: + return max(0, i - 1) # We don't want to scale up + return self.level_count - 1 + + def PixelsToMeters(self, px, py, zoom, overriden_tile_size): + "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" + + res = self.resolution * self.tile_size / \ + overriden_tile_size / (2**zoom) + mx = px * res + self.topleft_x + my = py * res + ( + self.topleft_y - self.matrix_height * self.tile_size * self.resolution + ) + return mx, my + + def TileBounds(self, tx, ty, zoom, overriden_tile_size): + "Returns bounds of the given tile in georef coordinates" + + minx, miny = self.PixelsToMeters( + tx * overriden_tile_size, + ty * overriden_tile_size, + zoom, + overriden_tile_size, + ) + maxx, maxy = self.PixelsToMeters( + (tx + 1) * overriden_tile_size, + (ty + 1) * overriden_tile_size, + zoom, + overriden_tile_size, + ) + return (minx, miny, maxx, maxy) + + @staticmethod + def parse(j: dict) -> "TileMatrixSet": + assert "identifier" in j + assert "supportedCRS" in j + assert "tileMatrix" in j + assert isinstance(j["tileMatrix"], list) + srs = osr.SpatialReference() + assert srs.SetFromUserInput(str(j["supportedCRS"])) == 0 + swapaxis = srs.EPSGTreatsAsLatLong() or srs.EPSGTreatsAsNorthingEasting() + metersPerUnit = 1.0 + if srs.IsProjected(): + metersPerUnit = srs.GetLinearUnits() + elif srs.IsGeographic(): + metersPerUnit = srs.GetSemiMajor() * math.pi / 180 + tms = TileMatrixSet() + tms.srs = srs + tms.identifier = str(j["identifier"]) + for i, tileMatrix in enumerate(j["tileMatrix"]): + assert "topLeftCorner" in tileMatrix + assert isinstance(tileMatrix["topLeftCorner"], list) + topLeftCorner = tileMatrix["topLeftCorner"] + assert len(topLeftCorner) == 2 + assert "scaleDenominator" in tileMatrix + assert "tileWidth" in tileMatrix + assert "tileHeight" in tileMatrix + + topleft_x = topLeftCorner[0] + topleft_y = topLeftCorner[1] + tileWidth = tileMatrix["tileWidth"] + tileHeight = tileMatrix["tileHeight"] + if tileWidth != tileHeight: + raise UnsupportedTileMatrixSet("Only square tiles supported") + # Convention in OGC TileMatrixSet definition. See gcore/tilematrixset.cpp + resolution = tileMatrix["scaleDenominator"] * \ + 0.28e-3 / metersPerUnit + if swapaxis: + topleft_x, topleft_y = topleft_y, topleft_x + if i == 0: + tms.topleft_x = topleft_x + tms.topleft_y = topleft_y + tms.resolution = resolution + tms.tile_size = tileWidth + + assert "matrixWidth" in tileMatrix + assert "matrixHeight" in tileMatrix + tms.matrix_width = tileMatrix["matrixWidth"] + tms.matrix_height = tileMatrix["matrixHeight"] + else: + if topleft_x != tms.topleft_x or topleft_y != tms.topleft_y: + raise UnsupportedTileMatrixSet( + "All levels should have same origin") + if abs(tms.resolution / (1 << i) - resolution) > 1e-8 * resolution: + raise UnsupportedTileMatrixSet( + "Only resolutions varying as power-of-two supported" + ) + if tileWidth != tms.tile_size: + raise UnsupportedTileMatrixSet( + "All levels should have same tile size" + ) + tms.level_count = len(j["tileMatrix"]) + return tms + + +tmsMap = {} + +profile_list = ["mercator", "geodetic", "raster"] + +# Read additional tile matrix sets from GDAL data directory +filename = gdal.FindFile("gdal", "tms_MapML_APSTILE.json") +if filename and False: + dirname = os.path.dirname(filename) + for tmsfilename in glob.glob(os.path.join(dirname, "tms_*.json")): + data = open(tmsfilename, "rb").read() + try: + j = json.loads(data.decode("utf-8")) + except Exception: + j = None + if j is None: + print("Cannot parse " + tmsfilename) + continue + try: + tms = TileMatrixSet.parse(j) + except UnsupportedTileMatrixSet: + continue + except Exception: + print("Cannot parse " + tmsfilename) + continue + tmsMap[tms.identifier] = tms + profile_list.append(tms.identifier) + +threadLocal = threading.local() # ============================================================================= # ============================================================================= @@ -201,8 +438,7 @@ class GlobalMercator(object): What is the coordinate extent of Earth in EPSG:3857? - [-20037508.342789244, -20037508.342789244, - 20037508.342789244, 20037508.342789244] + [-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244] Constant 20037508.342789244 comes from the circumference of the Earth in meters, which is 40 thousand kilometers, the coordinate origin is in the middle of extent. In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 @@ -272,11 +508,11 @@ class GlobalMercator(object): AUTHORITY["EPSG","9001"]]] """ - def __init__(self, tileSize=256): + def __init__(self, tile_size: int = 256) -> None: "Initialize the TMS Global Mercator pyramid" - self.tileSize = tileSize - self.initialResolution = 2 * math.pi * 6378137 / self.tileSize - # 156543.03392804062 for tileSize 256 pixels + self.tile_size = tile_size + self.initialResolution = 2 * math.pi * 6378137 / self.tile_size + # 156543.03392804062 for tile_size 256 pixels self.originShift = 2 * math.pi * 6378137 / 2.0 # 20037508.342789244 @@ -296,8 +532,11 @@ def MetersToLatLon(self, mx, my): lon = (mx / self.originShift) * 180.0 lat = (my / self.originShift) * 180.0 - lat = 180 / math.pi * \ - (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) + lat = ( + 180 + / math.pi + * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) + ) return lat, lon def PixelsToMeters(self, px, py, zoom): @@ -319,14 +558,14 @@ def MetersToPixels(self, mx, my, zoom): def PixelsToTile(self, px, py): "Returns a tile covering region in given pixel coordinates" - tx = int(math.ceil(px / float(self.tileSize)) - 1) - ty = int(math.ceil(py / float(self.tileSize)) - 1) + tx = int(math.ceil(px / float(self.tile_size)) - 1) + ty = int(math.ceil(py / float(self.tile_size)) - 1) return tx, ty def PixelsToRaster(self, px, py, zoom): "Move the origin of pixel coordinates to top-left corner" - mapSize = self.tileSize << zoom + mapSize = self.tile_size << zoom return px, mapSize - py def MetersToTile(self, mx, my, zoom): @@ -339,9 +578,10 @@ def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile in EPSG:3857 coordinates" minx, miny = self.PixelsToMeters( - tx*self.tileSize, ty*self.tileSize, zoom) + tx * self.tile_size, ty * self.tile_size, zoom) maxx, maxy = self.PixelsToMeters( - (tx+1)*self.tileSize, (ty+1)*self.tileSize, zoom) + (tx + 1) * self.tile_size, (ty + 1) * self.tile_size, zoom + ) return (minx, miny, maxx, maxy) def TileLatLonBounds(self, tx, ty, zoom): @@ -356,7 +596,7 @@ def TileLatLonBounds(self, tx, ty, zoom): def Resolution(self, zoom): "Resolution (meters/pixel) for given zoom level (measured at Equator)" - # return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom) + # return (2 * math.pi * 6378137) / (self.tile_size * 2**zoom) return self.initialResolution / (2**zoom) def ZoomForPixelSize(self, pixelSize): @@ -364,10 +604,8 @@ def ZoomForPixelSize(self, pixelSize): for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): - if i != -1: - return i-1 - else: - return 0 # We don't want to scale up + return max(0, i - 1) # We don't want to scale up + return MAXZOOMLEVEL - 1 def GoogleTile(self, tx, ty, zoom): "Converts TMS tile coordinates to Google Tile coordinates" @@ -382,7 +620,7 @@ def QuadTree(self, tx, ty, zoom): ty = (2**zoom - 1) - ty for i in range(zoom, 0, -1): digit = 0 - mask = 1 << (i-1) + mask = 1 << (i - 1) if (tx & mask) != 0: digit += 1 if (ty & mask) != 0: @@ -427,17 +665,17 @@ class GlobalGeodetic(object): WMS, KML Web Clients, Google Earth TileMapService """ - def __init__(self, tmscompatible, tileSize=256): - self.tileSize = tileSize - if tmscompatible is not None: + def __init__(self, tmscompatible: Optional[bool], tile_size: int = 256) -> None: + self.tile_size = tile_size + if tmscompatible: # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) # Adhers to OSGeo TMS spec # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic - self.resFact = 180.0 / self.tileSize + self.resFact = 180.0 / self.tile_size else: # Defaults the resolution factor to 1.40625 (1 tile @ level 0) # Adheres OpenLayers, MapProxy, etc default resolution for WMTS - self.resFact = 360.0 / self.tileSize + self.resFact = 360.0 / self.tile_size def LonLatToPixels(self, lon, lat, zoom): "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" @@ -450,8 +688,8 @@ def LonLatToPixels(self, lon, lat, zoom): def PixelsToTile(self, px, py): "Returns coordinates of the tile covering region in pixel coordinates" - tx = int(math.ceil(px / float(self.tileSize)) - 1) - ty = int(math.ceil(py / float(self.tileSize)) - 1) + tx = int(math.ceil(px / float(self.tile_size)) - 1) + ty = int(math.ceil(py / float(self.tile_size)) - 1) return tx, ty def LonLatToTile(self, lon, lat, zoom): @@ -470,19 +708,17 @@ def ZoomForPixelSize(self, pixelSize): for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): - if i != 0: - return i-1 - else: - return 0 # We don't want to scale up + return max(0, i - 1) # We don't want to scale up + return MAXZOOMLEVEL - 1 def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile" res = self.resFact / 2**zoom return ( - tx*self.tileSize*res - 180, - ty*self.tileSize*res - 90, - (tx+1)*self.tileSize*res - 180, - (ty+1)*self.tileSize*res - 90 + tx * self.tile_size * res - 180, + ty * self.tile_size * res - 90, + (tx + 1) * self.tile_size * res - 180, + (ty + 1) * self.tile_size * res - 90, ) def TileLatLonBounds(self, tx, ty, zoom): @@ -497,13 +733,13 @@ class Zoomify(object): ---------------------------------------- """ - def __init__(self, width, height, tilesize=256, tileformat='jpg'): + def __init__(self, width, height, tile_size=256, tileformat="jpg"): """Initialization of the Zoomify tile tree""" - self.tilesize = tilesize + self.tile_size = tile_size self.tileformat = tileformat imagesize = (width, height) - tiles = (math.ceil(width / tilesize), math.ceil(height / tilesize)) + tiles = (math.ceil(width / tile_size), math.ceil(height / tile_size)) # Size (in tiles) for each tier of pyramid. self.tierSizeInTiles = [] @@ -513,11 +749,13 @@ def __init__(self, width, height, tilesize=256, tileformat='jpg'): self.tierImageSize = [] self.tierImageSize.append(imagesize) - while (imagesize[0] > tilesize or imagesize[1] > tilesize): + while imagesize[0] > tile_size or imagesize[1] > tile_size: imagesize = (math.floor( imagesize[0] / 2), math.floor(imagesize[1] / 2)) - tiles = (math.ceil(imagesize[0] / tilesize), - math.ceil(imagesize[1] / tilesize)) + tiles = ( + math.ceil(imagesize[0] / tile_size), + math.ceil(imagesize[1] / tile_size), + ) self.tierSizeInTiles.append(tiles) self.tierImageSize.append(imagesize) @@ -530,10 +768,10 @@ def __init__(self, width, height, tilesize=256, tileformat='jpg'): # Number of tiles up to the given tier of pyramid. self.tileCountUpToTier = [] self.tileCountUpToTier[0] = 0 - for i in range(1, self.numberOfTiers+1): + for i in range(1, self.numberOfTiers + 1): self.tileCountUpToTier.append( - self.tierSizeInTiles[i-1][0] * self.tierSizeInTiles[i-1][1] + - self.tileCountUpToTier[i-1] + self.tierSizeInTiles[i - 1][0] * self.tierSizeInTiles[i - 1][1] + + self.tileCountUpToTier[i - 1] ) def tilefilename(self, x, y, z): @@ -541,756 +779,1945 @@ def tilefilename(self, x, y, z): tileIndex = x + y * \ self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] - return os.path.join("TileGroup%.0f" % math.floor(tileIndex / 256), - "%s-%s-%s.%s" % (z, x, y, self.tileformat)) + return os.path.join( + "TileGroup%.0f" % math.floor(tileIndex / 256), + "%s-%s-%s.%s" % (z, x, y, self.tileformat), + ) -class Gdal2TilesError(Exception): +class GDALError(Exception): pass -class GDAL2Tiles(object): +def exit_with_error(message: str, details: str = "") -> NoReturn: + # Message printing and exit code kept from the way it worked using the OptionParser (in case + # someone parses the error output) + sys.stderr.write("Usage: gdal2tiles.py [options] input_file [output]\n\n") + sys.stderr.write("gdal2tiles.py: error: %s\n" % message) + if details: + sys.stderr.write("\n\n%s\n" % details) - def process(self): - """The main processing function, runs all the main steps of processing""" + sys.exit(2) - # Opening and preprocessing of the input file - self.open_input() - # Generation of main metadata files and HTML viewers - self.generate_metadata() +def set_cache_max(cache_in_bytes: int) -> None: + # We set the maximum using `SetCacheMax` and `GDAL_CACHEMAX` to support both fork and spawn as multiprocessing start methods. + # https://github.com/OSGeo/gdal/pull/2112 + os.environ["GDAL_CACHEMAX"] = "%d" % int(cache_in_bytes / 1024 / 1024) + gdal.SetCacheMax(cache_in_bytes) - # 1bto4b - if self.isDEMtile: - for z in range(self.tminz, self.tmaxz + int(abs(math.log(self.tilesize, 2) - 8))): # 1bto4b - self.generate_base_tiles(z) - print(' Zoom ' + str(z) + ' tiles done!') - else: - # Generation of the lowest tiles - self.generate_base_tiles(self.tmaxz) - # Generation of the overview tiles (higher in the pyramid) - self.generate_overview_tiles() +def generate_kml( + tx, ty, tz, tileext, tile_size, tileswne, options, children=None, **args +): + """ + Template for the KML. Returns filled string. + """ + if not children: + children = [] + + args["tx"], args["ty"], args["tz"] = tx, ty, tz + args["tileformat"] = tileext + if "tile_size" not in args: + args["tile_size"] = tile_size + + if "minlodpixels" not in args: + args["minlodpixels"] = int(args["tile_size"] / 2) + if "maxlodpixels" not in args: + args["maxlodpixels"] = int(args["tile_size"] * 8) + if children == []: + args["maxlodpixels"] = -1 + + if tx is None: + tilekml = False + args["xml_escaped_title"] = gdal.EscapeString( + options.title, gdal.CPLES_XML) + else: + tilekml = True + args["realtiley"] = GDAL2Tiles.getYTile(ty, tz, options) + args["xml_escaped_title"] = "%d/%d/%d.kml" % ( + tz, tx, args["realtiley"]) + args["south"], args["west"], args["north"], args["east"] = tileswne( + tx, ty, tz) + + if tx == 0: + args["drawOrder"] = 2 * tz + 1 + elif tx is not None: + args["drawOrder"] = 2 * tz + else: + args["drawOrder"] = 0 - def error(self, msg, details=""): - """Print an error message and stop the processing""" - if details: - self.parser.error(msg + "\n\n" + details) + url = options.url + if not url: + if tilekml: + url = "../../" else: - self.parser.error(msg) - - def progressbar(self, complete=0.0): - """Print progressbar for float value 0..1""" - gdal.TermProgress_nocb(complete) - - def gettempfilename(self, suffix): - """Returns a temporary filename""" - if '_' in os.environ: - # tempfile.mktemp() crashes on some Wine versions (the one of Ubuntu 12.04 particularly) - if os.environ['_'].find('wine') >= 0: - tmpdir = '.' - if 'TMP' in os.environ: - tmpdir = os.environ['TMP'] - import time - import random - random.seed(time.time()) - random_part = 'file%d' % random.randint(0, 1000000000) - return os.path.join(tmpdir, random_part + suffix) - - import tempfile - return tempfile.mktemp(suffix) - - def stop(self): - """Stop the rendering immediately""" - self.stopped = True - - def __init__(self, arguments): - """Constructor function - initialization""" - self.out_drv = None - self.mem_drv = None - self.in_ds = None - self.out_ds = None - self.out_srs = None - self.nativezoom = None - self.tminmax = None - self.tsize = None - self.mercator = None - self.geodetic = None - self.alphaband = None - self.dataBandsCount = None - self.out_gt = None - self.tileswne = None - self.swne = None - self.ominx = None - self.omaxx = None - self.omaxy = None - self.ominy = None + url = "" + + s = ( + """ + + + %(xml_escaped_title)s + + """ + % args + ) + if tilekml: + s += ( + """ + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + + %(minlodpixels)d + %(maxlodpixels)d + + + + %(drawOrder)d + + %(realtiley)d.%(tileformat)s + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + +""" + % args + ) - # MMGIS - self.isRasterBounded = False + for cx, cy, cz in children: + csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz) + ytile = GDAL2Tiles.getYTile(cy, cz, options) + s += """ + + %d/%d/%d.%s + + + %.14f + %.14f + %.14f + %.14f + + + %d + -1 + + + + %s%d/%d/%d.kml + onRegion + + + + """ % ( + cz, + cx, + ytile, + args["tileformat"], + cnorth, + csouth, + ceast, + cwest, + args["minlodpixels"], + url, + cz, + cx, + ytile, + ) - # 1bto4b - self.isDEMtile = False + s += """ + + """ + return s - # MMGIS - self.fminx = None - self.fmaxx = None - self.fminy = None - self.fmaxy = None - self.fPixelSize = None - self.stopped = False - self.input = None - self.output = None +def scale_query_to_tile(dsquery, dstile, options, tilefilename=""): + """Scales down query dataset to the tile dataset""" - # Tile format - self.tilesize = 256 - self.tiledriver = 'PNG' - self.tileext = 'png' + querysize = dsquery.RasterXSize + tile_size = dstile.RasterXSize + tilebands = dstile.RasterCount - # Should we read bigger window of the input raster and scale it down? - # Note: Modified later by open_input() - # Not for 'near' resampling - # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) - # Not for 'raster' profile - self.scaledquery = True - # How big should be query window be for scaling down - # Later on reset according the chosen resampling algorightm - self.querysize = 4 * self.tilesize + if options.resampling == "average": - # Should we use Read on the input file for generating overview tiles? - # Note: Modified later by open_input() - # Otherwise the overview tiles are generated from existing underlying tiles - self.overviewquery = False + # Function: gdal.RegenerateOverview() + for i in range(1, tilebands + 1): + # Black border around NODATA + res = gdal.RegenerateOverview( + dsquery.GetRasterBand(i), dstile.GetRasterBand(i), "average" + ) + if res != 0: + exit_with_error( + "RegenerateOverview() failed on %s, error %d" % (tilefilename, res) + ) - # RUN THE ARGUMENT PARSER: + elif options.resampling == "antialias" and numpy_available: - self.optparse_init() - self.options, self.args = self.parser.parse_args(args=arguments) - if not self.args: - self.error("No input file specified") + if tilefilename.startswith("/vsi"): + raise Exception( + "Outputting to /vsi file systems with antialias mode is not supported" + ) - # POSTPROCESSING OF PARSED ARGUMENTS: + # Scaling by PIL (Python Imaging Library) - improved Lanczos + array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) + for i in range(tilebands): + array[:, :, i] = gdalarray.BandReadAsArray( + dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize + ) + im = Image.fromarray(array, "RGBA") # Always four bands + im1 = im.resize((tile_size, tile_size), Image.LANCZOS) + if os.path.exists(tilefilename): + im0 = Image.open(tilefilename) + im1 = Image.composite(im1, im0, im1) + + params = {} + if options.tiledriver == "WEBP": + if options.webp_lossless: + params["lossless"] = True + else: + params["quality"] = options.webp_quality + im1.save(tilefilename, options.tiledriver, **params) - # Workaround for old versions of GDAL - try: - if ((self.options.verbose and self.options.resampling == 'near') or - gdal.TermProgress_nocb): - pass - except Exception: - self.error( - "This version of GDAL is not supported. Please upgrade to 1.6+.") + # MMGIS + elif options.resampling == "near-composite" and numpy_available: - # Is output directory the last argument? + if tilefilename.startswith("/vsi"): + raise Exception( + "Outputting to /vsi file systems with near-composite mode is not supported" + ) - # Test output directory, if it doesn't exist - if (os.path.isdir(self.args[-1]) or - (len(self.args) > 1 and not os.path.exists(self.args[-1]))): - self.output = self.args[-1] - self.args = self.args[:-1] + # Scaling by PIL (Python Imaging Library) - nearest + array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) + for i in range(tilebands): + array[:, :, i] = gdalarray.BandReadAsArray( + dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize + ) + im = Image.fromarray(array, "RGBA") # Always four bands + im1 = im.resize((tile_size, tile_size), Image.NEAREST) + + if os.path.exists(tilefilename): + im0 = Image.open(tilefilename) + + # Make mask, nodatas to alpha + nodataPixel = False + if options.srcnodata is not None: + f = str(binary(float(options.srcnodata))) + nodataPixel = [int(f[:8], 2), int(f[8:16], 2), + (int(f[16:24], 2)), int(f[24:], 2)] + + if nodataPixel is not False: + for rowI in range(len(array)): + for pixelI in range(len(array[rowI])): + if array[rowI][pixelI][0] == nodataPixel[0] and array[rowI][pixelI][1] == nodataPixel[1] and array[rowI][pixelI][2] == nodataPixel[2] and array[rowI][pixelI][3] == nodataPixel[3]: + array[rowI][pixelI] = [0, 0, 0, 0] + elif array[rowI][pixelI][0] == 0 and array[rowI][pixelI][1] == 0 and array[rowI][pixelI][2] == 0 and array[rowI][pixelI][3] == 0: + array[rowI][pixelI] = [0, 0, 0, 0] + else: + array[rowI][pixelI] = [255, 255, 255, 255] - # More files on the input not directly supported yet + imMask = Image.fromarray(array, "RGBA") # Always four bands + im1Mask = imMask.resize((tile_size, tile_size), Image.NEAREST) - if (len(self.args) > 1): - self.error("Processing of several input files is not supported.", - "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " - "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(self.args)) + im1 = Image.composite(im1, im0, im1Mask) - self.input = self.args[0] + params = {} + if options.tiledriver == "WEBP": + if options.webp_lossless: + params["lossless"] = True + else: + params["quality"] = options.webp_quality + im1.save(tilefilename, options.tiledriver, **params) - # MMGIS - if self.options.extentworld: - extentworld = self.options.extentworld.split(",") - self.isRasterBounded = True - self.fminx = float(extentworld[0]) - self.fmaxx = float(extentworld[2]) - self.fminy = float(extentworld[3]) - self.fmaxy = float(extentworld[1]) - self.fPixelSize = float(extentworld[4]) + else: - # 1bto4b - if self.options.isDEMtile: - self.isDEMtile = True - self.tilesize = 32 - self.querysize = 4 * self.tilesize - - # Default values for not given options - - if not self.output: - # Directory with input filename without extension in actual directory - self.output = os.path.splitext(os.path.basename(self.input))[0] - - if not self.options.title: - self.options.title = os.path.basename(self.input) - - if self.options.url and not self.options.url.endswith('/'): - self.options.url += '/' - if self.options.url: - self.options.url += os.path.basename(self.output) + '/' - - # Supported options - - self.resampling = None - - if self.options.resampling == 'average': - try: - if gdal.RegenerateOverview: - pass - except Exception: - self.error("'average' resampling algorithm is not available.", - "Please use -r 'near' argument or upgrade to newer version of GDAL.") - - elif self.options.resampling == 'antialias': - try: - if numpy: # pylint:disable=W0125 - pass - except Exception: - self.error("'antialias' resampling algorithm is not available.", - "Install PIL (Python Imaging Library) and numpy.") - - elif self.options.resampling == 'near': - self.resampling = gdal.GRA_NearestNeighbour - self.querysize = self.tilesize - - elif self.options.resampling == 'bilinear': - self.resampling = gdal.GRA_Bilinear - self.querysize = self.tilesize * 2 - - elif self.options.resampling == 'cubic': - self.resampling = gdal.GRA_Cubic - - elif self.options.resampling == 'cubicspline': - self.resampling = gdal.GRA_CubicSpline - - elif self.options.resampling == 'lanczos': - self.resampling = gdal.GRA_Lanczos - - # User specified zoom levels - self.tminz = None - self.tmaxz = None - if self.options.zoom: - minmax = self.options.zoom.split('-', 1) - minmax.extend(['']) - zoom_min, zoom_max = minmax[:2] - self.tminz = int(zoom_min) - if zoom_max: - self.tmaxz = int(zoom_max) - else: - self.tmaxz = int(zoom_min) + if options.resampling == "near": + gdal_resampling = gdal.GRA_NearestNeighbour - # KML generation - self.kml = self.options.kml + elif options.resampling == "bilinear": + gdal_resampling = gdal.GRA_Bilinear - # Check if the input filename is full ascii or not - try: - os.path.basename(self.input).encode('ascii') - except UnicodeEncodeError: - full_ascii = False - else: - full_ascii = True - - # LC_CTYPE check - if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""): - if not self.options.quiet: - print("\nWARNING: " - "You are running gdal2tiles.py with a LC_CTYPE environment variable that is " - "not UTF-8 compatible, and your input file contains non-ascii characters. " - "The generated sample googlemaps, openlayers or " - "leaflet files might contain some invalid characters as a result\n") - - # Output the results - if self.options.verbose: - print("Options:", self.options) - print("Input:", self.input) - print("Output:", self.output) - print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) - print('') - - def optparse_init(self): - """Prepare the option parser for input (argv)""" - - from optparse import OptionParser, OptionGroup - usage = "Usage: %prog [options] input_file(s) [output]" - p = OptionParser(usage, version="%prog " + __version__) - p.add_option("-p", "--profile", dest='profile', - type='choice', choices=profile_list, - help=("Tile cutting profile (%s) - default 'mercator' " - "(Google Maps compatible)" % ",".join(profile_list))) - p.add_option("-r", "--resampling", dest="resampling", - type='choice', choices=resampling_list, - help="Resampling method (%s) - default 'average'" % ",".join(resampling_list)) - p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS", - help="The spatial reference system used for the source input data") - p.add_option('-z', '--zoom', dest="zoom", - help="Zoom levels to render (format:'2-5' or '10').") - p.add_option('-e', '--resume', dest="resume", action="store_true", - help="Resume mode. Generate only missing files.") - p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA", - help="NODATA transparency value to assign to the input data") - p.add_option('-d', '--tmscompatible', dest="tmscompatible", action="store_true", - help=("When using the geodetic profile, specifies the base resolution " - "as 0.703125 or 2 tiles at zoom level 0.")) - p.add_option("-v", "--verbose", - action="store_true", dest="verbose", - help="Print status messages to stdout") - p.add_option("-q", "--quiet", - action="store_true", dest="quiet", - help="Disable messages and status to stdout") - # MMGIS - p.add_option("-x", "--extentworld", dest="extentworld", - help="The full world meter extent (comma-separated as minx,maxx,miny,maxy,pixelsize) of an inner raster profile.") - # 1bto4b - p.add_option("-m", "--dem", action="store_true", dest="isDEMtile", - help="Indicate if the input is a Digital Elevation Model") - # KML options - g = OptionGroup(p, "KML (Google Earth) options", - "Options for generated Google Earth SuperOverlay metadata") - g.add_option("-k", "--force-kml", dest='kml', action="store_true", - help=("Generate KML for Google Earth - default for 'geodetic' profile and " - "'raster' in EPSG:4326. For a dataset with different projection use " - "with caution!")) - g.add_option("-n", "--no-kml", dest='kml', action="store_false", - help="Avoid automatic generation of KML files for EPSG:4326") - g.add_option("-u", "--url", dest='url', - help="URL address where the generated tiles are going to be published") - p.add_option_group(g) - - # HTML options - g = OptionGroup(p, "Web viewer options", - "Options for generated HTML viewers a la Google Maps") - g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list, - help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list)) - g.add_option("-t", "--title", dest='title', - help="Title of the map") - g.add_option("-c", "--copyright", dest='copyright', - help="Copyright for the map") - g.add_option("-g", "--googlekey", dest='googlekey', - help="Google Maps API key from http://code.google.com/apis/maps/signup.html") - g.add_option("-b", "--bingkey", dest='bingkey', - help="Bing Maps API key from https://www.bingmapsportal.com/") - p.add_option_group(g) - - p.set_defaults(verbose=False, profile="mercator", kml=False, url='', - webviewer='all', copyright='', resampling='average', resume=False, - googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE') - - self.parser = p + elif options.resampling == "cubic": + gdal_resampling = gdal.GRA_Cubic - # ------------------------------------------------------------------------- - def open_input(self): - """Initialization of the input raster, reprojection if necessary""" - gdal.AllRegister() + elif options.resampling == "cubicspline": + gdal_resampling = gdal.GRA_CubicSpline - self.out_drv = gdal.GetDriverByName(self.tiledriver) - self.mem_drv = gdal.GetDriverByName('MEM') + elif options.resampling == "lanczos": + gdal_resampling = gdal.GRA_Lanczos - if not self.out_drv: - raise Exception("The '%s' driver was not found, is it available in this GDAL build?", - self.tiledriver) - if not self.mem_drv: - raise Exception( - "The 'MEM' driver was not found, is it available in this GDAL build?") + elif options.resampling == "mode": + gdal_resampling = gdal.GRA_Mode - # Open the input file + elif options.resampling == "max": + gdal_resampling = gdal.GRA_Max - if self.input: - self.in_ds = gdal.Open(self.input, gdal.GA_ReadOnly) - else: - raise Exception("No input file was specified") + elif options.resampling == "min": + gdal_resampling = gdal.GRA_Min - if self.options.verbose: - print("Input file:", - "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, - self.in_ds.RasterCount)) + elif options.resampling == "med": + gdal_resampling = gdal.GRA_Med - if not self.in_ds: - # Note: GDAL prints the ERROR message too - self.error( - "It is not possible to open the input file '%s'." % self.input) + elif options.resampling == "q1": + gdal_resampling = gdal.GRA_Q1 - # Read metadata from the input file - if self.in_ds.RasterCount == 0: - self.error("Input file '%s' has no raster band" % self.input) - - if self.in_ds.GetRasterBand(1).GetRasterColorTable(): - self.error("Please convert this file to RGB/RGBA and run gdal2tiles on the result.", - "From paletted file you can create RGBA file (temp.vrt) by:\n" - "gdal_translate -of vrt -expand rgba %s temp.vrt\n" - "then run:\n" - "gdal2tiles temp.vrt" % self.input) - - # Get NODATA value - in_nodata = [] - for i in range(1, self.in_ds.RasterCount+1): - if self.in_ds.GetRasterBand(i).GetNoDataValue() is not None: - in_nodata.append(self.in_ds.GetRasterBand(i).GetNoDataValue()) - if self.options.srcnodata: - nds = list(map(float, self.options.srcnodata.split(','))) - if len(nds) < self.in_ds.RasterCount: - in_nodata = ( - nds * self.in_ds.RasterCount)[:self.in_ds.RasterCount] - else: - in_nodata = nds + elif options.resampling == "q3": + gdal_resampling = gdal.GRA_Q3 - if self.options.verbose: - print("NODATA: %s" % in_nodata) + # Other algorithms are implemented by gdal.ReprojectImage(). + dsquery.SetGeoTransform( + ( + 0.0, + tile_size / float(querysize), + 0.0, + 0.0, + 0.0, + tile_size / float(querysize), + ) + ) + dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) - if self.options.verbose: - print("Preprocessed file:", - "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, - self.in_ds.RasterCount)) + res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) + if res != 0: + exit_with_error( + "ReprojectImage() failed on %s, error %d" % (tilefilename, res) + ) - in_srs = None - if self.options.s_srs: - in_srs = osr.SpatialReference() - in_srs.SetFromUserInput(self.options.s_srs) - in_srs_wkt = in_srs.ExportToWkt() - else: - in_srs_wkt = self.in_ds.GetProjection() - if not in_srs_wkt and self.in_ds.GetGCPCount() != 0: - in_srs_wkt = self.in_ds.GetGCPProjection() - if in_srs_wkt: - in_srs = osr.SpatialReference() - in_srs.ImportFromWkt(in_srs_wkt) - - self.out_srs = osr.SpatialReference() - - if self.options.profile == 'mercator': - self.out_srs.ImportFromEPSG(3857) - elif self.options.profile == 'geodetic': - self.out_srs.ImportFromEPSG(4326) +def setup_no_data_values(input_dataset: gdal.Dataset, options: Options) -> List[float]: + """ + Extract the NODATA values from the dataset or use the passed arguments as override if any + """ + in_nodata = [] + if options.srcnodata: + nds = list(map(float, options.srcnodata.split(","))) + if len(nds) < input_dataset.RasterCount: + in_nodata = ( + nds * input_dataset.RasterCount)[: input_dataset.RasterCount] else: - self.out_srs = in_srs + in_nodata = nds + else: + for i in range(1, input_dataset.RasterCount + 1): + band = input_dataset.GetRasterBand(i) + raster_no_data = band.GetNoDataValue() + if raster_no_data is not None: + # Ignore nodata values that are not in the range of the band data type (see https://github.com/OSGeo/gdal/pull/2299) + if band.DataType == gdal.GDT_Byte and ( + raster_no_data != int(raster_no_data) + or raster_no_data < 0 + or raster_no_data > 255 + ): + # We should possibly do similar check for other data types + in_nodata = [] + break + in_nodata.append(raster_no_data) - # Are the reference systems the same? Reproject if necessary. + if options.verbose: + print("NODATA: %s" % in_nodata) - self.out_ds = None + return in_nodata - if self.options.profile in ('mercator', 'geodetic'): - if ((self.in_ds.GetGeoTransform() == (0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) and - (self.in_ds.GetGCPCount() == 0)): - self.error("There is no georeference - neither affine transformation (worldfile) " - "nor GCPs. You can generate only 'raster' profile tiles.", - "Either gdal2tiles with parameter -p 'raster' or use another GIS " - "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs") +def setup_input_srs( + input_dataset: gdal.Dataset, options: Options +) -> Tuple[Optional[osr.SpatialReference], Optional[str]]: + """ + Determines and returns the Input Spatial Reference System (SRS) as an osr object and as a + WKT representation - if in_srs: - if ((in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or - (self.in_ds.GetGCPCount() != 0)): - # Generation of VRT dataset in tile projection, - # default 'nearest neighbour' warping - self.out_ds = gdal.AutoCreateWarpedVRT( - self.in_ds, in_srs_wkt, self.out_srs.ExportToWkt()) + Uses in priority the one passed in the command line arguments. If None, tries to extract them + from the input dataset + """ - if self.options.verbose: - print("Warping of the raster by AutoCreateWarpedVRT " - "(result saved into 'tiles.vrt')") - self.out_ds.GetDriver().CreateCopy("tiles.vrt", self.out_ds) - - # Correction of AutoCreateWarpedVRT for NODATA values - if in_nodata != []: - tempfilename = self.gettempfilename('-gdal2tiles.vrt') - self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) - # open as a text file - s = open(tempfilename).read() - # Add the warping options - s = s.replace( - "", - """ - - - - """) - # replace BandMapping tag for NODATA bands.... - for i in range(len(in_nodata)): - s = s.replace( - '' % ( - (i+1), (i+1)), - """ - - %i - 0 - %i - 0 - - """ % ((i+1), (i+1), in_nodata[i], in_nodata[i])) - # save the corrected VRT - open(tempfilename, "w").write(s) - # open by GDAL as self.out_ds - self.out_ds = gdal.Open(tempfilename) - # delete the temporary file - os.unlink(tempfilename) - - # set NODATA_VALUE metadata - self.out_ds.SetMetadataItem( - 'NODATA_VALUES', ' '.join([str(i) for i in in_nodata])) - - if self.options.verbose: - print("Modified warping result saved into 'tiles1.vrt'") - open("tiles1.vrt", "w").write(s) - - # Correction of AutoCreateWarpedVRT for Mono (1 band) and RGB (3 bands) files - # without NODATA: - # equivalent of gdalwarp -dstalpha - if in_nodata == [] and self.out_ds.RasterCount in [1, 3]: - tempfilename = self.gettempfilename('-gdal2tiles.vrt') - self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) - # open as a text file - s = open(tempfilename).read() - # Add the warping options - s = s.replace( - "", - """ - - Alpha - - - """ % (self.out_ds.RasterCount + 1)) - s = s.replace( - "", - """ - %i - - """ % (self.out_ds.RasterCount + 1)) - s = s.replace( - "", - """ - - - """) - # save the corrected VRT - open(tempfilename, "w").write(s) - # open by GDAL as self.out_ds - self.out_ds = gdal.Open(tempfilename) - # delete the temporary file - os.unlink(tempfilename) - - if self.options.verbose: - print( - "Modified -dstalpha warping result saved into 'tiles1.vrt'") - open("tiles1.vrt", "w").write(s) - s = ''' - ''' + input_srs = None + input_srs_wkt = None - else: - self.error("Input file has unknown SRS.", - "Use --s_srs ESPG:xyz (or similar) to provide source reference system.") - - if self.out_ds and self.options.verbose: - print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % ( - self.out_ds.RasterXSize, self.out_ds.RasterYSize, self.out_ds.RasterCount)) - - if not self.out_ds: - self.out_ds = self.in_ds - - # - # Here we should have a raster (out_ds) in the correct Spatial Reference system - # - - # Get alpha band (either directly or from NODATA value) - self.alphaband = self.out_ds.GetRasterBand(1).GetMaskBand() - if ((self.alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or - self.out_ds.RasterCount == 4 or - self.out_ds.RasterCount == 2): - self.dataBandsCount = self.out_ds.RasterCount - 1 - else: - self.dataBandsCount = self.out_ds.RasterCount + if options.s_srs: + input_srs = osr.SpatialReference() + input_srs.SetFromUserInput(options.s_srs) + input_srs_wkt = input_srs.ExportToWkt() + else: + input_srs_wkt = input_dataset.GetProjection() + if not input_srs_wkt and input_dataset.GetGCPCount() != 0: + input_srs_wkt = input_dataset.GetGCPProjection() + if input_srs_wkt: + input_srs = osr.SpatialReference() + input_srs.ImportFromWkt(input_srs_wkt) - # KML test - isepsg4326 = False - srs4326 = osr.SpatialReference() - srs4326.ImportFromEPSG(4326) - if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): - self.kml = True - isepsg4326 = True - if self.options.verbose: - print("KML autotest OK!") + if input_srs is not None: + input_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) - # Read the georeference - self.out_gt = self.out_ds.GetGeoTransform() + return input_srs, input_srs_wkt - # Test the size of the pixel - # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) - if (self.out_gt[2], self.out_gt[4]) != (0, 0): - self.error("Georeference of the raster contains rotation or skew. " - "Such raster is not supported. Please use gdalwarp first.") +def setup_output_srs( + input_srs: Optional[osr.SpatialReference], options: Options +) -> Optional[osr.SpatialReference]: + """ + Setup the desired SRS (based on options) + """ + output_srs = osr.SpatialReference() + + if options.profile == "mercator": + output_srs.ImportFromEPSG(3857) + elif options.profile == "geodetic": + output_srs.ImportFromEPSG(4326) + elif options.profile == "raster": + output_srs = input_srs + else: + output_srs = tmsMap[options.profile].srs.Clone() - # Here we expect: pixel is square, no rotation on the raster + if output_srs: + output_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) - # Output Bounds - coordinates in the output SRS - self.ominx = self.out_gt[0] - self.omaxx = self.out_gt[0] + self.out_ds.RasterXSize * self.out_gt[1] - self.omaxy = self.out_gt[3] - self.ominy = self.out_gt[3] - self.out_ds.RasterYSize * self.out_gt[1] + return output_srs - # Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15 - # MMGIS - def linearScale(domain, rang, value): - return ( - ((rang[1] - rang[0]) * (value - domain[0])) / - (domain[1] - domain[0]) + - rang[0] - ) - # MMGIS - self.out_ds.fRasterXSize = self.out_ds.RasterXSize - self.out_ds.fRasterYSize = self.out_ds.RasterYSize - self.out_ds.fRasterXOrigin = 0 - self.out_ds.fRasterYOrigin = 0 - self.out_ds.PixelSize = self.out_gt[1] - self.out_ds.fPixelSize = self.fPixelSize - # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) - # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) - if self.isRasterBounded: - self.out_ds.fRasterXSize = int(math.floor(self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / ( - self.omaxx - self.ominx) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) - self.out_ds.fRasterYSize = int(math.ceil(self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / ( - self.omaxy - self.ominy) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) - self.out_ds.fRasterXSizeRaw = int(math.floor( - self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) - self.out_ds.fRasterYSizeRaw = int(math.ceil( - self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) - # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize ) - self.out_ds.fRasterXOrigin = int(math.floor(linearScale( - [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.out_gt[0]))) - self.out_ds.fRasterYOrigin = int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [self.out_ds.fRasterYSize, 0], self.out_gt[3]))) - self.out_ds.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ - 0, self.out_ds.fRasterXSize], self.out_gt[0]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) - self.out_ds.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ - self.out_ds.fRasterYSize, 0], self.out_gt[3]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) - self.out_ds.fRasterXWidth = int(math.floor(linearScale( - [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.omaxx))) - self.out_ds.fRasterXOrigin - self.out_ds.fRasterYHeight = int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [0, self.out_ds.fRasterYSize], self.omaxy))) - self.out_ds.fRasterYOrigin +def has_georeference(dataset: gdal.Dataset) -> bool: + return ( + dataset.GetGeoTransform() != (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) + or dataset.GetGCPCount() != 0 + ) - if self.options.verbose: - print("Bounds (output srs):", round(self.ominx, 13), - self.ominy, self.omaxx, self.omaxy) - # print("Input Raster Size: ", self.out_ds.RasterXSize, self.out_ds.RasterYSize) - # print("fmaxx-fminx", self.fmaxx - self.fminx, "omaxx-ominx", self.omaxx - self.ominx, "fmaxy-fminy", self.fmaxy - self.fminy, "omaxy-ominy", self.omaxy - self.ominy) - # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize) - # print("Full Raster Size Raw: ", self.out_ds.fRasterXSizeRaw, self.out_ds.fRasterYSizeRaw) - # print("Raster Origin: ", self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin) - # print("Raster Origin Raw: ", self.out_ds.fRasterXOriginRaw, self.out_ds.fRasterYOriginRaw) - # print("Raster Width Height: ", self.out_ds.fRasterXWidth, self.out_ds.fRasterYHeight) +def reproject_dataset( + from_dataset: gdal.Dataset, + from_srs: Optional[osr.SpatialReference], + to_srs: Optional[osr.SpatialReference], + options: Optional[Options] = None, +) -> gdal.Dataset: + """ + Returns the input dataset in the expected "destination" SRS. + If the dataset is already in the correct SRS, returns it unmodified + """ + if not from_srs or not to_srs: + raise GDALError( + "from and to SRS must be defined to reproject the dataset") + + if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or ( + from_dataset.GetGCPCount() != 0 + ): + + if ( + from_srs.IsGeographic() + and to_srs.GetAuthorityName(None) == "EPSG" + and to_srs.GetAuthorityCode(None) == "3857" + ): + from_gt = from_dataset.GetGeoTransform(can_return_null=True) + if from_gt and from_gt[2] == 0 and from_gt[4] == 0 and from_gt[5] < 0: + maxlat = from_gt[3] + minlat = from_gt[3] + from_dataset.RasterYSize * from_gt[5] + MAX_LAT = 85.0511287798066 + adjustBounds = False + if maxlat > MAX_LAT: + maxlat = MAX_LAT + adjustBounds = True + if minlat < -MAX_LAT: + minlat = -MAX_LAT + adjustBounds = True + if adjustBounds: + ct = osr.CoordinateTransformation(from_srs, to_srs) + west, south = ct.TransformPoint(from_gt[0], minlat)[:2] + east, north = ct.TransformPoint( + from_gt[0] + from_dataset.RasterXSize * + from_gt[1], maxlat + )[:2] + return gdal.Warp( + "", + from_dataset, + format="VRT", + outputBounds=[west, south, east, north], + dstSRS="EPSG:3857", + ) + + to_dataset = gdal.AutoCreateWarpedVRT( + from_dataset, from_srs.ExportToWkt(), to_srs.ExportToWkt() + ) - # Calculating ranges for tiles in different zoom levels - if self.options.profile == 'mercator': + if options and options.verbose: + print( + "Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')" + ) + to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset) - self.mercator = GlobalMercator() + return to_dataset + else: + return from_dataset - # Function which generates SWNE in LatLong for given tile - self.tileswne = self.mercator.TileLatLonBounds - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, 32)) - for tz in range(0, 32): - tminx, tminy = self.mercator.MetersToTile( - self.ominx, self.ominy, tz) - tmaxx, tmaxy = self.mercator.MetersToTile( - self.omaxx, self.omaxy, tz) - # crop tiles extending world limits (+-180,+-90) - tminx, tminy = max(0, tminx), max(0, tminy) - tmaxx, tmaxy = min(2**tz-1, tmaxx), min(2**tz-1, tmaxy) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) +def add_gdal_warp_options_to_string(vrt_string, warp_options): + if not warp_options: + return vrt_string - # TODO: Maps crossing 180E (Alaska?) + vrt_root = ElementTree.fromstring(vrt_string) + options = vrt_root.find("GDALWarpOptions") - # Get the minimal zoom level (map covers area equivalent to one tile) - if self.tminz is None: - self.tminz = self.mercator.ZoomForPixelSize( - self.out_gt[1] * max(self.out_ds.RasterXSize, - self.out_ds.RasterYSize) / float(self.tilesize)) + if options is None: + return vrt_string - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tmaxz is None: - self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) + for key, value in warp_options.items(): + tb = ElementTree.TreeBuilder() + tb.start("Option", {"name": key}) + tb.data(value) + tb.end("Option") + elem = tb.close() + options.insert(0, elem) - if self.options.verbose: - print("Bounds (latlong):", - self.mercator.MetersToLatLon(self.ominx, self.ominy), - self.mercator.MetersToLatLon(self.omaxx, self.omaxy)) - print('MinZoomLevel:', self.tminz) - print("MaxZoomLevel:", - self.tmaxz, - "(", - self.mercator.Resolution(self.tmaxz), - ")") + return ElementTree.tostring(vrt_root).decode() - if self.options.profile == 'geodetic': - self.geodetic = GlobalGeodetic(self.options.tmscompatible) +def update_no_data_values( + warped_vrt_dataset: gdal.Dataset, + nodata_values: List[float], + options: Optional[Options] = None, +) -> gdal.Dataset: + """ + Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed + """ + # TODO: gbataille - Seems that I forgot tests there + assert nodata_values != [] + + vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] + + vrt_string = add_gdal_warp_options_to_string( + vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"} + ) + + # TODO: gbataille - check the need for this replacement. Seems to work without + # # replace BandMapping tag for NODATA bands.... + # for i in range(len(nodata_values)): + # s = s.replace( + # '' % ((i+1), (i+1)), + # """ + # + # %i + # 0 + # %i + # 0 + # + # """ % ((i+1), (i+1), nodata_values[i], nodata_values[i])) + + corrected_dataset = gdal.Open(vrt_string) + + # set NODATA_VALUE metadata + corrected_dataset.SetMetadataItem( + "NODATA_VALUES", " ".join([str(i) for i in nodata_values]) + ) + + if options and options.verbose: + print("Modified warping result saved into 'tiles1.vrt'") + + with open("tiles1.vrt", "w") as f: + f.write(corrected_dataset.GetMetadata("xml:VRT")[0]) + + return corrected_dataset + + +def add_alpha_band_to_string_vrt(vrt_string: str) -> str: + # TODO: gbataille - Old code speak of this being equivalent to gdalwarp -dstalpha + # To be checked + + vrt_root = ElementTree.fromstring(vrt_string) + + index = 0 + nb_bands = 0 + for subelem in list(vrt_root): + if subelem.tag == "VRTRasterBand": + nb_bands += 1 + color_node = subelem.find("./ColorInterp") + if color_node is not None and color_node.text == "Alpha": + raise Exception("Alpha band already present") + else: + if nb_bands: + # This means that we are one element after the Band definitions + break + + index += 1 + + tb = ElementTree.TreeBuilder() + tb.start( + "VRTRasterBand", + { + "dataType": "Byte", + "band": str(nb_bands + 1), + "subClass": "VRTWarpedRasterBand", + }, + ) + tb.start("ColorInterp", {}) + tb.data("Alpha") + tb.end("ColorInterp") + tb.end("VRTRasterBand") + elem = tb.close() + + vrt_root.insert(index, elem) + + warp_options = vrt_root.find(".//GDALWarpOptions") + tb = ElementTree.TreeBuilder() + tb.start("DstAlphaBand", {}) + tb.data(str(nb_bands + 1)) + tb.end("DstAlphaBand") + elem = tb.close() + warp_options.append(elem) + + # TODO: gbataille - this is a GDALWarpOptions. Why put it in a specific place? + tb = ElementTree.TreeBuilder() + tb.start("Option", {"name": "INIT_DEST"}) + tb.data("0") + tb.end("Option") + elem = tb.close() + warp_options.append(elem) + + return ElementTree.tostring(vrt_root).decode() + + +def update_alpha_value_for_non_alpha_inputs( + warped_vrt_dataset: gdal.Dataset, options: Optional[Options] = None +) -> gdal.Dataset: + """ + Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has + not been forced by options + """ + if warped_vrt_dataset.RasterCount in [1, 3]: - # Function which generates SWNE in LatLong for given tile - self.tileswne = self.geodetic.TileLatLonBounds + vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, 32)) - for tz in range(0, 32): - tminx, tminy = self.geodetic.LonLatToTile( - self.ominx, self.ominy, tz) - tmaxx, tmaxy = self.geodetic.LonLatToTile( - self.omaxx, self.omaxy, tz) - # crop tiles extending world limits (+-180,+-90) - tminx, tminy = max(0, tminx), max(0, tminy) - tmaxx, tmaxy = min(2**(tz+1)-1, tmaxx), min(2**tz-1, tmaxy) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + vrt_string = add_alpha_band_to_string_vrt(vrt_string) - # TODO: Maps crossing 180E (Alaska?) + warped_vrt_dataset = gdal.Open(vrt_string) - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tminz is None: - self.tminz = self.geodetic.ZoomForPixelSize( - self.out_gt[1] * max(self.out_ds.RasterXSize, - self.out_ds.RasterYSize) / float(self.tilesize)) + if options and options.verbose: + print("Modified -dstalpha warping result saved into 'tiles1.vrt'") - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tmaxz is None: - self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) + with open("tiles1.vrt", "w") as f: + f.write(warped_vrt_dataset.GetMetadata("xml:VRT")[0]) - if self.options.verbose: - print("Bounds (latlong):", self.ominx, - self.ominy, self.omaxx, self.omaxy) + return warped_vrt_dataset - # MMGIS - if self.options.profile == 'raster' and self.isRasterBounded: - def log2(x): - return math.log10(x) / math.log10(2) +def nb_data_bands(dataset: gdal.Dataset) -> int: + """ + Return the number of data (non-alpha) bands of a gdal dataset + """ + alphaband = dataset.GetRasterBand(1).GetMaskBand() + if ( + (alphaband.GetMaskFlags() & gdal.GMF_ALPHA) + or dataset.RasterCount == 4 + or dataset.RasterCount == 2 + ): + return dataset.RasterCount - 1 + return dataset.RasterCount + + +def _get_creation_options(options): + copts = [] + if options.tiledriver == "WEBP": + if options.webp_lossless: + copts = ["LOSSLESS=True"] + else: + copts = ["QUALITY=" + str(options.webp_quality)] + return copts - # MMGIS added 'f'* + +def create_base_tile(tile_job_info: "TileJobInfo", tile_detail: "TileDetail") -> None: + + dataBandsCount = tile_job_info.nb_data_bands + output = tile_job_info.output_file_path + tileext = tile_job_info.tile_extension + tile_size = tile_job_info.tile_size + options = tile_job_info.options + + cached_ds = getattr(threadLocal, "cached_ds", None) + if cached_ds and cached_ds.GetDescription() == tile_job_info.src_file: + ds = cached_ds + else: + ds = gdal.Open(tile_job_info.src_file, gdal.GA_ReadOnly) + threadLocal.cached_ds = ds + + mem_drv = gdal.GetDriverByName("MEM") + out_drv = gdal.GetDriverByName(tile_job_info.tile_driver) + alphaband = ds.GetRasterBand(1).GetMaskBand() + + tx = tile_detail.tx + ty = tile_detail.ty + tz = tile_detail.tz + rx = tile_detail.rx + ry = tile_detail.ry + rxsize = tile_detail.rxsize + rysize = tile_detail.rysize + wx = tile_detail.wx + wy = tile_detail.wy + wxsize = tile_detail.wxsize + wysize = tile_detail.wysize + querysize = tile_detail.querysize + # MMGIS + isDEMtile = tile_detail.isDEMtile + + tilebands = dataBandsCount + 1 + + # MMGIS + if isDEMtile == True: + tilebands = 4 + + # Tile dataset in memory + tilefilename = os.path.join(output, str( + tz), str(tx), "%s.%s" % (ty, tileext)) + dstile = mem_drv.Create("", tile_size, tile_size, tilebands) + + data = alpha = None + + if options.verbose: + print( + "\tReadRaster Extent: ", (rx, ry, rxsize, + rysize), (wx, wy, wxsize, wysize) + ) + + # Query is in 'nearest neighbour' but can be bigger in then the tile_size + # We scale down the query to the tile_size by supplied algorithm. + + if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: + try: + alpha = alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize) + + # Detect totally transparent tile and skip its creation + if tile_job_info.exclude_transparent and len(alpha) == alpha.count( + "\x00".encode("ascii") + ): + return + + data = ds.ReadRaster( + rx, + ry, + rxsize, + rysize, + wxsize, + wysize, + band_list=list(range(1, dataBandsCount + 1)), + ) + except: + pass + + # The tile in memory is a transparent file by default. Write pixel values into it if + # any + if data: + # MMGIS + if isDEMtile: + dsquery = mem_drv.Create( + '', querysize, querysize, tilebands, gdal.GDT_Byte) # 1bto4b + + data = ds.GetRasterBand(1).ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) + + data = struct.unpack('f' * wxsize * wysize, data) + data1 = [] + data2 = [] + data3 = [] + data4 = [] + for f in data: + # Because 0 is a valid value in many datasets yet still special in images being fully transparent, + # we're going to encode zero's as 2^31 (2147483648) (79, 0, 0, 0) and have the reader parse it back to 0 + if f == 0: + f = pow(2, 31) + f = str(binary(f)) + data1.append(int(f[:8], 2)) + data2.append(int(f[8:16], 2)) + data3.append(int(f[16:24], 2)) + data4.append(int(f[24:], 2)) + + data1s = b'' + data2s = b'' + data3s = b'' + data4s = b'' + indx = 0 + for v in data1: + data1s += struct.pack('B', data1[indx]) + data2s += struct.pack('B', data2[indx]) + data3s += struct.pack('B', data3[indx]) + data4s += struct.pack('B', data4[indx]) + indx += 1 + + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data1s, band_list=[1], buf_type=gdal.GDT_Byte) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data2s, band_list=[2], buf_type=gdal.GDT_Byte) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data3s, band_list=[3], buf_type=gdal.GDT_Byte) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, data4s, band_list=[4], buf_type=gdal.GDT_Byte) + # sys.exit('done') + + scale_query_to_tile( + dsquery, dstile, options, tilefilename=tilefilename) + del dsquery + elif tile_size == querysize: + # Use the ReadRaster result directly in tiles ('nearest neighbour' query) + dstile.WriteRaster( + wx, + wy, + wxsize, + wysize, + data, + band_list=list(range(1, dataBandsCount + 1)), + ) + dstile.WriteRaster(wx, wy, wxsize, wysize, + alpha, band_list=[tilebands]) + + # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, + # MrSID) the ReadRaster function returns high-quality raster (not ugly + # nearest neighbour) + # TODO: Use directly 'near' for WaveLet files + else: + # Big ReadRaster query in memory scaled to the tile_size - all but 'near' + # algo + dsquery = mem_drv.Create("", querysize, querysize, tilebands) + # TODO: fill the null value in case a tile without alpha is produced (now + # only png tiles are supported) + dsquery.WriteRaster( + wx, + wy, + wxsize, + wysize, + data, + band_list=list(range(1, dataBandsCount + 1)), + ) + dsquery.WriteRaster(wx, wy, wxsize, wysize, + alpha, band_list=[tilebands]) + + scale_query_to_tile(dsquery, dstile, options, + tilefilename=tilefilename) + del dsquery + + del data + + if options.resampling != "antialias" and options.resampling != "near-composite": + # Write a copy of tile to png/jpg + out_drv.CreateCopy( + tilefilename, dstile, strict=0, options=_get_creation_options(options) + ) + + del dstile + + # Create a KML file for this tile. + if tile_job_info.kml: + swne = get_tile_swne(tile_job_info, options) + if swne is not None: + kmlfilename = os.path.join( + output, + str(tz), + str(tx), + "%d.kml" % GDAL2Tiles.getYTile(ty, tz, options), + ) + if not options.resume or not isfile(kmlfilename): + with my_open(kmlfilename, "wb") as f: + f.write( + generate_kml( + tx, + ty, + tz, + tile_job_info.tile_extension, + tile_job_info.tile_size, + swne, + tile_job_info.options, + ).encode("utf-8") + ) + + +def create_overview_tile( + base_tz: int, + base_tiles: List[Tuple[int, int]], + output_folder: str, + tile_job_info: "TileJobInfo", + options: Options, +): + """Generating an overview tile from no more than 4 underlying tiles(base tiles)""" + + overview_tz = base_tz - 1 + overview_tx = base_tiles[0][0] >> 1 + overview_ty = base_tiles[0][1] >> 1 + overview_ty_real = GDAL2Tiles.getYTile(overview_ty, overview_tz, options) + + tilefilename = os.path.join( + output_folder, + str(overview_tz), + str(overview_tx), + "%s.%s" % (overview_ty_real, tile_job_info.tile_extension), + ) + if options.verbose: + print(tilefilename) + if options.resume and isfile(tilefilename): + if options.verbose: + print("Tile generation skipped because of --resume") + return + + mem_driver = gdal.GetDriverByName("MEM") + tile_driver = tile_job_info.tile_driver + out_driver = gdal.GetDriverByName(tile_driver) + + tilebands = tile_job_info.nb_data_bands + 1 + + # MMGIS + if options.isDEMtile == True: + tilebands = 4 + + dsquery = mem_driver.Create( + "", 2 * tile_job_info.tile_size, 2 * tile_job_info.tile_size, tilebands + ) + # TODO: fill the null value + dstile = mem_driver.Create( + "", tile_job_info.tile_size, tile_job_info.tile_size, tilebands + ) + + usable_base_tiles = [] + + for base_tile in base_tiles: + base_tx = base_tile[0] + base_ty = base_tile[1] + base_ty_real = GDAL2Tiles.getYTile(base_ty, base_tz, options) + + base_tile_path = os.path.join( + output_folder, + str(base_tz), + str(base_tx), + "%s.%s" % (base_ty_real, tile_job_info.tile_extension), + ) + if not isfile(base_tile_path): + continue + + dsquerytile = gdal.Open(base_tile_path, gdal.GA_ReadOnly) + + if base_tx % 2 == 0: + tileposx = 0 + else: + tileposx = tile_job_info.tile_size + + if options.xyz and options.profile == "raster": + if base_ty % 2 == 0: + tileposy = 0 + else: + tileposy = tile_job_info.tile_size + else: + if base_ty % 2 == 0: + tileposy = tile_job_info.tile_size + else: + tileposy = 0 + + if dsquerytile.RasterCount == tilebands - 1: + # assume that the alpha band is missing and add it + tmp_ds = mem_driver.CreateCopy("", dsquerytile, 0) + tmp_ds.AddBand() + mask = bytearray( + [255] * (tile_job_info.tile_size * tile_job_info.tile_size) + ) + tmp_ds.WriteRaster( + 0, + 0, + tile_job_info.tile_size, + tile_job_info.tile_size, + mask, + band_list=[tilebands], + ) + dsquerytile = tmp_ds + elif dsquerytile.RasterCount != tilebands: + raise Exception("Unexpected number of bands in base tile") + + base_data = dsquerytile.ReadRaster( + 0, 0, tile_job_info.tile_size, tile_job_info.tile_size + ) + + dsquery.WriteRaster( + tileposx, + tileposy, + tile_job_info.tile_size, + tile_job_info.tile_size, + base_data, + band_list=list(range(1, tilebands + 1)), + ) + + usable_base_tiles.append(base_tile) + + if not usable_base_tiles: + return + + scale_query_to_tile(dsquery, dstile, options, tilefilename=tilefilename) + # Write a copy of tile to png/jpg + if options.resampling != "antialias" and options.resampling != "near-composite": + # Write a copy of tile to png/jpg + out_driver.CreateCopy( + tilefilename, dstile, strict=0, options=_get_creation_options(options) + ) + # Remove useless side car file + aux_xml = tilefilename + ".aux.xml" + if gdal.VSIStatL(aux_xml) is not None: + gdal.Unlink(aux_xml) + + if options.verbose: + print("\tbuild from zoom", base_tz, " tiles:", *base_tiles) + + # Create a KML file for this tile. + if tile_job_info.kml: + swne = get_tile_swne(tile_job_info, options) + if swne is not None: + with my_open( + os.path.join( + output_folder, + "%d/%d/%d.kml" % (overview_tz, overview_tx, + overview_ty_real), + ), + "wb", + ) as f: + f.write( + generate_kml( + overview_tx, + overview_ty, + overview_tz, + tile_job_info.tile_extension, + tile_job_info.tile_size, + swne, + options, + [(t[0], t[1], base_tz) for t in base_tiles], + ).encode("utf-8") + ) + + +def group_overview_base_tiles( + base_tz: int, output_folder: str, tile_job_info: "TileJobInfo" +) -> List[List[Tuple[int, int]]]: + """Group base tiles that belong to the same overview tile""" + + overview_to_bases = {} + tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[base_tz] + for ty in range(tmaxy, tminy - 1, -1): + overview_ty = ty >> 1 + for tx in range(tminx, tmaxx + 1): + overview_tx = tx >> 1 + base_tile = (tx, ty) + overview_tile = (overview_tx, overview_ty) + + if overview_tile not in overview_to_bases: + overview_to_bases[overview_tile] = [] + + overview_to_bases[overview_tile].append(base_tile) + + # Create directories for the tiles + overview_tz = base_tz - 1 + for tx in range(tminx, tmaxx + 1): + overview_tx = tx >> 1 + tiledirname = os.path.join( + output_folder, str(overview_tz), str(overview_tx)) + makedirs(tiledirname) + + return list(overview_to_bases.values()) + + +def count_overview_tiles(tile_job_info: "TileJobInfo") -> int: + tile_number = 0 + for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): + tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] + tile_number += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) + + return tile_number + + +def optparse_init() -> optparse.OptionParser: + """Prepare the option parser for input (argv)""" + + usage = "Usage: %prog [options] input_file [output]" + p = optparse.OptionParser(usage, version="%prog " + __version__) + p.add_option( + "-p", + "--profile", + dest="profile", + type="choice", + choices=profile_list, + help=( + "Tile cutting profile (%s) - default 'mercator' " + "(Google Maps compatible)" % ",".join(profile_list) + ), + ) + p.add_option( + "-r", + "--resampling", + dest="resampling", + type="choice", + choices=resampling_list, + help="Resampling method (%s) - default 'average'" % ",".join(resampling_list), + ) + p.add_option( + "-s", + "--s_srs", + dest="s_srs", + metavar="SRS", + help="The spatial reference system used for the source input data", + ) + p.add_option( + "-z", + "--zoom", + dest="zoom", + help="Zoom levels to render (format:'2-5', '10-' or '10').", + ) + p.add_option( + "-e", + "--resume", + dest="resume", + action="store_true", + help="Resume mode. Generate only missing files.", + ) + p.add_option( + "-a", + "--srcnodata", + dest="srcnodata", + metavar="NODATA", + help="Value in the input dataset considered as transparent", + ) + p.add_option( + "-d", + "--tmscompatible", + dest="tmscompatible", + action="store_true", + help=( + "When using the geodetic profile, specifies the base resolution " + "as 0.703125 or 2 tiles at zoom level 0." + ), + ) + p.add_option( + "--xyz", + action="store_true", + dest="xyz", + help="Use XYZ tile numbering (OSM Slippy Map tiles) instead of TMS", + ) + p.add_option( + "-v", + "--verbose", + action="store_true", + dest="verbose", + help="Print status messages to stdout", + ) + p.add_option( + "-x", + "--exclude", + action="store_true", + dest="exclude_transparent", + help="Exclude transparent tiles from result tileset", + ) + p.add_option( + "-q", + "--quiet", + action="store_true", + dest="quiet", + help="Disable messages and status to stdout", + ) + # MMGIS + p.add_option("--extentworld", dest="extentworld", + help="The full world meter extent (comma-separated as minx,maxx,miny,maxy,pixelsize) of an inner raster profile.") + # MMGIS + p.add_option("--dem", action="store_true", dest="isDEMtile", + help="Indicate if the input is a Digital Elevation Model") + p.add_option( + "--processes", + dest="nb_processes", + type="int", + help="Number of processes to use for tiling", + ) + p.add_option( + "--mpi", + action="store_true", + dest="mpi", + help="Assume launched by mpiexec and ignore --processes. " + "User should set GDAL_CACHEMAX to size per process.", + ) + p.add_option( + "--tilesize", + dest="tilesize", + metavar="PIXELS", + type="int", + help="Width and height in pixel of a tile", + ) + p.add_option( + "--tiledriver", + dest="tiledriver", + choices=["PNG", "WEBP"], + default="PNG", + type="choice", + help="which tile driver to use for the tiles", + ) + + # KML options + g = optparse.OptionGroup( + p, + "KML (Google Earth) options", + "Options for generated Google Earth SuperOverlay metadata", + ) + g.add_option( + "-k", + "--force-kml", + dest="kml", + action="store_true", + help=( + "Generate KML for Google Earth - default for 'geodetic' profile and " + "'raster' in EPSG:4326. For a dataset with different projection use " + "with caution!" + ), + ) + g.add_option( + "-n", + "--no-kml", + dest="kml", + action="store_false", + help="Avoid automatic generation of KML files for EPSG:4326", + ) + g.add_option( + "-u", + "--url", + dest="url", + help="URL address where the generated tiles are going to be published", + ) + p.add_option_group(g) + + # HTML options + g = optparse.OptionGroup( + p, "Web viewer options", "Options for generated HTML viewers a la Google Maps" + ) + g.add_option( + "-w", + "--webviewer", + dest="webviewer", + type="choice", + choices=webviewer_list, + help="Web viewer to generate (%s) - default 'all'" % ",".join( + webviewer_list), + ) + g.add_option("-t", "--title", dest="title", help="Title of the map") + g.add_option("-c", "--copyright", dest="copyright", + help="Copyright for the map") + g.add_option( + "-g", + "--googlekey", + dest="googlekey", + help="Google Maps API key from https://developers.google.com/maps/faq?csw=1#using-google-maps-apis", + ) + g.add_option( + "-b", + "--bingkey", + dest="bingkey", + help="Bing Maps API key from https://www.bingmapsportal.com/", + ) + p.add_option_group(g) + + # MapML options + g = optparse.OptionGroup( + p, "MapML options", "Options for generated MapML file") + g.add_option( + "--mapml-template", + dest="mapml_template", + action="store_true", + help=( + "Filename of a template mapml file where variables will " + "be substituted. If not specified, the generic " + "template_tiles.mapml file from GDAL data resources " + "will be used" + ), + ) + p.add_option_group(g) + + # Webp options + g = optparse.OptionGroup(p, "WEBP options", "Options for WEBP tiledriver") + g.add_option( + "--webp-quality", + dest="webp_quality", + type=int, + default=75, + help="quality of webp image, integer between 1 and 100, default is 75", + ) + g.add_option( + "--webp-lossless", + dest="webp_lossless", + action="store_true", + help="use lossless compression for the webp image", + ) + p.add_option_group(g) + + p.set_defaults( + verbose=False, + profile="mercator", + kml=None, + url="", + webviewer="all", + copyright="", + resampling="average", + resume=False, + googlekey="INSERT_YOUR_KEY_HERE", + bingkey="INSERT_YOUR_KEY_HERE", + processes=1, + ) + + return p + + +def process_args(argv: List[str]) -> Tuple[str, str, Options]: + parser = optparse_init() + options, args = parser.parse_args(args=argv) + + # Args should be either an input file OR an input file and an output folder + if not args: + exit_with_error( + "You need to specify at least an input file as argument to the script" + ) + if len(args) > 2: + exit_with_error( + "Processing of several input files is not supported.", + "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " + "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(args), + ) + + input_file = args[0] + if not isfile(input_file): + exit_with_error( + "The provided input file %s does not exist or is not a file" % input_file + ) + + if len(args) == 2: + output_folder = args[1] + else: + # Directory with input filename without extension in actual directory + output_folder = os.path.splitext(os.path.basename(input_file))[0] + + if options.webviewer == "mapml": + options.xyz = True + if options.profile == "geodetic": + options.tmscompatible = True + + options = options_post_processing(options, input_file, output_folder) + + return input_file, output_folder, options + + +def options_post_processing( + options: Options, input_file: str, output_folder: str +) -> Options: + if not options.title: + options.title = os.path.basename(input_file) + + # User specified zoom levels + tminz = None + tmaxz = None + if hasattr(options, "zoom") and options.zoom and isinstance(options.zoom, str): + minmax = options.zoom.split("-", 1) + zoom_min = minmax[0] + tminz = int(zoom_min) + + if len(minmax) == 2: + # Min-max zoom value + zoom_max = minmax[1] + if zoom_max: + # User-specified (non-automatically calculated) + tmaxz = int(zoom_max) + if tmaxz < tminz: + raise Exception( + "max zoom (%d) less than min zoom (%d)" % ( + tmaxz, tminz) + ) + else: + # Single zoom value (min = max) + tmaxz = tminz + options.zoom = [tminz, tmaxz] + + if options.url and not options.url.endswith("/"): + options.url += "/" + if options.url: + out_path = output_folder + if out_path.endswith("/"): + out_path = out_path[:-1] + options.url += os.path.basename(out_path) + "/" + + # Supported options + if options.resampling == "antialias" and not numpy_available: + exit_with_error( + "'antialias' resampling algorithm is not available.", + "Install PIL (Python Imaging Library) and numpy.", + ) + + if options.resampling == "near-composite" and not numpy_available: + exit_with_error( + "'near-composite' resampling algorithm is not available.", + "Install PIL (Python Imaging Library) and numpy.", + ) + + if options.tiledriver == "WEBP": + if gdal.GetDriverByName(options.tiledriver) is None: + exit_with_error("WEBP driver is not available") + + if not options.webp_lossless: + if options.webp_quality <= 0 or options.webp_quality > 100: + exit_with_error("webp_quality should be in the range [1-100]") + options.webp_quality = int(options.webp_quality) + + # Output the results + if options.verbose: + print("Options:", options) + print("Input:", input_file) + print("Output:", output_folder) + print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) + print("") + + return options + + +class TileDetail(object): + tx = 0 + ty = 0 + tz = 0 + rx = 0 + ry = 0 + rxsize = 0 + rysize = 0 + wx = 0 + wy = 0 + wxsize = 0 + wysize = 0 + querysize = 0 + isDEMtile = False + + def __init__(self, **kwargs): + for key in kwargs: + if hasattr(self, key): + setattr(self, key, kwargs[key]) + + def __unicode__(self): + return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) + + def __str__(self): + return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) + + def __repr__(self): + return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) + + +class TileJobInfo(object): + """ + Plain object to hold tile job configuration for a dataset + """ + + src_file = "" + nb_data_bands = 0 + output_file_path = "" + tile_extension = "" + tile_size = 0 + tile_driver = None + kml = False + tminmax = [] + tminz = 0 + tmaxz = 0 + in_srs_wkt = 0 + out_geo_trans = [] + ominy = 0 + is_epsg_4326 = False + options = None + exclude_transparent = False + + def __init__(self, **kwargs): + for key in kwargs: + if hasattr(self, key): + setattr(self, key, kwargs[key]) + + def __unicode__(self): + return "TileJobInfo %s\n" % (self.src_file) + + def __str__(self): + return "TileJobInfo %s\n" % (self.src_file) + + def __repr__(self): + return "TileJobInfo %s\n" % (self.src_file) + + +class Gdal2TilesError(Exception): + pass + + +class GDAL2Tiles(object): + def __init__(self, input_file: str, output_folder: str, options: Options) -> None: + """Constructor function - initialization""" + self.out_drv = None + self.mem_drv = None + self.warped_input_dataset = None + self.out_srs = None + self.nativezoom = None + self.tminmax = None + self.tsize = None + self.mercator = None + self.geodetic = None + self.dataBandsCount = None + self.out_gt = None + self.tileswne = None + self.swne = None + self.ominx = None + self.omaxx = None + self.omaxy = None + self.ominy = None + + # MMGIS + self.isRasterBounded = False + self.isDEMtile = False + self.fminx = None + self.fmaxx = None + self.fminy = None + self.fmaxy = None + self.fPixelSize = None + + self.input_file = None + self.output_folder = None + + self.isepsg4326 = None + self.in_srs = None + self.in_srs_wkt = None + + # Tile format + self.tile_size = 256 + if options.isDEMtile: + self.tile_size = 32 + if options.tilesize: + self.tile_size = options.tilesize + + self.tiledriver = options.tiledriver + if options.tiledriver == "PNG": + self.tileext = "png" + else: + self.tileext = "webp" + if options.mpi: + makedirs(output_folder) + self.tmp_dir = tempfile.mkdtemp(dir=output_folder) + else: + self.tmp_dir = tempfile.mkdtemp() + self.tmp_vrt_filename = os.path.join( + self.tmp_dir, str(uuid4()) + ".vrt") + + # Should we read bigger window of the input raster and scale it down? + # Note: Modified later by open_input() + # Not for 'near' resampling + # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) + # Not for 'raster' profile + self.scaledquery = True + # How big should be query window be for scaling down + # Later on reset according the chosen resampling algorithm + self.querysize = 4 * self.tile_size + + # Should we use Read on the input file for generating overview tiles? + # Note: Modified later by open_input() + # Otherwise the overview tiles are generated from existing underlying tiles + self.overviewquery = False + + self.input_file = input_file + self.output_folder = output_folder + self.options = options + + # MMGIS + if self.options.extentworld: + extentworld = self.options.extentworld.split(",") + self.isRasterBounded = True + self.fminx = float(extentworld[0]) + self.fmaxx = float(extentworld[2]) + self.fminy = float(extentworld[3]) + self.fmaxy = float(extentworld[1]) + self.fPixelSize = float(extentworld[4]) + + if self.options.resampling == "near": + self.querysize = self.tile_size + + elif self.options.resampling == "bilinear": + self.querysize = self.tile_size * 2 + + self.tminz, self.tmaxz = self.options.zoom + + # MMGIS + if self.options.isDEMtile: + self.isDEMtile = True + + # KML generation + self.kml = self.options.kml + + # ------------------------------------------------------------------------- + def open_input(self) -> None: + """Initialization of the input raster, reprojection if necessary""" + gdal.AllRegister() + + self.out_drv = gdal.GetDriverByName(self.tiledriver) + self.mem_drv = gdal.GetDriverByName("MEM") + + if not self.out_drv: + raise Exception( + "The '%s' driver was not found, is it available in this GDAL build?" + % self.tiledriver + ) + if not self.mem_drv: + raise Exception( + "The 'MEM' driver was not found, is it available in this GDAL build?" + ) + + # Open the input file + + if self.input_file: + input_dataset: gdal.Dataset = gdal.Open( + self.input_file, gdal.GA_ReadOnly) + else: + raise Exception("No input file was specified") + + if self.options.verbose: + print( + "Input file:", + "( %sP x %sL - %s bands)" + % ( + input_dataset.RasterXSize, + input_dataset.RasterYSize, + input_dataset.RasterCount, + ), + ) + + if not input_dataset: + # Note: GDAL prints the ERROR message too + exit_with_error( + "It is not possible to open the input file '%s'." % self.input_file + ) + + # Read metadata from the input file + if input_dataset.RasterCount == 0: + exit_with_error("Input file '%s' has no raster band" % + self.input_file) + + if input_dataset.GetRasterBand(1).GetRasterColorTable(): + exit_with_error( + "Please convert this file to RGB/RGBA and run gdal2tiles on the result.", + "From paletted file you can create RGBA file (temp.vrt) by:\n" + "gdal_translate -of vrt -expand rgba %s temp.vrt\n" + "then run:\n" + "gdal2tiles temp.vrt" % self.input_file, + ) + + if self.isDEMtile != True and input_dataset.GetRasterBand(1).DataType != gdal.GDT_Byte: + exit_with_error( + "Please convert this file to 8-bit and run gdal2tiles on the result.", + "To scale pixel values you can use:\n" + "gdal_translate -of VRT -ot Byte -scale %s temp.vrt\n" + "then run:\n" + "gdal2tiles temp.vrt" % self.input_file, + ) + + if self.isDEMtile == True and input_dataset.GetRasterBand(1).DataType != gdal.GDT_Float32: + exit_with_error( + "Please convert this file to 32-bit for its first band and run gdal2tiles on the result.", + ) + + in_nodata = setup_no_data_values(input_dataset, self.options) + + if self.options.verbose: + print( + "Preprocessed file:", + "( %sP x %sL - %s bands)" + % ( + input_dataset.RasterXSize, + input_dataset.RasterYSize, + input_dataset.RasterCount, + ), + ) + + self.in_srs, self.in_srs_wkt = setup_input_srs( + input_dataset, self.options) + + self.out_srs = setup_output_srs(self.in_srs, self.options) + + # If input and output reference systems are different, we reproject the input dataset into + # the output reference system for easier manipulation + + self.warped_input_dataset = None + + if self.options.profile != "raster": + + if not self.in_srs: + exit_with_error( + "Input file has unknown SRS.", + "Use --s_srs EPSG:xyz (or similar) to provide source reference system.", + ) + + if not has_georeference(input_dataset): + exit_with_error( + "There is no georeference - neither affine transformation (worldfile) " + "nor GCPs. You can generate only 'raster' profile tiles.", + "Either gdal2tiles with parameter -p 'raster' or use another GIS " + "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs", + ) + + if (self.in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or ( + input_dataset.GetGCPCount() != 0 + ): + self.warped_input_dataset = reproject_dataset( + input_dataset, self.in_srs, self.out_srs + ) + + if in_nodata: + self.warped_input_dataset = update_no_data_values( + self.warped_input_dataset, in_nodata, options=self.options + ) + else: + self.warped_input_dataset = update_alpha_value_for_non_alpha_inputs( + self.warped_input_dataset, options=self.options + ) + + if self.warped_input_dataset and self.options.verbose: + print( + "Projected file:", + "tiles.vrt", + "( %sP x %sL - %s bands)" + % ( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + self.warped_input_dataset.RasterCount, + ), + ) + + if not self.warped_input_dataset: + self.warped_input_dataset = input_dataset + + gdal.GetDriverByName("VRT").CreateCopy( + self.tmp_vrt_filename, self.warped_input_dataset + ) + + self.dataBandsCount = nb_data_bands(self.warped_input_dataset) + + # KML test + self.isepsg4326 = False + srs4326 = osr.SpatialReference() + srs4326.ImportFromEPSG(4326) + srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): + self.isepsg4326 = True + if self.kml is None: + self.kml = True + if self.kml and self.options.verbose: + print("KML autotest OK!") + + if self.kml is None: + self.kml = False + + # Read the georeference + self.out_gt = self.warped_input_dataset.GetGeoTransform() + + # Test the size of the pixel + + # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) + if (self.out_gt[2], self.out_gt[4]) != (0, 0): + exit_with_error( + "Georeference of the raster contains rotation or skew. " + "Such raster is not supported. Please use gdalwarp first." + ) + + # Here we expect: pixel is square, no rotation on the raster + + # Output Bounds - coordinates in the output SRS + self.ominx = self.out_gt[0] + self.omaxx = ( + self.out_gt[0] + + self.warped_input_dataset.RasterXSize * self.out_gt[1] + ) + self.omaxy = self.out_gt[3] + self.ominy = ( + self.out_gt[3] - + self.warped_input_dataset.RasterYSize * self.out_gt[1] + ) + # Note: maybe round(x, 14) to avoid the gdal_translate behavior, when 0 becomes -1e-15 + + # MMGIS + def linearScale(domain, rang, value): + return ( + ((rang[1] - rang[0]) * (value - domain[0])) / + (domain[1] - domain[0]) + + rang[0] + ) + # MMGIS + self.warped_input_dataset.fRasterXSize = self.warped_input_dataset.RasterXSize + self.warped_input_dataset.fRasterYSize = self.warped_input_dataset.RasterYSize + self.warped_input_dataset.fRasterXOrigin = 0 + self.warped_input_dataset.fRasterYOrigin = 0 + self.warped_input_dataset.PixelSize = self.out_gt[1] + self.warped_input_dataset.fPixelSize = self.fPixelSize + # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) + # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) + if self.isRasterBounded: + self.warped_input_dataset.fRasterXSize = int(math.floor(self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( + self.omaxx - self.ominx) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) + self.warped_input_dataset.fRasterYSize = int(math.ceil(self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( + self.omaxy - self.ominy) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) + self.warped_input_dataset.fRasterXSizeRaw = int(math.floor( + self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) + self.warped_input_dataset.fRasterYSizeRaw = int(math.ceil( + self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) + # print("Full Raster Size: ", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize ) + self.warped_input_dataset.fRasterXOrigin = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]))) + self.warped_input_dataset.fRasterYOrigin = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]))) + self.warped_input_dataset.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ + 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) + self.warped_input_dataset.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ + self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) + self.warped_input_dataset.fRasterXWidth = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin + self.warped_input_dataset.fRasterYHeight = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin + + if self.options.verbose: + print( + "Bounds (output srs):", + round(self.ominx, 13), + self.ominy, + self.omaxx, + self.omaxy, + ) + + # Calculating ranges for tiles in different zoom levels + if self.options.profile == "mercator": + + self.mercator = GlobalMercator(tile_size=self.tile_size) + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.mercator.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, MAXZOOMLEVEL)) + for tz in range(0, MAXZOOMLEVEL): + tminx, tminy = self.mercator.MetersToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.mercator.MetersToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2**tz - 1, tmaxx), min(2**tz - 1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the minimal zoom level (map covers area equivalent to one tile) + if self.tminz is None: + self.tminz = self.mercator.ZoomForPixelSize( + self.out_gt[1] + * max( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + ) + / float(self.tile_size) + ) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) + self.tmaxz = max(self.tminz, self.tmaxz) + + self.tminz = min(self.tminz, self.tmaxz) + + if self.options.verbose: + print( + "Bounds (latlong):", + self.mercator.MetersToLatLon(self.ominx, self.ominy), + self.mercator.MetersToLatLon(self.omaxx, self.omaxy), + ) + print("MinZoomLevel:", self.tminz) + print( + "MaxZoomLevel:", + self.tmaxz, + "(", + self.mercator.Resolution(self.tmaxz), + ")", + ) + + elif self.options.profile == "geodetic": + + self.geodetic = GlobalGeodetic( + self.options.tmscompatible, tile_size=self.tile_size + ) + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.geodetic.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, MAXZOOMLEVEL)) + for tz in range(0, MAXZOOMLEVEL): + tminx, tminy = self.geodetic.LonLatToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.geodetic.LonLatToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2 ** (tz + 1) - 1, + tmaxx), min(2**tz - 1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tminz is None: + self.tminz = self.geodetic.ZoomForPixelSize( + self.out_gt[1] + * max( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + ) + / float(self.tile_size) + ) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) + self.tmaxz = max(self.tminz, self.tmaxz) + + self.tminz = min(self.tminz, self.tmaxz) + + if self.options.verbose: + print( + "Bounds (latlong):", self.ominx, self.ominy, self.omaxx, self.omaxy + ) + + # MMGIS + elif self.options.profile == 'raster' and self.isRasterBounded: + + def log2(x): + return math.log10(x) / math.log10(2) + + # MMGIS self.nativezoom = int( - max(math.ceil(log2(self.out_ds.fRasterXSizeRaw/float(self.tilesize))), - math.ceil(log2(self.out_ds.fRasterYSizeRaw/float(self.tilesize))))) + max(math.ceil(log2(self.warped_input_dataset.fRasterXSizeRaw/float(self.tile_size))), + math.ceil(log2(self.warped_input_dataset.fRasterYSizeRaw/float(self.tile_size))))) self.basenativezoom = int( - max(math.ceil(log2(self.out_ds.fRasterXSize/float(self.tilesize))), - math.ceil(log2(self.out_ds.fRasterYSize/float(self.tilesize))))) + max(math.ceil(log2(self.warped_input_dataset.fRasterXSize/float(self.tile_size))), + math.ceil(log2(self.warped_input_dataset.fRasterYSize/float(self.tile_size))))) # MMGIS - self.out_ds.fWorldXSize = int( - float(self.out_ds.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) - self.out_ds.fWorldYSize = int( - float(self.out_ds.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) - self.out_ds.fRasterXOriginWorld = int(float( - self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXOrigin) / self.out_ds.fRasterXSize)) - self.out_ds.fRasterYOriginWorld = int(float( - self.out_ds.fWorldYSize) * (float(self.out_ds.fRasterYOrigin) / self.out_ds.fRasterYSize)) - self.out_ds.fRasterXSizeWorld = int(float( - self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXWidth) / self.out_ds.fRasterXSize)) - self.out_ds.fRasterYSizeWorld = int(float( - self.out_ds.RasterYSize) * (float(self.out_ds.fRasterXSizeWorld) / self.out_ds.RasterXSize)) - # print("World Size", self.out_ds.fWorldXSize, self.out_ds.fWorldYSize) - # print("Raster Origin World", self.out_ds.fRasterXOriginWorld, self.out_ds.fRasterYOriginWorld) - # print("Raster Size World", self.out_ds.fRasterXSizeWorld, self.out_ds.fRasterYSizeWorld) + self.warped_input_dataset.fWorldXSize = int( + float(self.warped_input_dataset.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) + self.warped_input_dataset.fWorldYSize = int( + float(self.warped_input_dataset.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) + self.warped_input_dataset.fRasterXOriginWorld = int(float( + self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXOrigin) / self.warped_input_dataset.fRasterXSize)) + self.warped_input_dataset.fRasterYOriginWorld = int(float( + self.warped_input_dataset.fWorldYSize) * (float(self.warped_input_dataset.fRasterYOrigin) / self.warped_input_dataset.fRasterYSize)) + self.warped_input_dataset.fRasterXSizeWorld = int(float( + self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXWidth) / self.warped_input_dataset.fRasterXSize)) + self.warped_input_dataset.fRasterYSizeWorld = int(float( + self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize)) + # print("World Size", self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize) + # print("Raster Origin World", self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld) + # print("Raster Size World", self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld) if self.options.verbose: print("Native zoom of the raster:", self.nativezoom) @@ -1303,7 +2730,7 @@ def log2(x): if self.tmaxz is None: self.tmaxz = self.nativezoom - # MMGIS added 'f'* + # MMGIS # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, self.tmaxz+1)) self.tsize = list(range(0, self.tmaxz+1)) @@ -1311,22 +2738,22 @@ def log2(x): # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) for tz in range(0, self.tmaxz+1): - tsize = 2.0**(self.tmaxz-tz)*self.tilesize + tsize = 2.0**(self.tmaxz-tz)*self.tile_size toffsetx = int(math.floor( - 2.0**(tz) * self.out_ds.fRasterXOriginRaw / self.out_ds.fRasterXSizeRaw)) + 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) toffsety = int(math.floor( - 2.0**(tz) * (self.out_ds.fRasterYOriginRaw) / self.out_ds.fRasterYSizeRaw)) + 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw) / self.warped_input_dataset.fRasterYSizeRaw)) # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) toffsetx = int(math.floor( - self.out_ds.fRasterXOriginWorld / tsize)) + self.warped_input_dataset.fRasterXOriginWorld / tsize)) toffsety = int(math.floor( - self.out_ds.fRasterYOriginWorld / tsize)) + self.warped_input_dataset.fRasterYOriginWorld / tsize)) # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) tmaxx = int(math.floor( - self.out_ds.fRasterXSizeWorld / tsize)) + toffsetx + 1 + self.warped_input_dataset.fRasterXSizeWorld / tsize)) + toffsetx + 1 tmaxy = int(math.floor( - self.out_ds.fRasterYSizeWorld / tsize)) + toffsety + 1 + self.warped_input_dataset.fRasterYSizeWorld / tsize)) + toffsety + 1 self.tsize[tz] = math.ceil(tsize) #tminx = toffsetx tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 @@ -1335,13 +2762,30 @@ def log2(x): self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) - elif self.options.profile == 'raster': + elif self.options.profile == "raster": def log2(x): return math.log10(x) / math.log10(2) - self.nativezoom = int( - max(math.ceil(log2(self.out_ds.RasterXSize/float(self.tilesize))), - math.ceil(log2(self.out_ds.RasterYSize/float(self.tilesize))))) + + self.nativezoom = max( + 0, + int( + max( + math.ceil( + log2( + self.warped_input_dataset.RasterXSize + / float(self.tile_size) + ) + ), + math.ceil( + log2( + self.warped_input_dataset.RasterYSize + / float(self.tile_size) + ) + ), + ) + ), + ) if self.options.verbose: print("Native zoom of the raster:", self.nativezoom) @@ -1353,30 +2797,69 @@ def log2(x): # Get the maximal zoom level (native resolution of the raster) if self.tmaxz is None: self.tmaxz = self.nativezoom + self.tmaxz = max(self.tminz, self.tmaxz) + + elif self.tmaxz > self.nativezoom: + # If the user requests at a higher precision than the native + # one, generate an oversample temporary VRT file, and tile from + # it + oversample_factor = 1 << (self.tmaxz - self.nativezoom) + if self.options.resampling in ("average", "antialias", "near-composite"): + resampleAlg = "average" + elif self.options.resampling in ( + "near", + "bilinear", + "cubic", + "cubicspline", + "lanczos", + "mode", + ): + resampleAlg = self.options.resampling + else: + resampleAlg = "bilinear" # fallback + gdal.Translate( + self.tmp_vrt_filename, + input_dataset, + width=self.warped_input_dataset.RasterXSize * oversample_factor, + height=self.warped_input_dataset.RasterYSize * oversample_factor, + resampleAlg=resampleAlg, + ) + self.warped_input_dataset = gdal.Open(self.tmp_vrt_filename) + self.out_gt = self.warped_input_dataset.GetGeoTransform() + self.nativezoom = self.tmaxz # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, self.tmaxz+1)) - self.tsize = list(range(0, self.tmaxz+1)) - for tz in range(0, self.tmaxz+1): - tsize = 2.0**(self.tmaxz-tz)*self.tilesize + self.tminmax = list(range(0, self.tmaxz + 1)) + self.tsize = list(range(0, self.tmaxz + 1)) + for tz in range(0, self.tmaxz + 1): + tsize = 2.0 ** (self.nativezoom - tz) * self.tile_size tminx, tminy = 0, 0 - tmaxx = int(math.ceil(self.out_ds.RasterXSize / tsize)) - 1 - tmaxy = int(math.ceil(self.out_ds.RasterYSize / tsize)) - 1 + tmaxx = ( + int(math.ceil(self.warped_input_dataset.RasterXSize / tsize)) - 1 + ) + tmaxy = ( + int(math.ceil(self.warped_input_dataset.RasterYSize / tsize)) - 1 + ) self.tsize[tz] = math.ceil(tsize) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # Function which generates SWNE in LatLong for given tile - if self.kml and in_srs_wkt: - ct = osr.CoordinateTransformation(in_srs, srs4326) + if self.kml and self.in_srs_wkt: + ct = osr.CoordinateTransformation(self.in_srs, srs4326) def rastertileswne(x, y, z): - # X-pixel size in level - pixelsizex = (2**(self.tmaxz-z) * self.out_gt[1]) - west = self.out_gt[0] + x*self.tilesize*pixelsizex - east = west + self.tilesize*pixelsizex - south = self.ominy + y*self.tilesize*pixelsizex - north = south + self.tilesize*pixelsizex - if not isepsg4326: + pixelsizex = ( + 2 ** (self.tmaxz - z) * self.out_gt[1] + ) # X-pixel size in level + west = self.out_gt[0] + x * self.tile_size * pixelsizex + east = west + self.tile_size * pixelsizex + if self.options.xyz: + north = self.omaxy - y * self.tile_size * pixelsizex + south = north - self.tile_size * pixelsizex + else: + south = self.ominy + y * self.tile_size * pixelsizex + north = south + self.tile_size * pixelsizex + if not self.isepsg4326: # Transformation to EPSG:4326 (WGS84 datum) west, south = ct.TransformPoint(west, south)[:2] east, north = ct.TransformPoint(east, north)[:2] @@ -1384,18 +2867,67 @@ def rastertileswne(x, y, z): self.tileswne = rastertileswne else: - self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa + self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa + + else: + + tms = tmsMap[self.options.profile] + + # Function which generates SWNE in LatLong for given tile + self.tileswne = None # not implemented + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, tms.level_count + 1)) + for tz in range(0, tms.level_count + 1): + tminx, tminy = tms.GeorefCoordToTileCoord( + self.ominx, self.ominy, tz, self.tile_size + ) + tmaxx, tmaxy = tms.GeorefCoordToTileCoord( + self.omaxx, self.omaxy, tz, self.tile_size + ) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(tms.matrix_width * 2**tz - 1, tmaxx), min( + tms.matrix_height * 2**tz - 1, tmaxy + ) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # Get the minimal zoom level (map covers area equivalent to one tile) + if self.tminz is None: + self.tminz = tms.ZoomForPixelSize( + self.out_gt[1] + * max( + self.warped_input_dataset.RasterXSize, + self.warped_input_dataset.RasterYSize, + ) + / float(self.tile_size), + self.tile_size, + ) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = tms.ZoomForPixelSize( + self.out_gt[1], self.tile_size) + self.tmaxz = max(self.tminz, self.tmaxz) + + self.tminz = min(self.tminz, self.tmaxz) + + if self.options.verbose: + print( + "Bounds (georef):", self.ominx, self.ominy, self.omaxx, self.omaxy + ) + print("MinZoomLevel:", self.tminz) + print("MaxZoomLevel:", self.tmaxz) - def generate_metadata(self): + def generate_metadata(self) -> None: """ Generation of main metadata files and HTML viewers (metadata related to particular tiles are generated during the tile processing). """ - if not os.path.exists(self.output): - os.makedirs(self.output) + makedirs(self.output_folder) - if self.options.profile == 'mercator': + if self.options.profile == "mercator": south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) @@ -1404,30 +2936,30 @@ def generate_metadata(self): self.swne = (south, west, north, east) # Generate googlemaps.html - if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'googlemaps.html'))): - f = open(os.path.join(self.output, 'googlemaps.html'), 'wb') - f.write(self.generate_googlemaps().encode('utf-8')) - f.close() - - # Generate openlayers.html - if self.options.webviewer in ('all', 'openlayers'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'openlayers.html'))): - f = open(os.path.join(self.output, 'openlayers.html'), 'wb') - f.write(self.generate_openlayers().encode('utf-8')) - f.close() + if ( + self.options.webviewer in ("all", "google") + and self.options.profile == "mercator" + ): + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "googlemaps.html") + ): + with my_open( + os.path.join(self.output_folder, + "googlemaps.html"), "wb" + ) as f: + f.write(self.generate_googlemaps().encode("utf-8")) # Generate leaflet.html - if self.options.webviewer in ('all', 'leaflet'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'leaflet.html'))): - f = open(os.path.join(self.output, 'leaflet.html'), 'wb') - f.write(self.generate_leaflet().encode('utf-8')) - f.close() + if self.options.webviewer in ("all", "leaflet"): + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "leaflet.html") + ): + with my_open( + os.path.join(self.output_folder, "leaflet.html"), "wb" + ) as f: + f.write(self.generate_leaflet().encode("utf-8")) - elif self.options.profile == 'geodetic': + elif self.options.profile == "geodetic": west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy @@ -1435,15 +2967,7 @@ def generate_metadata(self): north, east = min(90.0, north), min(180.0, east) self.swne = (south, west, north, east) - # Generate openlayers.html - if self.options.webviewer in ('all', 'openlayers'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'openlayers.html'))): - f = open(os.path.join(self.output, 'openlayers.html'), 'wb') - f.write(self.generate_openlayers().encode('utf-8')) - f.close() - - elif self.options.profile == 'raster': + elif self.options.profile == "raster": west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy @@ -1457,114 +2981,147 @@ def generate_metadata(self): self.swne = (south, west, north, east) - # Generate openlayers.html - if self.options.webviewer in ('all', 'openlayers'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'openlayers.html'))): - f = open(os.path.join(self.output, 'openlayers.html'), 'wb') - f.write(self.generate_openlayers().encode('utf-8')) - f.close() + else: + self.swne = None + + # Generate openlayers.html + if self.options.webviewer in ("all", "openlayers"): + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "openlayers.html") + ): + with my_open( + os.path.join(self.output_folder, "openlayers.html"), "wb" + ) as f: + f.write(self.generate_openlayers().encode("utf-8")) # Generate tilemapresource.xml. - if not self.options.resume or not os.path.exists(os.path.join(self.output, 'tilemapresource.xml')): - f = open(os.path.join(self.output, 'tilemapresource.xml'), 'wb') - f.write(self.generate_tilemapresource().encode('utf-8')) - f.close() + if ( + not self.options.xyz + and self.swne is not None + and ( + not self.options.resume + or not isfile(os.path.join(self.output_folder, "tilemapresource.xml")) + ) + ): + with my_open( + os.path.join(self.output_folder, "tilemapresource.xml"), "wb" + ) as f: + f.write(self.generate_tilemapresource().encode("utf-8")) + + # Generate mapml file + if ( + self.options.webviewer in ("all", "mapml") + and self.options.xyz + and self.options.profile != "raster" + and (self.options.profile != "geodetic" or self.options.tmscompatible) + and ( + not self.options.resume + or not isfile(os.path.join(self.output_folder, "mapml.mapml")) + ) + ): + with my_open(os.path.join(self.output_folder, "mapml.mapml"), "wb") as f: + f.write(self.generate_mapml().encode("utf-8")) - if self.kml: + if self.kml and self.tileswne is not None: # TODO: Maybe problem for not automatically generated tminz # The root KML should contain links to all tiles in the tminz level children = [] xmin, ymin, xmax, ymax = self.tminmax[self.tminz] - for x in range(xmin, xmax+1): - for y in range(ymin, ymax+1): + for x in range(xmin, xmax + 1): + for y in range(ymin, ymax + 1): children.append([x, y, self.tminz]) # Generate Root KML if self.kml: - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'doc.kml'))): - f = open(os.path.join(self.output, 'doc.kml'), 'wb') - f.write(self.generate_kml( - None, None, None, children).encode('utf-8')) - f.close() - - def generate_base_tiles(self, tz): + if not self.options.resume or not isfile( + os.path.join(self.output_folder, "doc.kml") + ): + with my_open( + os.path.join(self.output_folder, "doc.kml"), "wb" + ) as f: + f.write( + generate_kml( + None, + None, + None, + self.tileext, + self.tile_size, + self.tileswne, + self.options, + children, + ).encode("utf-8") + ) + + def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: """ Generation of the base tiles (the lowest in the pyramid) directly from the input raster """ - if self.isDEMtile: - print("Generating Tiles at Zoom " + str(tz) + ": ") - if not self.options.quiet: print("Generating Base Tiles:") if self.options.verbose: - print('') - print("Tiles generated from the max zoom level:") - print("----------------------------------------") - print('') - - ds = self.out_ds - - querysize = self.querysize - - # 1bto4b - if self.isDEMtile: - tilebands = 4 - querysize = self.tilesize - else: - tilebands = self.dataBandsCount + 1 - tz = self.tmaxz - - try: - self.tminmax[tz] - except IndexError: - print(" Won't make zoom level " + str(tz)) - return + print("") + print("Tiles generated from the max zoom level:") + print("----------------------------------------") + print("") # Set the bounds - tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] + tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] + + ds = self.warped_input_dataset + tilebands = self.dataBandsCount + 1 + querysize = self.querysize + isDEMtile = self.isDEMtile if self.options.verbose: print("dataBandsCount: ", self.dataBandsCount) print("tilebands: ", tilebands) - tcount = (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) + tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) ti = 0 - for ty in range(tmaxy, tminy-1, -1): - for tx in range(tminx, tmaxx+1): + tile_details = [] + + tz = self.tmaxz + + # Create directories for the tiles + for tx in range(tminx, tmaxx + 1): + tiledirname = os.path.join(self.output_folder, str(tz), str(tx)) + makedirs(tiledirname) + + for ty in range(tmaxy, tminy - 1, -1): + for tx in range(tminx, tmaxx + 1): - if self.stopped: - break ti += 1 + ytile = GDAL2Tiles.getYTile(ty, tz, self.options) tilefilename = os.path.join( - self.output, str(tz), str(tx), "%s.%s" % (ty, self.tileext)) + self.output_folder, + str(tz), + str(tx), + "%s.%s" % (ytile, self.tileext), + ) if self.options.verbose: - print(ti, '/', tcount, tilefilename) + print(ti, "/", tcount, tilefilename) - if self.options.resume and os.path.exists(tilefilename): + if self.options.resume and isfile(tilefilename): if self.options.verbose: print("Tile generation skipped because of --resume") - else: - self.progressbar(ti / float(tcount)) continue - # Create directories for the tile - if not os.path.exists(os.path.dirname(tilefilename)): - os.makedirs(os.path.dirname(tilefilename)) - - if self.options.profile == 'mercator': + if self.options.profile == "mercator": # Tile bounds in EPSG:3857 b = self.mercator.TileBounds(tx, ty, tz) - elif self.options.profile == 'geodetic': + elif self.options.profile == "geodetic": b = self.geodetic.TileBounds(tx, ty, tz) + elif self.options.profile != "raster": + b = tmsMap[self.options.profile].TileBounds( + tx, ty, tz, self.tile_size + ) # Don't scale up by nearest neighbour, better change the querysize # to the native resolution (and return smaller query tile) for scaling - if self.options.profile in ('mercator', 'geodetic'): + if self.options.profile != "raster": rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) # Pixel size in the raster covering query geo extent @@ -1575,24 +3132,23 @@ def generate_base_tiles(self, tz): # Tile bounds in raster coordinates for ReadRaster query rb, wb = self.geo_query( - ds, b[0], b[3], b[2], b[1], querysize=querysize) + ds, b[0], b[3], b[2], b[1], querysize=querysize + ) rx, ry, rxsize, rysize = rb wx, wy, wxsize, wysize = wb - wxsize -= 1 # 1bto4b - wysize -= 1 # 1bto4b # MMGIS elif self.isRasterBounded: # 'raster' profile: # tilesize in raster coordinates for actual zoom tsize = int(self.tsize[tz]) - xsize = self.out_ds.fWorldXSize - ysize = self.out_ds.fWorldYSize + xsize = self.warped_input_dataset.fWorldXSize + ysize = self.warped_input_dataset.fWorldYSize if tz >= self.tmaxz: - querysize = self.tilesize + querysize = self.tile_size - rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld + rx = (tx) * tsize - self.warped_input_dataset.fRasterXOriginWorld #print("rx", rx) rxsize = 0 rxsize = tsize @@ -1601,608 +3157,119 @@ def generate_base_tiles(self, tz): rysize = tsize ry = ysize - (ty * tsize) - rysize - \ - self.out_ds.fRasterYOriginWorld + self.warped_input_dataset.fRasterYOriginWorld wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tilesize) - wysize = int(rysize/float(tsize) * self.tilesize) - if wysize != self.tilesize: - wy = self.tilesize - wysize + wxsize = int(rxsize/float(tsize) * self.tile_size) + wysize = int(rysize/float(tsize) * self.tile_size) + if wysize != self.tile_size: + wy = self.tile_size - wysize if rx < 0: rxsize = tsize + rx wx = -rx - wxsize = int(rxsize/float(tsize) * self.tilesize) + wxsize = int(rxsize/float(tsize) * self.tile_size) rx = 0 if ry < 0: rysize = tsize + ry wy = -ry - wysize = int(rysize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tile_size) ry = 0 - if rx + rxsize > self.out_ds.fRasterXSizeWorld: - rxsize = self.out_ds.fRasterXSizeWorld - rx - wxsize = int(rxsize/float(tsize) * self.tilesize) - if ry + rysize > self.out_ds.fRasterYSizeWorld: - rysize = self.out_ds.fRasterYSizeWorld - ry - wysize = int(rysize/float(tsize) * self.tilesize) + if rx + rxsize > self.warped_input_dataset.fRasterXSizeWorld: + rxsize = self.warped_input_dataset.fRasterXSizeWorld - rx + wxsize = int(rxsize/float(tsize) * self.tile_size) + if ry + rysize > self.warped_input_dataset.fRasterYSizeWorld: + rysize = self.warped_input_dataset.fRasterYSizeWorld - ry + wysize = int(rysize/float(tsize) * self.tile_size) # Convert rx, ry back to non-world coordinates - rx = int(float(self.out_ds.RasterXSize) * - (float(rx) / self.out_ds.fRasterXSizeWorld)) - ry = int(float(self.out_ds.RasterYSize) * - (float(ry) / self.out_ds.fRasterYSizeWorld)) - rxsize = int(float(self.out_ds.RasterXSize) * - (float(rxsize) / self.out_ds.fRasterXSizeWorld)) - rysize = int(float(self.out_ds.RasterYSize) * - (float(rysize) / self.out_ds.fRasterYSizeWorld)) - - wxsize -= 1 # 1bto4b - wysize -= 1 # 1bto4b - - #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin)) - else: # 'raster' profile: - # tilesize in raster coordinates for actual zoom - tsize = int(self.tsize[tz]) - xsize = self.out_ds.RasterXSize # size of the raster in pixels - ysize = self.out_ds.RasterYSize - if tz >= self.tmaxz: - querysize = self.tilesize - - rx = (tx) * tsize + rx = int(float(self.warped_input_dataset.RasterXSize) * + (float(rx) / self.warped_input_dataset.fRasterXSizeWorld)) + ry = int(float(self.warped_input_dataset.RasterYSize) * + (float(ry) / self.warped_input_dataset.fRasterYSizeWorld)) + rxsize = int(float(self.warped_input_dataset.RasterXSize) * + (float(rxsize) / self.warped_input_dataset.fRasterXSizeWorld)) + rysize = int(float(self.warped_input_dataset.RasterYSize) * + (float(rysize) / self.warped_input_dataset.fRasterYSizeWorld)) + if self.isDEMtile: + wxsize -= 1 # 1bto4b + wysize -= 1 # 1bto4b + + #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin)) + else: # 'raster' profile: + + tsize = int( + self.tsize[tz] + ) # tile_size in raster coordinates for actual zoom + xsize = ( + self.warped_input_dataset.RasterXSize + ) # size of the raster in pixels + ysize = self.warped_input_dataset.RasterYSize + querysize = self.tile_size + + rx = tx * tsize rxsize = 0 if tx == tmaxx: rxsize = xsize % tsize if rxsize == 0: rxsize = tsize + ry = ty * tsize rysize = 0 if ty == tmaxy: rysize = ysize % tsize if rysize == 0: rysize = tsize - ry = ysize - (ty * tsize) - rysize wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tilesize) - wysize = int(rysize/float(tsize) * self.tilesize) - if wysize != self.tilesize: - wy = self.tilesize - wysize - - if self.options.verbose: - print("\tReadRaster Extent: ", - (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)) - - # Query is in 'nearest neighbour' but can be bigger in then the tilesize - # We scale down the query to the tilesize by supplied algorithm. + wxsize = int(rxsize / float(tsize) * self.tile_size) + wysize = int(rysize / float(tsize) * self.tile_size) - # Tile dataset in memory - - # 1bto4b - if self.isDEMtile: - dstile = self.mem_drv.Create( - '', self.tilesize, self.tilesize, tilebands, gdal.GDT_Byte) - else: - dstile = self.mem_drv.Create( - '', self.tilesize, self.tilesize, tilebands) + if not self.options.xyz: + ry = ysize - (ty * tsize) - rysize + if wysize != self.tile_size: + wy = self.tile_size - wysize - data = alpha = None # Read the source raster if anything is going inside the tile as per the computed # geo_query - if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: - # 1bto4b - if self.isDEMtile: - data = ds.GetRasterBand(1).ReadRaster( - rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) - else: - data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize, - band_list=list(range(1, self.dataBandsCount+1))) - alpha = self.alphaband.ReadRaster( - rx, ry, rxsize, rysize, wxsize, wysize) - - # The tile in memory is a transparent file by default. Write pixel values into it if - # any - if data: - # 1bto4b - both this full if and else - if self.isDEMtile: - if (wxsize * wysize) > 0: - data = struct.unpack('f' * wxsize * wysize, data) - else: - return - - if self.tilesize == querysize: - # Interpolate the values from four surrounding - - # This takes our 1d list of WxH data and pads it with a rect of none values - dataPad = list(data) - for i in reversed(range(1, wysize)): - dataPad.insert(wxsize * i, 0) - dataPad.insert(wxsize * i, 0) - for i in range(wxsize + 3): - dataPad.insert(0, 0) - for i in range(wxsize + 3): - dataPad.append(0) - - dataIn = [] - # Resample based on average of four - # averaging over: i, i + 1, i + wxsize, i + wxsize + 1 - for y in range(wysize+2 - 1): - for x in range(wxsize+2 - 1): - i = x+(y*(wxsize+2)) - nW = dataPad[i] - nE = dataPad[i+1] - sW = dataPad[i+(wxsize+2)] - sE = dataPad[i+(wxsize+2)+1] - dataIn.append((nW + nE + sW + sE)/float(4)) - - # Get the surrounding eight tiles - # Get NW - if tx - 1 >= tminx and ty + 1 <= tmaxy: - rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW = getTilePxBounds(self, - tx - 1, ty + 1, tz, ds) - wxsizeNW -= 1 - wysizeNW -= 1 - if wxsizeNW != 0 and wysizeNW != 0: - dataNW = ds.GetRasterBand(1).ReadRaster( - rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW, buf_type=gdal.GDT_Float32) - if dataNW is not None and (wxsizeNW * wysizeNW) > 0: - dataNW = struct.unpack( - 'f' * wxsizeNW * wysizeNW, dataNW) - else: - dataNW = None - else: - dataNW = None - - # Get N - if ty + 1 <= tmaxy: - rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN = getTilePxBounds( - self, tx, ty + 1, tz, ds) - wxsizeN -= 1 - wysizeN -= 1 - if wxsizeN != 0 and wysizeN != 0: - dataN = ds.GetRasterBand(1).ReadRaster( - rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN, buf_type=gdal.GDT_Float32) - if dataN is not None and (wxsizeN * wysizeN) > 0: - dataN = struct.unpack( - 'f' * wxsizeN * wysizeN, dataN) - else: - dataN = None - else: - dataN = None - # Get NE - if tx + 1 <= tmaxx and ty + 1 <= tmaxy: - rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE = getTilePxBounds( - self, tx + 1, ty + 1, tz, ds) - wxsizeNE -= 1 - wysizeNE -= 1 - if wxsizeNE != 0 and wysizeNE != 0: - dataNE = ds.GetRasterBand(1).ReadRaster( - rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE, buf_type=gdal.GDT_Float32) - if dataNE is not None and (wxsizeNE * wysizeNE) > 0: - dataNE = struct.unpack( - 'f' * wxsizeNE * wysizeNE, dataNE) - else: - dataNE = None - else: - dataNE = None - # Get E - if tx + 1 <= tmaxx: - rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE = getTilePxBounds( - self, tx + 1, ty, tz, ds) - wxsizeE -= 1 - wysizeE -= 1 - if wxsizeE != 0 and wysizeE != 0: - dataE = ds.GetRasterBand(1).ReadRaster( - rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE, buf_type=gdal.GDT_Float32) - if dataE is not None and (wxsizeE * wysizeE) > 0: - dataE = struct.unpack( - 'f' * wxsizeE * wysizeE, dataE) - else: - dataE = None - else: - dataE = None - # Get SE - if tx + 1 <= tmaxx and ty - 1 >= tminy: - rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE = getTilePxBounds( - self, tx + 1, ty - 1, tz, ds) - wxsizeSE -= 1 - wysizeSE -= 1 - if wxsizeSE != 0 and wysizeSE != 0: - dataSE = ds.GetRasterBand(1).ReadRaster( - rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE, buf_type=gdal.GDT_Float32) - if dataSE is not None and (wxsizeSE * wysizeSE) > 0: - dataSE = struct.unpack( - 'f' * wxsizeSE * wysizeSE, dataSE) - else: - dataSE = None - else: - dataSE = None - # Get S - if ty - 1 >= tminy: - rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS = getTilePxBounds( - self, tx, ty - 1, tz, ds) - wxsizeS -= 1 - wysizeS -= 1 - if wxsizeS != 0 and wysizeS != 0: - dataS = ds.GetRasterBand(1).ReadRaster( - rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS, buf_type=gdal.GDT_Float32) - if dataS is not None and (wxsizeS * wysizeS) > 0: - dataS = struct.unpack( - 'f' * wxsizeS * wysizeS, dataS) - else: - dataS = None - else: - dataS = None - # Get SW - if tx - 1 >= tminx and ty - 1 >= tminy: - rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW = getTilePxBounds( - self, tx - 1, ty - 1, tz, ds) - wxsizeSW -= 1 - wysizeSW -= 1 - if wxsizeSW != 0 and wysizeSW != 0: - dataSW = ds.GetRasterBand(1).ReadRaster( - rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW, buf_type=gdal.GDT_Float32) - if dataSW is not None and (wxsizeSW * wysizeSW) > 0: - dataSW = struct.unpack( - 'f' * wxsizeSW * wysizeSW, dataSW) - else: - dataSW = None - else: - dataSW = None - # Get W - if tx - 1 >= tminx: - rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW = getTilePxBounds( - self, tx - 1, ty, tz, ds) - wxsizeW -= 1 - wysizeW -= 1 - if wxsizeW != 0 and wysizeW != 0: - dataW = ds.GetRasterBand(1).ReadRaster( - rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW, buf_type=gdal.GDT_Float32) - if dataW is not None and (wxsizeW * wysizeW) > 0: - dataW = struct.unpack( - 'f' * wxsizeW * wysizeW, dataW) - else: - dataW = None - else: - dataW = None - - # NW (uses N, NW, W) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataN is not None: - fN = dataN[len(dataN)-wxsizeN] - values = values + 1 - if dataNW is not None: - fNW = dataNW[len(dataNW)-1] - values = values + 1 - if dataW is not None: - fW = dataW[wxsizeW-1] - values = values + 1 - dataIn[0] = ((dataIn[0]*4) + fN + - fNW + fW)/float(values) - - # NE (uses N, NE, E) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataN is not None: - fN = dataN[len(dataN)-1] - values = values + 1 - if dataNE is not None: - fNE = dataNE[len(dataNE)-wxsizeNE] - values = values + 1 - if dataE is not None: - fE = dataE[0] - values = values + 1 - dataIn[wxsize] = ( - (dataIn[wxsize]*4) + fN + fNE + fE)/float(values) - - # SE (uses S, SE, E) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataS is not None: - fS = dataS[wxsizeS-1] - values = values + 1 - if dataSE is not None: - fSE = dataSE[0] - values = values + 1 - if dataE is not None: - fE = dataE[len(dataE)-wxsizeE] - values = values + 1 - dataIn[len(dataIn)-1] = ((dataIn[len(dataIn)-1] - * 4) + fS + fSE + fE)/float(values) - - # SW (uses S, SW, W) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataS is not None: - fS = dataS[0] - values = values + 1 - if dataSW is not None: - fSW = dataSW[wxsizeSW-1] - values = values + 1 - if dataW is not None: - fW = dataW[len(dataW)-1] - values = values + 1 - dataIn[len( - dataIn)-wxsize-1] = ((dataIn[len(dataIn)-wxsize-1]*4) + fS + fSW + fW)/float(values) - - # Then the edges minus corners - # N - if dataN is not None: - for i in range(1, wxsize): - dataIn[i] = ( - (dataIn[i]*4) + dataN[len(dataN)-wxsizeN-1+i] + dataN[len(dataN)-wxsizeN-1+i+1])/float(4) - else: - for i in range(1, wxsize): - dataIn[i] = (dataIn[i]*4)/float(2) - - # E - if dataE is not None: - for i in range(1, wysize): - dataIn[((i+1)*(wxsize+1)-1)] = ((dataIn[((i+1)*(wxsize+1)-1)] - * 4) + dataE[(i-1)*wxsizeE] + dataE[i*wxsizeE])/float(4) - else: - for i in range(1, wysize): - dataIn[( - (i+1)*(wxsize+1)-1)] = (dataIn[((i+1)*(wxsize+1)-1)]*4)/float(2) - - # S - if dataS is not None: - for i in range(1, wxsize): - dataIn[len(dataIn)-wxsize-1+i] = ( - (dataIn[len(dataIn)-wxsize-1+i]*4) + dataS[i-1] + dataS[i])/float(4) - else: - for i in range(1, wxsize): - dataIn[len( - dataIn)-wxsize-1+i] = (dataIn[len(dataIn)-wxsize-1+i]*4)/float(2) - - # W - if dataW is not None: - for i in range(1, wysize): - dataIn[(i)*(wxsize+1)] = ((dataIn[(i)*(wxsize+1)]*4) + - dataW[i*wxsizeW-1] + dataW[(i+1)*wxsizeW-1])/float(4) - else: - for i in range(1, wysize): - dataIn[(i)*(wxsize+1)] = (dataIn[(i) - * (wxsize+1)]*4)/float(2) - - data1 = [] - data2 = [] - data3 = [] - data4 = [] - for f in dataIn: - f = str(binary(f)) - data1.append(int(f[:8], 2)) - data2.append(int(f[8:16], 2)) - data3.append(int(f[16:24], 2)) - data4.append(int(f[24:], 2)) - - data1s = b'' - data2s = b'' - data3s = b'' - data4s = b'' - indx = 0 - for v in data1: - data1s += struct.pack('B', data1[indx]) - data2s += struct.pack('B', data2[indx]) - data3s += struct.pack('B', data3[indx]) - data4s += struct.pack('B', data4[indx]) - indx += 1 - dstile.GetRasterBand(1).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data1s, buf_type=gdal.GDT_Byte) - dstile.GetRasterBand(2).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data2s, buf_type=gdal.GDT_Byte) - dstile.GetRasterBand(3).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data3s, buf_type=gdal.GDT_Byte) - dstile.GetRasterBand(4).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data4s, buf_type=gdal.GDT_Byte) - elif wxsize != 0 and wysize != 0: - # Big ReadRaster query in memory scaled to the tilesize - all but 'near' algo - dsquery = self.mem_drv.Create( - '', querysize, querysize, tilebands, gdal.GDT_Byte) # 1bto4b - # TODO: fill the null value in case a tile without alpha is produced (now only png tiles are supported) - # for i in range(1, tilebands+1): - # dsquery.GetRasterBand(1).Fill(tilenodata) - # dsquery.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1,self.dataBandsCount+1)))###############1bto4b - # dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])###############################1bto4b - - # 1bto4b - data = ds.GetRasterBand(1).ReadRaster( - rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) - - data = struct.unpack('f' * wxsize * wysize, data) - data1 = [] - data2 = [] - data3 = [] - data4 = [] - for f in data: - f = str(binary(f)) - data1.append(int(f[:8], 2)) - data2.append(int(f[8:16], 2)) - data3.append(int(f[16:24], 2)) - data4.append(int(f[24:], 2)) - - data1s = b'' - data2s = b'' - data3s = b'' - data4s = b'' - indx = 0 - for v in data1: - data1s += struct.pack('B', data1[indx]) - data2s += struct.pack('B', data2[indx]) - data3s += struct.pack('B', data3[indx]) - data4s += struct.pack('B', data4[indx]) - indx += 1 - - dsquery.GetRasterBand(1).WriteRaster( - wx, wy, wxsize, wysize, data1s, buf_type=gdal.GDT_Byte) - dsquery.GetRasterBand(2).WriteRaster( - wx, wy, wxsize, wysize, data2s, buf_type=gdal.GDT_Byte) - dsquery.GetRasterBand(3).WriteRaster( - wx, wy, wxsize, wysize, data3s, buf_type=gdal.GDT_Byte) - dsquery.GetRasterBand(4).WriteRaster( - wx, wy, wxsize, wysize, data4s, buf_type=gdal.GDT_Byte) - # sys.exit('done') - # 1bto4b - - self.scale_query_to_tile( - dsquery, dstile, tilefilename) - del dsquery - - else: - if self.tilesize == querysize: - # Use the ReadRaster result directly in tiles ('nearest neighbour' query) - dstile.WriteRaster(wx, wy, wxsize, wysize, data, - band_list=list(range(1, self.dataBandsCount+1))) - dstile.WriteRaster( - wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) - - # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, - # MrSID) the ReadRaster function returns high-quality raster (not ugly - # nearest neighbour) - # TODO: Use directly 'near' for WaveLet files - else: - # Big ReadRaster query in memory scaled to the tilesize - all but 'near' - # algo - dsquery = self.mem_drv.Create( - '', querysize, querysize, tilebands) - # TODO: fill the null value in case a tile without alpha is produced (now - # only png tiles are supported) - dsquery.WriteRaster(wx, wy, wxsize, wysize, data, - band_list=list(range(1, self.dataBandsCount+1))) - dsquery.WriteRaster( - wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) - - self.scale_query_to_tile( - dsquery, dstile, tilefilename) - del dsquery - - del data - - if self.options.resampling != 'antialias': - # Write a copy of tile to png/jpg - self.out_drv.CreateCopy(tilefilename, dstile, strict=0) - - del dstile - - # Create a KML file for this tile. - if self.kml: - kmlfilename = os.path.join( - self.output, str(tz), str(tx), '%d.kml' % ty) - if not self.options.resume or not os.path.exists(kmlfilename): - f = open(kmlfilename, 'wb') - f.write(self.generate_kml(tx, ty, tz).encode('utf-8')) - f.close() - - if not self.options.verbose and not self.options.quiet: - self.progressbar(ti / float(tcount)) - - def generate_overview_tiles(self): - """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" - - if not self.options.quiet: - print("Generating Overview Tiles:") - - # 1bto4b - if self.isDEMtile: - tilebands = 4 - else: - tilebands = self.dataBandsCount + 1 - - # Usage of existing tiles: from 4 underlying tiles generate one as overview. - - tcount = 0 - for tz in range(self.tmaxz-1, self.tminz-1, -1): - tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] - tcount += (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) - - ti = 0 - - for tz in range(self.tmaxz-1, self.tminz-1, -1): - tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] - for ty in range(tmaxy, tminy-1, -1): - for tx in range(tminx, tmaxx+1): - - if self.stopped: - break - - ti += 1 - tilefilename = os.path.join(self.output, - str(tz), - str(tx), - "%s.%s" % (ty, self.tileext)) - - if self.options.verbose: - print(ti, '/', tcount, tilefilename) - - if self.options.resume and os.path.exists(tilefilename): - if self.options.verbose: - print("Tile generation skipped because of --resume") - else: - self.progressbar(ti / float(tcount)) - continue - - # Create directories for the tile - if not os.path.exists(os.path.dirname(tilefilename)): - os.makedirs(os.path.dirname(tilefilename)) - - dsquery = self.mem_drv.Create( - '', 2*self.tilesize, 2*self.tilesize, tilebands) - # TODO: fill the null value - dstile = self.mem_drv.Create( - '', self.tilesize, self.tilesize, tilebands) - - # TODO: Implement more clever walking on the tiles with cache functionality - # probably walk should start with reading of four tiles from top left corner - # Hilbert curve - - children = [] - # Read the tiles and write them to query window - for y in range(2*ty, 2*ty+2): - for x in range(2*tx, 2*tx+2): - minx, miny, maxx, maxy = self.tminmax[tz+1] - if x >= minx and x <= maxx and y >= miny and y <= maxy: - dsquerytile = gdal.Open( - os.path.join(self.output, str(tz+1), str(x), - "%s.%s" % (y, self.tileext)), - gdal.GA_ReadOnly) - if (ty == 0 and y == 1) or (ty != 0 and (y % (2*ty)) != 0): - tileposy = 0 - else: - tileposy = self.tilesize - if tx: - tileposx = x % (2*tx) * self.tilesize - elif tx == 0 and x == 1: - tileposx = self.tilesize - else: - tileposx = 0 - dsquery.WriteRaster( - tileposx, tileposy, self.tilesize, self.tilesize, - dsquerytile.ReadRaster( - 0, 0, self.tilesize, self.tilesize), - band_list=list(range(1, tilebands+1))) - children.append([x, y, tz+1]) - - self.scale_query_to_tile(dsquery, dstile, tilefilename) - # Write a copy of tile to png/jpg - if self.options.resampling != 'antialias': - # Write a copy of tile to png/jpg - self.out_drv.CreateCopy(tilefilename, dstile, strict=0) - - if self.options.verbose: - print("\tbuild from zoom", tz+1, - " tiles:", (2*tx, 2*ty), (2*tx+1, 2*ty), - (2*tx, 2*ty+1), (2*tx+1, 2*ty+1)) - - # Create a KML file for this tile. - if self.kml: - f = open(os.path.join( - self.output, '%d/%d/%d.kml' % (tz, tx, ty)), 'wb') - f.write(self.generate_kml( - tx, ty, tz, children).encode('utf-8')) - f.close() + tile_details.append( + TileDetail( + tx=tx, + ty=ytile, + tz=tz, + rx=rx, + ry=ry, + rxsize=rxsize, + rysize=rysize, + wx=wx, + wy=wy, + wxsize=wxsize, + wysize=wysize, + querysize=querysize, + isDEMtile=isDEMtile + ) + ) + + conf = TileJobInfo( + src_file=self.tmp_vrt_filename, + nb_data_bands=self.dataBandsCount, + output_file_path=self.output_folder, + tile_extension=self.tileext, + tile_driver=self.tiledriver, + tile_size=self.tile_size, + kml=self.kml, + tminmax=self.tminmax, + tminz=self.tminz, + tmaxz=self.tmaxz, + in_srs_wkt=self.in_srs_wkt, + out_geo_trans=self.out_gt, + ominy=self.ominy, + is_epsg_4326=self.isepsg4326, + options=self.options, + exclude_transparent=self.options.exclude_transparent, + ) - if not self.options.verbose and not self.options.quiet: - self.progressbar(ti / float(tcount)) + return conf, tile_details def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): """ @@ -2215,8 +3282,8 @@ def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): geotran = ds.GetGeoTransform() rx = int((ulx - geotran[0]) / geotran[1] + 0.001) ry = int((uly - geotran[3]) / geotran[5] + 0.001) - rxsize = int((lrx - ulx) / geotran[1] + 0.5) - rysize = int((lry - uly) / geotran[5] + 0.5) + rxsize = max(1, int((lrx - ulx) / geotran[1] + 0.5)) + rysize = max(1, int((lry - uly) / geotran[5] + 0.5)) if not querysize: wxsize, wysize = rxsize, rysize @@ -2231,7 +3298,7 @@ def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): wxsize = wxsize - wx rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) rx = 0 - if rx+rxsize > ds.RasterXSize: + if rx + rxsize > ds.RasterXSize: wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) rxsize = ds.RasterXSize - rx @@ -2242,368 +3309,652 @@ def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): wysize = wysize - wy rysize = rysize - int(rysize * (float(ryshift) / rysize)) ry = 0 - if ry+rysize > ds.RasterYSize: + if ry + rysize > ds.RasterYSize: wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) rysize = ds.RasterYSize - ry return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) - def scale_query_to_tile(self, dsquery, dstile, tilefilename=''): - """Scales down query dataset to the tile dataset""" - - querysize = dsquery.RasterXSize - tilesize = dstile.RasterXSize - tilebands = dstile.RasterCount - - if self.options.resampling == 'average': - - # Function: gdal.RegenerateOverview() - for i in range(1, tilebands+1): - # Black border around NODATA - res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), - 'average') - if res != 0: - self.error("RegenerateOverview() failed on %s, error %d" % ( - tilefilename, res)) - - elif self.options.resampling == 'antialias': - - # Scaling by PIL (Python Imaging Library) - improved Lanczos - array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) - for i in range(tilebands): - array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1), - 0, 0, querysize, querysize) - im = Image.fromarray(array, 'RGBA') # Always four bands - im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) - if os.path.exists(tilefilename): - im0 = Image.open(tilefilename) - im1 = Image.composite(im1, im0, im1) - im1.save(tilefilename, self.tiledriver) - - else: - - # Other algorithms are implemented by gdal.ReprojectImage(). - dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, - tilesize / float(querysize))) - dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) - - res = gdal.ReprojectImage( - dsquery, dstile, None, None, self.resampling) - if res != 0: - self.error("ReprojectImage() failed on %s, error %d" % - (tilefilename, res)) - - def generate_tilemapresource(self): + def generate_tilemapresource(self) -> str: """ Template for tilemapresource.xml. Returns filled string. Expected variables: title, north, south, east, west, isepsg4326, projection, publishurl, - zoompixels, tilesize, tileformat, profile + zoompixels, tile_size, tileformat, profile """ args = {} - args['title'] = self.options.title - args['south'], args['west'], args['north'], args['east'] = self.swne - args['tilesize'] = self.tilesize - args['tileformat'] = self.tileext - args['publishurl'] = self.options.url - args['profile'] = self.options.profile - - if self.options.profile == 'mercator': - args['srs'] = "EPSG:3857" - elif self.options.profile == 'geodetic': - args['srs'] = "EPSG:4326" + args["xml_escaped_title"] = gdal.EscapeString( + self.options.title, gdal.CPLES_XML + ) + args["south"], args["west"], args["north"], args["east"] = self.swne + args["tile_size"] = self.tile_size + args["tileformat"] = self.tileext + args["publishurl"] = self.options.url + args["profile"] = self.options.profile + + if self.options.profile == "mercator": + args["srs"] = "EPSG:3857" + elif self.options.profile == "geodetic": + args["srs"] = "EPSG:4326" elif self.options.s_srs: - args['srs'] = self.options.s_srs + args["srs"] = self.options.s_srs elif self.out_srs: - args['srs'] = self.out_srs.ExportToWkt() + args["srs"] = self.out_srs.ExportToWkt() else: - args['srs'] = "" + args["srs"] = "" - s = """ + s = ( + """ - %(title)s + %(xml_escaped_title)s %(srs)s - + -""" % args # noqa - for z in range(self.tminz, self.tmaxz+1): - if self.options.profile == 'raster': - s += """ \n""" % ( - args['publishurl'], z, (2**(self.nativezoom-z) * self.out_gt[1]), z) - elif self.options.profile == 'mercator': - s += """ \n""" % ( - args['publishurl'], z, 156543.0339/2**z, z) - elif self.options.profile == 'geodetic': - s += """ \n""" % ( - args['publishurl'], z, 0.703125/2**z, z) +""" + % args + ) # noqa + for z in range(self.tminz, self.tmaxz + 1): + if self.options.profile == "raster": + s += ( + """ \n""" + % ( + args["publishurl"], + z, + (2 ** (self.nativezoom - z) * self.out_gt[1]), + z, + ) + ) + elif self.options.profile == "mercator": + s += ( + """ \n""" + % (args["publishurl"], z, 156543.0339 / 2**z, z) + ) + elif self.options.profile == "geodetic": + s += ( + """ \n""" + % (args["publishurl"], z, 0.703125 / 2**z, z) + ) s += """ """ return s - def generate_kml(self, tx, ty, tz, children=None, **args): - """ - Template for the KML. Returns filled string. - """ - if not children: - children = [] - - args['tx'], args['ty'], args['tz'] = tx, ty, tz - args['tileformat'] = self.tileext - if 'tilesize' not in args: - args['tilesize'] = self.tilesize - - if 'minlodpixels' not in args: - args['minlodpixels'] = int(args['tilesize'] / 2) - if 'maxlodpixels' not in args: - args['maxlodpixels'] = int(args['tilesize'] * 8) - if children == []: - args['maxlodpixels'] = -1 - - if tx is None: - tilekml = False - args['title'] = self.options.title - else: - tilekml = True - args['title'] = "%d/%d/%d.kml" % (tz, tx, ty) - args['south'], args['west'], args['north'], args['east'] = self.tileswne( - tx, ty, tz) - - if tx == 0: - args['drawOrder'] = 2 * tz + 1 - elif tx is not None: - args['drawOrder'] = 2 * tz - else: - args['drawOrder'] = 0 - - url = self.options.url - if not url: - if tilekml: - url = "../../" - else: - url = "" - - s = """ - - - %(title)s - - """ % args - if tilekml: - s += """ - - - %(north).14f - %(south).14f - %(east).14f - %(west).14f - - - %(minlodpixels)d - %(maxlodpixels)d - - - - %(drawOrder)d - - %(ty)d.%(tileformat)s - - - %(north).14f - %(south).14f - %(east).14f - %(west).14f - - - """ % args - - for cx, cy, cz in children: - csouth, cwest, cnorth, ceast = self.tileswne(cx, cy, cz) - s += """ - - %d/%d/%d.%s - - - %.14f - %.14f - %.14f - %.14f - - - %d - -1 - - - - %s%d/%d/%d.kml - onRegion - - - - """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, - args['minlodpixels'], url, cz, cx, cy) - - s += """ - - """ - return s - - def generate_googlemaps(self): + def generate_googlemaps(self) -> str: """ Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: - title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, + title, googlemapskey, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl """ args = {} - args['title'] = self.options.title - args['googlemapskey'] = self.options.googlekey - args['south'], args['west'], args['north'], args['east'] = self.swne - args['minzoom'] = self.tminz - args['maxzoom'] = self.tmaxz - args['tilesize'] = self.tilesize - args['tileformat'] = self.tileext - args['publishurl'] = self.options.url - args['copyright'] = self.options.copyright - - s = r""" + args["xml_escaped_title"] = gdal.EscapeString( + self.options.title, gdal.CPLES_XML + ) + args["googlemapsurl"] = "https://maps.googleapis.com/maps/api/js" + if self.options.googlekey != "INSERT_YOUR_KEY_HERE": + args["googlemapsurl"] += "?key=" + self.options.googlekey + args["googlemapsurl_hint"] = "" + else: + args[ + "googlemapsurl_hint" + ] = "" + args["south"], args["west"], args["north"], args["east"] = self.swne + args["minzoom"] = self.tminz + args["maxzoom"] = self.tmaxz + args["tile_size"] = self.tile_size + args["tileformat"] = self.tileext + args["publishurl"] = self.options.url + args["copyright"] = self.options.copyright + + # Logic below inspired from https://www.gavinharriss.com/code/opacity-control + # which borrowed on gdal2tiles itself to migrate from Google Maps V2 to V3 + + args[ + "custom_tile_overlay_js" + ] = """ +// Beginning of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/CustomTileOverlay.js +// with CustomTileOverlay.prototype.getTileUrl() method customized for gdal2tiles needs. + +/******************************************************************************* +Copyright (c) 2010-2012. Gavin Harriss +Site: http://www.gavinharriss.com/ +Originally developed for: http://www.topomap.co.nz/ +Licences: Creative Commons Attribution 3.0 New Zealand License +http://creativecommons.org/licenses/by/3.0/nz/ +******************************************************************************/ + +CustomTileOverlay = function (map, opacity) { + this.tileSize = new google.maps.Size(256, 256); // Change to tile size being used + + this.map = map; + this.opacity = opacity; + this.tiles = []; + + this.visible = false; + this.initialized = false; + + this.self = this; +} + +CustomTileOverlay.prototype = new google.maps.OverlayView(); + +CustomTileOverlay.prototype.getTile = function (p, z, ownerDocument) { + // If tile already exists then use it + for (var n = 0; n < this.tiles.length; n++) { + if (this.tiles[n].id == 't_' + p.x + '_' + p.y + '_' + z) { + return this.tiles[n]; + } + } + + // If tile doesn't exist then create it + var tile = ownerDocument.createElement('div'); + var tp = this.getTileUrlCoord(p, z); + tile.id = 't_' + tp.x + '_' + tp.y + '_' + z + tile.style.width = this.tileSize.width + 'px'; + tile.style.height = this.tileSize.height + 'px'; + tile.style.backgroundImage = 'url(' + this.getTileUrl(tp, z) + ')'; + tile.style.backgroundRepeat = 'no-repeat'; + + if (!this.visible) { + tile.style.display = 'none'; + } + + this.tiles.push(tile) + + this.setObjectOpacity(tile); + + return tile; +} + +// Save memory / speed up the display by deleting tiles out of view +// Essential for use on iOS devices such as iPhone and iPod! +CustomTileOverlay.prototype.deleteHiddenTiles = function (zoom) { + var bounds = this.map.getBounds(); + var tileNE = this.getTileUrlCoordFromLatLng(bounds.getNorthEast(), zoom); + var tileSW = this.getTileUrlCoordFromLatLng(bounds.getSouthWest(), zoom); + + var minX = tileSW.x - 1; + var maxX = tileNE.x + 1; + var minY = tileSW.y - 1; + var maxY = tileNE.y + 1; + + var tilesToKeep = []; + var tilesLength = this.tiles.length; + for (var i = 0; i < tilesLength; i++) { + var idParts = this.tiles[i].id.split("_"); + var tileX = Number(idParts[1]); + var tileY = Number(idParts[2]); + var tileZ = Number(idParts[3]); + if (( + (minX < maxX && (tileX >= minX && tileX <= maxX)) + || (minX > maxX && ((tileX >= minX && tileX <= (Math.pow(2, zoom) - 1)) || (tileX >= 0 && tileX <= maxX))) // Lapped the earth! + ) + && (tileY >= minY && tileY <= maxY) + && tileZ == zoom) { + tilesToKeep.push(this.tiles[i]); + } + else { + delete this.tiles[i]; + } + } + + this.tiles = tilesToKeep; +}; + +CustomTileOverlay.prototype.pointToTile = function (point, z) { + var projection = this.map.getProjection(); + var worldCoordinate = projection.fromLatLngToPoint(point); + var pixelCoordinate = new google.maps.Point(worldCoordinate.x * Math.pow(2, z), worldCoordinate.y * Math.pow(2, z)); + var tileCoordinate = new google.maps.Point(Math.floor(pixelCoordinate.x / this.tileSize.width), Math.floor(pixelCoordinate.y / this.tileSize.height)); + return tileCoordinate; +} + +CustomTileOverlay.prototype.getTileUrlCoordFromLatLng = function (latlng, zoom) { + return this.getTileUrlCoord(this.pointToTile(latlng, zoom), zoom) +} + +CustomTileOverlay.prototype.getTileUrlCoord = function (coord, zoom) { + var tileRange = 1 << zoom; + var y = tileRange - coord.y - 1; + var x = coord.x; + if (x < 0 || x >= tileRange) { + x = (x % tileRange + tileRange) % tileRange; + } + return new google.maps.Point(x, y); +} + +// Modified for gdal2tiles needs +CustomTileOverlay.prototype.getTileUrl = function (tile, zoom) { + + if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) { + return "https://gdal.org/resources/gdal2tiles/none.png"; + } + var ymax = 1 << zoom; + var y = ymax - tile.y -1; + var tileBounds = new google.maps.LatLngBounds( + fromMercatorPixelToLatLng( new google.maps.Point( (tile.x)*256, (y+1)*256 ) , zoom ), + fromMercatorPixelToLatLng( new google.maps.Point( (tile.x+1)*256, (y)*256 ) , zoom ) + ); + if (mapBounds.intersects(tileBounds)) { + return zoom+"/"+tile.x+"/"+tile.y+".png"; + } else { + return "https://gdal.org/resources/gdal2tiles/none.png"; + } + +} + +CustomTileOverlay.prototype.initialize = function () { + if (this.initialized) { + return; + } + var self = this.self; + this.map.overlayMapTypes.insertAt(0, self); + this.initialized = true; +} + +CustomTileOverlay.prototype.hide = function () { + this.visible = false; + + var tileCount = this.tiles.length; + for (var n = 0; n < tileCount; n++) { + this.tiles[n].style.display = 'none'; + } +} + +CustomTileOverlay.prototype.show = function () { + this.initialize(); + this.visible = true; + var tileCount = this.tiles.length; + for (var n = 0; n < tileCount; n++) { + this.tiles[n].style.display = ''; + } +} + +CustomTileOverlay.prototype.releaseTile = function (tile) { + tile = null; +} + +CustomTileOverlay.prototype.setOpacity = function (op) { + this.opacity = op; + + var tileCount = this.tiles.length; + for (var n = 0; n < tileCount; n++) { + this.setObjectOpacity(this.tiles[n]); + } +} + +CustomTileOverlay.prototype.setObjectOpacity = function (obj) { + if (this.opacity > 0) { + if (typeof (obj.style.filter) == 'string') { obj.style.filter = 'alpha(opacity:' + this.opacity + ')'; } + if (typeof (obj.style.KHTMLOpacity) == 'string') { obj.style.KHTMLOpacity = this.opacity / 100; } + if (typeof (obj.style.MozOpacity) == 'string') { obj.style.MozOpacity = this.opacity / 100; } + if (typeof (obj.style.opacity) == 'string') { obj.style.opacity = this.opacity / 100; } + } +} + +// End of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/CustomTileOverlay.js +""" + + args[ + "ext_draggable_object_js" + ] = """ +// Beginning of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/ExtDraggableObject.js + +/** + * @name ExtDraggableObject + * @version 1.0 + * @author Gabriel Schneider + * @copyright (c) 2009 Gabriel Schneider + * @fileoverview This sets up a given DOM element to be draggable + * around the page. + */ + +/* + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + * Sets up a DOM element to be draggable. The options available + * within {@link ExtDraggableObjectOptions} are: top, left, container, + * draggingCursor, draggableCursor, intervalX, intervalY, + * toleranceX, toleranceY, restrictX, and restrictY. + * @param {HTMLElement} src The element to make draggable + * @param {ExtDraggableObjectOptions} [opts] options + * @constructor + */ +function ExtDraggableObject(src, opt_drag) { + var me = this; + var event_ = (window["GEvent"]||google.maps.Event||google.maps.event); + var opt_drag_=opt_drag||{}; + var draggingCursor_ = opt_drag_.draggingCursor||"default"; + var draggableCursor_ = opt_drag_.draggableCursor||"default"; + var moving_ = false, preventDefault_; + var currentX_, currentY_, formerY_, formerX_, formerMouseX_, formerMouseY_; + var top_, left_; + var mouseDownEvent_, mouseUpEvent_, mouseMoveEvent_; + var originalX_, originalY_; + var halfIntervalX_ = Math.round(opt_drag_.intervalX/2); + var halfIntervalY_ = Math.round(opt_drag_.intervalY/2); + var target_ = src.setCapture?src:document; + + if (typeof opt_drag_.intervalX !== "number") { + opt_drag_.intervalX = 1; + } + if (typeof opt_drag_.intervalY !== "number") { + opt_drag_.intervalY = 1; + } + if (typeof opt_drag_.toleranceX !== "number") { + opt_drag_.toleranceX = Infinity; + } + if (typeof opt_drag_.toleranceY !== "number") { + opt_drag_.toleranceY = Infinity; + } + + mouseDownEvent_ = event_.addDomListener(src, "mousedown", mouseDown_); + mouseUpEvent_ = event_.addDomListener(target_, "mouseup", mouseUp_); + + setCursor_(false); + if (opt_drag_.container) { + + } + src.style.position = "absolute"; + opt_drag_.left = opt_drag_.left||src.offsetLeft; + opt_drag_.top = opt_drag_.top||src.offsetTop; + opt_drag_.interval = opt_drag_.interval||1; + moveTo_(opt_drag_.left, opt_drag_.top, false); + + /** + * Set the cursor for {@link src} based on whether or not + * the element is currently being dragged. + * @param {Boolean} a Is the element being dragged? + * @private + */ + function setCursor_(a) { + if(a) { + src.style.cursor = draggingCursor_; + } else { + src.style.cursor = draggableCursor_; + } + } + + /** + * Moves the element {@link src} to the given + * location. + * @param {Number} x The left position to move to. + * @param {Number} y The top position to move to. + * @param {Boolean} prevent Prevent moving? + * @private + */ + function moveTo_(x, y, prevent) { + var roundedIntervalX_, roundedIntervalY_; + left_ = Math.round(x); + top_ = Math.round(y); + if (opt_drag_.intervalX>1) { + roundedIntervalX_ = Math.round(left_%opt_drag_.intervalX); + left_ = (roundedIntervalX_1) { + roundedIntervalY_ = Math.round(top_%opt_drag_.intervalY); + top_ = (roundedIntervalY_opt_drag_.toleranceX||(currentX_-(left_+src.offsetWidth))>opt_drag_.toleranceX)||((top_-currentY_)>opt_drag_.toleranceY||(currentY_-(top_+src.offsetHeight))>opt_drag_.toleranceY)) { + left_ = originalX_; + top_ = originalY_; + } + } + if(!opt_drag_.restrictX&&!prevent) { + src.style.left = left_ + "px"; + } + if(!opt_drag_.restrictY&&!prevent) { + src.style.top = top_ + "px"; + } + } + + /** + * Handles the mousemove event. + * @param {event} ev The event data sent by the browser. + * @private + */ + function mouseMove_(ev) { + var e=ev||event; + currentX_ = formerX_+((e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft))-formerMouseX_); + currentY_ = formerY_+((e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop))-formerMouseY_); + formerX_ = currentX_; + formerY_ = currentY_; + formerMouseX_ = e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft); + formerMouseY_ = e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop); + if (moving_) { + moveTo_(currentX_,currentY_, preventDefault_); + event_.trigger(me, "drag", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); + } + } + + /** + * Handles the mousedown event. + * @param {event} ev The event data sent by the browser. + * @private + */ + function mouseDown_(ev) { + var e=ev||event; + setCursor_(true); + event_.trigger(me, "mousedown", e); + if (src.style.position !== "absolute") { + src.style.position = "absolute"; + return; + } + formerMouseX_ = e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft); + formerMouseY_ = e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop); + originalX_ = src.offsetLeft; + originalY_ = src.offsetTop; + formerX_ = originalX_; + formerY_ = originalY_; + mouseMoveEvent_ = event_.addDomListener(target_, "mousemove", mouseMove_); + if (src.setCapture) { + src.setCapture(); + } + if (e.preventDefault) { + e.preventDefault(); + e.stopPropagation(); + } else { + e.cancelBubble=true; + e.returnValue=false; + } + moving_ = true; + event_.trigger(me, "dragstart", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); + } + + /** + * Handles the mouseup event. + * @param {event} ev The event data sent by the browser. + * @private + */ + function mouseUp_(ev) { + var e=ev||event; + if (moving_) { + setCursor_(false); + event_.removeListener(mouseMoveEvent_); + if (src.releaseCapture) { + src.releaseCapture(); + } + moving_ = false; + event_.trigger(me, "dragend", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); + } + currentX_ = currentY_ = null; + event_.trigger(me, "mouseup", e); + } + + /** + * Move the element {@link src} to the given location. + * @param {Point} point An object with an x and y property + * that represents the location to move to. + */ + me.moveTo = function(point) { + moveTo_(point.x, point.y, false); + }; + + /** + * Move the element {@link src} by the given amount. + * @param {Size} size An object with an x and y property + * that represents distance to move the element. + */ + me.moveBy = function(size) { + moveTo_(src.offsetLeft + size.width, src.offsetHeight + size.height, false); + } + + /** + * Sets the cursor for the dragging state. + * @param {String} cursor The name of the cursor to use. + */ + me.setDraggingCursor = function(cursor) { + draggingCursor_ = cursor; + setCursor_(moving_); + }; + + /** + * Sets the cursor for the draggable state. + * @param {String} cursor The name of the cursor to use. + */ + me.setDraggableCursor = function(cursor) { + draggableCursor_ = cursor; + setCursor_(moving_); + }; + + /** + * Returns the current left location. + * @return {Number} + */ + me.left = function() { + return left_; + }; + + /** + * Returns the current top location. + * @return {Number} + */ + me.top = function() { + return top_; + }; + + /** + * Returns the number of intervals the element has moved + * along the X axis. Useful for scrollbar type + * applications. + * @return {Number} + */ + me.valueX = function() { + var i = opt_drag_.intervalX||1; + return Math.round(left_ / i); + }; + + /** + * Returns the number of intervals the element has moved + * along the Y axis. Useful for scrollbar type + * applications. + * @return {Number} + */ + me.valueY = function() { + var i = opt_drag_.intervalY||1; + return Math.round(top_ / i); + }; + + /** + * Sets the left position of the draggable object based on + * intervalX. + * @param {Number} value The location to move to. + */ + me.setValueX = function(value) { + moveTo_(value * opt_drag_.intervalX, top_, false); + }; + + /** + * Sets the top position of the draggable object based on + * intervalY. + * @param {Number} value The location to move to. + */ + me.setValueY = function(value) { + moveTo_(left_, value * opt_drag_.intervalY, false); + }; + + /** + * Prevents the default movement behavior of the object. + * The object can still be moved by other methods. + */ + me.preventDefaultMovement = function(prevent) { + preventDefault_ = prevent; + }; +} + /** + * @name ExtDraggableObjectOptions + * @class This class represents the optional parameter passed into constructor of + * ExtDraggableObject. + * @property {Number} [top] Top pixel + * @property {Number} [left] Left pixel + * @property {HTMLElement} [container] HTMLElement as container. + * @property {String} [draggingCursor] Dragging Cursor + * @property {String} [draggableCursor] Draggable Cursor + * @property {Number} [intervalX] Interval in X direction + * @property {Number} [intervalY] Interval in Y direction + * @property {Number} [toleranceX] Tolerance X in pixel + * @property {Number} [toleranceY] Tolerance Y in pixel + * @property {Boolean} [restrictX] Whether to restrict move in X direction + * @property {Boolean} [restrictY] Whether to restrict move in Y direction + */ + + // End of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/ExtDraggableObject.js +""" + + s = ( + r""" - %(title)s + %(xml_escaped_title)s - + %(googlemapsurl_hint)s + - -
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC + +
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC
- """ % args # noqa + """ + % args + ) # noqa + + # TODO? when there is self.kml, before the transition to GoogleMapsV3 API, + # we used to offer a way to display the KML file in Google Earth + # cf https://github.com/OSGeo/gdal/blob/32f32a69bbf5c408c6c8ac2cc6f1d915a7a1c576/swig/python/gdal-utils/osgeo_utils/gdal2tiles.py#L3203 to #L3243 return s - def generate_leaflet(self): + def generate_leaflet(self) -> str: """ Template for leaflet.html implementing overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: - title, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl + title, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl """ args = {} - args['title'] = self.options.title.replace('"', '\\"') - args['htmltitle'] = self.options.title - args['south'], args['west'], args['north'], args['east'] = self.swne - args['centerlon'] = (args['north'] + args['south']) / 2. - args['centerlat'] = (args['west'] + args['east']) / 2. - args['minzoom'] = self.tminz - args['maxzoom'] = self.tmaxz - args['beginzoom'] = self.tmaxz - args['tilesize'] = self.tilesize # not used - args['tileformat'] = self.tileext - args['publishurl'] = self.options.url # not used - args['copyright'] = self.options.copyright.replace('"', '\\"') - - s = """ + args["double_quote_escaped_title"] = self.options.title.replace( + '"', '\\"') + args["xml_escaped_title"] = gdal.EscapeString( + self.options.title, gdal.CPLES_XML + ) + args["south"], args["west"], args["north"], args["east"] = self.swne + args["centerlon"] = (args["north"] + args["south"]) / 2.0 + args["centerlat"] = (args["west"] + args["east"]) / 2.0 + args["minzoom"] = self.tminz + args["maxzoom"] = self.tmaxz + args["beginzoom"] = self.tmaxz + args["tile_size"] = self.tile_size # not used + args["tileformat"] = self.tileext + args["publishurl"] = self.options.url # not used + args["copyright"] = self.options.copyright.replace('"', '\\"') + + if self.options.xyz: + args["tms"] = 0 + else: + args["tms"] = 1 + + s = ( + """ - %(htmltitle)s + %(xml_escaped_title)s - - + + + + + + + + + +
Generated by GDAL2Tiles    
+
+
+ - """ % args + projection: 'EPSG:4326',""" + elif self.options.profile != "mercator": + if ( + self.in_srs + and self.in_srs.IsProjected() + and self.in_srs.GetAuthorityName(None) == "EPSG" + ): + s += """ + projection: new ol.proj.Projection({code: 'EPSG:%s', units:'m'}),""" % self.in_srs.GetAuthorityCode( + None + ) s += """ - - + +""" + + return s - map.addLayers([gmap, gsat, ghyb, gter, - broad, baer, bhyb, - osm, tmsoverlay]); + def generate_mapml(self) -> str: - var switcherControl = new OpenLayers.Control.LayerSwitcher(); - map.addControl(switcherControl); - switcherControl.maximizeControl(); + if self.options.mapml_template: + template = self.options.mapml_template + else: + template = gdal.FindFile("gdal", "template_tiles.mapml") + s = open(template, "rb").read().decode("utf-8") - map.zoomToExtent(mapBounds.transform(map.displayProjection, map.projection)); - """ % args # noqa + if self.options.profile == "mercator": + tiling_scheme = "OSMTILE" + elif self.options.profile == "geodetic": + tiling_scheme = "WGS84" + else: + tiling_scheme = self.options.profile + + s = s.replace("${TILING_SCHEME}", tiling_scheme) + s = s.replace("${URL}", self.options.url if self.options.url else "./") + tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] + s = s.replace("${MINTILEX}", str(tminx)) + s = s.replace( + "${MINTILEY}", str(GDAL2Tiles.getYTile( + tmaxy, self.tmaxz, self.options)) + ) + s = s.replace("${MAXTILEX}", str(tmaxx)) + s = s.replace( + "${MAXTILEY}", str(GDAL2Tiles.getYTile( + tminy, self.tmaxz, self.options)) + ) + s = s.replace("${CURZOOM}", str(self.tmaxz)) + s = s.replace("${MINZOOM}", str(self.tminz)) + s = s.replace("${MAXZOOM}", str(self.tmaxz)) + s = s.replace("${TILEEXT}", str(self.tileext)) - elif self.options.profile == 'geodetic': - s += """ - var options = { - div: "map", - controls: [], - projection: "EPSG:4326" - }; - map = new OpenLayers.Map(options); - - var wms = new OpenLayers.Layer.WMS("VMap0", - "http://tilecache.osgeo.org/wms-c/Basic.py?", - { - layers: 'basic', - format: 'image/png' - } - ); - var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "", - { - serviceVersion: '.', - layername: '.', - alpha: true, - type: '%(tileformat)s', - isBaseLayer: false, - getURL: getURL - }); - if (OpenLayers.Util.alphaHack() == false) { - tmsoverlay.setOpacity(0.7); - } + return s + + @staticmethod + def getYTile(ty, tz, options): + """ + Calculates the y-tile number based on whether XYZ or TMS (default) system is used + :param ty: The y-tile number + :param tz: The z-tile number + :return: The transformed y-tile number + """ + if options.xyz and options.profile != "raster": + if options.profile in ("mercator", "geodetic"): + # Convert from TMS to XYZ numbering system + return (2**tz - 1) - ty + + tms = tmsMap[options.profile] + return ( + tms.matrix_height * 2**tz - 1 + ) - ty # Convert from TMS to XYZ numbering system + + return ty + + +def worker_tile_details( + input_file: str, output_folder: str, options: Options +) -> Tuple[TileJobInfo, List[TileDetail]]: + gdal2tiles = GDAL2Tiles(input_file, output_folder, options) + gdal2tiles.open_input() + gdal2tiles.generate_metadata() + tile_job_info, tile_details = gdal2tiles.generate_base_tiles() + return tile_job_info, tile_details + + +class ProgressBar(object): + def __init__(self, total_items: int) -> None: + self.total_items = total_items + self.nb_items_done = 0 + self.current_progress = 0 + self.STEP = 2.5 + + def start(self) -> None: + sys.stdout.write("0") + + def log_progress(self, nb_items: int = 1) -> None: + self.nb_items_done += nb_items + progress = float(self.nb_items_done) / self.total_items * 100 + if progress >= self.current_progress + self.STEP: + done = False + while not done: + if self.current_progress + self.STEP <= progress: + self.current_progress += self.STEP + if self.current_progress % 10 == 0: + sys.stdout.write(str(int(self.current_progress))) + if self.current_progress == 100: + sys.stdout.write("\n") + else: + sys.stdout.write(".") + else: + done = True + sys.stdout.flush() + + +def get_tile_swne(tile_job_info, options): + if options.profile == "mercator": + mercator = GlobalMercator() + tile_swne = mercator.TileLatLonBounds + elif options.profile == "geodetic": + geodetic = GlobalGeodetic(options.tmscompatible) + tile_swne = geodetic.TileLatLonBounds + elif options.profile == "raster": + srs4326 = osr.SpatialReference() + srs4326.ImportFromEPSG(4326) + srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + if tile_job_info.kml and tile_job_info.in_srs_wkt: + in_srs = osr.SpatialReference() + in_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) + in_srs.ImportFromWkt(tile_job_info.in_srs_wkt) + ct = osr.CoordinateTransformation(in_srs, srs4326) + + def rastertileswne(x, y, z): + pixelsizex = ( + 2 ** (tile_job_info.tmaxz - z) * + tile_job_info.out_geo_trans[1] + ) + west = ( + tile_job_info.out_geo_trans[0] + + x * tile_job_info.tile_size * pixelsizex + ) + east = west + tile_job_info.tile_size * pixelsizex + if options.xyz: + north = ( + tile_job_info.out_geo_trans[3] + - y * tile_job_info.tile_size * pixelsizex + ) + south = north - tile_job_info.tile_size * pixelsizex + else: + south = ( + tile_job_info.ominy + y * tile_job_info.tile_size * pixelsizex + ) + north = south + tile_job_info.tile_size * pixelsizex + if not tile_job_info.is_epsg_4326: + # Transformation to EPSG:4326 (WGS84 datum) + west, south = ct.TransformPoint(west, south)[:2] + east, north = ct.TransformPoint(east, north)[:2] + return south, west, north, east + + tile_swne = rastertileswne + else: + def tile_swne(x, y, z): return (0, 0, 0, 0) # noqa + else: + tile_swne = None - map.addLayers([wms,tmsoverlay]); + return tile_swne - var switcherControl = new OpenLayers.Control.LayerSwitcher(); - map.addControl(switcherControl); - switcherControl.maximizeControl(); - map.zoomToExtent(mapBounds); - """ % args # noqa +def single_threaded_tiling( + input_file: str, output_folder: str, options: Options +) -> None: + """ + Keep a single threaded version that stays clear of multiprocessing, for platforms that would not + support it + """ + if options.verbose: + print("Begin tiles details calc") + conf, tile_details = worker_tile_details( + input_file, output_folder, options) - elif self.options.profile == 'raster': - s += """ - var options = { - div: "map", - controls: [], - maxExtent: new OpenLayers.Bounds(%(west)s, %(south)s, %(east)s, %(north)s), - maxResolution: %(rastermaxresolution)f, - numZoomLevels: %(rasterzoomlevels)d - }; - map = new OpenLayers.Map(options); - - var layer = new OpenLayers.Layer.TMS("TMS Layer", "", - { - serviceVersion: '.', - layername: '.', - alpha: true, - type: '%(tileformat)s', - getURL: getURL - }); - - map.addLayer(layer); - map.zoomToExtent(mapBounds); - """ % args # noqa + if options.verbose: + print("Tiles details calc complete.") - s += """ - map.addControls([new OpenLayers.Control.PanZoomBar(), - new OpenLayers.Control.Navigation(), - new OpenLayers.Control.MousePosition(), - new OpenLayers.Control.ArgParser(), - new OpenLayers.Control.Attribution()]); - } - """ % args - - if self.options.profile == 'mercator': - s += """ - function getURL(bounds) { - bounds = this.adjustBounds(bounds); - var res = this.getServerResolution(); - var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); - var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); - var z = this.getServerZoom(); - if (this.map.baseLayer.CLASS_NAME === 'OpenLayers.Layer.Bing') { - z+=1; - } - var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; - var url = this.url; - if (OpenLayers.Util.isArray(url)) { - url = this.selectUrl(path, url); - } - if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { - return url + path; - } else { - return emptyTileURL; - } - } - """ % args # noqa + if not options.verbose and not options.quiet: + base_progress_bar = ProgressBar(len(tile_details)) + base_progress_bar.start() - elif self.options.profile == 'geodetic': - s += """ - function getURL(bounds) { - bounds = this.adjustBounds(bounds); - var res = this.getServerResolution(); - var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); - var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); - var z = this.getServerZoom()%(tmsoffset)s; - var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; - var url = this.url; - if (OpenLayers.Util.isArray(url)) { - url = this.selectUrl(path, url); - } - if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { - return url + path; - } else { - return emptyTileURL; - } - } - """ % args # noqa + for tile_detail in tile_details: + create_base_tile(conf, tile_detail) - elif self.options.profile == 'raster': - s += """ - function getURL(bounds) { - bounds = this.adjustBounds(bounds); - var res = this.getServerResolution(); - var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); - var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); - var z = this.getServerZoom(); - var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; - var url = this.url; - if (OpenLayers.Util.isArray(url)) { - url = this.selectUrl(path, url); - } - if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { - return url + path; - } else { - return emptyTileURL; - } - } - """ % args # noqa + if not options.verbose and not options.quiet: + base_progress_bar.log_progress() - s += """ - function getWindowHeight() { - if (self.innerHeight) return self.innerHeight; - if (document.documentElement && document.documentElement.clientHeight) - return document.documentElement.clientHeight; - if (document.body) return document.body.clientHeight; - return 0; - } + if getattr(threadLocal, "cached_ds", None): + del threadLocal.cached_ds - function getWindowWidth() { - if (self.innerWidth) return self.innerWidth; - if (document.documentElement && document.documentElement.clientWidth) - return document.documentElement.clientWidth; - if (document.body) return document.body.clientWidth; - return 0; - } + if not options.quiet: + count = count_overview_tiles(conf) + if count: + print("Generating Overview Tiles:") - function resize() { - var map = document.getElementById("map"); - var header = document.getElementById("header"); - var subheader = document.getElementById("subheader"); - map.style.height = (getWindowHeight()-80) + "px"; - map.style.width = (getWindowWidth()-20) + "px"; - header.style.width = (getWindowWidth()-20) + "px"; - subheader.style.width = (getWindowWidth()-20) + "px"; - if (map.updateSize) { map.updateSize(); }; - } + if not options.verbose: + overview_progress_bar = ProgressBar(count) + overview_progress_bar.start() - onresize=function(){ resize(); }; + for base_tz in range(conf.tmaxz, conf.tminz, -1): + base_tile_groups = group_overview_base_tiles( + base_tz, output_folder, conf) + for base_tiles in base_tile_groups: + create_overview_tile(base_tz, base_tiles, + output_folder, conf, options) + if not options.verbose and not options.quiet: + overview_progress_bar.log_progress() - - - - -
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC - -
-
- - - """ % args # noqa + shutil.rmtree(os.path.dirname(conf.src_file)) - return s +def multi_threaded_tiling( + input_file: str, output_folder: str, options: Options, pool +) -> None: + nb_processes = options.nb_processes or 1 + + if options.verbose: + print("Begin tiles details calc") -def main(): - argv = gdal.GeneralCmdLineProcessor(sys.argv) - if argv: - gdal2tiles = GDAL2Tiles(argv[1:]) - gdal2tiles.process() + conf, tile_details = worker_tile_details( + input_file, output_folder, options) + if options.verbose: + print("Tiles details calc complete.") + + if not options.verbose and not options.quiet: + base_progress_bar = ProgressBar(len(tile_details)) + base_progress_bar.start() + + # TODO: gbataille - check the confs for which each element is an array... one useless level? + # TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..." + chunksize = max(1, min(128, len(tile_details) // nb_processes)) + for _ in pool.imap_unordered( + partial(create_base_tile, conf), tile_details, chunksize=chunksize + ): + if not options.verbose and not options.quiet: + base_progress_bar.log_progress() + + if not options.quiet: + count = count_overview_tiles(conf) + if count: + print("Generating Overview Tiles:") + + if not options.verbose: + overview_progress_bar = ProgressBar(count) + overview_progress_bar.start() + + for base_tz in range(conf.tmaxz, conf.tminz, -1): + base_tile_groups = group_overview_base_tiles( + base_tz, output_folder, conf) + chunksize = max(1, min(128, len(base_tile_groups) // nb_processes)) + for _ in pool.imap_unordered( + partial( + create_overview_tile, + base_tz, + output_folder=output_folder, + tile_job_info=conf, + options=options, + ), + base_tile_groups, + chunksize=chunksize, + ): + if not options.verbose and not options.quiet: + overview_progress_bar.log_progress() + + shutil.rmtree(os.path.dirname(conf.src_file)) + + +class UseExceptions(object): + def __enter__(self): + self.old_used_exceptions = gdal.GetUseExceptions() + if not self.old_used_exceptions: + gdal.UseExceptions() + + def __exit__(self, type, value, tb): + if not self.old_used_exceptions: + gdal.DontUseExceptions() + + +class DividedCache(object): + def __init__(self, nb_processes): + self.nb_processes = nb_processes + + def __enter__(self): + self.gdal_cache_max = gdal.GetCacheMax() + # Make sure that all processes do not consume more than `gdal.GetCacheMax()` + gdal_cache_max_per_process = max( + 1024 * 1024, math.floor(self.gdal_cache_max / self.nb_processes) + ) + set_cache_max(gdal_cache_max_per_process) + + def __exit__(self, type, value, tb): + # Set the maximum cache back to the original value + set_cache_max(self.gdal_cache_max) + + +def main(argv: List[str] = sys.argv) -> int: + # TODO: gbataille - use mkdtemp to work in a temp directory + # TODO: gbataille - debug intermediate tiles.vrt not produced anymore? + # TODO: gbataille - Refactor generate overview tiles to not depend on self variables + + # For multiprocessing, we need to propagate the configuration options to + # the environment, so that forked processes can inherit them. + for i in range(len(argv)): + if argv[i] == "--config" and i + 2 < len(argv): + os.environ[argv[i + 1]] = argv[i + 2] + + if "--mpi" in argv: + from mpi4py import MPI + from mpi4py.futures import MPICommExecutor + + with UseExceptions(), MPICommExecutor(MPI.COMM_WORLD, root=0) as pool: + if pool is None: + return 0 + # add interface of multiprocessing.Pool to MPICommExecutor + pool.imap_unordered = partial(pool.map, unordered=True) + return submain(argv, pool, MPI.COMM_WORLD.Get_size()) + else: + return submain(argv) + + +def submain(argv: List[str], pool=None, pool_size=0) -> int: + + argv = gdal.GeneralCmdLineProcessor(argv) + if argv is None: + return 0 + input_file, output_folder, options = process_args(argv[1:]) + if pool_size: + options.nb_processes = pool_size + nb_processes = options.nb_processes or 1 + + with UseExceptions(): + if pool is not None: # MPI + multi_threaded_tiling(input_file, output_folder, options, pool) + elif nb_processes == 1: + single_threaded_tiling(input_file, output_folder, options) + else: + # Trick inspired from https://stackoverflow.com/questions/45720153/python-multiprocessing-error-attributeerror-module-main-has-no-attribute + # and https://bugs.python.org/issue42949 + import __main__ + + if not hasattr(__main__, "__spec__"): + __main__.__spec__ = None + from multiprocessing import Pool + + with DividedCache(nb_processes), Pool(processes=nb_processes) as pool: + multi_threaded_tiling(input_file, output_folder, options, pool) + + return 0 -if __name__ == '__main__': - main() # vim: set tabstop=4 shiftwidth=4 expandtab: + +# Running main() must be protected that way due to use of multiprocessing on Windows: +# https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods +if __name__ == "__main__": + sys.exit(main(sys.argv)) diff --git a/auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py b/auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py deleted file mode 100644 index 6bcfd105..00000000 --- a/auxiliary/gdal2customtiles/gdal2tiles_3.5.2_v2.py +++ /dev/null @@ -1,5022 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -# ****************************************************************************** -# $Id$ -# -# Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/) -# Support: BRGM (http://www.brgm.fr) -# Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory. -# - generate Google Earth metadata (KML SuperOverlay) -# - generate simple HTML viewer based on Google Maps and OpenLayers -# - support of global tiles (Spherical Mercator) for compatibility -# with interactive web maps a la Google Maps -# Author: Klokan Petr Pridal, klokan at klokan dot cz -# -############################################################################### -# Copyright (c) 2008, Klokan Petr Pridal -# Copyright (c) 2010-2013, Even Rouault -# Copyright (c) 2021, Idan Miara -# -# Permission is hereby granted, free of charge, to any person obtaining a -# copy of this software and associated documentation files (the "Software"), -# to deal in the Software without restriction, including without limitation -# the rights to use, copy, modify, merge, publish, distribute, sublicense, -# and/or sell copies of the Software, and to permit persons to whom the -# Software is furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included -# in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL -# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER -# DEALINGS IN THE SOFTWARE. -# ****************************************************************************** - -from __future__ import division, print_function -import struct - -import contextlib -import glob -import json -import math -import optparse -import os -import shutil -import stat -import sys -import tempfile -import threading -from functools import partial -from typing import Any, List, NoReturn, Optional, Tuple -from uuid import uuid4 -from xml.etree import ElementTree - -from osgeo import gdal, osr - -Options = Any - -# MMGIS -def binary(num): - return ''.join(bin(c).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) - -def getTilePxBounds(self, tx, ty, tz, ds): - - querysize = self.tile_size - - if self.isRasterBounded: # 'raster' profile: - # tilesize in raster coordinates for actual zoom - tsize = int(self.tsize[tz]) - xsize = self.out_ds.fWorldXSize - ysize = self.out_ds.fWorldYSize - if tz >= self.tmaxz: - querysize = self.tile_size - - rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld - #print("rx", rx) - rxsize = 0 - rxsize = tsize - - rysize = 0 - rysize = tsize - - ry = ysize - (ty * tsize) - rysize - \ - self.out_ds.fRasterYOriginWorld - - wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tile_size) - wysize = int(rysize/float(tsize) * self.tile_size) - if wysize != self.tile_size: - wy = self.tile_size - wysize - - if rx < 0: - rxsize = tsize + rx - wx = -rx - wxsize = int(rxsize/float(tsize) * self.tile_size) - rx = 0 - if ry < 0: - rysize = tsize + ry - wy = -ry - wysize = int(rysize/float(tsize) * self.tile_size) - ry = 0 - if rx + rxsize > self.out_ds.fRasterXSizeWorld: - rxsize = self.out_ds.fRasterXSizeWorld - rx - wxsize = int(rxsize/float(tsize) * self.tile_size) - if ry + rysize > self.out_ds.fRasterYSizeWorld: - rysize = self.out_ds.fRasterYSizeWorld - ry - wysize = int(rysize/float(tsize) * self.tile_size) - - # Convert rx, ry back to non-world coordinates - rx = int(float(self.out_ds.RasterXSize) * - (float(rx) / self.out_ds.fRasterXSizeWorld)) - ry = int(float(self.out_ds.RasterYSize) * - (float(ry) / self.out_ds.fRasterYSizeWorld)) - rxsize = int(float(self.out_ds.RasterXSize) * - (float(rxsize) / self.out_ds.fRasterXSizeWorld)) - rysize = int(float(self.out_ds.RasterYSize) * - (float(rysize) / self.out_ds.fRasterYSizeWorld)) - else: - b = self.mercator.TileBounds(tx, ty, tz) - rb, wb = self.geo_query( - ds, b[0], b[3], b[2], b[1], querysize=querysize) - rx, ry, rxsize, rysize = rb - wx, wy, wxsize, wysize = wb - - return [rx, ry, rxsize, rysize, wxsize, wysize] - - -try: - import numpy - from PIL import Image - - import osgeo.gdal_array as gdalarray - - numpy_available = True -except ImportError: - # 'antialias' resampling is not available - numpy_available = False - -__version__ = "$Id$" - -resampling_list = ( - "average", - "near", - "near-composite", - "bilinear", - "cubic", - "cubicspline", - "lanczos", - "antialias", - "mode", - "max", - "min", - "med", - "q1", - "q3", -) -webviewer_list = ("all", "google", "openlayers", "leaflet", "mapml", "none") - - -def makedirs(path): - """Wrapper for os.makedirs() that can work with /vsi files too""" - if path.startswith("/vsi"): - if gdal.MkdirRecursive(path, 0o755) != 0: - raise Exception(f"Cannot create {path}") - else: - os.makedirs(path, exist_ok=True) - - -def isfile(path): - """Wrapper for os.path.isfile() that can work with /vsi files too""" - if path.startswith("/vsi"): - stat_res = gdal.VSIStatL(path) - if stat is None: - return False - return stat.S_ISREG(stat_res.mode) - else: - return os.path.isfile(path) - - -class VSIFile: - """Expose a simplistic file-like API for a /vsi file""" - - def __init__(self, filename, f): - self.filename = filename - self.f = f - - def write(self, content): - if gdal.VSIFWriteL(content, 1, len(content), self.f) != len(content): - raise Exception("Error while writing into %s" % self.filename) - - -@contextlib.contextmanager -def my_open(filename, mode): - """Wrapper for open() built-in method that can work with /vsi files too""" - if filename.startswith("/vsi"): - f = gdal.VSIFOpenL(filename, mode) - if f is None: - raise Exception(f"Cannot open {filename} in {mode}") - try: - yield VSIFile(filename, f) - finally: - if gdal.VSIFCloseL(f) != 0: - raise Exception(f"Cannot close {filename}") - else: - yield open(filename, mode) - - -class UnsupportedTileMatrixSet(Exception): - pass - - -class TileMatrixSet(object): - def __init__(self) -> None: - self.identifier = None - self.srs = None - self.topleft_x = None - self.topleft_y = None - self.matrix_width = None # at zoom 0 - self.matrix_height = None # at zoom 0 - self.tile_size = None - self.resolution = None # at zoom 0 - self.level_count = None - - def GeorefCoordToTileCoord(self, x, y, z, overriden_tile_size): - res = self.resolution * self.tile_size / overriden_tile_size / (2**z) - tx = int((x - self.topleft_x) / (res * overriden_tile_size)) - # In default mode, we use a bottom-y origin - ty = int( - ( - y - - ( - self.topleft_y - - self.matrix_height * self.tile_size * self.resolution - ) - ) - / (res * overriden_tile_size) - ) - return tx, ty - - def ZoomForPixelSize(self, pixelSize, overriden_tile_size): - "Maximal scaledown zoom of the pyramid closest to the pixelSize." - - for i in range(self.level_count): - res = self.resolution * self.tile_size / \ - overriden_tile_size / (2**i) - if pixelSize > res: - return max(0, i - 1) # We don't want to scale up - return self.level_count - 1 - - def PixelsToMeters(self, px, py, zoom, overriden_tile_size): - "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" - - res = self.resolution * self.tile_size / \ - overriden_tile_size / (2**zoom) - mx = px * res + self.topleft_x - my = py * res + ( - self.topleft_y - self.matrix_height * self.tile_size * self.resolution - ) - return mx, my - - def TileBounds(self, tx, ty, zoom, overriden_tile_size): - "Returns bounds of the given tile in georef coordinates" - - minx, miny = self.PixelsToMeters( - tx * overriden_tile_size, - ty * overriden_tile_size, - zoom, - overriden_tile_size, - ) - maxx, maxy = self.PixelsToMeters( - (tx + 1) * overriden_tile_size, - (ty + 1) * overriden_tile_size, - zoom, - overriden_tile_size, - ) - return (minx, miny, maxx, maxy) - - @staticmethod - def parse(j: dict) -> "TileMatrixSet": - assert "identifier" in j - assert "supportedCRS" in j - assert "tileMatrix" in j - assert isinstance(j["tileMatrix"], list) - srs = osr.SpatialReference() - assert srs.SetFromUserInput(str(j["supportedCRS"])) == 0 - swapaxis = srs.EPSGTreatsAsLatLong() or srs.EPSGTreatsAsNorthingEasting() - metersPerUnit = 1.0 - if srs.IsProjected(): - metersPerUnit = srs.GetLinearUnits() - elif srs.IsGeographic(): - metersPerUnit = srs.GetSemiMajor() * math.pi / 180 - tms = TileMatrixSet() - tms.srs = srs - tms.identifier = str(j["identifier"]) - for i, tileMatrix in enumerate(j["tileMatrix"]): - assert "topLeftCorner" in tileMatrix - assert isinstance(tileMatrix["topLeftCorner"], list) - topLeftCorner = tileMatrix["topLeftCorner"] - assert len(topLeftCorner) == 2 - assert "scaleDenominator" in tileMatrix - assert "tileWidth" in tileMatrix - assert "tileHeight" in tileMatrix - - topleft_x = topLeftCorner[0] - topleft_y = topLeftCorner[1] - tileWidth = tileMatrix["tileWidth"] - tileHeight = tileMatrix["tileHeight"] - if tileWidth != tileHeight: - raise UnsupportedTileMatrixSet("Only square tiles supported") - # Convention in OGC TileMatrixSet definition. See gcore/tilematrixset.cpp - resolution = tileMatrix["scaleDenominator"] * \ - 0.28e-3 / metersPerUnit - if swapaxis: - topleft_x, topleft_y = topleft_y, topleft_x - if i == 0: - tms.topleft_x = topleft_x - tms.topleft_y = topleft_y - tms.resolution = resolution - tms.tile_size = tileWidth - - assert "matrixWidth" in tileMatrix - assert "matrixHeight" in tileMatrix - tms.matrix_width = tileMatrix["matrixWidth"] - tms.matrix_height = tileMatrix["matrixHeight"] - else: - if topleft_x != tms.topleft_x or topleft_y != tms.topleft_y: - raise UnsupportedTileMatrixSet( - "All levels should have same origin") - if abs(tms.resolution / (1 << i) - resolution) > 1e-8 * resolution: - raise UnsupportedTileMatrixSet( - "Only resolutions varying as power-of-two supported" - ) - if tileWidth != tms.tile_size: - raise UnsupportedTileMatrixSet( - "All levels should have same tile size" - ) - tms.level_count = len(j["tileMatrix"]) - return tms - - -tmsMap = {} - -profile_list = ["mercator", "geodetic", "raster"] - -# Read additional tile matrix sets from GDAL data directory -filename = gdal.FindFile("gdal", "tms_MapML_APSTILE.json") -if filename and False: - dirname = os.path.dirname(filename) - for tmsfilename in glob.glob(os.path.join(dirname, "tms_*.json")): - data = open(tmsfilename, "rb").read() - try: - j = json.loads(data.decode("utf-8")) - except Exception: - j = None - if j is None: - print("Cannot parse " + tmsfilename) - continue - try: - tms = TileMatrixSet.parse(j) - except UnsupportedTileMatrixSet: - continue - except Exception: - print("Cannot parse " + tmsfilename) - continue - tmsMap[tms.identifier] = tms - profile_list.append(tms.identifier) - -threadLocal = threading.local() - -# ============================================================================= -# ============================================================================= -# ============================================================================= - -__doc__globalmaptiles = """ -globalmaptiles.py - -Global Map Tiles as defined in Tile Map Service (TMS) Profiles -============================================================== - -Functions necessary for generation of global tiles used on the web. -It contains classes implementing coordinate conversions for: - - - GlobalMercator (based on EPSG:3857) - for Google Maps, Yahoo Maps, Bing Maps compatible tiles - - GlobalGeodetic (based on EPSG:4326) - for OpenLayers Base Map and Google Earth compatible tiles - -More info at: - -http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification -http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation -http://msdn.microsoft.com/en-us/library/bb259689.aspx -http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates - -Created by Klokan Petr Pridal on 2008-07-03. -Google Summer of Code 2008, project GDAL2Tiles for OSGEO. - -In case you use this class in your product, translate it to another language -or find it useful for your project please let me know. -My email: klokan at klokan dot cz. -I would like to know where it was used. - -Class is available under the open-source GDAL license (www.gdal.org). -""" - -MAXZOOMLEVEL = 32 - - -class GlobalMercator(object): - r""" - TMS Global Mercator Profile - --------------------------- - - Functions necessary for generation of tiles in Spherical Mercator projection, - EPSG:3857. - - Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps, - UK Ordnance Survey OpenSpace API, ... - and you can overlay them on top of base maps of those web mapping applications. - - Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). - - What coordinate conversions do we need for TMS Global Mercator tiles:: - - LatLon <-> Meters <-> Pixels <-> Tile - - WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid - lat/lon XY in meters XY pixels Z zoom XYZ from TMS - EPSG:4326 EPSG:387 - .----. --------- -- TMS - / \ <-> | | <-> /----/ <-> Google - \ / | | /--------/ QuadTree - ----- --------- /------------/ - KML, public WebMapService Web Clients TileMapService - - What is the coordinate extent of Earth in EPSG:3857? - - [-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244] - Constant 20037508.342789244 comes from the circumference of the Earth in meters, - which is 40 thousand kilometers, the coordinate origin is in the middle of extent. - In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 - $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857 - Polar areas with abs(latitude) bigger then 85.05112878 are clipped off. - - What are zoom level constants (pixels/meter) for pyramid with EPSG:3857? - - whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile, - every lower zoom level resolution is always divided by two - initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062 - - What is the difference between TMS and Google Maps/QuadTree tile name convention? - - The tile raster itself is the same (equal extent, projection, pixel size), - there is just different identification of the same raster tile. - Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ. - Google placed the origin [0,0] to the top-left corner, reference is XYZ. - Microsoft is referencing tiles by a QuadTree name, defined on the website: - http://msdn2.microsoft.com/en-us/library/bb259689.aspx - - The lat/lon coordinates are using WGS84 datum, yes? - - Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum. - Well, the web clients like Google Maps are projecting those coordinates by - Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if - the were on the WGS84 ellipsoid. - - From MSDN documentation: - To simplify the calculations, we use the spherical form of projection, not - the ellipsoidal form. Since the projection is used only for map display, - and not for displaying numeric coordinates, we don't need the extra precision - of an ellipsoidal projection. The spherical projection causes approximately - 0.33 percent scale distortion in the Y direction, which is not visually - noticeable. - - How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4? - - You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform. - All of the tools supports -t_srs 'epsg:3857'. - - For other GIS programs check the exact definition of the projection: - More info at http://spatialreference.org/ref/user/google-projection/ - The same projection is designated as EPSG:3857. WKT definition is in the - official EPSG database. - - Proj4 Text: - +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 - +k=1.0 +units=m +nadgrids=@null +no_defs - - Human readable WKT format of EPSG:3857: - PROJCS["Google Maps Global Mercator", - GEOGCS["WGS 84", - DATUM["WGS_1984", - SPHEROID["WGS 84",6378137,298.257223563, - AUTHORITY["EPSG","7030"]], - AUTHORITY["EPSG","6326"]], - PRIMEM["Greenwich",0], - UNIT["degree",0.0174532925199433], - AUTHORITY["EPSG","4326"]], - PROJECTION["Mercator_1SP"], - PARAMETER["central_meridian",0], - PARAMETER["scale_factor",1], - PARAMETER["false_easting",0], - PARAMETER["false_northing",0], - UNIT["metre",1, - AUTHORITY["EPSG","9001"]]] - """ - - def __init__(self, tile_size: int = 256) -> None: - "Initialize the TMS Global Mercator pyramid" - self.tile_size = tile_size - self.initialResolution = 2 * math.pi * 6378137 / self.tile_size - # 156543.03392804062 for tile_size 256 pixels - self.originShift = 2 * math.pi * 6378137 / 2.0 - # 20037508.342789244 - - def LatLonToMeters(self, lat, lon): - "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857" - - mx = lon * self.originShift / 180.0 - my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / \ - (math.pi / 180.0) - - my = my * self.originShift / 180.0 - return mx, my - - def MetersToLatLon(self, mx, my): - "Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum" - - lon = (mx / self.originShift) * 180.0 - lat = (my / self.originShift) * 180.0 - - lat = ( - 180 - / math.pi - * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) - ) - return lat, lon - - def PixelsToMeters(self, px, py, zoom): - "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" - - res = self.Resolution(zoom) - mx = px * res - self.originShift - my = py * res - self.originShift - return mx, my - - def MetersToPixels(self, mx, my, zoom): - "Converts EPSG:3857 to pyramid pixel coordinates in given zoom level" - - res = self.Resolution(zoom) - px = (mx + self.originShift) / res - py = (my + self.originShift) / res - return px, py - - def PixelsToTile(self, px, py): - "Returns a tile covering region in given pixel coordinates" - - tx = int(math.ceil(px / float(self.tile_size)) - 1) - ty = int(math.ceil(py / float(self.tile_size)) - 1) - return tx, ty - - def PixelsToRaster(self, px, py, zoom): - "Move the origin of pixel coordinates to top-left corner" - - mapSize = self.tile_size << zoom - return px, mapSize - py - - def MetersToTile(self, mx, my, zoom): - "Returns tile for given mercator coordinates" - - px, py = self.MetersToPixels(mx, my, zoom) - return self.PixelsToTile(px, py) - - def TileBounds(self, tx, ty, zoom): - "Returns bounds of the given tile in EPSG:3857 coordinates" - - minx, miny = self.PixelsToMeters( - tx * self.tile_size, ty * self.tile_size, zoom) - maxx, maxy = self.PixelsToMeters( - (tx + 1) * self.tile_size, (ty + 1) * self.tile_size, zoom - ) - return (minx, miny, maxx, maxy) - - def TileLatLonBounds(self, tx, ty, zoom): - "Returns bounds of the given tile in latitude/longitude using WGS84 datum" - - bounds = self.TileBounds(tx, ty, zoom) - minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) - maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) - - return (minLat, minLon, maxLat, maxLon) - - def Resolution(self, zoom): - "Resolution (meters/pixel) for given zoom level (measured at Equator)" - - # return (2 * math.pi * 6378137) / (self.tile_size * 2**zoom) - return self.initialResolution / (2**zoom) - - def ZoomForPixelSize(self, pixelSize): - "Maximal scaledown zoom of the pyramid closest to the pixelSize." - - for i in range(MAXZOOMLEVEL): - if pixelSize > self.Resolution(i): - return max(0, i - 1) # We don't want to scale up - return MAXZOOMLEVEL - 1 - - def GoogleTile(self, tx, ty, zoom): - "Converts TMS tile coordinates to Google Tile coordinates" - - # coordinate origin is moved from bottom-left to top-left corner of the extent - return tx, (2**zoom - 1) - ty - - def QuadTree(self, tx, ty, zoom): - "Converts TMS tile coordinates to Microsoft QuadTree" - - quadKey = "" - ty = (2**zoom - 1) - ty - for i in range(zoom, 0, -1): - digit = 0 - mask = 1 << (i - 1) - if (tx & mask) != 0: - digit += 1 - if (ty & mask) != 0: - digit += 2 - quadKey += str(digit) - - return quadKey - - -class GlobalGeodetic(object): - r""" - TMS Global Geodetic Profile - --------------------------- - - Functions necessary for generation of global tiles in Plate Carre projection, - EPSG:4326, "unprojected profile". - - Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters) - and you can overlay the tiles on top of OpenLayers base map. - - Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). - - What coordinate conversions do we need for TMS Global Geodetic tiles? - - Global Geodetic tiles are using geodetic coordinates (latitude,longitude) - directly as planar coordinates XY (it is also called Unprojected or Plate - Carre). We need only scaling to pixel pyramid and cutting to tiles. - Pyramid has on top level two tiles, so it is not square but rectangle. - Area [-180,-90,180,90] is scaled to 512x256 pixels. - TMS has coordinate origin (for pixels and tiles) in bottom-left corner. - Rasters are in EPSG:4326 and therefore are compatible with Google Earth. - - LatLon <-> Pixels <-> Tiles - - WGS84 coordinates Pixels in pyramid Tiles in pyramid - lat/lon XY pixels Z zoom XYZ from TMS - EPSG:4326 - .----. ---- - / \ <-> /--------/ <-> TMS - \ / /--------------/ - ----- /--------------------/ - WMS, KML Web Clients, Google Earth TileMapService - """ - - def __init__(self, tmscompatible: Optional[bool], tile_size: int = 256) -> None: - self.tile_size = tile_size - if tmscompatible: - # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) - # Adhers to OSGeo TMS spec - # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic - self.resFact = 180.0 / self.tile_size - else: - # Defaults the resolution factor to 1.40625 (1 tile @ level 0) - # Adheres OpenLayers, MapProxy, etc default resolution for WMTS - self.resFact = 360.0 / self.tile_size - - def LonLatToPixels(self, lon, lat, zoom): - "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" - - res = self.resFact / 2**zoom - px = (180 + lon) / res - py = (90 + lat) / res - return px, py - - def PixelsToTile(self, px, py): - "Returns coordinates of the tile covering region in pixel coordinates" - - tx = int(math.ceil(px / float(self.tile_size)) - 1) - ty = int(math.ceil(py / float(self.tile_size)) - 1) - return tx, ty - - def LonLatToTile(self, lon, lat, zoom): - "Returns the tile for zoom which covers given lon/lat coordinates" - - px, py = self.LonLatToPixels(lon, lat, zoom) - return self.PixelsToTile(px, py) - - def Resolution(self, zoom): - "Resolution (arc/pixel) for given zoom level (measured at Equator)" - - return self.resFact / 2**zoom - - def ZoomForPixelSize(self, pixelSize): - "Maximal scaledown zoom of the pyramid closest to the pixelSize." - - for i in range(MAXZOOMLEVEL): - if pixelSize > self.Resolution(i): - return max(0, i - 1) # We don't want to scale up - return MAXZOOMLEVEL - 1 - - def TileBounds(self, tx, ty, zoom): - "Returns bounds of the given tile" - res = self.resFact / 2**zoom - return ( - tx * self.tile_size * res - 180, - ty * self.tile_size * res - 90, - (tx + 1) * self.tile_size * res - 180, - (ty + 1) * self.tile_size * res - 90, - ) - - def TileLatLonBounds(self, tx, ty, zoom): - "Returns bounds of the given tile in the SWNE form" - b = self.TileBounds(tx, ty, zoom) - return (b[1], b[0], b[3], b[2]) - - -class Zoomify(object): - """ - Tiles compatible with the Zoomify viewer - ---------------------------------------- - """ - - def __init__(self, width, height, tile_size=256, tileformat="jpg"): - """Initialization of the Zoomify tile tree""" - - self.tile_size = tile_size - self.tileformat = tileformat - imagesize = (width, height) - tiles = (math.ceil(width / tile_size), math.ceil(height / tile_size)) - - # Size (in tiles) for each tier of pyramid. - self.tierSizeInTiles = [] - self.tierSizeInTiles.append(tiles) - - # Image size in pixels for each pyramid tierself - self.tierImageSize = [] - self.tierImageSize.append(imagesize) - - while imagesize[0] > tile_size or imagesize[1] > tile_size: - imagesize = (math.floor( - imagesize[0] / 2), math.floor(imagesize[1] / 2)) - tiles = ( - math.ceil(imagesize[0] / tile_size), - math.ceil(imagesize[1] / tile_size), - ) - self.tierSizeInTiles.append(tiles) - self.tierImageSize.append(imagesize) - - self.tierSizeInTiles.reverse() - self.tierImageSize.reverse() - - # Depth of the Zoomify pyramid, number of tiers (zoom levels) - self.numberOfTiers = len(self.tierSizeInTiles) - - # Number of tiles up to the given tier of pyramid. - self.tileCountUpToTier = [] - self.tileCountUpToTier[0] = 0 - for i in range(1, self.numberOfTiers + 1): - self.tileCountUpToTier.append( - self.tierSizeInTiles[i - 1][0] * self.tierSizeInTiles[i - 1][1] - + self.tileCountUpToTier[i - 1] - ) - - def tilefilename(self, x, y, z): - """Returns filename for tile with given coordinates""" - - tileIndex = x + y * \ - self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] - return os.path.join( - "TileGroup%.0f" % math.floor(tileIndex / 256), - "%s-%s-%s.%s" % (z, x, y, self.tileformat), - ) - - -class GDALError(Exception): - pass - - -def exit_with_error(message: str, details: str = "") -> NoReturn: - # Message printing and exit code kept from the way it worked using the OptionParser (in case - # someone parses the error output) - sys.stderr.write("Usage: gdal2tiles.py [options] input_file [output]\n\n") - sys.stderr.write("gdal2tiles.py: error: %s\n" % message) - if details: - sys.stderr.write("\n\n%s\n" % details) - - sys.exit(2) - - -def set_cache_max(cache_in_bytes: int) -> None: - # We set the maximum using `SetCacheMax` and `GDAL_CACHEMAX` to support both fork and spawn as multiprocessing start methods. - # https://github.com/OSGeo/gdal/pull/2112 - os.environ["GDAL_CACHEMAX"] = "%d" % int(cache_in_bytes / 1024 / 1024) - gdal.SetCacheMax(cache_in_bytes) - - -def generate_kml( - tx, ty, tz, tileext, tile_size, tileswne, options, children=None, **args -): - """ - Template for the KML. Returns filled string. - """ - if not children: - children = [] - - args["tx"], args["ty"], args["tz"] = tx, ty, tz - args["tileformat"] = tileext - if "tile_size" not in args: - args["tile_size"] = tile_size - - if "minlodpixels" not in args: - args["minlodpixels"] = int(args["tile_size"] / 2) - if "maxlodpixels" not in args: - args["maxlodpixels"] = int(args["tile_size"] * 8) - if children == []: - args["maxlodpixels"] = -1 - - if tx is None: - tilekml = False - args["xml_escaped_title"] = gdal.EscapeString( - options.title, gdal.CPLES_XML) - else: - tilekml = True - args["realtiley"] = GDAL2Tiles.getYTile(ty, tz, options) - args["xml_escaped_title"] = "%d/%d/%d.kml" % ( - tz, tx, args["realtiley"]) - args["south"], args["west"], args["north"], args["east"] = tileswne( - tx, ty, tz) - - if tx == 0: - args["drawOrder"] = 2 * tz + 1 - elif tx is not None: - args["drawOrder"] = 2 * tz - else: - args["drawOrder"] = 0 - - url = options.url - if not url: - if tilekml: - url = "../../" - else: - url = "" - - s = ( - """ - - - %(xml_escaped_title)s - - """ - % args - ) - if tilekml: - s += ( - """ - - - %(north).14f - %(south).14f - %(east).14f - %(west).14f - - - %(minlodpixels)d - %(maxlodpixels)d - - - - %(drawOrder)d - - %(realtiley)d.%(tileformat)s - - - %(north).14f - %(south).14f - %(east).14f - %(west).14f - - -""" - % args - ) - - for cx, cy, cz in children: - csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz) - ytile = GDAL2Tiles.getYTile(cy, cz, options) - s += """ - - %d/%d/%d.%s - - - %.14f - %.14f - %.14f - %.14f - - - %d - -1 - - - - %s%d/%d/%d.kml - onRegion - - - - """ % ( - cz, - cx, - ytile, - args["tileformat"], - cnorth, - csouth, - ceast, - cwest, - args["minlodpixels"], - url, - cz, - cx, - ytile, - ) - - s += """ - - """ - return s - - -def scale_query_to_tile(dsquery, dstile, options, tilefilename=""): - """Scales down query dataset to the tile dataset""" - - querysize = dsquery.RasterXSize - tile_size = dstile.RasterXSize - tilebands = dstile.RasterCount - - if options.resampling == "average": - - # Function: gdal.RegenerateOverview() - for i in range(1, tilebands + 1): - # Black border around NODATA - res = gdal.RegenerateOverview( - dsquery.GetRasterBand(i), dstile.GetRasterBand(i), "average" - ) - if res != 0: - exit_with_error( - "RegenerateOverview() failed on %s, error %d" % (tilefilename, res) - ) - - elif options.resampling == "antialias" and numpy_available: - - if tilefilename.startswith("/vsi"): - raise Exception( - "Outputting to /vsi file systems with antialias mode is not supported" - ) - - # Scaling by PIL (Python Imaging Library) - improved Lanczos - array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) - for i in range(tilebands): - array[:, :, i] = gdalarray.BandReadAsArray( - dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize - ) - im = Image.fromarray(array, "RGBA") # Always four bands - im1 = im.resize((tile_size, tile_size), Image.LANCZOS) - if os.path.exists(tilefilename): - im0 = Image.open(tilefilename) - im1 = Image.composite(im1, im0, im1) - - params = {} - if options.tiledriver == "WEBP": - if options.webp_lossless: - params["lossless"] = True - else: - params["quality"] = options.webp_quality - im1.save(tilefilename, options.tiledriver, **params) - - # MMGIS - elif options.resampling == "near-composite" and numpy_available: - - if tilefilename.startswith("/vsi"): - raise Exception( - "Outputting to /vsi file systems with near-composite mode is not supported" - ) - - # Scaling by PIL (Python Imaging Library) - nearest - array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) - for i in range(tilebands): - array[:, :, i] = gdalarray.BandReadAsArray( - dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize - ) - im = Image.fromarray(array, "RGBA") # Always four bands - im1 = im.resize((tile_size, tile_size), Image.NEAREST) - - if os.path.exists(tilefilename): - im0 = Image.open(tilefilename) - - # Make mask, nodatas to alpha - nodataPixel = False - if options.srcnodata is not None: - f = str(binary(float(options.srcnodata))) - nodataPixel = [int(f[:8], 2), int(f[8:16], 2), - (int(f[16:24], 2)), int(f[24:], 2)] - - if nodataPixel is not False: - for rowI in range(len(array)): - for pixelI in range(len(array[rowI])): - if array[rowI][pixelI][0] == nodataPixel[0] and array[rowI][pixelI][1] == nodataPixel[1] and array[rowI][pixelI][2] == nodataPixel[2] and array[rowI][pixelI][3] == nodataPixel[3]: - array[rowI][pixelI] = [0, 0, 0, 0] - elif array[rowI][pixelI][0] == 0 and array[rowI][pixelI][1] == 0 and array[rowI][pixelI][2] == 0 and array[rowI][pixelI][3] == 0: - array[rowI][pixelI] = [0, 0, 0, 0] - else: - array[rowI][pixelI] = [255, 255, 255, 255] - - imMask = Image.fromarray(array, "RGBA") # Always four bands - im1Mask = imMask.resize((tile_size, tile_size), Image.NEAREST) - - im1 = Image.composite(im1, im0, im1Mask) - - params = {} - if options.tiledriver == "WEBP": - if options.webp_lossless: - params["lossless"] = True - else: - params["quality"] = options.webp_quality - im1.save(tilefilename, options.tiledriver, **params) - - else: - - if options.resampling == "near": - gdal_resampling = gdal.GRA_NearestNeighbour - - elif options.resampling == "bilinear": - gdal_resampling = gdal.GRA_Bilinear - - elif options.resampling == "cubic": - gdal_resampling = gdal.GRA_Cubic - - elif options.resampling == "cubicspline": - gdal_resampling = gdal.GRA_CubicSpline - - elif options.resampling == "lanczos": - gdal_resampling = gdal.GRA_Lanczos - - elif options.resampling == "mode": - gdal_resampling = gdal.GRA_Mode - - elif options.resampling == "max": - gdal_resampling = gdal.GRA_Max - - elif options.resampling == "min": - gdal_resampling = gdal.GRA_Min - - elif options.resampling == "med": - gdal_resampling = gdal.GRA_Med - - elif options.resampling == "q1": - gdal_resampling = gdal.GRA_Q1 - - elif options.resampling == "q3": - gdal_resampling = gdal.GRA_Q3 - - # Other algorithms are implemented by gdal.ReprojectImage(). - dsquery.SetGeoTransform( - ( - 0.0, - tile_size / float(querysize), - 0.0, - 0.0, - 0.0, - tile_size / float(querysize), - ) - ) - dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) - - res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) - if res != 0: - exit_with_error( - "ReprojectImage() failed on %s, error %d" % (tilefilename, res) - ) - - -def setup_no_data_values(input_dataset: gdal.Dataset, options: Options) -> List[float]: - """ - Extract the NODATA values from the dataset or use the passed arguments as override if any - """ - in_nodata = [] - if options.srcnodata: - nds = list(map(float, options.srcnodata.split(","))) - if len(nds) < input_dataset.RasterCount: - in_nodata = ( - nds * input_dataset.RasterCount)[: input_dataset.RasterCount] - else: - in_nodata = nds - else: - for i in range(1, input_dataset.RasterCount + 1): - band = input_dataset.GetRasterBand(i) - raster_no_data = band.GetNoDataValue() - if raster_no_data is not None: - # Ignore nodata values that are not in the range of the band data type (see https://github.com/OSGeo/gdal/pull/2299) - if band.DataType == gdal.GDT_Byte and ( - raster_no_data != int(raster_no_data) - or raster_no_data < 0 - or raster_no_data > 255 - ): - # We should possibly do similar check for other data types - in_nodata = [] - break - in_nodata.append(raster_no_data) - - if options.verbose: - print("NODATA: %s" % in_nodata) - - return in_nodata - - -def setup_input_srs( - input_dataset: gdal.Dataset, options: Options -) -> Tuple[Optional[osr.SpatialReference], Optional[str]]: - """ - Determines and returns the Input Spatial Reference System (SRS) as an osr object and as a - WKT representation - - Uses in priority the one passed in the command line arguments. If None, tries to extract them - from the input dataset - """ - - input_srs = None - input_srs_wkt = None - - if options.s_srs: - input_srs = osr.SpatialReference() - input_srs.SetFromUserInput(options.s_srs) - input_srs_wkt = input_srs.ExportToWkt() - else: - input_srs_wkt = input_dataset.GetProjection() - if not input_srs_wkt and input_dataset.GetGCPCount() != 0: - input_srs_wkt = input_dataset.GetGCPProjection() - if input_srs_wkt: - input_srs = osr.SpatialReference() - input_srs.ImportFromWkt(input_srs_wkt) - - if input_srs is not None: - input_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) - - return input_srs, input_srs_wkt - - -def setup_output_srs( - input_srs: Optional[osr.SpatialReference], options: Options -) -> Optional[osr.SpatialReference]: - """ - Setup the desired SRS (based on options) - """ - output_srs = osr.SpatialReference() - - if options.profile == "mercator": - output_srs.ImportFromEPSG(3857) - elif options.profile == "geodetic": - output_srs.ImportFromEPSG(4326) - elif options.profile == "raster": - output_srs = input_srs - else: - output_srs = tmsMap[options.profile].srs.Clone() - - if output_srs: - output_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) - - return output_srs - - -def has_georeference(dataset: gdal.Dataset) -> bool: - return ( - dataset.GetGeoTransform() != (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) - or dataset.GetGCPCount() != 0 - ) - - -def reproject_dataset( - from_dataset: gdal.Dataset, - from_srs: Optional[osr.SpatialReference], - to_srs: Optional[osr.SpatialReference], - options: Optional[Options] = None, -) -> gdal.Dataset: - """ - Returns the input dataset in the expected "destination" SRS. - If the dataset is already in the correct SRS, returns it unmodified - """ - if not from_srs or not to_srs: - raise GDALError( - "from and to SRS must be defined to reproject the dataset") - - if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or ( - from_dataset.GetGCPCount() != 0 - ): - - if ( - from_srs.IsGeographic() - and to_srs.GetAuthorityName(None) == "EPSG" - and to_srs.GetAuthorityCode(None) == "3857" - ): - from_gt = from_dataset.GetGeoTransform(can_return_null=True) - if from_gt and from_gt[2] == 0 and from_gt[4] == 0 and from_gt[5] < 0: - maxlat = from_gt[3] - minlat = from_gt[3] + from_dataset.RasterYSize * from_gt[5] - MAX_LAT = 85.0511287798066 - adjustBounds = False - if maxlat > MAX_LAT: - maxlat = MAX_LAT - adjustBounds = True - if minlat < -MAX_LAT: - minlat = -MAX_LAT - adjustBounds = True - if adjustBounds: - ct = osr.CoordinateTransformation(from_srs, to_srs) - west, south = ct.TransformPoint(from_gt[0], minlat)[:2] - east, north = ct.TransformPoint( - from_gt[0] + from_dataset.RasterXSize * - from_gt[1], maxlat - )[:2] - return gdal.Warp( - "", - from_dataset, - format="VRT", - outputBounds=[west, south, east, north], - dstSRS="EPSG:3857", - ) - - to_dataset = gdal.AutoCreateWarpedVRT( - from_dataset, from_srs.ExportToWkt(), to_srs.ExportToWkt() - ) - - if options and options.verbose: - print( - "Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')" - ) - to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset) - - return to_dataset - else: - return from_dataset - - -def add_gdal_warp_options_to_string(vrt_string, warp_options): - if not warp_options: - return vrt_string - - vrt_root = ElementTree.fromstring(vrt_string) - options = vrt_root.find("GDALWarpOptions") - - if options is None: - return vrt_string - - for key, value in warp_options.items(): - tb = ElementTree.TreeBuilder() - tb.start("Option", {"name": key}) - tb.data(value) - tb.end("Option") - elem = tb.close() - options.insert(0, elem) - - return ElementTree.tostring(vrt_root).decode() - - -def update_no_data_values( - warped_vrt_dataset: gdal.Dataset, - nodata_values: List[float], - options: Optional[Options] = None, -) -> gdal.Dataset: - """ - Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed - """ - # TODO: gbataille - Seems that I forgot tests there - assert nodata_values != [] - - vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] - - vrt_string = add_gdal_warp_options_to_string( - vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"} - ) - - # TODO: gbataille - check the need for this replacement. Seems to work without - # # replace BandMapping tag for NODATA bands.... - # for i in range(len(nodata_values)): - # s = s.replace( - # '' % ((i+1), (i+1)), - # """ - # - # %i - # 0 - # %i - # 0 - # - # """ % ((i+1), (i+1), nodata_values[i], nodata_values[i])) - - corrected_dataset = gdal.Open(vrt_string) - - # set NODATA_VALUE metadata - corrected_dataset.SetMetadataItem( - "NODATA_VALUES", " ".join([str(i) for i in nodata_values]) - ) - - if options and options.verbose: - print("Modified warping result saved into 'tiles1.vrt'") - - with open("tiles1.vrt", "w") as f: - f.write(corrected_dataset.GetMetadata("xml:VRT")[0]) - - return corrected_dataset - - -def add_alpha_band_to_string_vrt(vrt_string: str) -> str: - # TODO: gbataille - Old code speak of this being equivalent to gdalwarp -dstalpha - # To be checked - - vrt_root = ElementTree.fromstring(vrt_string) - - index = 0 - nb_bands = 0 - for subelem in list(vrt_root): - if subelem.tag == "VRTRasterBand": - nb_bands += 1 - color_node = subelem.find("./ColorInterp") - if color_node is not None and color_node.text == "Alpha": - raise Exception("Alpha band already present") - else: - if nb_bands: - # This means that we are one element after the Band definitions - break - - index += 1 - - tb = ElementTree.TreeBuilder() - tb.start( - "VRTRasterBand", - { - "dataType": "Byte", - "band": str(nb_bands + 1), - "subClass": "VRTWarpedRasterBand", - }, - ) - tb.start("ColorInterp", {}) - tb.data("Alpha") - tb.end("ColorInterp") - tb.end("VRTRasterBand") - elem = tb.close() - - vrt_root.insert(index, elem) - - warp_options = vrt_root.find(".//GDALWarpOptions") - tb = ElementTree.TreeBuilder() - tb.start("DstAlphaBand", {}) - tb.data(str(nb_bands + 1)) - tb.end("DstAlphaBand") - elem = tb.close() - warp_options.append(elem) - - # TODO: gbataille - this is a GDALWarpOptions. Why put it in a specific place? - tb = ElementTree.TreeBuilder() - tb.start("Option", {"name": "INIT_DEST"}) - tb.data("0") - tb.end("Option") - elem = tb.close() - warp_options.append(elem) - - return ElementTree.tostring(vrt_root).decode() - - -def update_alpha_value_for_non_alpha_inputs( - warped_vrt_dataset: gdal.Dataset, options: Optional[Options] = None -) -> gdal.Dataset: - """ - Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has - not been forced by options - """ - if warped_vrt_dataset.RasterCount in [1, 3]: - - vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] - - vrt_string = add_alpha_band_to_string_vrt(vrt_string) - - warped_vrt_dataset = gdal.Open(vrt_string) - - if options and options.verbose: - print("Modified -dstalpha warping result saved into 'tiles1.vrt'") - - with open("tiles1.vrt", "w") as f: - f.write(warped_vrt_dataset.GetMetadata("xml:VRT")[0]) - - return warped_vrt_dataset - - -def nb_data_bands(dataset: gdal.Dataset) -> int: - """ - Return the number of data (non-alpha) bands of a gdal dataset - """ - alphaband = dataset.GetRasterBand(1).GetMaskBand() - if ( - (alphaband.GetMaskFlags() & gdal.GMF_ALPHA) - or dataset.RasterCount == 4 - or dataset.RasterCount == 2 - ): - return dataset.RasterCount - 1 - return dataset.RasterCount - - -def _get_creation_options(options): - copts = [] - if options.tiledriver == "WEBP": - if options.webp_lossless: - copts = ["LOSSLESS=True"] - else: - copts = ["QUALITY=" + str(options.webp_quality)] - return copts - - -def create_base_tile(tile_job_info: "TileJobInfo", tile_detail: "TileDetail") -> None: - - dataBandsCount = tile_job_info.nb_data_bands - output = tile_job_info.output_file_path - tileext = tile_job_info.tile_extension - tile_size = tile_job_info.tile_size - options = tile_job_info.options - - cached_ds = getattr(threadLocal, "cached_ds", None) - if cached_ds and cached_ds.GetDescription() == tile_job_info.src_file: - ds = cached_ds - else: - ds = gdal.Open(tile_job_info.src_file, gdal.GA_ReadOnly) - threadLocal.cached_ds = ds - - mem_drv = gdal.GetDriverByName("MEM") - out_drv = gdal.GetDriverByName(tile_job_info.tile_driver) - alphaband = ds.GetRasterBand(1).GetMaskBand() - - tx = tile_detail.tx - ty = tile_detail.ty - tz = tile_detail.tz - rx = tile_detail.rx - ry = tile_detail.ry - rxsize = tile_detail.rxsize - rysize = tile_detail.rysize - wx = tile_detail.wx - wy = tile_detail.wy - wxsize = tile_detail.wxsize - wysize = tile_detail.wysize - querysize = tile_detail.querysize - # MMGIS - isDEMtile = tile_detail.isDEMtile - - tilebands = dataBandsCount + 1 - - # MMGIS - if isDEMtile == True: - tilebands = 4 - - # Tile dataset in memory - tilefilename = os.path.join(output, str( - tz), str(tx), "%s.%s" % (ty, tileext)) - dstile = mem_drv.Create("", tile_size, tile_size, tilebands) - - data = alpha = None - - if options.verbose: - print( - "\tReadRaster Extent: ", (rx, ry, rxsize, - rysize), (wx, wy, wxsize, wysize) - ) - - # Query is in 'nearest neighbour' but can be bigger in then the tile_size - # We scale down the query to the tile_size by supplied algorithm. - - if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: - try: - alpha = alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize) - - # Detect totally transparent tile and skip its creation - if tile_job_info.exclude_transparent and len(alpha) == alpha.count( - "\x00".encode("ascii") - ): - return - - data = ds.ReadRaster( - rx, - ry, - rxsize, - rysize, - wxsize, - wysize, - band_list=list(range(1, dataBandsCount + 1)), - ) - except: - pass - - # The tile in memory is a transparent file by default. Write pixel values into it if - # any - if data: - # MMGIS - if isDEMtile: - dsquery = mem_drv.Create( - '', querysize, querysize, tilebands, gdal.GDT_Byte) # 1bto4b - - data = ds.GetRasterBand(1).ReadRaster( - rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) - - data = struct.unpack('f' * wxsize * wysize, data) - data1 = [] - data2 = [] - data3 = [] - data4 = [] - for f in data: - # Because 0 is a valid value in many datasets yet still special in images being fully transparent, - # we're going to encode zero's as 2^31 (2147483648) (79, 0, 0, 0) and have the reader parse it back to 0 - if f == 0: - f = pow(2, 31) - f = str(binary(f)) - data1.append(int(f[:8], 2)) - data2.append(int(f[8:16], 2)) - data3.append(int(f[16:24], 2)) - data4.append(int(f[24:], 2)) - - data1s = b'' - data2s = b'' - data3s = b'' - data4s = b'' - indx = 0 - for v in data1: - data1s += struct.pack('B', data1[indx]) - data2s += struct.pack('B', data2[indx]) - data3s += struct.pack('B', data3[indx]) - data4s += struct.pack('B', data4[indx]) - indx += 1 - - dsquery.WriteRaster( - wx, wy, wxsize, wysize, data1s, band_list=[1], buf_type=gdal.GDT_Byte) - dsquery.WriteRaster( - wx, wy, wxsize, wysize, data2s, band_list=[2], buf_type=gdal.GDT_Byte) - dsquery.WriteRaster( - wx, wy, wxsize, wysize, data3s, band_list=[3], buf_type=gdal.GDT_Byte) - dsquery.WriteRaster( - wx, wy, wxsize, wysize, data4s, band_list=[4], buf_type=gdal.GDT_Byte) - # sys.exit('done') - - scale_query_to_tile( - dsquery, dstile, options, tilefilename=tilefilename) - del dsquery - elif tile_size == querysize: - # Use the ReadRaster result directly in tiles ('nearest neighbour' query) - dstile.WriteRaster( - wx, - wy, - wxsize, - wysize, - data, - band_list=list(range(1, dataBandsCount + 1)), - ) - dstile.WriteRaster(wx, wy, wxsize, wysize, - alpha, band_list=[tilebands]) - - # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, - # MrSID) the ReadRaster function returns high-quality raster (not ugly - # nearest neighbour) - # TODO: Use directly 'near' for WaveLet files - else: - # Big ReadRaster query in memory scaled to the tile_size - all but 'near' - # algo - dsquery = mem_drv.Create("", querysize, querysize, tilebands) - # TODO: fill the null value in case a tile without alpha is produced (now - # only png tiles are supported) - dsquery.WriteRaster( - wx, - wy, - wxsize, - wysize, - data, - band_list=list(range(1, dataBandsCount + 1)), - ) - dsquery.WriteRaster(wx, wy, wxsize, wysize, - alpha, band_list=[tilebands]) - - scale_query_to_tile(dsquery, dstile, options, - tilefilename=tilefilename) - del dsquery - - del data - - if options.resampling != "antialias" and options.resampling != "near-composite": - # Write a copy of tile to png/jpg - out_drv.CreateCopy( - tilefilename, dstile, strict=0, options=_get_creation_options(options) - ) - - del dstile - - # Create a KML file for this tile. - if tile_job_info.kml: - swne = get_tile_swne(tile_job_info, options) - if swne is not None: - kmlfilename = os.path.join( - output, - str(tz), - str(tx), - "%d.kml" % GDAL2Tiles.getYTile(ty, tz, options), - ) - if not options.resume or not isfile(kmlfilename): - with my_open(kmlfilename, "wb") as f: - f.write( - generate_kml( - tx, - ty, - tz, - tile_job_info.tile_extension, - tile_job_info.tile_size, - swne, - tile_job_info.options, - ).encode("utf-8") - ) - - -def create_overview_tile( - base_tz: int, - base_tiles: List[Tuple[int, int]], - output_folder: str, - tile_job_info: "TileJobInfo", - options: Options, -): - """Generating an overview tile from no more than 4 underlying tiles(base tiles)""" - - overview_tz = base_tz - 1 - overview_tx = base_tiles[0][0] >> 1 - overview_ty = base_tiles[0][1] >> 1 - overview_ty_real = GDAL2Tiles.getYTile(overview_ty, overview_tz, options) - - tilefilename = os.path.join( - output_folder, - str(overview_tz), - str(overview_tx), - "%s.%s" % (overview_ty_real, tile_job_info.tile_extension), - ) - if options.verbose: - print(tilefilename) - if options.resume and isfile(tilefilename): - if options.verbose: - print("Tile generation skipped because of --resume") - return - - mem_driver = gdal.GetDriverByName("MEM") - tile_driver = tile_job_info.tile_driver - out_driver = gdal.GetDriverByName(tile_driver) - - tilebands = tile_job_info.nb_data_bands + 1 - - # MMGIS - if options.isDEMtile == True: - tilebands = 4 - - dsquery = mem_driver.Create( - "", 2 * tile_job_info.tile_size, 2 * tile_job_info.tile_size, tilebands - ) - # TODO: fill the null value - dstile = mem_driver.Create( - "", tile_job_info.tile_size, tile_job_info.tile_size, tilebands - ) - - usable_base_tiles = [] - - for base_tile in base_tiles: - base_tx = base_tile[0] - base_ty = base_tile[1] - base_ty_real = GDAL2Tiles.getYTile(base_ty, base_tz, options) - - base_tile_path = os.path.join( - output_folder, - str(base_tz), - str(base_tx), - "%s.%s" % (base_ty_real, tile_job_info.tile_extension), - ) - if not isfile(base_tile_path): - continue - - dsquerytile = gdal.Open(base_tile_path, gdal.GA_ReadOnly) - - if base_tx % 2 == 0: - tileposx = 0 - else: - tileposx = tile_job_info.tile_size - - if options.xyz and options.profile == "raster": - if base_ty % 2 == 0: - tileposy = 0 - else: - tileposy = tile_job_info.tile_size - else: - if base_ty % 2 == 0: - tileposy = tile_job_info.tile_size - else: - tileposy = 0 - - if dsquerytile.RasterCount == tilebands - 1: - # assume that the alpha band is missing and add it - tmp_ds = mem_driver.CreateCopy("", dsquerytile, 0) - tmp_ds.AddBand() - mask = bytearray( - [255] * (tile_job_info.tile_size * tile_job_info.tile_size) - ) - tmp_ds.WriteRaster( - 0, - 0, - tile_job_info.tile_size, - tile_job_info.tile_size, - mask, - band_list=[tilebands], - ) - dsquerytile = tmp_ds - elif dsquerytile.RasterCount != tilebands: - raise Exception("Unexpected number of bands in base tile") - - base_data = dsquerytile.ReadRaster( - 0, 0, tile_job_info.tile_size, tile_job_info.tile_size - ) - - dsquery.WriteRaster( - tileposx, - tileposy, - tile_job_info.tile_size, - tile_job_info.tile_size, - base_data, - band_list=list(range(1, tilebands + 1)), - ) - - usable_base_tiles.append(base_tile) - - if not usable_base_tiles: - return - - scale_query_to_tile(dsquery, dstile, options, tilefilename=tilefilename) - # Write a copy of tile to png/jpg - if options.resampling != "antialias" and options.resampling != "near-composite": - # Write a copy of tile to png/jpg - out_driver.CreateCopy( - tilefilename, dstile, strict=0, options=_get_creation_options(options) - ) - # Remove useless side car file - aux_xml = tilefilename + ".aux.xml" - if gdal.VSIStatL(aux_xml) is not None: - gdal.Unlink(aux_xml) - - if options.verbose: - print("\tbuild from zoom", base_tz, " tiles:", *base_tiles) - - # Create a KML file for this tile. - if tile_job_info.kml: - swne = get_tile_swne(tile_job_info, options) - if swne is not None: - with my_open( - os.path.join( - output_folder, - "%d/%d/%d.kml" % (overview_tz, overview_tx, - overview_ty_real), - ), - "wb", - ) as f: - f.write( - generate_kml( - overview_tx, - overview_ty, - overview_tz, - tile_job_info.tile_extension, - tile_job_info.tile_size, - swne, - options, - [(t[0], t[1], base_tz) for t in base_tiles], - ).encode("utf-8") - ) - - -def group_overview_base_tiles( - base_tz: int, output_folder: str, tile_job_info: "TileJobInfo" -) -> List[List[Tuple[int, int]]]: - """Group base tiles that belong to the same overview tile""" - - overview_to_bases = {} - tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[base_tz] - for ty in range(tmaxy, tminy - 1, -1): - overview_ty = ty >> 1 - for tx in range(tminx, tmaxx + 1): - overview_tx = tx >> 1 - base_tile = (tx, ty) - overview_tile = (overview_tx, overview_ty) - - if overview_tile not in overview_to_bases: - overview_to_bases[overview_tile] = [] - - overview_to_bases[overview_tile].append(base_tile) - - # Create directories for the tiles - overview_tz = base_tz - 1 - for tx in range(tminx, tmaxx + 1): - overview_tx = tx >> 1 - tiledirname = os.path.join( - output_folder, str(overview_tz), str(overview_tx)) - makedirs(tiledirname) - - return list(overview_to_bases.values()) - - -def count_overview_tiles(tile_job_info: "TileJobInfo") -> int: - tile_number = 0 - for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): - tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] - tile_number += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) - - return tile_number - - -def optparse_init() -> optparse.OptionParser: - """Prepare the option parser for input (argv)""" - - usage = "Usage: %prog [options] input_file [output]" - p = optparse.OptionParser(usage, version="%prog " + __version__) - p.add_option( - "-p", - "--profile", - dest="profile", - type="choice", - choices=profile_list, - help=( - "Tile cutting profile (%s) - default 'mercator' " - "(Google Maps compatible)" % ",".join(profile_list) - ), - ) - p.add_option( - "-r", - "--resampling", - dest="resampling", - type="choice", - choices=resampling_list, - help="Resampling method (%s) - default 'average'" % ",".join(resampling_list), - ) - p.add_option( - "-s", - "--s_srs", - dest="s_srs", - metavar="SRS", - help="The spatial reference system used for the source input data", - ) - p.add_option( - "-z", - "--zoom", - dest="zoom", - help="Zoom levels to render (format:'2-5', '10-' or '10').", - ) - p.add_option( - "-e", - "--resume", - dest="resume", - action="store_true", - help="Resume mode. Generate only missing files.", - ) - p.add_option( - "-a", - "--srcnodata", - dest="srcnodata", - metavar="NODATA", - help="Value in the input dataset considered as transparent", - ) - p.add_option( - "-d", - "--tmscompatible", - dest="tmscompatible", - action="store_true", - help=( - "When using the geodetic profile, specifies the base resolution " - "as 0.703125 or 2 tiles at zoom level 0." - ), - ) - p.add_option( - "--xyz", - action="store_true", - dest="xyz", - help="Use XYZ tile numbering (OSM Slippy Map tiles) instead of TMS", - ) - p.add_option( - "-v", - "--verbose", - action="store_true", - dest="verbose", - help="Print status messages to stdout", - ) - p.add_option( - "-x", - "--exclude", - action="store_true", - dest="exclude_transparent", - help="Exclude transparent tiles from result tileset", - ) - p.add_option( - "-q", - "--quiet", - action="store_true", - dest="quiet", - help="Disable messages and status to stdout", - ) - # MMGIS - p.add_option("--extentworld", dest="extentworld", - help="The full world meter extent (comma-separated as minx,maxx,miny,maxy,pixelsize) of an inner raster profile.") - # MMGIS - p.add_option("--dem", action="store_true", dest="isDEMtile", - help="Indicate if the input is a Digital Elevation Model") - p.add_option( - "--processes", - dest="nb_processes", - type="int", - help="Number of processes to use for tiling", - ) - p.add_option( - "--mpi", - action="store_true", - dest="mpi", - help="Assume launched by mpiexec and ignore --processes. " - "User should set GDAL_CACHEMAX to size per process.", - ) - p.add_option( - "--tilesize", - dest="tilesize", - metavar="PIXELS", - type="int", - help="Width and height in pixel of a tile", - ) - p.add_option( - "--tiledriver", - dest="tiledriver", - choices=["PNG", "WEBP"], - default="PNG", - type="choice", - help="which tile driver to use for the tiles", - ) - - # KML options - g = optparse.OptionGroup( - p, - "KML (Google Earth) options", - "Options for generated Google Earth SuperOverlay metadata", - ) - g.add_option( - "-k", - "--force-kml", - dest="kml", - action="store_true", - help=( - "Generate KML for Google Earth - default for 'geodetic' profile and " - "'raster' in EPSG:4326. For a dataset with different projection use " - "with caution!" - ), - ) - g.add_option( - "-n", - "--no-kml", - dest="kml", - action="store_false", - help="Avoid automatic generation of KML files for EPSG:4326", - ) - g.add_option( - "-u", - "--url", - dest="url", - help="URL address where the generated tiles are going to be published", - ) - p.add_option_group(g) - - # HTML options - g = optparse.OptionGroup( - p, "Web viewer options", "Options for generated HTML viewers a la Google Maps" - ) - g.add_option( - "-w", - "--webviewer", - dest="webviewer", - type="choice", - choices=webviewer_list, - help="Web viewer to generate (%s) - default 'all'" % ",".join( - webviewer_list), - ) - g.add_option("-t", "--title", dest="title", help="Title of the map") - g.add_option("-c", "--copyright", dest="copyright", - help="Copyright for the map") - g.add_option( - "-g", - "--googlekey", - dest="googlekey", - help="Google Maps API key from https://developers.google.com/maps/faq?csw=1#using-google-maps-apis", - ) - g.add_option( - "-b", - "--bingkey", - dest="bingkey", - help="Bing Maps API key from https://www.bingmapsportal.com/", - ) - p.add_option_group(g) - - # MapML options - g = optparse.OptionGroup( - p, "MapML options", "Options for generated MapML file") - g.add_option( - "--mapml-template", - dest="mapml_template", - action="store_true", - help=( - "Filename of a template mapml file where variables will " - "be substituted. If not specified, the generic " - "template_tiles.mapml file from GDAL data resources " - "will be used" - ), - ) - p.add_option_group(g) - - # Webp options - g = optparse.OptionGroup(p, "WEBP options", "Options for WEBP tiledriver") - g.add_option( - "--webp-quality", - dest="webp_quality", - type=int, - default=75, - help="quality of webp image, integer between 1 and 100, default is 75", - ) - g.add_option( - "--webp-lossless", - dest="webp_lossless", - action="store_true", - help="use lossless compression for the webp image", - ) - p.add_option_group(g) - - p.set_defaults( - verbose=False, - profile="mercator", - kml=None, - url="", - webviewer="all", - copyright="", - resampling="average", - resume=False, - googlekey="INSERT_YOUR_KEY_HERE", - bingkey="INSERT_YOUR_KEY_HERE", - processes=1, - ) - - return p - - -def process_args(argv: List[str]) -> Tuple[str, str, Options]: - parser = optparse_init() - options, args = parser.parse_args(args=argv) - - # Args should be either an input file OR an input file and an output folder - if not args: - exit_with_error( - "You need to specify at least an input file as argument to the script" - ) - if len(args) > 2: - exit_with_error( - "Processing of several input files is not supported.", - "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " - "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(args), - ) - - input_file = args[0] - if not isfile(input_file): - exit_with_error( - "The provided input file %s does not exist or is not a file" % input_file - ) - - if len(args) == 2: - output_folder = args[1] - else: - # Directory with input filename without extension in actual directory - output_folder = os.path.splitext(os.path.basename(input_file))[0] - - if options.webviewer == "mapml": - options.xyz = True - if options.profile == "geodetic": - options.tmscompatible = True - - options = options_post_processing(options, input_file, output_folder) - - return input_file, output_folder, options - - -def options_post_processing( - options: Options, input_file: str, output_folder: str -) -> Options: - if not options.title: - options.title = os.path.basename(input_file) - - # User specified zoom levels - tminz = None - tmaxz = None - if hasattr(options, "zoom") and options.zoom and isinstance(options.zoom, str): - minmax = options.zoom.split("-", 1) - zoom_min = minmax[0] - tminz = int(zoom_min) - - if len(minmax) == 2: - # Min-max zoom value - zoom_max = minmax[1] - if zoom_max: - # User-specified (non-automatically calculated) - tmaxz = int(zoom_max) - if tmaxz < tminz: - raise Exception( - "max zoom (%d) less than min zoom (%d)" % ( - tmaxz, tminz) - ) - else: - # Single zoom value (min = max) - tmaxz = tminz - options.zoom = [tminz, tmaxz] - - if options.url and not options.url.endswith("/"): - options.url += "/" - if options.url: - out_path = output_folder - if out_path.endswith("/"): - out_path = out_path[:-1] - options.url += os.path.basename(out_path) + "/" - - # Supported options - if options.resampling == "antialias" and not numpy_available: - exit_with_error( - "'antialias' resampling algorithm is not available.", - "Install PIL (Python Imaging Library) and numpy.", - ) - - if options.resampling == "near-composite" and not numpy_available: - exit_with_error( - "'near-composite' resampling algorithm is not available.", - "Install PIL (Python Imaging Library) and numpy.", - ) - - if options.tiledriver == "WEBP": - if gdal.GetDriverByName(options.tiledriver) is None: - exit_with_error("WEBP driver is not available") - - if not options.webp_lossless: - if options.webp_quality <= 0 or options.webp_quality > 100: - exit_with_error("webp_quality should be in the range [1-100]") - options.webp_quality = int(options.webp_quality) - - # Output the results - if options.verbose: - print("Options:", options) - print("Input:", input_file) - print("Output:", output_folder) - print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) - print("") - - return options - - -class TileDetail(object): - tx = 0 - ty = 0 - tz = 0 - rx = 0 - ry = 0 - rxsize = 0 - rysize = 0 - wx = 0 - wy = 0 - wxsize = 0 - wysize = 0 - querysize = 0 - isDEMtile = False - - def __init__(self, **kwargs): - for key in kwargs: - if hasattr(self, key): - setattr(self, key, kwargs[key]) - - def __unicode__(self): - return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) - - def __str__(self): - return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) - - def __repr__(self): - return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) - - -class TileJobInfo(object): - """ - Plain object to hold tile job configuration for a dataset - """ - - src_file = "" - nb_data_bands = 0 - output_file_path = "" - tile_extension = "" - tile_size = 0 - tile_driver = None - kml = False - tminmax = [] - tminz = 0 - tmaxz = 0 - in_srs_wkt = 0 - out_geo_trans = [] - ominy = 0 - is_epsg_4326 = False - options = None - exclude_transparent = False - - def __init__(self, **kwargs): - for key in kwargs: - if hasattr(self, key): - setattr(self, key, kwargs[key]) - - def __unicode__(self): - return "TileJobInfo %s\n" % (self.src_file) - - def __str__(self): - return "TileJobInfo %s\n" % (self.src_file) - - def __repr__(self): - return "TileJobInfo %s\n" % (self.src_file) - - -class Gdal2TilesError(Exception): - pass - - -class GDAL2Tiles(object): - def __init__(self, input_file: str, output_folder: str, options: Options) -> None: - """Constructor function - initialization""" - self.out_drv = None - self.mem_drv = None - self.warped_input_dataset = None - self.out_srs = None - self.nativezoom = None - self.tminmax = None - self.tsize = None - self.mercator = None - self.geodetic = None - self.dataBandsCount = None - self.out_gt = None - self.tileswne = None - self.swne = None - self.ominx = None - self.omaxx = None - self.omaxy = None - self.ominy = None - - # MMGIS - self.isRasterBounded = False - self.isDEMtile = False - self.fminx = None - self.fmaxx = None - self.fminy = None - self.fmaxy = None - self.fPixelSize = None - - self.input_file = None - self.output_folder = None - - self.isepsg4326 = None - self.in_srs = None - self.in_srs_wkt = None - - # Tile format - self.tile_size = 256 - if options.isDEMtile: - self.tile_size = 32 - if options.tilesize: - self.tile_size = options.tilesize - - self.tiledriver = options.tiledriver - if options.tiledriver == "PNG": - self.tileext = "png" - else: - self.tileext = "webp" - if options.mpi: - makedirs(output_folder) - self.tmp_dir = tempfile.mkdtemp(dir=output_folder) - else: - self.tmp_dir = tempfile.mkdtemp() - self.tmp_vrt_filename = os.path.join( - self.tmp_dir, str(uuid4()) + ".vrt") - - # Should we read bigger window of the input raster and scale it down? - # Note: Modified later by open_input() - # Not for 'near' resampling - # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) - # Not for 'raster' profile - self.scaledquery = True - # How big should be query window be for scaling down - # Later on reset according the chosen resampling algorithm - self.querysize = 4 * self.tile_size - - # Should we use Read on the input file for generating overview tiles? - # Note: Modified later by open_input() - # Otherwise the overview tiles are generated from existing underlying tiles - self.overviewquery = False - - self.input_file = input_file - self.output_folder = output_folder - self.options = options - - # MMGIS - if self.options.extentworld: - extentworld = self.options.extentworld.split(",") - self.isRasterBounded = True - self.fminx = float(extentworld[0]) - self.fmaxx = float(extentworld[2]) - self.fminy = float(extentworld[3]) - self.fmaxy = float(extentworld[1]) - self.fPixelSize = float(extentworld[4]) - - if self.options.resampling == "near": - self.querysize = self.tile_size - - elif self.options.resampling == "bilinear": - self.querysize = self.tile_size * 2 - - self.tminz, self.tmaxz = self.options.zoom - - # MMGIS - if self.options.isDEMtile: - self.isDEMtile = True - - # KML generation - self.kml = self.options.kml - - # ------------------------------------------------------------------------- - def open_input(self) -> None: - """Initialization of the input raster, reprojection if necessary""" - gdal.AllRegister() - - self.out_drv = gdal.GetDriverByName(self.tiledriver) - self.mem_drv = gdal.GetDriverByName("MEM") - - if not self.out_drv: - raise Exception( - "The '%s' driver was not found, is it available in this GDAL build?" - % self.tiledriver - ) - if not self.mem_drv: - raise Exception( - "The 'MEM' driver was not found, is it available in this GDAL build?" - ) - - # Open the input file - - if self.input_file: - input_dataset: gdal.Dataset = gdal.Open( - self.input_file, gdal.GA_ReadOnly) - else: - raise Exception("No input file was specified") - - if self.options.verbose: - print( - "Input file:", - "( %sP x %sL - %s bands)" - % ( - input_dataset.RasterXSize, - input_dataset.RasterYSize, - input_dataset.RasterCount, - ), - ) - - if not input_dataset: - # Note: GDAL prints the ERROR message too - exit_with_error( - "It is not possible to open the input file '%s'." % self.input_file - ) - - # Read metadata from the input file - if input_dataset.RasterCount == 0: - exit_with_error("Input file '%s' has no raster band" % - self.input_file) - - if input_dataset.GetRasterBand(1).GetRasterColorTable(): - exit_with_error( - "Please convert this file to RGB/RGBA and run gdal2tiles on the result.", - "From paletted file you can create RGBA file (temp.vrt) by:\n" - "gdal_translate -of vrt -expand rgba %s temp.vrt\n" - "then run:\n" - "gdal2tiles temp.vrt" % self.input_file, - ) - - if self.isDEMtile != True and input_dataset.GetRasterBand(1).DataType != gdal.GDT_Byte: - exit_with_error( - "Please convert this file to 8-bit and run gdal2tiles on the result.", - "To scale pixel values you can use:\n" - "gdal_translate -of VRT -ot Byte -scale %s temp.vrt\n" - "then run:\n" - "gdal2tiles temp.vrt" % self.input_file, - ) - - if self.isDEMtile == True and input_dataset.GetRasterBand(1).DataType != gdal.GDT_Float32: - exit_with_error( - "Please convert this file to 32-bit for its first band and run gdal2tiles on the result.", - ) - - in_nodata = setup_no_data_values(input_dataset, self.options) - - if self.options.verbose: - print( - "Preprocessed file:", - "( %sP x %sL - %s bands)" - % ( - input_dataset.RasterXSize, - input_dataset.RasterYSize, - input_dataset.RasterCount, - ), - ) - - self.in_srs, self.in_srs_wkt = setup_input_srs( - input_dataset, self.options) - - self.out_srs = setup_output_srs(self.in_srs, self.options) - - # If input and output reference systems are different, we reproject the input dataset into - # the output reference system for easier manipulation - - self.warped_input_dataset = None - - if self.options.profile != "raster": - - if not self.in_srs: - exit_with_error( - "Input file has unknown SRS.", - "Use --s_srs EPSG:xyz (or similar) to provide source reference system.", - ) - - if not has_georeference(input_dataset): - exit_with_error( - "There is no georeference - neither affine transformation (worldfile) " - "nor GCPs. You can generate only 'raster' profile tiles.", - "Either gdal2tiles with parameter -p 'raster' or use another GIS " - "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs", - ) - - if (self.in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or ( - input_dataset.GetGCPCount() != 0 - ): - self.warped_input_dataset = reproject_dataset( - input_dataset, self.in_srs, self.out_srs - ) - - if in_nodata: - self.warped_input_dataset = update_no_data_values( - self.warped_input_dataset, in_nodata, options=self.options - ) - else: - self.warped_input_dataset = update_alpha_value_for_non_alpha_inputs( - self.warped_input_dataset, options=self.options - ) - - if self.warped_input_dataset and self.options.verbose: - print( - "Projected file:", - "tiles.vrt", - "( %sP x %sL - %s bands)" - % ( - self.warped_input_dataset.RasterXSize, - self.warped_input_dataset.RasterYSize, - self.warped_input_dataset.RasterCount, - ), - ) - - if not self.warped_input_dataset: - self.warped_input_dataset = input_dataset - - gdal.GetDriverByName("VRT").CreateCopy( - self.tmp_vrt_filename, self.warped_input_dataset - ) - - self.dataBandsCount = nb_data_bands(self.warped_input_dataset) - - # KML test - self.isepsg4326 = False - srs4326 = osr.SpatialReference() - srs4326.ImportFromEPSG(4326) - srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) - if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): - self.isepsg4326 = True - if self.kml is None: - self.kml = True - if self.kml and self.options.verbose: - print("KML autotest OK!") - - if self.kml is None: - self.kml = False - - # Read the georeference - self.out_gt = self.warped_input_dataset.GetGeoTransform() - - # Test the size of the pixel - - # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) - if (self.out_gt[2], self.out_gt[4]) != (0, 0): - exit_with_error( - "Georeference of the raster contains rotation or skew. " - "Such raster is not supported. Please use gdalwarp first." - ) - - # Here we expect: pixel is square, no rotation on the raster - - # Output Bounds - coordinates in the output SRS - self.ominx = self.out_gt[0] - self.omaxx = ( - self.out_gt[0] + - self.warped_input_dataset.RasterXSize * self.out_gt[1] - ) - self.omaxy = self.out_gt[3] - self.ominy = ( - self.out_gt[3] - - self.warped_input_dataset.RasterYSize * self.out_gt[1] - ) - # Note: maybe round(x, 14) to avoid the gdal_translate behavior, when 0 becomes -1e-15 - - # MMGIS - def linearScale(domain, rang, value): - return ( - ((rang[1] - rang[0]) * (value - domain[0])) / - (domain[1] - domain[0]) + - rang[0] - ) - # MMGIS - self.warped_input_dataset.fRasterXSize = self.warped_input_dataset.RasterXSize - self.warped_input_dataset.fRasterYSize = self.warped_input_dataset.RasterYSize - self.warped_input_dataset.fRasterXOrigin = 0 - self.warped_input_dataset.fRasterYOrigin = 0 - self.warped_input_dataset.PixelSize = self.out_gt[1] - self.warped_input_dataset.fPixelSize = self.fPixelSize - # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) - # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) - if self.isRasterBounded: - self.warped_input_dataset.fRasterXSize = int(math.floor(self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( - self.omaxx - self.ominx) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) - self.warped_input_dataset.fRasterYSize = int(math.ceil(self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( - self.omaxy - self.ominy) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) - self.warped_input_dataset.fRasterXSizeRaw = int(math.floor( - self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) - self.warped_input_dataset.fRasterYSizeRaw = int(math.ceil( - self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) - # print("Full Raster Size: ", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize ) - self.warped_input_dataset.fRasterXOrigin = int(math.floor(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]))) - self.warped_input_dataset.fRasterYOrigin = int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]))) - self.warped_input_dataset.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ - 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) - self.warped_input_dataset.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ - self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) - self.warped_input_dataset.fRasterXWidth = int(math.floor(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin - self.warped_input_dataset.fRasterYHeight = int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin - - if self.options.verbose: - print( - "Bounds (output srs):", - round(self.ominx, 13), - self.ominy, - self.omaxx, - self.omaxy, - ) - - # Calculating ranges for tiles in different zoom levels - if self.options.profile == "mercator": - - self.mercator = GlobalMercator(tile_size=self.tile_size) - - # Function which generates SWNE in LatLong for given tile - self.tileswne = self.mercator.TileLatLonBounds - - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, MAXZOOMLEVEL)) - for tz in range(0, MAXZOOMLEVEL): - tminx, tminy = self.mercator.MetersToTile( - self.ominx, self.ominy, tz) - tmaxx, tmaxy = self.mercator.MetersToTile( - self.omaxx, self.omaxy, tz) - # crop tiles extending world limits (+-180,+-90) - tminx, tminy = max(0, tminx), max(0, tminy) - tmaxx, tmaxy = min(2**tz - 1, tmaxx), min(2**tz - 1, tmaxy) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - - # TODO: Maps crossing 180E (Alaska?) - - # Get the minimal zoom level (map covers area equivalent to one tile) - if self.tminz is None: - self.tminz = self.mercator.ZoomForPixelSize( - self.out_gt[1] - * max( - self.warped_input_dataset.RasterXSize, - self.warped_input_dataset.RasterYSize, - ) - / float(self.tile_size) - ) - - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tmaxz is None: - self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) - self.tmaxz = max(self.tminz, self.tmaxz) - - self.tminz = min(self.tminz, self.tmaxz) - - if self.options.verbose: - print( - "Bounds (latlong):", - self.mercator.MetersToLatLon(self.ominx, self.ominy), - self.mercator.MetersToLatLon(self.omaxx, self.omaxy), - ) - print("MinZoomLevel:", self.tminz) - print( - "MaxZoomLevel:", - self.tmaxz, - "(", - self.mercator.Resolution(self.tmaxz), - ")", - ) - - elif self.options.profile == "geodetic": - - self.geodetic = GlobalGeodetic( - self.options.tmscompatible, tile_size=self.tile_size - ) - - # Function which generates SWNE in LatLong for given tile - self.tileswne = self.geodetic.TileLatLonBounds - - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, MAXZOOMLEVEL)) - for tz in range(0, MAXZOOMLEVEL): - tminx, tminy = self.geodetic.LonLatToTile( - self.ominx, self.ominy, tz) - tmaxx, tmaxy = self.geodetic.LonLatToTile( - self.omaxx, self.omaxy, tz) - # crop tiles extending world limits (+-180,+-90) - tminx, tminy = max(0, tminx), max(0, tminy) - tmaxx, tmaxy = min(2 ** (tz + 1) - 1, - tmaxx), min(2**tz - 1, tmaxy) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - - # TODO: Maps crossing 180E (Alaska?) - - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tminz is None: - self.tminz = self.geodetic.ZoomForPixelSize( - self.out_gt[1] - * max( - self.warped_input_dataset.RasterXSize, - self.warped_input_dataset.RasterYSize, - ) - / float(self.tile_size) - ) - - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tmaxz is None: - self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) - self.tmaxz = max(self.tminz, self.tmaxz) - - self.tminz = min(self.tminz, self.tmaxz) - - if self.options.verbose: - print( - "Bounds (latlong):", self.ominx, self.ominy, self.omaxx, self.omaxy - ) - - # MMGIS - elif self.options.profile == 'raster' and self.isRasterBounded: - - def log2(x): - return math.log10(x) / math.log10(2) - - # MMGIS - self.nativezoom = int( - max(math.ceil(log2(self.warped_input_dataset.fRasterXSizeRaw/float(self.tile_size))), - math.ceil(log2(self.warped_input_dataset.fRasterYSizeRaw/float(self.tile_size))))) - - self.basenativezoom = int( - max(math.ceil(log2(self.warped_input_dataset.fRasterXSize/float(self.tile_size))), - math.ceil(log2(self.warped_input_dataset.fRasterYSize/float(self.tile_size))))) - - # MMGIS - self.warped_input_dataset.fWorldXSize = int( - float(self.warped_input_dataset.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) - self.warped_input_dataset.fWorldYSize = int( - float(self.warped_input_dataset.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) - self.warped_input_dataset.fRasterXOriginWorld = int(float( - self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXOrigin) / self.warped_input_dataset.fRasterXSize)) - self.warped_input_dataset.fRasterYOriginWorld = int(float( - self.warped_input_dataset.fWorldYSize) * (float(self.warped_input_dataset.fRasterYOrigin) / self.warped_input_dataset.fRasterYSize)) - self.warped_input_dataset.fRasterXSizeWorld = int(float( - self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXWidth) / self.warped_input_dataset.fRasterXSize)) - self.warped_input_dataset.fRasterYSizeWorld = int(float( - self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize)) - # print("World Size", self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize) - # print("Raster Origin World", self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld) - # print("Raster Size World", self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld) - - if self.options.verbose: - print("Native zoom of the raster:", self.nativezoom) - - # Get the minimal zoom level (whole raster in one tile) - if self.tminz is None: - self.tminz = 0 - - # Get the maximal zoom level (native resolution of the raster) - if self.tmaxz is None: - self.tmaxz = self.nativezoom - - # MMGIS - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, self.tmaxz+1)) - self.tsize = list(range(0, self.tmaxz+1)) - # print("Raster Size:", self.out_ds.RasterXSize,self.out_ds.RasterYSize) - # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) - # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) - for tz in range(0, self.tmaxz+1): - tsize = 2.0**(self.tmaxz-tz)*self.tile_size - toffsetx = int(math.floor( - 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) - toffsety = int(math.floor( - 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw) / self.warped_input_dataset.fRasterYSizeRaw)) - # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - toffsetx = int(math.floor( - self.warped_input_dataset.fRasterXOriginWorld / tsize)) - toffsety = int(math.floor( - self.warped_input_dataset.fRasterYOriginWorld / tsize)) - # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - tmaxx = int(math.floor( - self.warped_input_dataset.fRasterXSizeWorld / tsize)) + toffsetx + 1 - - tmaxy = int(math.floor( - self.warped_input_dataset.fRasterYSizeWorld / tsize)) + toffsety + 1 - self.tsize[tz] = math.ceil(tsize) - #tminx = toffsetx - tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 - tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 - - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - # print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) - - elif self.options.profile == "raster": - - def log2(x): - return math.log10(x) / math.log10(2) - - self.nativezoom = max( - 0, - int( - max( - math.ceil( - log2( - self.warped_input_dataset.RasterXSize - / float(self.tile_size) - ) - ), - math.ceil( - log2( - self.warped_input_dataset.RasterYSize - / float(self.tile_size) - ) - ), - ) - ), - ) - - if self.options.verbose: - print("Native zoom of the raster:", self.nativezoom) - - # Get the minimal zoom level (whole raster in one tile) - if self.tminz is None: - self.tminz = 0 - - # Get the maximal zoom level (native resolution of the raster) - if self.tmaxz is None: - self.tmaxz = self.nativezoom - self.tmaxz = max(self.tminz, self.tmaxz) - - elif self.tmaxz > self.nativezoom: - # If the user requests at a higher precision than the native - # one, generate an oversample temporary VRT file, and tile from - # it - oversample_factor = 1 << (self.tmaxz - self.nativezoom) - if self.options.resampling in ("average", "antialias", "near-composite"): - resampleAlg = "average" - elif self.options.resampling in ( - "near", - "bilinear", - "cubic", - "cubicspline", - "lanczos", - "mode", - ): - resampleAlg = self.options.resampling - else: - resampleAlg = "bilinear" # fallback - gdal.Translate( - self.tmp_vrt_filename, - input_dataset, - width=self.warped_input_dataset.RasterXSize * oversample_factor, - height=self.warped_input_dataset.RasterYSize * oversample_factor, - resampleAlg=resampleAlg, - ) - self.warped_input_dataset = gdal.Open(self.tmp_vrt_filename) - self.out_gt = self.warped_input_dataset.GetGeoTransform() - self.nativezoom = self.tmaxz - - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, self.tmaxz + 1)) - self.tsize = list(range(0, self.tmaxz + 1)) - for tz in range(0, self.tmaxz + 1): - tsize = 2.0 ** (self.nativezoom - tz) * self.tile_size - tminx, tminy = 0, 0 - tmaxx = ( - int(math.ceil(self.warped_input_dataset.RasterXSize / tsize)) - 1 - ) - tmaxy = ( - int(math.ceil(self.warped_input_dataset.RasterYSize / tsize)) - 1 - ) - self.tsize[tz] = math.ceil(tsize) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - - # Function which generates SWNE in LatLong for given tile - if self.kml and self.in_srs_wkt: - ct = osr.CoordinateTransformation(self.in_srs, srs4326) - - def rastertileswne(x, y, z): - pixelsizex = ( - 2 ** (self.tmaxz - z) * self.out_gt[1] - ) # X-pixel size in level - west = self.out_gt[0] + x * self.tile_size * pixelsizex - east = west + self.tile_size * pixelsizex - if self.options.xyz: - north = self.omaxy - y * self.tile_size * pixelsizex - south = north - self.tile_size * pixelsizex - else: - south = self.ominy + y * self.tile_size * pixelsizex - north = south + self.tile_size * pixelsizex - if not self.isepsg4326: - # Transformation to EPSG:4326 (WGS84 datum) - west, south = ct.TransformPoint(west, south)[:2] - east, north = ct.TransformPoint(east, north)[:2] - return south, west, north, east - - self.tileswne = rastertileswne - else: - self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa - - else: - - tms = tmsMap[self.options.profile] - - # Function which generates SWNE in LatLong for given tile - self.tileswne = None # not implemented - - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, tms.level_count + 1)) - for tz in range(0, tms.level_count + 1): - tminx, tminy = tms.GeorefCoordToTileCoord( - self.ominx, self.ominy, tz, self.tile_size - ) - tmaxx, tmaxy = tms.GeorefCoordToTileCoord( - self.omaxx, self.omaxy, tz, self.tile_size - ) - tminx, tminy = max(0, tminx), max(0, tminy) - tmaxx, tmaxy = min(tms.matrix_width * 2**tz - 1, tmaxx), min( - tms.matrix_height * 2**tz - 1, tmaxy - ) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - - # Get the minimal zoom level (map covers area equivalent to one tile) - if self.tminz is None: - self.tminz = tms.ZoomForPixelSize( - self.out_gt[1] - * max( - self.warped_input_dataset.RasterXSize, - self.warped_input_dataset.RasterYSize, - ) - / float(self.tile_size), - self.tile_size, - ) - - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tmaxz is None: - self.tmaxz = tms.ZoomForPixelSize( - self.out_gt[1], self.tile_size) - self.tmaxz = max(self.tminz, self.tmaxz) - - self.tminz = min(self.tminz, self.tmaxz) - - if self.options.verbose: - print( - "Bounds (georef):", self.ominx, self.ominy, self.omaxx, self.omaxy - ) - print("MinZoomLevel:", self.tminz) - print("MaxZoomLevel:", self.tmaxz) - - def generate_metadata(self) -> None: - """ - Generation of main metadata files and HTML viewers (metadata related to particular - tiles are generated during the tile processing). - """ - - makedirs(self.output_folder) - - if self.options.profile == "mercator": - - south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) - north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) - south, west = max(-85.05112878, south), max(-180.0, west) - north, east = min(85.05112878, north), min(180.0, east) - self.swne = (south, west, north, east) - - # Generate googlemaps.html - if ( - self.options.webviewer in ("all", "google") - and self.options.profile == "mercator" - ): - if not self.options.resume or not isfile( - os.path.join(self.output_folder, "googlemaps.html") - ): - with my_open( - os.path.join(self.output_folder, - "googlemaps.html"), "wb" - ) as f: - f.write(self.generate_googlemaps().encode("utf-8")) - - # Generate leaflet.html - if self.options.webviewer in ("all", "leaflet"): - if not self.options.resume or not isfile( - os.path.join(self.output_folder, "leaflet.html") - ): - with my_open( - os.path.join(self.output_folder, "leaflet.html"), "wb" - ) as f: - f.write(self.generate_leaflet().encode("utf-8")) - - elif self.options.profile == "geodetic": - - west, south = self.ominx, self.ominy - east, north = self.omaxx, self.omaxy - south, west = max(-90.0, south), max(-180.0, west) - north, east = min(90.0, north), min(180.0, east) - self.swne = (south, west, north, east) - - elif self.options.profile == "raster": - - west, south = self.ominx, self.ominy - east, north = self.omaxx, self.omaxy - - # MMGIS - if self.isRasterBounded: - west = self.fminx - east = self.fmaxx - south = self.fminy - north = self.fmaxy - - self.swne = (south, west, north, east) - - else: - self.swne = None - - # Generate openlayers.html - if self.options.webviewer in ("all", "openlayers"): - if not self.options.resume or not isfile( - os.path.join(self.output_folder, "openlayers.html") - ): - with my_open( - os.path.join(self.output_folder, "openlayers.html"), "wb" - ) as f: - f.write(self.generate_openlayers().encode("utf-8")) - - # Generate tilemapresource.xml. - if ( - not self.options.xyz - and self.swne is not None - and ( - not self.options.resume - or not isfile(os.path.join(self.output_folder, "tilemapresource.xml")) - ) - ): - with my_open( - os.path.join(self.output_folder, "tilemapresource.xml"), "wb" - ) as f: - f.write(self.generate_tilemapresource().encode("utf-8")) - - # Generate mapml file - if ( - self.options.webviewer in ("all", "mapml") - and self.options.xyz - and self.options.profile != "raster" - and (self.options.profile != "geodetic" or self.options.tmscompatible) - and ( - not self.options.resume - or not isfile(os.path.join(self.output_folder, "mapml.mapml")) - ) - ): - with my_open(os.path.join(self.output_folder, "mapml.mapml"), "wb") as f: - f.write(self.generate_mapml().encode("utf-8")) - - if self.kml and self.tileswne is not None: - # TODO: Maybe problem for not automatically generated tminz - # The root KML should contain links to all tiles in the tminz level - children = [] - xmin, ymin, xmax, ymax = self.tminmax[self.tminz] - for x in range(xmin, xmax + 1): - for y in range(ymin, ymax + 1): - children.append([x, y, self.tminz]) - # Generate Root KML - if self.kml: - if not self.options.resume or not isfile( - os.path.join(self.output_folder, "doc.kml") - ): - with my_open( - os.path.join(self.output_folder, "doc.kml"), "wb" - ) as f: - f.write( - generate_kml( - None, - None, - None, - self.tileext, - self.tile_size, - self.tileswne, - self.options, - children, - ).encode("utf-8") - ) - - def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: - """ - Generation of the base tiles (the lowest in the pyramid) directly from the input raster - """ - - if not self.options.quiet: - print("Generating Base Tiles:") - - if self.options.verbose: - print("") - print("Tiles generated from the max zoom level:") - print("----------------------------------------") - print("") - - # Set the bounds - tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] - - ds = self.warped_input_dataset - tilebands = self.dataBandsCount + 1 - querysize = self.querysize - isDEMtile = self.isDEMtile - - if self.options.verbose: - print("dataBandsCount: ", self.dataBandsCount) - print("tilebands: ", tilebands) - - tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) - ti = 0 - - tile_details = [] - - tz = self.tmaxz - - # Create directories for the tiles - for tx in range(tminx, tmaxx + 1): - tiledirname = os.path.join(self.output_folder, str(tz), str(tx)) - makedirs(tiledirname) - - for ty in range(tmaxy, tminy - 1, -1): - for tx in range(tminx, tmaxx + 1): - - ti += 1 - ytile = GDAL2Tiles.getYTile(ty, tz, self.options) - tilefilename = os.path.join( - self.output_folder, - str(tz), - str(tx), - "%s.%s" % (ytile, self.tileext), - ) - if self.options.verbose: - print(ti, "/", tcount, tilefilename) - - if self.options.resume and isfile(tilefilename): - if self.options.verbose: - print("Tile generation skipped because of --resume") - continue - - if self.options.profile == "mercator": - # Tile bounds in EPSG:3857 - b = self.mercator.TileBounds(tx, ty, tz) - elif self.options.profile == "geodetic": - b = self.geodetic.TileBounds(tx, ty, tz) - elif self.options.profile != "raster": - b = tmsMap[self.options.profile].TileBounds( - tx, ty, tz, self.tile_size - ) - - # Don't scale up by nearest neighbour, better change the querysize - # to the native resolution (and return smaller query tile) for scaling - - if self.options.profile != "raster": - rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) - - # Pixel size in the raster covering query geo extent - nativesize = wb[0] + wb[2] - if self.options.verbose: - print("\tNative Extent (querysize", - nativesize, "): ", rb, wb) - - # Tile bounds in raster coordinates for ReadRaster query - rb, wb = self.geo_query( - ds, b[0], b[3], b[2], b[1], querysize=querysize - ) - - rx, ry, rxsize, rysize = rb - wx, wy, wxsize, wysize = wb - - # MMGIS - elif self.isRasterBounded: # 'raster' profile: - - # tilesize in raster coordinates for actual zoom - tsize = int(self.tsize[tz]) - xsize = self.warped_input_dataset.fWorldXSize - ysize = self.warped_input_dataset.fWorldYSize - if tz >= self.tmaxz: - querysize = self.tile_size - - rx = (tx) * tsize - self.warped_input_dataset.fRasterXOriginWorld - #print("rx", rx) - rxsize = 0 - rxsize = tsize - - rysize = 0 - rysize = tsize - - ry = ysize - (ty * tsize) - rysize - \ - self.warped_input_dataset.fRasterYOriginWorld - - wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tile_size) - wysize = int(rysize/float(tsize) * self.tile_size) - if wysize != self.tile_size: - wy = self.tile_size - wysize - - if rx < 0: - rxsize = tsize + rx - wx = -rx - wxsize = int(rxsize/float(tsize) * self.tile_size) - rx = 0 - if ry < 0: - rysize = tsize + ry - wy = -ry - wysize = int(rysize/float(tsize) * self.tile_size) - ry = 0 - if rx + rxsize > self.warped_input_dataset.fRasterXSizeWorld: - rxsize = self.warped_input_dataset.fRasterXSizeWorld - rx - wxsize = int(rxsize/float(tsize) * self.tile_size) - if ry + rysize > self.warped_input_dataset.fRasterYSizeWorld: - rysize = self.warped_input_dataset.fRasterYSizeWorld - ry - wysize = int(rysize/float(tsize) * self.tile_size) - - # Convert rx, ry back to non-world coordinates - rx = int(float(self.warped_input_dataset.RasterXSize) * - (float(rx) / self.warped_input_dataset.fRasterXSizeWorld)) - ry = int(float(self.warped_input_dataset.RasterYSize) * - (float(ry) / self.warped_input_dataset.fRasterYSizeWorld)) - rxsize = int(float(self.warped_input_dataset.RasterXSize) * - (float(rxsize) / self.warped_input_dataset.fRasterXSizeWorld)) - rysize = int(float(self.warped_input_dataset.RasterYSize) * - (float(rysize) / self.warped_input_dataset.fRasterYSizeWorld)) - if self.isDEMtile: - wxsize -= 1 # 1bto4b - wysize -= 1 # 1bto4b - - #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin)) - else: # 'raster' profile: - - tsize = int( - self.tsize[tz] - ) # tile_size in raster coordinates for actual zoom - xsize = ( - self.warped_input_dataset.RasterXSize - ) # size of the raster in pixels - ysize = self.warped_input_dataset.RasterYSize - querysize = self.tile_size - - rx = tx * tsize - rxsize = 0 - if tx == tmaxx: - rxsize = xsize % tsize - if rxsize == 0: - rxsize = tsize - - ry = ty * tsize - rysize = 0 - if ty == tmaxy: - rysize = ysize % tsize - if rysize == 0: - rysize = tsize - - wx, wy = 0, 0 - wxsize = int(rxsize / float(tsize) * self.tile_size) - wysize = int(rysize / float(tsize) * self.tile_size) - - if not self.options.xyz: - ry = ysize - (ty * tsize) - rysize - if wysize != self.tile_size: - wy = self.tile_size - wysize - - # Read the source raster if anything is going inside the tile as per the computed - # geo_query - tile_details.append( - TileDetail( - tx=tx, - ty=ytile, - tz=tz, - rx=rx, - ry=ry, - rxsize=rxsize, - rysize=rysize, - wx=wx, - wy=wy, - wxsize=wxsize, - wysize=wysize, - querysize=querysize, - isDEMtile=isDEMtile - ) - ) - - conf = TileJobInfo( - src_file=self.tmp_vrt_filename, - nb_data_bands=self.dataBandsCount, - output_file_path=self.output_folder, - tile_extension=self.tileext, - tile_driver=self.tiledriver, - tile_size=self.tile_size, - kml=self.kml, - tminmax=self.tminmax, - tminz=self.tminz, - tmaxz=self.tmaxz, - in_srs_wkt=self.in_srs_wkt, - out_geo_trans=self.out_gt, - ominy=self.ominy, - is_epsg_4326=self.isepsg4326, - options=self.options, - exclude_transparent=self.options.exclude_transparent, - ) - - return conf, tile_details - - def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): - """ - For given dataset and query in cartographic coordinates returns parameters for ReadRaster() - in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the - extent is returned in the native resolution of dataset ds. - - raises Gdal2TilesError if the dataset does not contain anything inside this geo_query - """ - geotran = ds.GetGeoTransform() - rx = int((ulx - geotran[0]) / geotran[1] + 0.001) - ry = int((uly - geotran[3]) / geotran[5] + 0.001) - rxsize = max(1, int((lrx - ulx) / geotran[1] + 0.5)) - rysize = max(1, int((lry - uly) / geotran[5] + 0.5)) - - if not querysize: - wxsize, wysize = rxsize, rysize - else: - wxsize, wysize = querysize, querysize - - # Coordinates should not go out of the bounds of the raster - wx = 0 - if rx < 0: - rxshift = abs(rx) - wx = int(wxsize * (float(rxshift) / rxsize)) - wxsize = wxsize - wx - rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) - rx = 0 - if rx + rxsize > ds.RasterXSize: - wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) - rxsize = ds.RasterXSize - rx - - wy = 0 - if ry < 0: - ryshift = abs(ry) - wy = int(wysize * (float(ryshift) / rysize)) - wysize = wysize - wy - rysize = rysize - int(rysize * (float(ryshift) / rysize)) - ry = 0 - if ry + rysize > ds.RasterYSize: - wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) - rysize = ds.RasterYSize - ry - - return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) - - def generate_tilemapresource(self) -> str: - """ - Template for tilemapresource.xml. Returns filled string. Expected variables: - title, north, south, east, west, isepsg4326, projection, publishurl, - zoompixels, tile_size, tileformat, profile - """ - - args = {} - args["xml_escaped_title"] = gdal.EscapeString( - self.options.title, gdal.CPLES_XML - ) - args["south"], args["west"], args["north"], args["east"] = self.swne - args["tile_size"] = self.tile_size - args["tileformat"] = self.tileext - args["publishurl"] = self.options.url - args["profile"] = self.options.profile - - if self.options.profile == "mercator": - args["srs"] = "EPSG:3857" - elif self.options.profile == "geodetic": - args["srs"] = "EPSG:4326" - elif self.options.s_srs: - args["srs"] = self.options.s_srs - elif self.out_srs: - args["srs"] = self.out_srs.ExportToWkt() - else: - args["srs"] = "" - - s = ( - """ - - %(xml_escaped_title)s - - %(srs)s - - - - -""" - % args - ) # noqa - for z in range(self.tminz, self.tmaxz + 1): - if self.options.profile == "raster": - s += ( - """ \n""" - % ( - args["publishurl"], - z, - (2 ** (self.nativezoom - z) * self.out_gt[1]), - z, - ) - ) - elif self.options.profile == "mercator": - s += ( - """ \n""" - % (args["publishurl"], z, 156543.0339 / 2**z, z) - ) - elif self.options.profile == "geodetic": - s += ( - """ \n""" - % (args["publishurl"], z, 0.703125 / 2**z, z) - ) - s += """ - - """ - return s - - def generate_googlemaps(self) -> str: - """ - Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. - It returns filled string. Expected variables: - title, googlemapskey, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, - publishurl - """ - args = {} - args["xml_escaped_title"] = gdal.EscapeString( - self.options.title, gdal.CPLES_XML - ) - args["googlemapsurl"] = "https://maps.googleapis.com/maps/api/js" - if self.options.googlekey != "INSERT_YOUR_KEY_HERE": - args["googlemapsurl"] += "?key=" + self.options.googlekey - args["googlemapsurl_hint"] = "" - else: - args[ - "googlemapsurl_hint" - ] = "" - args["south"], args["west"], args["north"], args["east"] = self.swne - args["minzoom"] = self.tminz - args["maxzoom"] = self.tmaxz - args["tile_size"] = self.tile_size - args["tileformat"] = self.tileext - args["publishurl"] = self.options.url - args["copyright"] = self.options.copyright - - # Logic below inspired from https://www.gavinharriss.com/code/opacity-control - # which borrowed on gdal2tiles itself to migrate from Google Maps V2 to V3 - - args[ - "custom_tile_overlay_js" - ] = """ -// Beginning of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/CustomTileOverlay.js -// with CustomTileOverlay.prototype.getTileUrl() method customized for gdal2tiles needs. - -/******************************************************************************* -Copyright (c) 2010-2012. Gavin Harriss -Site: http://www.gavinharriss.com/ -Originally developed for: http://www.topomap.co.nz/ -Licences: Creative Commons Attribution 3.0 New Zealand License -http://creativecommons.org/licenses/by/3.0/nz/ -******************************************************************************/ - -CustomTileOverlay = function (map, opacity) { - this.tileSize = new google.maps.Size(256, 256); // Change to tile size being used - - this.map = map; - this.opacity = opacity; - this.tiles = []; - - this.visible = false; - this.initialized = false; - - this.self = this; -} - -CustomTileOverlay.prototype = new google.maps.OverlayView(); - -CustomTileOverlay.prototype.getTile = function (p, z, ownerDocument) { - // If tile already exists then use it - for (var n = 0; n < this.tiles.length; n++) { - if (this.tiles[n].id == 't_' + p.x + '_' + p.y + '_' + z) { - return this.tiles[n]; - } - } - - // If tile doesn't exist then create it - var tile = ownerDocument.createElement('div'); - var tp = this.getTileUrlCoord(p, z); - tile.id = 't_' + tp.x + '_' + tp.y + '_' + z - tile.style.width = this.tileSize.width + 'px'; - tile.style.height = this.tileSize.height + 'px'; - tile.style.backgroundImage = 'url(' + this.getTileUrl(tp, z) + ')'; - tile.style.backgroundRepeat = 'no-repeat'; - - if (!this.visible) { - tile.style.display = 'none'; - } - - this.tiles.push(tile) - - this.setObjectOpacity(tile); - - return tile; -} - -// Save memory / speed up the display by deleting tiles out of view -// Essential for use on iOS devices such as iPhone and iPod! -CustomTileOverlay.prototype.deleteHiddenTiles = function (zoom) { - var bounds = this.map.getBounds(); - var tileNE = this.getTileUrlCoordFromLatLng(bounds.getNorthEast(), zoom); - var tileSW = this.getTileUrlCoordFromLatLng(bounds.getSouthWest(), zoom); - - var minX = tileSW.x - 1; - var maxX = tileNE.x + 1; - var minY = tileSW.y - 1; - var maxY = tileNE.y + 1; - - var tilesToKeep = []; - var tilesLength = this.tiles.length; - for (var i = 0; i < tilesLength; i++) { - var idParts = this.tiles[i].id.split("_"); - var tileX = Number(idParts[1]); - var tileY = Number(idParts[2]); - var tileZ = Number(idParts[3]); - if (( - (minX < maxX && (tileX >= minX && tileX <= maxX)) - || (minX > maxX && ((tileX >= minX && tileX <= (Math.pow(2, zoom) - 1)) || (tileX >= 0 && tileX <= maxX))) // Lapped the earth! - ) - && (tileY >= minY && tileY <= maxY) - && tileZ == zoom) { - tilesToKeep.push(this.tiles[i]); - } - else { - delete this.tiles[i]; - } - } - - this.tiles = tilesToKeep; -}; - -CustomTileOverlay.prototype.pointToTile = function (point, z) { - var projection = this.map.getProjection(); - var worldCoordinate = projection.fromLatLngToPoint(point); - var pixelCoordinate = new google.maps.Point(worldCoordinate.x * Math.pow(2, z), worldCoordinate.y * Math.pow(2, z)); - var tileCoordinate = new google.maps.Point(Math.floor(pixelCoordinate.x / this.tileSize.width), Math.floor(pixelCoordinate.y / this.tileSize.height)); - return tileCoordinate; -} - -CustomTileOverlay.prototype.getTileUrlCoordFromLatLng = function (latlng, zoom) { - return this.getTileUrlCoord(this.pointToTile(latlng, zoom), zoom) -} - -CustomTileOverlay.prototype.getTileUrlCoord = function (coord, zoom) { - var tileRange = 1 << zoom; - var y = tileRange - coord.y - 1; - var x = coord.x; - if (x < 0 || x >= tileRange) { - x = (x % tileRange + tileRange) % tileRange; - } - return new google.maps.Point(x, y); -} - -// Modified for gdal2tiles needs -CustomTileOverlay.prototype.getTileUrl = function (tile, zoom) { - - if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) { - return "https://gdal.org/resources/gdal2tiles/none.png"; - } - var ymax = 1 << zoom; - var y = ymax - tile.y -1; - var tileBounds = new google.maps.LatLngBounds( - fromMercatorPixelToLatLng( new google.maps.Point( (tile.x)*256, (y+1)*256 ) , zoom ), - fromMercatorPixelToLatLng( new google.maps.Point( (tile.x+1)*256, (y)*256 ) , zoom ) - ); - if (mapBounds.intersects(tileBounds)) { - return zoom+"/"+tile.x+"/"+tile.y+".png"; - } else { - return "https://gdal.org/resources/gdal2tiles/none.png"; - } - -} - -CustomTileOverlay.prototype.initialize = function () { - if (this.initialized) { - return; - } - var self = this.self; - this.map.overlayMapTypes.insertAt(0, self); - this.initialized = true; -} - -CustomTileOverlay.prototype.hide = function () { - this.visible = false; - - var tileCount = this.tiles.length; - for (var n = 0; n < tileCount; n++) { - this.tiles[n].style.display = 'none'; - } -} - -CustomTileOverlay.prototype.show = function () { - this.initialize(); - this.visible = true; - var tileCount = this.tiles.length; - for (var n = 0; n < tileCount; n++) { - this.tiles[n].style.display = ''; - } -} - -CustomTileOverlay.prototype.releaseTile = function (tile) { - tile = null; -} - -CustomTileOverlay.prototype.setOpacity = function (op) { - this.opacity = op; - - var tileCount = this.tiles.length; - for (var n = 0; n < tileCount; n++) { - this.setObjectOpacity(this.tiles[n]); - } -} - -CustomTileOverlay.prototype.setObjectOpacity = function (obj) { - if (this.opacity > 0) { - if (typeof (obj.style.filter) == 'string') { obj.style.filter = 'alpha(opacity:' + this.opacity + ')'; } - if (typeof (obj.style.KHTMLOpacity) == 'string') { obj.style.KHTMLOpacity = this.opacity / 100; } - if (typeof (obj.style.MozOpacity) == 'string') { obj.style.MozOpacity = this.opacity / 100; } - if (typeof (obj.style.opacity) == 'string') { obj.style.opacity = this.opacity / 100; } - } -} - -// End of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/CustomTileOverlay.js -""" - - args[ - "ext_draggable_object_js" - ] = """ -// Beginning of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/ExtDraggableObject.js - -/** - * @name ExtDraggableObject - * @version 1.0 - * @author Gabriel Schneider - * @copyright (c) 2009 Gabriel Schneider - * @fileoverview This sets up a given DOM element to be draggable - * around the page. - */ - -/* - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/** - * Sets up a DOM element to be draggable. The options available - * within {@link ExtDraggableObjectOptions} are: top, left, container, - * draggingCursor, draggableCursor, intervalX, intervalY, - * toleranceX, toleranceY, restrictX, and restrictY. - * @param {HTMLElement} src The element to make draggable - * @param {ExtDraggableObjectOptions} [opts] options - * @constructor - */ -function ExtDraggableObject(src, opt_drag) { - var me = this; - var event_ = (window["GEvent"]||google.maps.Event||google.maps.event); - var opt_drag_=opt_drag||{}; - var draggingCursor_ = opt_drag_.draggingCursor||"default"; - var draggableCursor_ = opt_drag_.draggableCursor||"default"; - var moving_ = false, preventDefault_; - var currentX_, currentY_, formerY_, formerX_, formerMouseX_, formerMouseY_; - var top_, left_; - var mouseDownEvent_, mouseUpEvent_, mouseMoveEvent_; - var originalX_, originalY_; - var halfIntervalX_ = Math.round(opt_drag_.intervalX/2); - var halfIntervalY_ = Math.round(opt_drag_.intervalY/2); - var target_ = src.setCapture?src:document; - - if (typeof opt_drag_.intervalX !== "number") { - opt_drag_.intervalX = 1; - } - if (typeof opt_drag_.intervalY !== "number") { - opt_drag_.intervalY = 1; - } - if (typeof opt_drag_.toleranceX !== "number") { - opt_drag_.toleranceX = Infinity; - } - if (typeof opt_drag_.toleranceY !== "number") { - opt_drag_.toleranceY = Infinity; - } - - mouseDownEvent_ = event_.addDomListener(src, "mousedown", mouseDown_); - mouseUpEvent_ = event_.addDomListener(target_, "mouseup", mouseUp_); - - setCursor_(false); - if (opt_drag_.container) { - - } - src.style.position = "absolute"; - opt_drag_.left = opt_drag_.left||src.offsetLeft; - opt_drag_.top = opt_drag_.top||src.offsetTop; - opt_drag_.interval = opt_drag_.interval||1; - moveTo_(opt_drag_.left, opt_drag_.top, false); - - /** - * Set the cursor for {@link src} based on whether or not - * the element is currently being dragged. - * @param {Boolean} a Is the element being dragged? - * @private - */ - function setCursor_(a) { - if(a) { - src.style.cursor = draggingCursor_; - } else { - src.style.cursor = draggableCursor_; - } - } - - /** - * Moves the element {@link src} to the given - * location. - * @param {Number} x The left position to move to. - * @param {Number} y The top position to move to. - * @param {Boolean} prevent Prevent moving? - * @private - */ - function moveTo_(x, y, prevent) { - var roundedIntervalX_, roundedIntervalY_; - left_ = Math.round(x); - top_ = Math.round(y); - if (opt_drag_.intervalX>1) { - roundedIntervalX_ = Math.round(left_%opt_drag_.intervalX); - left_ = (roundedIntervalX_1) { - roundedIntervalY_ = Math.round(top_%opt_drag_.intervalY); - top_ = (roundedIntervalY_opt_drag_.toleranceX||(currentX_-(left_+src.offsetWidth))>opt_drag_.toleranceX)||((top_-currentY_)>opt_drag_.toleranceY||(currentY_-(top_+src.offsetHeight))>opt_drag_.toleranceY)) { - left_ = originalX_; - top_ = originalY_; - } - } - if(!opt_drag_.restrictX&&!prevent) { - src.style.left = left_ + "px"; - } - if(!opt_drag_.restrictY&&!prevent) { - src.style.top = top_ + "px"; - } - } - - /** - * Handles the mousemove event. - * @param {event} ev The event data sent by the browser. - * @private - */ - function mouseMove_(ev) { - var e=ev||event; - currentX_ = formerX_+((e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft))-formerMouseX_); - currentY_ = formerY_+((e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop))-formerMouseY_); - formerX_ = currentX_; - formerY_ = currentY_; - formerMouseX_ = e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft); - formerMouseY_ = e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop); - if (moving_) { - moveTo_(currentX_,currentY_, preventDefault_); - event_.trigger(me, "drag", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); - } - } - - /** - * Handles the mousedown event. - * @param {event} ev The event data sent by the browser. - * @private - */ - function mouseDown_(ev) { - var e=ev||event; - setCursor_(true); - event_.trigger(me, "mousedown", e); - if (src.style.position !== "absolute") { - src.style.position = "absolute"; - return; - } - formerMouseX_ = e.pageX||(e.clientX+document.body.scrollLeft+document.documentElement.scrollLeft); - formerMouseY_ = e.pageY||(e.clientY+document.body.scrollTop+document.documentElement.scrollTop); - originalX_ = src.offsetLeft; - originalY_ = src.offsetTop; - formerX_ = originalX_; - formerY_ = originalY_; - mouseMoveEvent_ = event_.addDomListener(target_, "mousemove", mouseMove_); - if (src.setCapture) { - src.setCapture(); - } - if (e.preventDefault) { - e.preventDefault(); - e.stopPropagation(); - } else { - e.cancelBubble=true; - e.returnValue=false; - } - moving_ = true; - event_.trigger(me, "dragstart", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); - } - - /** - * Handles the mouseup event. - * @param {event} ev The event data sent by the browser. - * @private - */ - function mouseUp_(ev) { - var e=ev||event; - if (moving_) { - setCursor_(false); - event_.removeListener(mouseMoveEvent_); - if (src.releaseCapture) { - src.releaseCapture(); - } - moving_ = false; - event_.trigger(me, "dragend", {mouseX: formerMouseX_, mouseY: formerMouseY_, startLeft: originalX_, startTop: originalY_, event:e}); - } - currentX_ = currentY_ = null; - event_.trigger(me, "mouseup", e); - } - - /** - * Move the element {@link src} to the given location. - * @param {Point} point An object with an x and y property - * that represents the location to move to. - */ - me.moveTo = function(point) { - moveTo_(point.x, point.y, false); - }; - - /** - * Move the element {@link src} by the given amount. - * @param {Size} size An object with an x and y property - * that represents distance to move the element. - */ - me.moveBy = function(size) { - moveTo_(src.offsetLeft + size.width, src.offsetHeight + size.height, false); - } - - /** - * Sets the cursor for the dragging state. - * @param {String} cursor The name of the cursor to use. - */ - me.setDraggingCursor = function(cursor) { - draggingCursor_ = cursor; - setCursor_(moving_); - }; - - /** - * Sets the cursor for the draggable state. - * @param {String} cursor The name of the cursor to use. - */ - me.setDraggableCursor = function(cursor) { - draggableCursor_ = cursor; - setCursor_(moving_); - }; - - /** - * Returns the current left location. - * @return {Number} - */ - me.left = function() { - return left_; - }; - - /** - * Returns the current top location. - * @return {Number} - */ - me.top = function() { - return top_; - }; - - /** - * Returns the number of intervals the element has moved - * along the X axis. Useful for scrollbar type - * applications. - * @return {Number} - */ - me.valueX = function() { - var i = opt_drag_.intervalX||1; - return Math.round(left_ / i); - }; - - /** - * Returns the number of intervals the element has moved - * along the Y axis. Useful for scrollbar type - * applications. - * @return {Number} - */ - me.valueY = function() { - var i = opt_drag_.intervalY||1; - return Math.round(top_ / i); - }; - - /** - * Sets the left position of the draggable object based on - * intervalX. - * @param {Number} value The location to move to. - */ - me.setValueX = function(value) { - moveTo_(value * opt_drag_.intervalX, top_, false); - }; - - /** - * Sets the top position of the draggable object based on - * intervalY. - * @param {Number} value The location to move to. - */ - me.setValueY = function(value) { - moveTo_(left_, value * opt_drag_.intervalY, false); - }; - - /** - * Prevents the default movement behavior of the object. - * The object can still be moved by other methods. - */ - me.preventDefaultMovement = function(prevent) { - preventDefault_ = prevent; - }; -} - /** - * @name ExtDraggableObjectOptions - * @class This class represents the optional parameter passed into constructor of - * ExtDraggableObject. - * @property {Number} [top] Top pixel - * @property {Number} [left] Left pixel - * @property {HTMLElement} [container] HTMLElement as container. - * @property {String} [draggingCursor] Dragging Cursor - * @property {String} [draggableCursor] Draggable Cursor - * @property {Number} [intervalX] Interval in X direction - * @property {Number} [intervalY] Interval in Y direction - * @property {Number} [toleranceX] Tolerance X in pixel - * @property {Number} [toleranceY] Tolerance Y in pixel - * @property {Boolean} [restrictX] Whether to restrict move in X direction - * @property {Boolean} [restrictY] Whether to restrict move in Y direction - */ - - // End of https://github.com/gavinharriss/google-maps-v3-opacity-control/blob/master/ExtDraggableObject.js -""" - - s = ( - r""" - - - %(xml_escaped_title)s - - - - %(googlemapsurl_hint)s - - - - - -
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC - -
-
- - - """ - % args - ) # noqa - - # TODO? when there is self.kml, before the transition to GoogleMapsV3 API, - # we used to offer a way to display the KML file in Google Earth - # cf https://github.com/OSGeo/gdal/blob/32f32a69bbf5c408c6c8ac2cc6f1d915a7a1c576/swig/python/gdal-utils/osgeo_utils/gdal2tiles.py#L3203 to #L3243 - - return s - - def generate_leaflet(self) -> str: - """ - Template for leaflet.html implementing overlay of tiles for 'mercator' profile. - It returns filled string. Expected variables: - title, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl - """ - - args = {} - args["double_quote_escaped_title"] = self.options.title.replace( - '"', '\\"') - args["xml_escaped_title"] = gdal.EscapeString( - self.options.title, gdal.CPLES_XML - ) - args["south"], args["west"], args["north"], args["east"] = self.swne - args["centerlon"] = (args["north"] + args["south"]) / 2.0 - args["centerlat"] = (args["west"] + args["east"]) / 2.0 - args["minzoom"] = self.tminz - args["maxzoom"] = self.tmaxz - args["beginzoom"] = self.tmaxz - args["tile_size"] = self.tile_size # not used - args["tileformat"] = self.tileext - args["publishurl"] = self.options.url # not used - args["copyright"] = self.options.copyright.replace('"', '\\"') - - if self.options.xyz: - args["tms"] = 0 - else: - args["tms"] = 1 - - s = ( - """ - - - - - %(xml_escaped_title)s - - - - - - - - - - -
- - - - - - - """ - % args - ) # noqa - - return s - - def generate_openlayers(self) -> str: - """ - Template for openlayers.html, with the tiles as overlays, and base layers. - - It returns filled string. - """ - - args = {} - args["xml_escaped_title"] = gdal.EscapeString( - self.options.title, gdal.CPLES_XML - ) - args["bingkey"] = self.options.bingkey - args["minzoom"] = self.tminz - args["maxzoom"] = self.tmaxz - args["tile_size"] = self.tile_size - args["tileformat"] = self.tileext - args["publishurl"] = self.options.url - args["copyright"] = self.options.copyright - if self.options.xyz: - args["sign_y"] = "" - else: - args["sign_y"] = "-" - - args["ominx"] = self.ominx - args["ominy"] = self.ominy - args["omaxx"] = self.omaxx - args["omaxy"] = self.omaxy - args["center_x"] = (self.ominx + self.omaxx) / 2 - args["center_y"] = (self.ominy + self.omaxy) / 2 - - s = ( - r""" - - - %(xml_escaped_title)s - - - - - - - - - -
Generated by GDAL2Tiles    
-
-
- - -""" - - return s - - def generate_mapml(self) -> str: - - if self.options.mapml_template: - template = self.options.mapml_template - else: - template = gdal.FindFile("gdal", "template_tiles.mapml") - s = open(template, "rb").read().decode("utf-8") - - if self.options.profile == "mercator": - tiling_scheme = "OSMTILE" - elif self.options.profile == "geodetic": - tiling_scheme = "WGS84" - else: - tiling_scheme = self.options.profile - - s = s.replace("${TILING_SCHEME}", tiling_scheme) - s = s.replace("${URL}", self.options.url if self.options.url else "./") - tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] - s = s.replace("${MINTILEX}", str(tminx)) - s = s.replace( - "${MINTILEY}", str(GDAL2Tiles.getYTile( - tmaxy, self.tmaxz, self.options)) - ) - s = s.replace("${MAXTILEX}", str(tmaxx)) - s = s.replace( - "${MAXTILEY}", str(GDAL2Tiles.getYTile( - tminy, self.tmaxz, self.options)) - ) - s = s.replace("${CURZOOM}", str(self.tmaxz)) - s = s.replace("${MINZOOM}", str(self.tminz)) - s = s.replace("${MAXZOOM}", str(self.tmaxz)) - s = s.replace("${TILEEXT}", str(self.tileext)) - - return s - - @staticmethod - def getYTile(ty, tz, options): - """ - Calculates the y-tile number based on whether XYZ or TMS (default) system is used - :param ty: The y-tile number - :param tz: The z-tile number - :return: The transformed y-tile number - """ - if options.xyz and options.profile != "raster": - if options.profile in ("mercator", "geodetic"): - # Convert from TMS to XYZ numbering system - return (2**tz - 1) - ty - - tms = tmsMap[options.profile] - return ( - tms.matrix_height * 2**tz - 1 - ) - ty # Convert from TMS to XYZ numbering system - - return ty - - -def worker_tile_details( - input_file: str, output_folder: str, options: Options -) -> Tuple[TileJobInfo, List[TileDetail]]: - gdal2tiles = GDAL2Tiles(input_file, output_folder, options) - gdal2tiles.open_input() - gdal2tiles.generate_metadata() - tile_job_info, tile_details = gdal2tiles.generate_base_tiles() - return tile_job_info, tile_details - - -class ProgressBar(object): - def __init__(self, total_items: int) -> None: - self.total_items = total_items - self.nb_items_done = 0 - self.current_progress = 0 - self.STEP = 2.5 - - def start(self) -> None: - sys.stdout.write("0") - - def log_progress(self, nb_items: int = 1) -> None: - self.nb_items_done += nb_items - progress = float(self.nb_items_done) / self.total_items * 100 - if progress >= self.current_progress + self.STEP: - done = False - while not done: - if self.current_progress + self.STEP <= progress: - self.current_progress += self.STEP - if self.current_progress % 10 == 0: - sys.stdout.write(str(int(self.current_progress))) - if self.current_progress == 100: - sys.stdout.write("\n") - else: - sys.stdout.write(".") - else: - done = True - sys.stdout.flush() - - -def get_tile_swne(tile_job_info, options): - if options.profile == "mercator": - mercator = GlobalMercator() - tile_swne = mercator.TileLatLonBounds - elif options.profile == "geodetic": - geodetic = GlobalGeodetic(options.tmscompatible) - tile_swne = geodetic.TileLatLonBounds - elif options.profile == "raster": - srs4326 = osr.SpatialReference() - srs4326.ImportFromEPSG(4326) - srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) - if tile_job_info.kml and tile_job_info.in_srs_wkt: - in_srs = osr.SpatialReference() - in_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) - in_srs.ImportFromWkt(tile_job_info.in_srs_wkt) - ct = osr.CoordinateTransformation(in_srs, srs4326) - - def rastertileswne(x, y, z): - pixelsizex = ( - 2 ** (tile_job_info.tmaxz - z) * - tile_job_info.out_geo_trans[1] - ) - west = ( - tile_job_info.out_geo_trans[0] - + x * tile_job_info.tile_size * pixelsizex - ) - east = west + tile_job_info.tile_size * pixelsizex - if options.xyz: - north = ( - tile_job_info.out_geo_trans[3] - - y * tile_job_info.tile_size * pixelsizex - ) - south = north - tile_job_info.tile_size * pixelsizex - else: - south = ( - tile_job_info.ominy + y * tile_job_info.tile_size * pixelsizex - ) - north = south + tile_job_info.tile_size * pixelsizex - if not tile_job_info.is_epsg_4326: - # Transformation to EPSG:4326 (WGS84 datum) - west, south = ct.TransformPoint(west, south)[:2] - east, north = ct.TransformPoint(east, north)[:2] - return south, west, north, east - - tile_swne = rastertileswne - else: - def tile_swne(x, y, z): return (0, 0, 0, 0) # noqa - else: - tile_swne = None - - return tile_swne - - -def single_threaded_tiling( - input_file: str, output_folder: str, options: Options -) -> None: - """ - Keep a single threaded version that stays clear of multiprocessing, for platforms that would not - support it - """ - if options.verbose: - print("Begin tiles details calc") - conf, tile_details = worker_tile_details( - input_file, output_folder, options) - - if options.verbose: - print("Tiles details calc complete.") - - if not options.verbose and not options.quiet: - base_progress_bar = ProgressBar(len(tile_details)) - base_progress_bar.start() - - for tile_detail in tile_details: - create_base_tile(conf, tile_detail) - - if not options.verbose and not options.quiet: - base_progress_bar.log_progress() - - if getattr(threadLocal, "cached_ds", None): - del threadLocal.cached_ds - - if not options.quiet: - count = count_overview_tiles(conf) - if count: - print("Generating Overview Tiles:") - - if not options.verbose: - overview_progress_bar = ProgressBar(count) - overview_progress_bar.start() - - for base_tz in range(conf.tmaxz, conf.tminz, -1): - base_tile_groups = group_overview_base_tiles( - base_tz, output_folder, conf) - for base_tiles in base_tile_groups: - create_overview_tile(base_tz, base_tiles, - output_folder, conf, options) - if not options.verbose and not options.quiet: - overview_progress_bar.log_progress() - - shutil.rmtree(os.path.dirname(conf.src_file)) - - -def multi_threaded_tiling( - input_file: str, output_folder: str, options: Options, pool -) -> None: - nb_processes = options.nb_processes or 1 - - if options.verbose: - print("Begin tiles details calc") - - conf, tile_details = worker_tile_details( - input_file, output_folder, options) - - if options.verbose: - print("Tiles details calc complete.") - - if not options.verbose and not options.quiet: - base_progress_bar = ProgressBar(len(tile_details)) - base_progress_bar.start() - - # TODO: gbataille - check the confs for which each element is an array... one useless level? - # TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..." - chunksize = max(1, min(128, len(tile_details) // nb_processes)) - for _ in pool.imap_unordered( - partial(create_base_tile, conf), tile_details, chunksize=chunksize - ): - if not options.verbose and not options.quiet: - base_progress_bar.log_progress() - - if not options.quiet: - count = count_overview_tiles(conf) - if count: - print("Generating Overview Tiles:") - - if not options.verbose: - overview_progress_bar = ProgressBar(count) - overview_progress_bar.start() - - for base_tz in range(conf.tmaxz, conf.tminz, -1): - base_tile_groups = group_overview_base_tiles( - base_tz, output_folder, conf) - chunksize = max(1, min(128, len(base_tile_groups) // nb_processes)) - for _ in pool.imap_unordered( - partial( - create_overview_tile, - base_tz, - output_folder=output_folder, - tile_job_info=conf, - options=options, - ), - base_tile_groups, - chunksize=chunksize, - ): - if not options.verbose and not options.quiet: - overview_progress_bar.log_progress() - - shutil.rmtree(os.path.dirname(conf.src_file)) - - -class UseExceptions(object): - def __enter__(self): - self.old_used_exceptions = gdal.GetUseExceptions() - if not self.old_used_exceptions: - gdal.UseExceptions() - - def __exit__(self, type, value, tb): - if not self.old_used_exceptions: - gdal.DontUseExceptions() - - -class DividedCache(object): - def __init__(self, nb_processes): - self.nb_processes = nb_processes - - def __enter__(self): - self.gdal_cache_max = gdal.GetCacheMax() - # Make sure that all processes do not consume more than `gdal.GetCacheMax()` - gdal_cache_max_per_process = max( - 1024 * 1024, math.floor(self.gdal_cache_max / self.nb_processes) - ) - set_cache_max(gdal_cache_max_per_process) - - def __exit__(self, type, value, tb): - # Set the maximum cache back to the original value - set_cache_max(self.gdal_cache_max) - - -def main(argv: List[str] = sys.argv) -> int: - # TODO: gbataille - use mkdtemp to work in a temp directory - # TODO: gbataille - debug intermediate tiles.vrt not produced anymore? - # TODO: gbataille - Refactor generate overview tiles to not depend on self variables - - # For multiprocessing, we need to propagate the configuration options to - # the environment, so that forked processes can inherit them. - for i in range(len(argv)): - if argv[i] == "--config" and i + 2 < len(argv): - os.environ[argv[i + 1]] = argv[i + 2] - - if "--mpi" in argv: - from mpi4py import MPI - from mpi4py.futures import MPICommExecutor - - with UseExceptions(), MPICommExecutor(MPI.COMM_WORLD, root=0) as pool: - if pool is None: - return 0 - # add interface of multiprocessing.Pool to MPICommExecutor - pool.imap_unordered = partial(pool.map, unordered=True) - return submain(argv, pool, MPI.COMM_WORLD.Get_size()) - else: - return submain(argv) - - -def submain(argv: List[str], pool=None, pool_size=0) -> int: - - argv = gdal.GeneralCmdLineProcessor(argv) - if argv is None: - return 0 - input_file, output_folder, options = process_args(argv[1:]) - if pool_size: - options.nb_processes = pool_size - nb_processes = options.nb_processes or 1 - - with UseExceptions(): - if pool is not None: # MPI - multi_threaded_tiling(input_file, output_folder, options, pool) - elif nb_processes == 1: - single_threaded_tiling(input_file, output_folder, options) - else: - # Trick inspired from https://stackoverflow.com/questions/45720153/python-multiprocessing-error-attributeerror-module-main-has-no-attribute - # and https://bugs.python.org/issue42949 - import __main__ - - if not hasattr(__main__, "__spec__"): - __main__.__spec__ = None - from multiprocessing import Pool - - with DividedCache(nb_processes), Pool(processes=nb_processes) as pool: - multi_threaded_tiling(input_file, output_folder, options, pool) - - return 0 - - -# vim: set tabstop=4 shiftwidth=4 expandtab: - -# Running main() must be protected that way due to use of multiprocessing on Windows: -# https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods -if __name__ == "__main__": - sys.exit(main(sys.argv)) diff --git a/auxiliary/gdal2customtiles/legacy/gdal2customtiles.py b/auxiliary/gdal2customtiles/legacy/gdal2customtiles.py new file mode 100644 index 00000000..f698bebb --- /dev/null +++ b/auxiliary/gdal2customtiles/legacy/gdal2customtiles.py @@ -0,0 +1,3218 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# ****************************************************************************** +# $Id$ +# +# Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/) +# Support: BRGM (http://www.brgm.fr) +# Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory. +# - generate Google Earth metadata (KML SuperOverlay) +# - generate simple HTML viewer based on Google Maps and OpenLayers +# - support of global tiles (Spherical Mercator) for compatibility +# with interactive web maps a la Google Maps +# Author: Klokan Petr Pridal, klokan at klokan dot cz +# Web: http://www.klokan.cz/projects/gdal2tiles/ +# GUI: http://www.maptiler.org/ +# +############################################################################### +# Copyright (c) 2008, Klokan Petr Pridal +# Copyright (c) 2010-2013, Even Rouault +# +# Permission is hereby granted, free of charge, to any person obtaining a +# copy of this software and associated documentation files (the "Software"), +# to deal in the Software without restriction, including without limitation +# the rights to use, copy, modify, merge, publish, distribute, sublicense, +# and/or sell copies of the Software, and to permit persons to whom the +# Software is furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included +# in all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL +# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +# DEALINGS IN THE SOFTWARE. +# ****************************************************************************** + +import math +import os +import sys + +from osgeo import gdal +from osgeo import osr + +import struct # 1bto4b + + +def binary(num): # 1bto4b + # 1bto4b + return ''.join(bin(c).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) + +# 1bto4b + +def getTilePxBounds(self, tx, ty, tz, ds): + + querysize = self.tilesize + + if self.isRasterBounded: # 'raster' profile: + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.out_ds.fWorldXSize + ysize = self.out_ds.fWorldYSize + if tz >= self.tmaxz: + querysize = self.tilesize + + rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld + #print("rx", rx) + rxsize = 0 + rxsize = tsize + + rysize = 0 + rysize = tsize + + ry = ysize - (ty * tsize) - rysize - \ + self.out_ds.fRasterYOriginWorld + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tilesize) + if wysize != self.tilesize: + wy = self.tilesize - wysize + + if rx < 0: + rxsize = tsize + rx + wx = -rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + rx = 0 + if ry < 0: + rysize = tsize + ry + wy = -ry + wysize = int(rysize/float(tsize) * self.tilesize) + ry = 0 + if rx + rxsize > self.out_ds.fRasterXSizeWorld: + rxsize = self.out_ds.fRasterXSizeWorld - rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + if ry + rysize > self.out_ds.fRasterYSizeWorld: + rysize = self.out_ds.fRasterYSizeWorld - ry + wysize = int(rysize/float(tsize) * self.tilesize) + + # Convert rx, ry back to non-world coordinates + rx = int(float(self.out_ds.RasterXSize) * + (float(rx) / self.out_ds.fRasterXSizeWorld)) + ry = int(float(self.out_ds.RasterYSize) * + (float(ry) / self.out_ds.fRasterYSizeWorld)) + rxsize = int(float(self.out_ds.RasterXSize) * + (float(rxsize) / self.out_ds.fRasterXSizeWorld)) + rysize = int(float(self.out_ds.RasterYSize) * + (float(rysize) / self.out_ds.fRasterYSizeWorld)) + else: + b = self.mercator.TileBounds(tx, ty, tz) + rb, wb = self.geo_query( + ds, b[0], b[3], b[2], b[1], querysize=querysize) + rx, ry, rxsize, rysize = rb + wx, wy, wxsize, wysize = wb + + return [rx, ry, rxsize, rysize, wxsize, wysize] + + +try: + from PIL import Image + import numpy + import osgeo.gdal_array as gdalarray +except Exception: + # 'antialias' resampling is not available + pass + +__version__ = "$Id$" + +resampling_list = ('average', 'near', 'bilinear', 'cubic', + 'cubicspline', 'lanczos', 'antialias') +profile_list = ('mercator', 'geodetic', 'raster') +webviewer_list = ('all', 'google', 'openlayers', 'leaflet', 'none') + +# ============================================================================= +# ============================================================================= +# ============================================================================= + +__doc__globalmaptiles = """ +globalmaptiles.py + +Global Map Tiles as defined in Tile Map Service (TMS) Profiles +============================================================== + +Functions necessary for generation of global tiles used on the web. +It contains classes implementing coordinate conversions for: + + - GlobalMercator (based on EPSG:3857) + for Google Maps, Yahoo Maps, Bing Maps compatible tiles + - GlobalGeodetic (based on EPSG:4326) + for OpenLayers Base Map and Google Earth compatible tiles + +More info at: + +http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification +http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation +http://msdn.microsoft.com/en-us/library/bb259689.aspx +http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates + +Created by Klokan Petr Pridal on 2008-07-03. +Google Summer of Code 2008, project GDAL2Tiles for OSGEO. + +In case you use this class in your product, translate it to another language +or find it useful for your project please let me know. +My email: klokan at klokan dot cz. +I would like to know where it was used. + +Class is available under the open-source GDAL license (www.gdal.org). +""" + +MAXZOOMLEVEL = 32 + + +class GlobalMercator(object): + r""" + TMS Global Mercator Profile + --------------------------- + + Functions necessary for generation of tiles in Spherical Mercator projection, + EPSG:3857. + + Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps, + UK Ordnance Survey OpenSpace API, ... + and you can overlay them on top of base maps of those web mapping applications. + + Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). + + What coordinate conversions do we need for TMS Global Mercator tiles:: + + LatLon <-> Meters <-> Pixels <-> Tile + + WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid + lat/lon XY in meters XY pixels Z zoom XYZ from TMS + EPSG:4326 EPSG:387 + .----. --------- -- TMS + / \ <-> | | <-> /----/ <-> Google + \ / | | /--------/ QuadTree + ----- --------- /------------/ + KML, public WebMapService Web Clients TileMapService + + What is the coordinate extent of Earth in EPSG:3857? + + [-20037508.342789244, -20037508.342789244, + 20037508.342789244, 20037508.342789244] + Constant 20037508.342789244 comes from the circumference of the Earth in meters, + which is 40 thousand kilometers, the coordinate origin is in the middle of extent. + In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 + $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857 + Polar areas with abs(latitude) bigger then 85.05112878 are clipped off. + + What are zoom level constants (pixels/meter) for pyramid with EPSG:3857? + + whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile, + every lower zoom level resolution is always divided by two + initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062 + + What is the difference between TMS and Google Maps/QuadTree tile name convention? + + The tile raster itself is the same (equal extent, projection, pixel size), + there is just different identification of the same raster tile. + Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ. + Google placed the origin [0,0] to the top-left corner, reference is XYZ. + Microsoft is referencing tiles by a QuadTree name, defined on the website: + http://msdn2.microsoft.com/en-us/library/bb259689.aspx + + The lat/lon coordinates are using WGS84 datum, yes? + + Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum. + Well, the web clients like Google Maps are projecting those coordinates by + Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if + the were on the WGS84 ellipsoid. + + From MSDN documentation: + To simplify the calculations, we use the spherical form of projection, not + the ellipsoidal form. Since the projection is used only for map display, + and not for displaying numeric coordinates, we don't need the extra precision + of an ellipsoidal projection. The spherical projection causes approximately + 0.33 percent scale distortion in the Y direction, which is not visually + noticeable. + + How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4? + + You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform. + All of the tools supports -t_srs 'epsg:3857'. + + For other GIS programs check the exact definition of the projection: + More info at http://spatialreference.org/ref/user/google-projection/ + The same projection is designated as EPSG:3857. WKT definition is in the + official EPSG database. + + Proj4 Text: + +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 + +k=1.0 +units=m +nadgrids=@null +no_defs + + Human readable WKT format of EPSG:3857: + PROJCS["Google Maps Global Mercator", + GEOGCS["WGS 84", + DATUM["WGS_1984", + SPHEROID["WGS 84",6378137,298.257223563, + AUTHORITY["EPSG","7030"]], + AUTHORITY["EPSG","6326"]], + PRIMEM["Greenwich",0], + UNIT["degree",0.0174532925199433], + AUTHORITY["EPSG","4326"]], + PROJECTION["Mercator_1SP"], + PARAMETER["central_meridian",0], + PARAMETER["scale_factor",1], + PARAMETER["false_easting",0], + PARAMETER["false_northing",0], + UNIT["metre",1, + AUTHORITY["EPSG","9001"]]] + """ + + def __init__(self, tileSize=256): + "Initialize the TMS Global Mercator pyramid" + self.tileSize = tileSize + self.initialResolution = 2 * math.pi * 6378137 / self.tileSize + # 156543.03392804062 for tileSize 256 pixels + self.originShift = 2 * math.pi * 6378137 / 2.0 + # 20037508.342789244 + + def LatLonToMeters(self, lat, lon): + "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857" + + mx = lon * self.originShift / 180.0 + my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / \ + (math.pi / 180.0) + + my = my * self.originShift / 180.0 + return mx, my + + def MetersToLatLon(self, mx, my): + "Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum" + + lon = (mx / self.originShift) * 180.0 + lat = (my / self.originShift) * 180.0 + + lat = 180 / math.pi * \ + (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) + return lat, lon + + def PixelsToMeters(self, px, py, zoom): + "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" + + res = self.Resolution(zoom) + mx = px * res - self.originShift + my = py * res - self.originShift + return mx, my + + def MetersToPixels(self, mx, my, zoom): + "Converts EPSG:3857 to pyramid pixel coordinates in given zoom level" + + res = self.Resolution(zoom) + px = (mx + self.originShift) / res + py = (my + self.originShift) / res + return px, py + + def PixelsToTile(self, px, py): + "Returns a tile covering region in given pixel coordinates" + + tx = int(math.ceil(px / float(self.tileSize)) - 1) + ty = int(math.ceil(py / float(self.tileSize)) - 1) + return tx, ty + + def PixelsToRaster(self, px, py, zoom): + "Move the origin of pixel coordinates to top-left corner" + + mapSize = self.tileSize << zoom + return px, mapSize - py + + def MetersToTile(self, mx, my, zoom): + "Returns tile for given mercator coordinates" + + px, py = self.MetersToPixels(mx, my, zoom) + return self.PixelsToTile(px, py) + + def TileBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in EPSG:3857 coordinates" + + minx, miny = self.PixelsToMeters( + tx*self.tileSize, ty*self.tileSize, zoom) + maxx, maxy = self.PixelsToMeters( + (tx+1)*self.tileSize, (ty+1)*self.tileSize, zoom) + return (minx, miny, maxx, maxy) + + def TileLatLonBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in latitude/longitude using WGS84 datum" + + bounds = self.TileBounds(tx, ty, zoom) + minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) + maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) + + return (minLat, minLon, maxLat, maxLon) + + def Resolution(self, zoom): + "Resolution (meters/pixel) for given zoom level (measured at Equator)" + + # return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom) + return self.initialResolution / (2**zoom) + + def ZoomForPixelSize(self, pixelSize): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(MAXZOOMLEVEL): + if pixelSize > self.Resolution(i): + if i != -1: + return i-1 + else: + return 0 # We don't want to scale up + + def GoogleTile(self, tx, ty, zoom): + "Converts TMS tile coordinates to Google Tile coordinates" + + # coordinate origin is moved from bottom-left to top-left corner of the extent + return tx, (2**zoom - 1) - ty + + def QuadTree(self, tx, ty, zoom): + "Converts TMS tile coordinates to Microsoft QuadTree" + + quadKey = "" + ty = (2**zoom - 1) - ty + for i in range(zoom, 0, -1): + digit = 0 + mask = 1 << (i-1) + if (tx & mask) != 0: + digit += 1 + if (ty & mask) != 0: + digit += 2 + quadKey += str(digit) + + return quadKey + + +class GlobalGeodetic(object): + r""" + TMS Global Geodetic Profile + --------------------------- + + Functions necessary for generation of global tiles in Plate Carre projection, + EPSG:4326, "unprojected profile". + + Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters) + and you can overlay the tiles on top of OpenLayers base map. + + Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). + + What coordinate conversions do we need for TMS Global Geodetic tiles? + + Global Geodetic tiles are using geodetic coordinates (latitude,longitude) + directly as planar coordinates XY (it is also called Unprojected or Plate + Carre). We need only scaling to pixel pyramid and cutting to tiles. + Pyramid has on top level two tiles, so it is not square but rectangle. + Area [-180,-90,180,90] is scaled to 512x256 pixels. + TMS has coordinate origin (for pixels and tiles) in bottom-left corner. + Rasters are in EPSG:4326 and therefore are compatible with Google Earth. + + LatLon <-> Pixels <-> Tiles + + WGS84 coordinates Pixels in pyramid Tiles in pyramid + lat/lon XY pixels Z zoom XYZ from TMS + EPSG:4326 + .----. ---- + / \ <-> /--------/ <-> TMS + \ / /--------------/ + ----- /--------------------/ + WMS, KML Web Clients, Google Earth TileMapService + """ + + def __init__(self, tmscompatible, tileSize=256): + self.tileSize = tileSize + if tmscompatible is not None: + # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) + # Adhers to OSGeo TMS spec + # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic + self.resFact = 180.0 / self.tileSize + else: + # Defaults the resolution factor to 1.40625 (1 tile @ level 0) + # Adheres OpenLayers, MapProxy, etc default resolution for WMTS + self.resFact = 360.0 / self.tileSize + + def LonLatToPixels(self, lon, lat, zoom): + "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" + + res = self.resFact / 2**zoom + px = (180 + lon) / res + py = (90 + lat) / res + return px, py + + def PixelsToTile(self, px, py): + "Returns coordinates of the tile covering region in pixel coordinates" + + tx = int(math.ceil(px / float(self.tileSize)) - 1) + ty = int(math.ceil(py / float(self.tileSize)) - 1) + return tx, ty + + def LonLatToTile(self, lon, lat, zoom): + "Returns the tile for zoom which covers given lon/lat coordinates" + + px, py = self.LonLatToPixels(lon, lat, zoom) + return self.PixelsToTile(px, py) + + def Resolution(self, zoom): + "Resolution (arc/pixel) for given zoom level (measured at Equator)" + + return self.resFact / 2**zoom + + def ZoomForPixelSize(self, pixelSize): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(MAXZOOMLEVEL): + if pixelSize > self.Resolution(i): + if i != 0: + return i-1 + else: + return 0 # We don't want to scale up + + def TileBounds(self, tx, ty, zoom): + "Returns bounds of the given tile" + res = self.resFact / 2**zoom + return ( + tx*self.tileSize*res - 180, + ty*self.tileSize*res - 90, + (tx+1)*self.tileSize*res - 180, + (ty+1)*self.tileSize*res - 90 + ) + + def TileLatLonBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in the SWNE form" + b = self.TileBounds(tx, ty, zoom) + return (b[1], b[0], b[3], b[2]) + + +class Zoomify(object): + """ + Tiles compatible with the Zoomify viewer + ---------------------------------------- + """ + + def __init__(self, width, height, tilesize=256, tileformat='jpg'): + """Initialization of the Zoomify tile tree""" + + self.tilesize = tilesize + self.tileformat = tileformat + imagesize = (width, height) + tiles = (math.ceil(width / tilesize), math.ceil(height / tilesize)) + + # Size (in tiles) for each tier of pyramid. + self.tierSizeInTiles = [] + self.tierSizeInTiles.append(tiles) + + # Image size in pixels for each pyramid tierself + self.tierImageSize = [] + self.tierImageSize.append(imagesize) + + while (imagesize[0] > tilesize or imagesize[1] > tilesize): + imagesize = (math.floor( + imagesize[0] / 2), math.floor(imagesize[1] / 2)) + tiles = (math.ceil(imagesize[0] / tilesize), + math.ceil(imagesize[1] / tilesize)) + self.tierSizeInTiles.append(tiles) + self.tierImageSize.append(imagesize) + + self.tierSizeInTiles.reverse() + self.tierImageSize.reverse() + + # Depth of the Zoomify pyramid, number of tiers (zoom levels) + self.numberOfTiers = len(self.tierSizeInTiles) + + # Number of tiles up to the given tier of pyramid. + self.tileCountUpToTier = [] + self.tileCountUpToTier[0] = 0 + for i in range(1, self.numberOfTiers+1): + self.tileCountUpToTier.append( + self.tierSizeInTiles[i-1][0] * self.tierSizeInTiles[i-1][1] + + self.tileCountUpToTier[i-1] + ) + + def tilefilename(self, x, y, z): + """Returns filename for tile with given coordinates""" + + tileIndex = x + y * \ + self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] + return os.path.join("TileGroup%.0f" % math.floor(tileIndex / 256), + "%s-%s-%s.%s" % (z, x, y, self.tileformat)) + + +class Gdal2TilesError(Exception): + pass + + +class GDAL2Tiles(object): + + def process(self): + """The main processing function, runs all the main steps of processing""" + + # Opening and preprocessing of the input file + self.open_input() + + # Generation of main metadata files and HTML viewers + self.generate_metadata() + + # 1bto4b + if self.isDEMtile: + for z in range(self.tminz, self.tmaxz + int(abs(math.log(self.tilesize, 2) - 8))): # 1bto4b + self.generate_base_tiles(z) + print(' Zoom ' + str(z) + ' tiles done!') + else: + # Generation of the lowest tiles + self.generate_base_tiles(self.tmaxz) + + # Generation of the overview tiles (higher in the pyramid) + self.generate_overview_tiles() + + def error(self, msg, details=""): + """Print an error message and stop the processing""" + if details: + self.parser.error(msg + "\n\n" + details) + else: + self.parser.error(msg) + + def progressbar(self, complete=0.0): + """Print progressbar for float value 0..1""" + gdal.TermProgress_nocb(complete) + + def gettempfilename(self, suffix): + """Returns a temporary filename""" + if '_' in os.environ: + # tempfile.mktemp() crashes on some Wine versions (the one of Ubuntu 12.04 particularly) + if os.environ['_'].find('wine') >= 0: + tmpdir = '.' + if 'TMP' in os.environ: + tmpdir = os.environ['TMP'] + import time + import random + random.seed(time.time()) + random_part = 'file%d' % random.randint(0, 1000000000) + return os.path.join(tmpdir, random_part + suffix) + + import tempfile + return tempfile.mktemp(suffix) + + def stop(self): + """Stop the rendering immediately""" + self.stopped = True + + def __init__(self, arguments): + """Constructor function - initialization""" + self.out_drv = None + self.mem_drv = None + self.in_ds = None + self.out_ds = None + self.out_srs = None + self.nativezoom = None + self.tminmax = None + self.tsize = None + self.mercator = None + self.geodetic = None + self.alphaband = None + self.dataBandsCount = None + self.out_gt = None + self.tileswne = None + self.swne = None + self.ominx = None + self.omaxx = None + self.omaxy = None + self.ominy = None + + # MMGIS + self.isRasterBounded = False + + # 1bto4b + self.isDEMtile = False + + # MMGIS + self.fminx = None + self.fmaxx = None + self.fminy = None + self.fmaxy = None + self.fPixelSize = None + + self.stopped = False + self.input = None + self.output = None + + # Tile format + self.tilesize = 256 + self.tiledriver = 'PNG' + self.tileext = 'png' + + # Should we read bigger window of the input raster and scale it down? + # Note: Modified later by open_input() + # Not for 'near' resampling + # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) + # Not for 'raster' profile + self.scaledquery = True + # How big should be query window be for scaling down + # Later on reset according the chosen resampling algorightm + self.querysize = 4 * self.tilesize + + # Should we use Read on the input file for generating overview tiles? + # Note: Modified later by open_input() + # Otherwise the overview tiles are generated from existing underlying tiles + self.overviewquery = False + + # RUN THE ARGUMENT PARSER: + + self.optparse_init() + self.options, self.args = self.parser.parse_args(args=arguments) + if not self.args: + self.error("No input file specified") + + # POSTPROCESSING OF PARSED ARGUMENTS: + + # Workaround for old versions of GDAL + try: + if ((self.options.verbose and self.options.resampling == 'near') or + gdal.TermProgress_nocb): + pass + except Exception: + self.error( + "This version of GDAL is not supported. Please upgrade to 1.6+.") + + # Is output directory the last argument? + + # Test output directory, if it doesn't exist + if (os.path.isdir(self.args[-1]) or + (len(self.args) > 1 and not os.path.exists(self.args[-1]))): + self.output = self.args[-1] + self.args = self.args[:-1] + + # More files on the input not directly supported yet + + if (len(self.args) > 1): + self.error("Processing of several input files is not supported.", + "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " + "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(self.args)) + + self.input = self.args[0] + + # MMGIS + if self.options.extentworld: + extentworld = self.options.extentworld.split(",") + self.isRasterBounded = True + self.fminx = float(extentworld[0]) + self.fmaxx = float(extentworld[2]) + self.fminy = float(extentworld[3]) + self.fmaxy = float(extentworld[1]) + self.fPixelSize = float(extentworld[4]) + + # 1bto4b + if self.options.isDEMtile: + self.isDEMtile = True + self.tilesize = 32 + self.querysize = 4 * self.tilesize + + # Default values for not given options + + if not self.output: + # Directory with input filename without extension in actual directory + self.output = os.path.splitext(os.path.basename(self.input))[0] + + if not self.options.title: + self.options.title = os.path.basename(self.input) + + if self.options.url and not self.options.url.endswith('/'): + self.options.url += '/' + if self.options.url: + self.options.url += os.path.basename(self.output) + '/' + + # Supported options + + self.resampling = None + + if self.options.resampling == 'average': + try: + if gdal.RegenerateOverview: + pass + except Exception: + self.error("'average' resampling algorithm is not available.", + "Please use -r 'near' argument or upgrade to newer version of GDAL.") + + elif self.options.resampling == 'antialias': + try: + if numpy: # pylint:disable=W0125 + pass + except Exception: + self.error("'antialias' resampling algorithm is not available.", + "Install PIL (Python Imaging Library) and numpy.") + + elif self.options.resampling == 'near': + self.resampling = gdal.GRA_NearestNeighbour + self.querysize = self.tilesize + + elif self.options.resampling == 'bilinear': + self.resampling = gdal.GRA_Bilinear + self.querysize = self.tilesize * 2 + + elif self.options.resampling == 'cubic': + self.resampling = gdal.GRA_Cubic + + elif self.options.resampling == 'cubicspline': + self.resampling = gdal.GRA_CubicSpline + + elif self.options.resampling == 'lanczos': + self.resampling = gdal.GRA_Lanczos + + # User specified zoom levels + self.tminz = None + self.tmaxz = None + if self.options.zoom: + minmax = self.options.zoom.split('-', 1) + minmax.extend(['']) + zoom_min, zoom_max = minmax[:2] + self.tminz = int(zoom_min) + if zoom_max: + self.tmaxz = int(zoom_max) + else: + self.tmaxz = int(zoom_min) + + # KML generation + self.kml = self.options.kml + + # Check if the input filename is full ascii or not + try: + os.path.basename(self.input).encode('ascii') + except UnicodeEncodeError: + full_ascii = False + else: + full_ascii = True + + # LC_CTYPE check + if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""): + if not self.options.quiet: + print("\nWARNING: " + "You are running gdal2tiles.py with a LC_CTYPE environment variable that is " + "not UTF-8 compatible, and your input file contains non-ascii characters. " + "The generated sample googlemaps, openlayers or " + "leaflet files might contain some invalid characters as a result\n") + + # Output the results + if self.options.verbose: + print("Options:", self.options) + print("Input:", self.input) + print("Output:", self.output) + print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) + print('') + + def optparse_init(self): + """Prepare the option parser for input (argv)""" + + from optparse import OptionParser, OptionGroup + usage = "Usage: %prog [options] input_file(s) [output]" + p = OptionParser(usage, version="%prog " + __version__) + p.add_option("-p", "--profile", dest='profile', + type='choice', choices=profile_list, + help=("Tile cutting profile (%s) - default 'mercator' " + "(Google Maps compatible)" % ",".join(profile_list))) + p.add_option("-r", "--resampling", dest="resampling", + type='choice', choices=resampling_list, + help="Resampling method (%s) - default 'average'" % ",".join(resampling_list)) + p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS", + help="The spatial reference system used for the source input data") + p.add_option('-z', '--zoom', dest="zoom", + help="Zoom levels to render (format:'2-5' or '10').") + p.add_option('-e', '--resume', dest="resume", action="store_true", + help="Resume mode. Generate only missing files.") + p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA", + help="NODATA transparency value to assign to the input data") + p.add_option('-d', '--tmscompatible', dest="tmscompatible", action="store_true", + help=("When using the geodetic profile, specifies the base resolution " + "as 0.703125 or 2 tiles at zoom level 0.")) + p.add_option("-v", "--verbose", + action="store_true", dest="verbose", + help="Print status messages to stdout") + p.add_option("-q", "--quiet", + action="store_true", dest="quiet", + help="Disable messages and status to stdout") + # MMGIS + p.add_option("-x", "--extentworld", dest="extentworld", + help="The full world meter extent (comma-separated as minx,maxx,miny,maxy,pixelsize) of an inner raster profile.") + # 1bto4b + p.add_option("-m", "--dem", action="store_true", dest="isDEMtile", + help="Indicate if the input is a Digital Elevation Model") + # KML options + g = OptionGroup(p, "KML (Google Earth) options", + "Options for generated Google Earth SuperOverlay metadata") + g.add_option("-k", "--force-kml", dest='kml', action="store_true", + help=("Generate KML for Google Earth - default for 'geodetic' profile and " + "'raster' in EPSG:4326. For a dataset with different projection use " + "with caution!")) + g.add_option("-n", "--no-kml", dest='kml', action="store_false", + help="Avoid automatic generation of KML files for EPSG:4326") + g.add_option("-u", "--url", dest='url', + help="URL address where the generated tiles are going to be published") + p.add_option_group(g) + + # HTML options + g = OptionGroup(p, "Web viewer options", + "Options for generated HTML viewers a la Google Maps") + g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list, + help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list)) + g.add_option("-t", "--title", dest='title', + help="Title of the map") + g.add_option("-c", "--copyright", dest='copyright', + help="Copyright for the map") + g.add_option("-g", "--googlekey", dest='googlekey', + help="Google Maps API key from http://code.google.com/apis/maps/signup.html") + g.add_option("-b", "--bingkey", dest='bingkey', + help="Bing Maps API key from https://www.bingmapsportal.com/") + p.add_option_group(g) + + p.set_defaults(verbose=False, profile="mercator", kml=False, url='', + webviewer='all', copyright='', resampling='average', resume=False, + googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE') + + self.parser = p + + # ------------------------------------------------------------------------- + def open_input(self): + """Initialization of the input raster, reprojection if necessary""" + gdal.AllRegister() + + self.out_drv = gdal.GetDriverByName(self.tiledriver) + self.mem_drv = gdal.GetDriverByName('MEM') + + if not self.out_drv: + raise Exception("The '%s' driver was not found, is it available in this GDAL build?", + self.tiledriver) + if not self.mem_drv: + raise Exception( + "The 'MEM' driver was not found, is it available in this GDAL build?") + + # Open the input file + + if self.input: + self.in_ds = gdal.Open(self.input, gdal.GA_ReadOnly) + else: + raise Exception("No input file was specified") + + if self.options.verbose: + print("Input file:", + "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, + self.in_ds.RasterCount)) + + if not self.in_ds: + # Note: GDAL prints the ERROR message too + self.error( + "It is not possible to open the input file '%s'." % self.input) + + # Read metadata from the input file + if self.in_ds.RasterCount == 0: + self.error("Input file '%s' has no raster band" % self.input) + + if self.in_ds.GetRasterBand(1).GetRasterColorTable(): + self.error("Please convert this file to RGB/RGBA and run gdal2tiles on the result.", + "From paletted file you can create RGBA file (temp.vrt) by:\n" + "gdal_translate -of vrt -expand rgba %s temp.vrt\n" + "then run:\n" + "gdal2tiles temp.vrt" % self.input) + + # Get NODATA value + in_nodata = [] + for i in range(1, self.in_ds.RasterCount+1): + if self.in_ds.GetRasterBand(i).GetNoDataValue() is not None: + in_nodata.append(self.in_ds.GetRasterBand(i).GetNoDataValue()) + if self.options.srcnodata: + nds = list(map(float, self.options.srcnodata.split(','))) + if len(nds) < self.in_ds.RasterCount: + in_nodata = ( + nds * self.in_ds.RasterCount)[:self.in_ds.RasterCount] + else: + in_nodata = nds + + if self.options.verbose: + print("NODATA: %s" % in_nodata) + + if self.options.verbose: + print("Preprocessed file:", + "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, + self.in_ds.RasterCount)) + + in_srs = None + + if self.options.s_srs: + in_srs = osr.SpatialReference() + in_srs.SetFromUserInput(self.options.s_srs) + in_srs_wkt = in_srs.ExportToWkt() + else: + in_srs_wkt = self.in_ds.GetProjection() + if not in_srs_wkt and self.in_ds.GetGCPCount() != 0: + in_srs_wkt = self.in_ds.GetGCPProjection() + if in_srs_wkt: + in_srs = osr.SpatialReference() + in_srs.ImportFromWkt(in_srs_wkt) + + self.out_srs = osr.SpatialReference() + + if self.options.profile == 'mercator': + self.out_srs.ImportFromEPSG(3857) + elif self.options.profile == 'geodetic': + self.out_srs.ImportFromEPSG(4326) + else: + self.out_srs = in_srs + + # Are the reference systems the same? Reproject if necessary. + + self.out_ds = None + + if self.options.profile in ('mercator', 'geodetic'): + + if ((self.in_ds.GetGeoTransform() == (0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) and + (self.in_ds.GetGCPCount() == 0)): + self.error("There is no georeference - neither affine transformation (worldfile) " + "nor GCPs. You can generate only 'raster' profile tiles.", + "Either gdal2tiles with parameter -p 'raster' or use another GIS " + "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs") + + if in_srs: + if ((in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or + (self.in_ds.GetGCPCount() != 0)): + # Generation of VRT dataset in tile projection, + # default 'nearest neighbour' warping + self.out_ds = gdal.AutoCreateWarpedVRT( + self.in_ds, in_srs_wkt, self.out_srs.ExportToWkt()) + + if self.options.verbose: + print("Warping of the raster by AutoCreateWarpedVRT " + "(result saved into 'tiles.vrt')") + self.out_ds.GetDriver().CreateCopy("tiles.vrt", self.out_ds) + + # Correction of AutoCreateWarpedVRT for NODATA values + if in_nodata != []: + tempfilename = self.gettempfilename('-gdal2tiles.vrt') + self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) + # open as a text file + s = open(tempfilename).read() + # Add the warping options + s = s.replace( + "", + """ + + + + """) + # replace BandMapping tag for NODATA bands.... + for i in range(len(in_nodata)): + s = s.replace( + '' % ( + (i+1), (i+1)), + """ + + %i + 0 + %i + 0 + + """ % ((i+1), (i+1), in_nodata[i], in_nodata[i])) + # save the corrected VRT + open(tempfilename, "w").write(s) + # open by GDAL as self.out_ds + self.out_ds = gdal.Open(tempfilename) + # delete the temporary file + os.unlink(tempfilename) + + # set NODATA_VALUE metadata + self.out_ds.SetMetadataItem( + 'NODATA_VALUES', ' '.join([str(i) for i in in_nodata])) + + if self.options.verbose: + print("Modified warping result saved into 'tiles1.vrt'") + open("tiles1.vrt", "w").write(s) + + # Correction of AutoCreateWarpedVRT for Mono (1 band) and RGB (3 bands) files + # without NODATA: + # equivalent of gdalwarp -dstalpha + if in_nodata == [] and self.out_ds.RasterCount in [1, 3]: + tempfilename = self.gettempfilename('-gdal2tiles.vrt') + self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) + # open as a text file + s = open(tempfilename).read() + # Add the warping options + s = s.replace( + "", + """ + + Alpha + + + """ % (self.out_ds.RasterCount + 1)) + s = s.replace( + "", + """ + %i + + """ % (self.out_ds.RasterCount + 1)) + s = s.replace( + "", + """ + + + """) + # save the corrected VRT + open(tempfilename, "w").write(s) + # open by GDAL as self.out_ds + self.out_ds = gdal.Open(tempfilename) + # delete the temporary file + os.unlink(tempfilename) + + if self.options.verbose: + print( + "Modified -dstalpha warping result saved into 'tiles1.vrt'") + open("tiles1.vrt", "w").write(s) + s = ''' + ''' + + else: + self.error("Input file has unknown SRS.", + "Use --s_srs ESPG:xyz (or similar) to provide source reference system.") + + if self.out_ds and self.options.verbose: + print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % ( + self.out_ds.RasterXSize, self.out_ds.RasterYSize, self.out_ds.RasterCount)) + + if not self.out_ds: + self.out_ds = self.in_ds + + # + # Here we should have a raster (out_ds) in the correct Spatial Reference system + # + + # Get alpha band (either directly or from NODATA value) + self.alphaband = self.out_ds.GetRasterBand(1).GetMaskBand() + if ((self.alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or + self.out_ds.RasterCount == 4 or + self.out_ds.RasterCount == 2): + self.dataBandsCount = self.out_ds.RasterCount - 1 + else: + self.dataBandsCount = self.out_ds.RasterCount + + # KML test + isepsg4326 = False + srs4326 = osr.SpatialReference() + srs4326.ImportFromEPSG(4326) + if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): + self.kml = True + isepsg4326 = True + if self.options.verbose: + print("KML autotest OK!") + + # Read the georeference + self.out_gt = self.out_ds.GetGeoTransform() + + # Test the size of the pixel + + # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) + if (self.out_gt[2], self.out_gt[4]) != (0, 0): + self.error("Georeference of the raster contains rotation or skew. " + "Such raster is not supported. Please use gdalwarp first.") + + # Here we expect: pixel is square, no rotation on the raster + + # Output Bounds - coordinates in the output SRS + self.ominx = self.out_gt[0] + self.omaxx = self.out_gt[0] + self.out_ds.RasterXSize * self.out_gt[1] + self.omaxy = self.out_gt[3] + self.ominy = self.out_gt[3] - self.out_ds.RasterYSize * self.out_gt[1] + + # Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15 + + # MMGIS + def linearScale(domain, rang, value): + return ( + ((rang[1] - rang[0]) * (value - domain[0])) / + (domain[1] - domain[0]) + + rang[0] + ) + # MMGIS + self.out_ds.fRasterXSize = self.out_ds.RasterXSize + self.out_ds.fRasterYSize = self.out_ds.RasterYSize + self.out_ds.fRasterXOrigin = 0 + self.out_ds.fRasterYOrigin = 0 + self.out_ds.PixelSize = self.out_gt[1] + self.out_ds.fPixelSize = self.fPixelSize + # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) + # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) + if self.isRasterBounded: + self.out_ds.fRasterXSize = int(math.floor(self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / ( + self.omaxx - self.ominx) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) + self.out_ds.fRasterYSize = int(math.ceil(self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / ( + self.omaxy - self.ominy) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) + self.out_ds.fRasterXSizeRaw = int(math.floor( + self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) + self.out_ds.fRasterYSizeRaw = int(math.ceil( + self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) + # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize ) + self.out_ds.fRasterXOrigin = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.out_gt[0]))) + self.out_ds.fRasterYOrigin = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [self.out_ds.fRasterYSize, 0], self.out_gt[3]))) + self.out_ds.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ + 0, self.out_ds.fRasterXSize], self.out_gt[0]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) + self.out_ds.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ + self.out_ds.fRasterYSize, 0], self.out_gt[3]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) + self.out_ds.fRasterXWidth = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.omaxx))) - self.out_ds.fRasterXOrigin + self.out_ds.fRasterYHeight = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.out_ds.fRasterYSize], self.omaxy))) - self.out_ds.fRasterYOrigin + + if self.options.verbose: + print("Bounds (output srs):", round(self.ominx, 13), + self.ominy, self.omaxx, self.omaxy) + + # print("Input Raster Size: ", self.out_ds.RasterXSize, self.out_ds.RasterYSize) + # print("fmaxx-fminx", self.fmaxx - self.fminx, "omaxx-ominx", self.omaxx - self.ominx, "fmaxy-fminy", self.fmaxy - self.fminy, "omaxy-ominy", self.omaxy - self.ominy) + # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize) + # print("Full Raster Size Raw: ", self.out_ds.fRasterXSizeRaw, self.out_ds.fRasterYSizeRaw) + # print("Raster Origin: ", self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin) + # print("Raster Origin Raw: ", self.out_ds.fRasterXOriginRaw, self.out_ds.fRasterYOriginRaw) + # print("Raster Width Height: ", self.out_ds.fRasterXWidth, self.out_ds.fRasterYHeight) + + # Calculating ranges for tiles in different zoom levels + if self.options.profile == 'mercator': + + self.mercator = GlobalMercator() + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.mercator.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, 32)) + for tz in range(0, 32): + tminx, tminy = self.mercator.MetersToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.mercator.MetersToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2**tz-1, tmaxx), min(2**tz-1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the minimal zoom level (map covers area equivalent to one tile) + if self.tminz is None: + self.tminz = self.mercator.ZoomForPixelSize( + self.out_gt[1] * max(self.out_ds.RasterXSize, + self.out_ds.RasterYSize) / float(self.tilesize)) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) + + if self.options.verbose: + print("Bounds (latlong):", + self.mercator.MetersToLatLon(self.ominx, self.ominy), + self.mercator.MetersToLatLon(self.omaxx, self.omaxy)) + print('MinZoomLevel:', self.tminz) + print("MaxZoomLevel:", + self.tmaxz, + "(", + self.mercator.Resolution(self.tmaxz), + ")") + + if self.options.profile == 'geodetic': + + self.geodetic = GlobalGeodetic(self.options.tmscompatible) + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.geodetic.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, 32)) + for tz in range(0, 32): + tminx, tminy = self.geodetic.LonLatToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.geodetic.LonLatToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2**(tz+1)-1, tmaxx), min(2**tz-1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tminz is None: + self.tminz = self.geodetic.ZoomForPixelSize( + self.out_gt[1] * max(self.out_ds.RasterXSize, + self.out_ds.RasterYSize) / float(self.tilesize)) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) + + if self.options.verbose: + print("Bounds (latlong):", self.ominx, + self.ominy, self.omaxx, self.omaxy) + + # MMGIS + if self.options.profile == 'raster' and self.isRasterBounded: + + def log2(x): + return math.log10(x) / math.log10(2) + + # MMGIS added 'f'* + self.nativezoom = int( + max(math.ceil(log2(self.out_ds.fRasterXSizeRaw/float(self.tilesize))), + math.ceil(log2(self.out_ds.fRasterYSizeRaw/float(self.tilesize))))) + + self.basenativezoom = int( + max(math.ceil(log2(self.out_ds.fRasterXSize/float(self.tilesize))), + math.ceil(log2(self.out_ds.fRasterYSize/float(self.tilesize))))) + + # MMGIS + self.out_ds.fWorldXSize = int( + float(self.out_ds.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) + self.out_ds.fWorldYSize = int( + float(self.out_ds.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) + self.out_ds.fRasterXOriginWorld = int(float( + self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXOrigin) / self.out_ds.fRasterXSize)) + self.out_ds.fRasterYOriginWorld = int(float( + self.out_ds.fWorldYSize) * (float(self.out_ds.fRasterYOrigin) / self.out_ds.fRasterYSize)) + self.out_ds.fRasterXSizeWorld = int(float( + self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXWidth) / self.out_ds.fRasterXSize)) + self.out_ds.fRasterYSizeWorld = int(float( + self.out_ds.RasterYSize) * (float(self.out_ds.fRasterXSizeWorld) / self.out_ds.RasterXSize)) + # print("World Size", self.out_ds.fWorldXSize, self.out_ds.fWorldYSize) + # print("Raster Origin World", self.out_ds.fRasterXOriginWorld, self.out_ds.fRasterYOriginWorld) + # print("Raster Size World", self.out_ds.fRasterXSizeWorld, self.out_ds.fRasterYSizeWorld) + + if self.options.verbose: + print("Native zoom of the raster:", self.nativezoom) + + # Get the minimal zoom level (whole raster in one tile) + if self.tminz is None: + self.tminz = 0 + + # Get the maximal zoom level (native resolution of the raster) + if self.tmaxz is None: + self.tmaxz = self.nativezoom + + # MMGIS added 'f'* + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, self.tmaxz+1)) + self.tsize = list(range(0, self.tmaxz+1)) + # print("Raster Size:", self.out_ds.RasterXSize,self.out_ds.RasterYSize) + # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) + # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) + for tz in range(0, self.tmaxz+1): + tsize = 2.0**(self.tmaxz-tz)*self.tilesize + toffsetx = int(math.floor( + 2.0**(tz) * self.out_ds.fRasterXOriginRaw / self.out_ds.fRasterXSizeRaw)) + toffsety = int(math.floor( + 2.0**(tz) * (self.out_ds.fRasterYOriginRaw) / self.out_ds.fRasterYSizeRaw)) + # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + toffsetx = int(math.floor( + self.out_ds.fRasterXOriginWorld / tsize)) + toffsety = int(math.floor( + self.out_ds.fRasterYOriginWorld / tsize)) + # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + tmaxx = int(math.floor( + self.out_ds.fRasterXSizeWorld / tsize)) + toffsetx + 1 + + tmaxy = int(math.floor( + self.out_ds.fRasterYSizeWorld / tsize)) + toffsety + 1 + self.tsize[tz] = math.ceil(tsize) + #tminx = toffsetx + tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 + tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 + + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + # print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) + + elif self.options.profile == 'raster': + + def log2(x): + return math.log10(x) / math.log10(2) + self.nativezoom = int( + max(math.ceil(log2(self.out_ds.RasterXSize/float(self.tilesize))), + math.ceil(log2(self.out_ds.RasterYSize/float(self.tilesize))))) + + if self.options.verbose: + print("Native zoom of the raster:", self.nativezoom) + + # Get the minimal zoom level (whole raster in one tile) + if self.tminz is None: + self.tminz = 0 + + # Get the maximal zoom level (native resolution of the raster) + if self.tmaxz is None: + self.tmaxz = self.nativezoom + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, self.tmaxz+1)) + self.tsize = list(range(0, self.tmaxz+1)) + for tz in range(0, self.tmaxz+1): + tsize = 2.0**(self.tmaxz-tz)*self.tilesize + tminx, tminy = 0, 0 + tmaxx = int(math.ceil(self.out_ds.RasterXSize / tsize)) - 1 + tmaxy = int(math.ceil(self.out_ds.RasterYSize / tsize)) - 1 + self.tsize[tz] = math.ceil(tsize) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # Function which generates SWNE in LatLong for given tile + if self.kml and in_srs_wkt: + ct = osr.CoordinateTransformation(in_srs, srs4326) + + def rastertileswne(x, y, z): + # X-pixel size in level + pixelsizex = (2**(self.tmaxz-z) * self.out_gt[1]) + west = self.out_gt[0] + x*self.tilesize*pixelsizex + east = west + self.tilesize*pixelsizex + south = self.ominy + y*self.tilesize*pixelsizex + north = south + self.tilesize*pixelsizex + if not isepsg4326: + # Transformation to EPSG:4326 (WGS84 datum) + west, south = ct.TransformPoint(west, south)[:2] + east, north = ct.TransformPoint(east, north)[:2] + return south, west, north, east + + self.tileswne = rastertileswne + else: + self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa + + def generate_metadata(self): + """ + Generation of main metadata files and HTML viewers (metadata related to particular + tiles are generated during the tile processing). + """ + + if not os.path.exists(self.output): + os.makedirs(self.output) + + if self.options.profile == 'mercator': + + south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) + north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) + south, west = max(-85.05112878, south), max(-180.0, west) + north, east = min(85.05112878, north), min(180.0, east) + self.swne = (south, west, north, east) + + # Generate googlemaps.html + if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'googlemaps.html'))): + f = open(os.path.join(self.output, 'googlemaps.html'), 'wb') + f.write(self.generate_googlemaps().encode('utf-8')) + f.close() + + # Generate openlayers.html + if self.options.webviewer in ('all', 'openlayers'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'openlayers.html'))): + f = open(os.path.join(self.output, 'openlayers.html'), 'wb') + f.write(self.generate_openlayers().encode('utf-8')) + f.close() + + # Generate leaflet.html + if self.options.webviewer in ('all', 'leaflet'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'leaflet.html'))): + f = open(os.path.join(self.output, 'leaflet.html'), 'wb') + f.write(self.generate_leaflet().encode('utf-8')) + f.close() + + elif self.options.profile == 'geodetic': + + west, south = self.ominx, self.ominy + east, north = self.omaxx, self.omaxy + south, west = max(-90.0, south), max(-180.0, west) + north, east = min(90.0, north), min(180.0, east) + self.swne = (south, west, north, east) + + # Generate openlayers.html + if self.options.webviewer in ('all', 'openlayers'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'openlayers.html'))): + f = open(os.path.join(self.output, 'openlayers.html'), 'wb') + f.write(self.generate_openlayers().encode('utf-8')) + f.close() + + elif self.options.profile == 'raster': + + west, south = self.ominx, self.ominy + east, north = self.omaxx, self.omaxy + + # MMGIS + if self.isRasterBounded: + west = self.fminx + east = self.fmaxx + south = self.fminy + north = self.fmaxy + + self.swne = (south, west, north, east) + + # Generate openlayers.html + if self.options.webviewer in ('all', 'openlayers'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'openlayers.html'))): + f = open(os.path.join(self.output, 'openlayers.html'), 'wb') + f.write(self.generate_openlayers().encode('utf-8')) + f.close() + + # Generate tilemapresource.xml. + if not self.options.resume or not os.path.exists(os.path.join(self.output, 'tilemapresource.xml')): + f = open(os.path.join(self.output, 'tilemapresource.xml'), 'wb') + f.write(self.generate_tilemapresource().encode('utf-8')) + f.close() + + if self.kml: + # TODO: Maybe problem for not automatically generated tminz + # The root KML should contain links to all tiles in the tminz level + children = [] + xmin, ymin, xmax, ymax = self.tminmax[self.tminz] + for x in range(xmin, xmax+1): + for y in range(ymin, ymax+1): + children.append([x, y, self.tminz]) + # Generate Root KML + if self.kml: + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'doc.kml'))): + f = open(os.path.join(self.output, 'doc.kml'), 'wb') + f.write(self.generate_kml( + None, None, None, children).encode('utf-8')) + f.close() + + def generate_base_tiles(self, tz): + """ + Generation of the base tiles (the lowest in the pyramid) directly from the input raster + """ + + if self.isDEMtile: + print("Generating Tiles at Zoom " + str(tz) + ": ") + + if not self.options.quiet: + print("Generating Base Tiles:") + + if self.options.verbose: + print('') + print("Tiles generated from the max zoom level:") + print("----------------------------------------") + print('') + + ds = self.out_ds + + querysize = self.querysize + + # 1bto4b + if self.isDEMtile: + tilebands = 4 + querysize = self.tilesize + else: + tilebands = self.dataBandsCount + 1 + tz = self.tmaxz + + try: + self.tminmax[tz] + except IndexError: + print(" Won't make zoom level " + str(tz)) + return + + # Set the bounds + tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] + + if self.options.verbose: + print("dataBandsCount: ", self.dataBandsCount) + print("tilebands: ", tilebands) + + tcount = (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) + ti = 0 + + for ty in range(tmaxy, tminy-1, -1): + for tx in range(tminx, tmaxx+1): + + if self.stopped: + break + ti += 1 + tilefilename = os.path.join( + self.output, str(tz), str(tx), "%s.%s" % (ty, self.tileext)) + if self.options.verbose: + print(ti, '/', tcount, tilefilename) + + if self.options.resume and os.path.exists(tilefilename): + if self.options.verbose: + print("Tile generation skipped because of --resume") + else: + self.progressbar(ti / float(tcount)) + continue + + # Create directories for the tile + if not os.path.exists(os.path.dirname(tilefilename)): + os.makedirs(os.path.dirname(tilefilename)) + + if self.options.profile == 'mercator': + # Tile bounds in EPSG:3857 + b = self.mercator.TileBounds(tx, ty, tz) + elif self.options.profile == 'geodetic': + b = self.geodetic.TileBounds(tx, ty, tz) + + # Don't scale up by nearest neighbour, better change the querysize + # to the native resolution (and return smaller query tile) for scaling + + if self.options.profile in ('mercator', 'geodetic'): + rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) + + # Pixel size in the raster covering query geo extent + nativesize = wb[0] + wb[2] + if self.options.verbose: + print("\tNative Extent (querysize", + nativesize, "): ", rb, wb) + + # Tile bounds in raster coordinates for ReadRaster query + rb, wb = self.geo_query( + ds, b[0], b[3], b[2], b[1], querysize=querysize) + + rx, ry, rxsize, rysize = rb + wx, wy, wxsize, wysize = wb + wxsize -= 1 # 1bto4b + wysize -= 1 # 1bto4b + + # MMGIS + elif self.isRasterBounded: # 'raster' profile: + + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.out_ds.fWorldXSize + ysize = self.out_ds.fWorldYSize + if tz >= self.tmaxz: + querysize = self.tilesize + + rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld + #print("rx", rx) + rxsize = 0 + rxsize = tsize + + rysize = 0 + rysize = tsize + + ry = ysize - (ty * tsize) - rysize - \ + self.out_ds.fRasterYOriginWorld + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tilesize) + if wysize != self.tilesize: + wy = self.tilesize - wysize + + if rx < 0: + rxsize = tsize + rx + wx = -rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + rx = 0 + if ry < 0: + rysize = tsize + ry + wy = -ry + wysize = int(rysize/float(tsize) * self.tilesize) + ry = 0 + if rx + rxsize > self.out_ds.fRasterXSizeWorld: + rxsize = self.out_ds.fRasterXSizeWorld - rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + if ry + rysize > self.out_ds.fRasterYSizeWorld: + rysize = self.out_ds.fRasterYSizeWorld - ry + wysize = int(rysize/float(tsize) * self.tilesize) + + # Convert rx, ry back to non-world coordinates + rx = int(float(self.out_ds.RasterXSize) * + (float(rx) / self.out_ds.fRasterXSizeWorld)) + ry = int(float(self.out_ds.RasterYSize) * + (float(ry) / self.out_ds.fRasterYSizeWorld)) + rxsize = int(float(self.out_ds.RasterXSize) * + (float(rxsize) / self.out_ds.fRasterXSizeWorld)) + rysize = int(float(self.out_ds.RasterYSize) * + (float(rysize) / self.out_ds.fRasterYSizeWorld)) + + wxsize -= 1 # 1bto4b + wysize -= 1 # 1bto4b + + #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin)) + else: # 'raster' profile: + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.out_ds.RasterXSize # size of the raster in pixels + ysize = self.out_ds.RasterYSize + if tz >= self.tmaxz: + querysize = self.tilesize + + rx = (tx) * tsize + rxsize = 0 + if tx == tmaxx: + rxsize = xsize % tsize + if rxsize == 0: + rxsize = tsize + + rysize = 0 + if ty == tmaxy: + rysize = ysize % tsize + if rysize == 0: + rysize = tsize + ry = ysize - (ty * tsize) - rysize + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tilesize) + if wysize != self.tilesize: + wy = self.tilesize - wysize + + if self.options.verbose: + print("\tReadRaster Extent: ", + (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)) + + # Query is in 'nearest neighbour' but can be bigger in then the tilesize + # We scale down the query to the tilesize by supplied algorithm. + + # Tile dataset in memory + + # 1bto4b + if self.isDEMtile: + dstile = self.mem_drv.Create( + '', self.tilesize, self.tilesize, tilebands, gdal.GDT_Byte) + else: + dstile = self.mem_drv.Create( + '', self.tilesize, self.tilesize, tilebands) + + data = alpha = None + # Read the source raster if anything is going inside the tile as per the computed + # geo_query + if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: + # 1bto4b + if self.isDEMtile: + data = ds.GetRasterBand(1).ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) + else: + data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize, + band_list=list(range(1, self.dataBandsCount+1))) + alpha = self.alphaband.ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize) + + # The tile in memory is a transparent file by default. Write pixel values into it if + # any + if data: + # 1bto4b - both this full if and else + if self.isDEMtile: + if (wxsize * wysize) > 0: + data = struct.unpack('f' * wxsize * wysize, data) + else: + return + + if self.tilesize == querysize: + # Interpolate the values from four surrounding + + # This takes our 1d list of WxH data and pads it with a rect of none values + dataPad = list(data) + for i in reversed(range(1, wysize)): + dataPad.insert(wxsize * i, 0) + dataPad.insert(wxsize * i, 0) + for i in range(wxsize + 3): + dataPad.insert(0, 0) + for i in range(wxsize + 3): + dataPad.append(0) + + dataIn = [] + # Resample based on average of four + # averaging over: i, i + 1, i + wxsize, i + wxsize + 1 + for y in range(wysize+2 - 1): + for x in range(wxsize+2 - 1): + i = x+(y*(wxsize+2)) + nW = dataPad[i] + nE = dataPad[i+1] + sW = dataPad[i+(wxsize+2)] + sE = dataPad[i+(wxsize+2)+1] + dataIn.append((nW + nE + sW + sE)/float(4)) + + # Get the surrounding eight tiles + # Get NW + if tx - 1 >= tminx and ty + 1 <= tmaxy: + rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW = getTilePxBounds(self, + tx - 1, ty + 1, tz, ds) + wxsizeNW -= 1 + wysizeNW -= 1 + if wxsizeNW != 0 and wysizeNW != 0: + dataNW = ds.GetRasterBand(1).ReadRaster( + rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW, buf_type=gdal.GDT_Float32) + if dataNW is not None and (wxsizeNW * wysizeNW) > 0: + dataNW = struct.unpack( + 'f' * wxsizeNW * wysizeNW, dataNW) + else: + dataNW = None + else: + dataNW = None + + # Get N + if ty + 1 <= tmaxy: + rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN = getTilePxBounds( + self, tx, ty + 1, tz, ds) + wxsizeN -= 1 + wysizeN -= 1 + if wxsizeN != 0 and wysizeN != 0: + dataN = ds.GetRasterBand(1).ReadRaster( + rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN, buf_type=gdal.GDT_Float32) + if dataN is not None and (wxsizeN * wysizeN) > 0: + dataN = struct.unpack( + 'f' * wxsizeN * wysizeN, dataN) + else: + dataN = None + else: + dataN = None + # Get NE + if tx + 1 <= tmaxx and ty + 1 <= tmaxy: + rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE = getTilePxBounds( + self, tx + 1, ty + 1, tz, ds) + wxsizeNE -= 1 + wysizeNE -= 1 + if wxsizeNE != 0 and wysizeNE != 0: + dataNE = ds.GetRasterBand(1).ReadRaster( + rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE, buf_type=gdal.GDT_Float32) + if dataNE is not None and (wxsizeNE * wysizeNE) > 0: + dataNE = struct.unpack( + 'f' * wxsizeNE * wysizeNE, dataNE) + else: + dataNE = None + else: + dataNE = None + # Get E + if tx + 1 <= tmaxx: + rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE = getTilePxBounds( + self, tx + 1, ty, tz, ds) + wxsizeE -= 1 + wysizeE -= 1 + if wxsizeE != 0 and wysizeE != 0: + dataE = ds.GetRasterBand(1).ReadRaster( + rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE, buf_type=gdal.GDT_Float32) + if dataE is not None and (wxsizeE * wysizeE) > 0: + dataE = struct.unpack( + 'f' * wxsizeE * wysizeE, dataE) + else: + dataE = None + else: + dataE = None + # Get SE + if tx + 1 <= tmaxx and ty - 1 >= tminy: + rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE = getTilePxBounds( + self, tx + 1, ty - 1, tz, ds) + wxsizeSE -= 1 + wysizeSE -= 1 + if wxsizeSE != 0 and wysizeSE != 0: + dataSE = ds.GetRasterBand(1).ReadRaster( + rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE, buf_type=gdal.GDT_Float32) + if dataSE is not None and (wxsizeSE * wysizeSE) > 0: + dataSE = struct.unpack( + 'f' * wxsizeSE * wysizeSE, dataSE) + else: + dataSE = None + else: + dataSE = None + # Get S + if ty - 1 >= tminy: + rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS = getTilePxBounds( + self, tx, ty - 1, tz, ds) + wxsizeS -= 1 + wysizeS -= 1 + if wxsizeS != 0 and wysizeS != 0: + dataS = ds.GetRasterBand(1).ReadRaster( + rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS, buf_type=gdal.GDT_Float32) + if dataS is not None and (wxsizeS * wysizeS) > 0: + dataS = struct.unpack( + 'f' * wxsizeS * wysizeS, dataS) + else: + dataS = None + else: + dataS = None + # Get SW + if tx - 1 >= tminx and ty - 1 >= tminy: + rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW = getTilePxBounds( + self, tx - 1, ty - 1, tz, ds) + wxsizeSW -= 1 + wysizeSW -= 1 + if wxsizeSW != 0 and wysizeSW != 0: + dataSW = ds.GetRasterBand(1).ReadRaster( + rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW, buf_type=gdal.GDT_Float32) + if dataSW is not None and (wxsizeSW * wysizeSW) > 0: + dataSW = struct.unpack( + 'f' * wxsizeSW * wysizeSW, dataSW) + else: + dataSW = None + else: + dataSW = None + # Get W + if tx - 1 >= tminx: + rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW = getTilePxBounds( + self, tx - 1, ty, tz, ds) + wxsizeW -= 1 + wysizeW -= 1 + if wxsizeW != 0 and wysizeW != 0: + dataW = ds.GetRasterBand(1).ReadRaster( + rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW, buf_type=gdal.GDT_Float32) + if dataW is not None and (wxsizeW * wysizeW) > 0: + dataW = struct.unpack( + 'f' * wxsizeW * wysizeW, dataW) + else: + dataW = None + else: + dataW = None + + # NW (uses N, NW, W) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataN is not None: + fN = dataN[len(dataN)-wxsizeN] + values = values + 1 + if dataNW is not None: + fNW = dataNW[len(dataNW)-1] + values = values + 1 + if dataW is not None: + fW = dataW[wxsizeW-1] + values = values + 1 + dataIn[0] = ((dataIn[0]*4) + fN + + fNW + fW)/float(values) + + # NE (uses N, NE, E) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataN is not None: + fN = dataN[len(dataN)-1] + values = values + 1 + if dataNE is not None: + fNE = dataNE[len(dataNE)-wxsizeNE] + values = values + 1 + if dataE is not None: + fE = dataE[0] + values = values + 1 + dataIn[wxsize] = ( + (dataIn[wxsize]*4) + fN + fNE + fE)/float(values) + + # SE (uses S, SE, E) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataS is not None: + fS = dataS[wxsizeS-1] + values = values + 1 + if dataSE is not None: + fSE = dataSE[0] + values = values + 1 + if dataE is not None: + fE = dataE[len(dataE)-wxsizeE] + values = values + 1 + dataIn[len(dataIn)-1] = ((dataIn[len(dataIn)-1] + * 4) + fS + fSE + fE)/float(values) + + # SW (uses S, SW, W) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataS is not None: + fS = dataS[0] + values = values + 1 + if dataSW is not None: + fSW = dataSW[wxsizeSW-1] + values = values + 1 + if dataW is not None: + fW = dataW[len(dataW)-1] + values = values + 1 + dataIn[len( + dataIn)-wxsize-1] = ((dataIn[len(dataIn)-wxsize-1]*4) + fS + fSW + fW)/float(values) + + # Then the edges minus corners + # N + if dataN is not None: + for i in range(1, wxsize): + dataIn[i] = ( + (dataIn[i]*4) + dataN[len(dataN)-wxsizeN-1+i] + dataN[len(dataN)-wxsizeN-1+i+1])/float(4) + else: + for i in range(1, wxsize): + dataIn[i] = (dataIn[i]*4)/float(2) + + # E + if dataE is not None: + for i in range(1, wysize): + dataIn[((i+1)*(wxsize+1)-1)] = ((dataIn[((i+1)*(wxsize+1)-1)] + * 4) + dataE[(i-1)*wxsizeE] + dataE[i*wxsizeE])/float(4) + else: + for i in range(1, wysize): + dataIn[( + (i+1)*(wxsize+1)-1)] = (dataIn[((i+1)*(wxsize+1)-1)]*4)/float(2) + + # S + if dataS is not None: + for i in range(1, wxsize): + dataIn[len(dataIn)-wxsize-1+i] = ( + (dataIn[len(dataIn)-wxsize-1+i]*4) + dataS[i-1] + dataS[i])/float(4) + else: + for i in range(1, wxsize): + dataIn[len( + dataIn)-wxsize-1+i] = (dataIn[len(dataIn)-wxsize-1+i]*4)/float(2) + + # W + if dataW is not None: + for i in range(1, wysize): + dataIn[(i)*(wxsize+1)] = ((dataIn[(i)*(wxsize+1)]*4) + + dataW[i*wxsizeW-1] + dataW[(i+1)*wxsizeW-1])/float(4) + else: + for i in range(1, wysize): + dataIn[(i)*(wxsize+1)] = (dataIn[(i) + * (wxsize+1)]*4)/float(2) + + data1 = [] + data2 = [] + data3 = [] + data4 = [] + for f in dataIn: + f = str(binary(f)) + data1.append(int(f[:8], 2)) + data2.append(int(f[8:16], 2)) + data3.append(int(f[16:24], 2)) + data4.append(int(f[24:], 2)) + + data1s = b'' + data2s = b'' + data3s = b'' + data4s = b'' + indx = 0 + for v in data1: + data1s += struct.pack('B', data1[indx]) + data2s += struct.pack('B', data2[indx]) + data3s += struct.pack('B', data3[indx]) + data4s += struct.pack('B', data4[indx]) + indx += 1 + dstile.GetRasterBand(1).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data1s, buf_type=gdal.GDT_Byte) + dstile.GetRasterBand(2).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data2s, buf_type=gdal.GDT_Byte) + dstile.GetRasterBand(3).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data3s, buf_type=gdal.GDT_Byte) + dstile.GetRasterBand(4).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data4s, buf_type=gdal.GDT_Byte) + elif wxsize != 0 and wysize != 0: + # Big ReadRaster query in memory scaled to the tilesize - all but 'near' algo + dsquery = self.mem_drv.Create( + '', querysize, querysize, tilebands, gdal.GDT_Byte) # 1bto4b + # TODO: fill the null value in case a tile without alpha is produced (now only png tiles are supported) + # for i in range(1, tilebands+1): + # dsquery.GetRasterBand(1).Fill(tilenodata) + # dsquery.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1,self.dataBandsCount+1)))###############1bto4b + # dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])###############################1bto4b + + # 1bto4b + data = ds.GetRasterBand(1).ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) + + data = struct.unpack('f' * wxsize * wysize, data) + data1 = [] + data2 = [] + data3 = [] + data4 = [] + for f in data: + f = str(binary(f)) + data1.append(int(f[:8], 2)) + data2.append(int(f[8:16], 2)) + data3.append(int(f[16:24], 2)) + data4.append(int(f[24:], 2)) + + data1s = b'' + data2s = b'' + data3s = b'' + data4s = b'' + indx = 0 + for v in data1: + data1s += struct.pack('B', data1[indx]) + data2s += struct.pack('B', data2[indx]) + data3s += struct.pack('B', data3[indx]) + data4s += struct.pack('B', data4[indx]) + indx += 1 + + dsquery.GetRasterBand(1).WriteRaster( + wx, wy, wxsize, wysize, data1s, buf_type=gdal.GDT_Byte) + dsquery.GetRasterBand(2).WriteRaster( + wx, wy, wxsize, wysize, data2s, buf_type=gdal.GDT_Byte) + dsquery.GetRasterBand(3).WriteRaster( + wx, wy, wxsize, wysize, data3s, buf_type=gdal.GDT_Byte) + dsquery.GetRasterBand(4).WriteRaster( + wx, wy, wxsize, wysize, data4s, buf_type=gdal.GDT_Byte) + # sys.exit('done') + # 1bto4b + + self.scale_query_to_tile( + dsquery, dstile, tilefilename) + del dsquery + + else: + if self.tilesize == querysize: + # Use the ReadRaster result directly in tiles ('nearest neighbour' query) + dstile.WriteRaster(wx, wy, wxsize, wysize, data, + band_list=list(range(1, self.dataBandsCount+1))) + dstile.WriteRaster( + wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) + + # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, + # MrSID) the ReadRaster function returns high-quality raster (not ugly + # nearest neighbour) + # TODO: Use directly 'near' for WaveLet files + else: + # Big ReadRaster query in memory scaled to the tilesize - all but 'near' + # algo + dsquery = self.mem_drv.Create( + '', querysize, querysize, tilebands) + # TODO: fill the null value in case a tile without alpha is produced (now + # only png tiles are supported) + dsquery.WriteRaster(wx, wy, wxsize, wysize, data, + band_list=list(range(1, self.dataBandsCount+1))) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) + + self.scale_query_to_tile( + dsquery, dstile, tilefilename) + del dsquery + + del data + + if self.options.resampling != 'antialias': + # Write a copy of tile to png/jpg + self.out_drv.CreateCopy(tilefilename, dstile, strict=0) + + del dstile + + # Create a KML file for this tile. + if self.kml: + kmlfilename = os.path.join( + self.output, str(tz), str(tx), '%d.kml' % ty) + if not self.options.resume or not os.path.exists(kmlfilename): + f = open(kmlfilename, 'wb') + f.write(self.generate_kml(tx, ty, tz).encode('utf-8')) + f.close() + + if not self.options.verbose and not self.options.quiet: + self.progressbar(ti / float(tcount)) + + def generate_overview_tiles(self): + """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" + + if not self.options.quiet: + print("Generating Overview Tiles:") + + # 1bto4b + if self.isDEMtile: + tilebands = 4 + else: + tilebands = self.dataBandsCount + 1 + + # Usage of existing tiles: from 4 underlying tiles generate one as overview. + + tcount = 0 + for tz in range(self.tmaxz-1, self.tminz-1, -1): + tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] + tcount += (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) + + ti = 0 + + for tz in range(self.tmaxz-1, self.tminz-1, -1): + tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] + for ty in range(tmaxy, tminy-1, -1): + for tx in range(tminx, tmaxx+1): + + if self.stopped: + break + + ti += 1 + tilefilename = os.path.join(self.output, + str(tz), + str(tx), + "%s.%s" % (ty, self.tileext)) + + if self.options.verbose: + print(ti, '/', tcount, tilefilename) + + if self.options.resume and os.path.exists(tilefilename): + if self.options.verbose: + print("Tile generation skipped because of --resume") + else: + self.progressbar(ti / float(tcount)) + continue + + # Create directories for the tile + if not os.path.exists(os.path.dirname(tilefilename)): + os.makedirs(os.path.dirname(tilefilename)) + + dsquery = self.mem_drv.Create( + '', 2*self.tilesize, 2*self.tilesize, tilebands) + # TODO: fill the null value + dstile = self.mem_drv.Create( + '', self.tilesize, self.tilesize, tilebands) + + # TODO: Implement more clever walking on the tiles with cache functionality + # probably walk should start with reading of four tiles from top left corner + # Hilbert curve + + children = [] + # Read the tiles and write them to query window + for y in range(2*ty, 2*ty+2): + for x in range(2*tx, 2*tx+2): + minx, miny, maxx, maxy = self.tminmax[tz+1] + if x >= minx and x <= maxx and y >= miny and y <= maxy: + dsquerytile = gdal.Open( + os.path.join(self.output, str(tz+1), str(x), + "%s.%s" % (y, self.tileext)), + gdal.GA_ReadOnly) + if (ty == 0 and y == 1) or (ty != 0 and (y % (2*ty)) != 0): + tileposy = 0 + else: + tileposy = self.tilesize + if tx: + tileposx = x % (2*tx) * self.tilesize + elif tx == 0 and x == 1: + tileposx = self.tilesize + else: + tileposx = 0 + dsquery.WriteRaster( + tileposx, tileposy, self.tilesize, self.tilesize, + dsquerytile.ReadRaster( + 0, 0, self.tilesize, self.tilesize), + band_list=list(range(1, tilebands+1))) + children.append([x, y, tz+1]) + + self.scale_query_to_tile(dsquery, dstile, tilefilename) + # Write a copy of tile to png/jpg + if self.options.resampling != 'antialias': + # Write a copy of tile to png/jpg + self.out_drv.CreateCopy(tilefilename, dstile, strict=0) + + if self.options.verbose: + print("\tbuild from zoom", tz+1, + " tiles:", (2*tx, 2*ty), (2*tx+1, 2*ty), + (2*tx, 2*ty+1), (2*tx+1, 2*ty+1)) + + # Create a KML file for this tile. + if self.kml: + f = open(os.path.join( + self.output, '%d/%d/%d.kml' % (tz, tx, ty)), 'wb') + f.write(self.generate_kml( + tx, ty, tz, children).encode('utf-8')) + f.close() + + if not self.options.verbose and not self.options.quiet: + self.progressbar(ti / float(tcount)) + + def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): + """ + For given dataset and query in cartographic coordinates returns parameters for ReadRaster() + in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the + extent is returned in the native resolution of dataset ds. + + raises Gdal2TilesError if the dataset does not contain anything inside this geo_query + """ + geotran = ds.GetGeoTransform() + rx = int((ulx - geotran[0]) / geotran[1] + 0.001) + ry = int((uly - geotran[3]) / geotran[5] + 0.001) + rxsize = int((lrx - ulx) / geotran[1] + 0.5) + rysize = int((lry - uly) / geotran[5] + 0.5) + + if not querysize: + wxsize, wysize = rxsize, rysize + else: + wxsize, wysize = querysize, querysize + + # Coordinates should not go out of the bounds of the raster + wx = 0 + if rx < 0: + rxshift = abs(rx) + wx = int(wxsize * (float(rxshift) / rxsize)) + wxsize = wxsize - wx + rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) + rx = 0 + if rx+rxsize > ds.RasterXSize: + wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) + rxsize = ds.RasterXSize - rx + + wy = 0 + if ry < 0: + ryshift = abs(ry) + wy = int(wysize * (float(ryshift) / rysize)) + wysize = wysize - wy + rysize = rysize - int(rysize * (float(ryshift) / rysize)) + ry = 0 + if ry+rysize > ds.RasterYSize: + wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) + rysize = ds.RasterYSize - ry + + return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) + + def scale_query_to_tile(self, dsquery, dstile, tilefilename=''): + """Scales down query dataset to the tile dataset""" + + querysize = dsquery.RasterXSize + tilesize = dstile.RasterXSize + tilebands = dstile.RasterCount + + if self.options.resampling == 'average': + + # Function: gdal.RegenerateOverview() + for i in range(1, tilebands+1): + # Black border around NODATA + res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), + 'average') + if res != 0: + self.error("RegenerateOverview() failed on %s, error %d" % ( + tilefilename, res)) + + elif self.options.resampling == 'antialias': + + # Scaling by PIL (Python Imaging Library) - improved Lanczos + array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) + for i in range(tilebands): + array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1), + 0, 0, querysize, querysize) + im = Image.fromarray(array, 'RGBA') # Always four bands + im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) + if os.path.exists(tilefilename): + im0 = Image.open(tilefilename) + im1 = Image.composite(im1, im0, im1) + im1.save(tilefilename, self.tiledriver) + + else: + + # Other algorithms are implemented by gdal.ReprojectImage(). + dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, + tilesize / float(querysize))) + dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) + + res = gdal.ReprojectImage( + dsquery, dstile, None, None, self.resampling) + if res != 0: + self.error("ReprojectImage() failed on %s, error %d" % + (tilefilename, res)) + + def generate_tilemapresource(self): + """ + Template for tilemapresource.xml. Returns filled string. Expected variables: + title, north, south, east, west, isepsg4326, projection, publishurl, + zoompixels, tilesize, tileformat, profile + """ + + args = {} + args['title'] = self.options.title + args['south'], args['west'], args['north'], args['east'] = self.swne + args['tilesize'] = self.tilesize + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url + args['profile'] = self.options.profile + + if self.options.profile == 'mercator': + args['srs'] = "EPSG:3857" + elif self.options.profile == 'geodetic': + args['srs'] = "EPSG:4326" + elif self.options.s_srs: + args['srs'] = self.options.s_srs + elif self.out_srs: + args['srs'] = self.out_srs.ExportToWkt() + else: + args['srs'] = "" + + s = """ + + %(title)s + + %(srs)s + + + + +""" % args # noqa + for z in range(self.tminz, self.tmaxz+1): + if self.options.profile == 'raster': + s += """ \n""" % ( + args['publishurl'], z, (2**(self.nativezoom-z) * self.out_gt[1]), z) + elif self.options.profile == 'mercator': + s += """ \n""" % ( + args['publishurl'], z, 156543.0339/2**z, z) + elif self.options.profile == 'geodetic': + s += """ \n""" % ( + args['publishurl'], z, 0.703125/2**z, z) + s += """ + + """ + return s + + def generate_kml(self, tx, ty, tz, children=None, **args): + """ + Template for the KML. Returns filled string. + """ + if not children: + children = [] + + args['tx'], args['ty'], args['tz'] = tx, ty, tz + args['tileformat'] = self.tileext + if 'tilesize' not in args: + args['tilesize'] = self.tilesize + + if 'minlodpixels' not in args: + args['minlodpixels'] = int(args['tilesize'] / 2) + if 'maxlodpixels' not in args: + args['maxlodpixels'] = int(args['tilesize'] * 8) + if children == []: + args['maxlodpixels'] = -1 + + if tx is None: + tilekml = False + args['title'] = self.options.title + else: + tilekml = True + args['title'] = "%d/%d/%d.kml" % (tz, tx, ty) + args['south'], args['west'], args['north'], args['east'] = self.tileswne( + tx, ty, tz) + + if tx == 0: + args['drawOrder'] = 2 * tz + 1 + elif tx is not None: + args['drawOrder'] = 2 * tz + else: + args['drawOrder'] = 0 + + url = self.options.url + if not url: + if tilekml: + url = "../../" + else: + url = "" + + s = """ + + + %(title)s + + """ % args + if tilekml: + s += """ + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + + %(minlodpixels)d + %(maxlodpixels)d + + + + %(drawOrder)d + + %(ty)d.%(tileformat)s + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + + """ % args + + for cx, cy, cz in children: + csouth, cwest, cnorth, ceast = self.tileswne(cx, cy, cz) + s += """ + + %d/%d/%d.%s + + + %.14f + %.14f + %.14f + %.14f + + + %d + -1 + + + + %s%d/%d/%d.kml + onRegion + + + + """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, + args['minlodpixels'], url, cz, cx, cy) + + s += """ + + """ + return s + + def generate_googlemaps(self): + """ + Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. + It returns filled string. Expected variables: + title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, + publishurl + """ + args = {} + args['title'] = self.options.title + args['googlemapskey'] = self.options.googlekey + args['south'], args['west'], args['north'], args['east'] = self.swne + args['minzoom'] = self.tminz + args['maxzoom'] = self.tmaxz + args['tilesize'] = self.tilesize + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url + args['copyright'] = self.options.copyright + + s = r""" + + + %(title)s + + + + + + + + +
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC + +
+
+ + + """ % args # noqa + + return s + + def generate_leaflet(self): + """ + Template for leaflet.html implementing overlay of tiles for 'mercator' profile. + It returns filled string. Expected variables: + title, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl + """ + + args = {} + args['title'] = self.options.title.replace('"', '\\"') + args['htmltitle'] = self.options.title + args['south'], args['west'], args['north'], args['east'] = self.swne + args['centerlon'] = (args['north'] + args['south']) / 2. + args['centerlat'] = (args['west'] + args['east']) / 2. + args['minzoom'] = self.tminz + args['maxzoom'] = self.tmaxz + args['beginzoom'] = self.tmaxz + args['tilesize'] = self.tilesize # not used + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url # not used + args['copyright'] = self.options.copyright.replace('"', '\\"') + + s = """ + + + + + %(htmltitle)s + + + + + + + + + + +
+ + + + + + + """ % args # noqa + + return s + + def generate_openlayers(self): + """ + Template for openlayers.html implementing overlay of available Spherical Mercator layers. + + It returns filled string. Expected variables: + title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl + """ + + args = {} + args['title'] = self.options.title + args['bingkey'] = self.options.bingkey + args['south'], args['west'], args['north'], args['east'] = self.swne + args['minzoom'] = self.tminz + args['maxzoom'] = self.tmaxz + args['tilesize'] = self.tilesize + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url + args['copyright'] = self.options.copyright + if self.options.tmscompatible: + args['tmsoffset'] = "-1" + else: + args['tmsoffset'] = "" + if self.options.profile == 'raster': + args['rasterzoomlevels'] = self.tmaxz+1 + args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1] + + s = r""" + + %(title)s + + """ % args # noqa + + if self.options.profile == 'mercator': + s += """ + + """ % args + + s += """ + + + + + +
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC + +
+
+ + + """ % args # noqa + + return s + + +def main(): + argv = gdal.GeneralCmdLineProcessor(sys.argv) + if argv: + gdal2tiles = GDAL2Tiles(argv[1:]) + gdal2tiles.process() + + +if __name__ == '__main__': + main() + +# vim: set tabstop=4 shiftwidth=4 expandtab: diff --git a/auxiliary/gdal2customtiles/gdal2customtiles_py27.py b/auxiliary/gdal2customtiles/legacy/gdal2customtiles_py27.py similarity index 97% rename from auxiliary/gdal2customtiles/gdal2customtiles_py27.py rename to auxiliary/gdal2customtiles/legacy/gdal2customtiles_py27.py index 8b6421d6..13082c6f 100644 --- a/auxiliary/gdal2customtiles/gdal2customtiles_py27.py +++ b/auxiliary/gdal2customtiles/legacy/gdal2customtiles_py27.py @@ -1,3218 +1,3218 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -# ****************************************************************************** -# $Id$ -# -# Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/) -# Support: BRGM (http://www.brgm.fr) -# Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory. -# - generate Google Earth metadata (KML SuperOverlay) -# - generate simple HTML viewer based on Google Maps and OpenLayers -# - support of global tiles (Spherical Mercator) for compatibility -# with interactive web maps a la Google Maps -# Author: Klokan Petr Pridal, klokan at klokan dot cz -# Web: http://www.klokan.cz/projects/gdal2tiles/ -# GUI: http://www.maptiler.org/ -# -############################################################################### -# Copyright (c) 2008, Klokan Petr Pridal -# Copyright (c) 2010-2013, Even Rouault -# -# Permission is hereby granted, free of charge, to any person obtaining a -# copy of this software and associated documentation files (the "Software"), -# to deal in the Software without restriction, including without limitation -# the rights to use, copy, modify, merge, publish, distribute, sublicense, -# and/or sell copies of the Software, and to permit persons to whom the -# Software is furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included -# in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL -# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER -# DEALINGS IN THE SOFTWARE. -# ****************************************************************************** - -import math -import os -import sys - -from osgeo import gdal -from osgeo import osr - -import struct # 1bto4b - - -def binary(num): # 1bto4b - # 1bto4b - return ''.join(bin(ord(c)).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) - -# 1bto4b - -def getTilePxBounds(self, tx, ty, tz, ds): - - querysize = self.tilesize - - if self.isRasterBounded: # 'raster' profile: - # tilesize in raster coordinates for actual zoom - tsize = int(self.tsize[tz]) - xsize = self.out_ds.fWorldXSize - ysize = self.out_ds.fWorldYSize - if tz >= self.tmaxz: - querysize = self.tilesize - - rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld - #print("rx", rx) - rxsize = 0 - rxsize = tsize - - rysize = 0 - rysize = tsize - - ry = ysize - (ty * tsize) - rysize - \ - self.out_ds.fRasterYOriginWorld - - wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tilesize) - wysize = int(rysize/float(tsize) * self.tilesize) - if wysize != self.tilesize: - wy = self.tilesize - wysize - - if rx < 0: - rxsize = tsize + rx - wx = -rx - wxsize = int(rxsize/float(tsize) * self.tilesize) - rx = 0 - if ry < 0: - rysize = tsize + ry - wy = -ry - wysize = int(rysize/float(tsize) * self.tilesize) - ry = 0 - if rx + rxsize > self.out_ds.fRasterXSizeWorld: - rxsize = self.out_ds.fRasterXSizeWorld - rx - wxsize = int(rxsize/float(tsize) * self.tilesize) - if ry + rysize > self.out_ds.fRasterYSizeWorld: - rysize = self.out_ds.fRasterYSizeWorld - ry - wysize = int(rysize/float(tsize) * self.tilesize) - - # Convert rx, ry back to non-world coordinates - rx = int(float(self.out_ds.RasterXSize) * - (float(rx) / self.out_ds.fRasterXSizeWorld)) - ry = int(float(self.out_ds.RasterYSize) * - (float(ry) / self.out_ds.fRasterYSizeWorld)) - rxsize = int(float(self.out_ds.RasterXSize) * - (float(rxsize) / self.out_ds.fRasterXSizeWorld)) - rysize = int(float(self.out_ds.RasterYSize) * - (float(rysize) / self.out_ds.fRasterYSizeWorld)) - else: - b = self.mercator.TileBounds(tx, ty, tz) - rb, wb = self.geo_query( - ds, b[0], b[3], b[2], b[1], querysize=querysize) - rx, ry, rxsize, rysize = rb - wx, wy, wxsize, wysize = wb - - return [rx, ry, rxsize, rysize, wxsize, wysize] - - -try: - from PIL import Image - import numpy - import osgeo.gdal_array as gdalarray -except Exception: - # 'antialias' resampling is not available - pass - -__version__ = "$Id$" - -resampling_list = ('average', 'near', 'bilinear', 'cubic', - 'cubicspline', 'lanczos', 'antialias') -profile_list = ('mercator', 'geodetic', 'raster') -webviewer_list = ('all', 'google', 'openlayers', 'leaflet', 'none') - -# ============================================================================= -# ============================================================================= -# ============================================================================= - -__doc__globalmaptiles = """ -globalmaptiles.py - -Global Map Tiles as defined in Tile Map Service (TMS) Profiles -============================================================== - -Functions necessary for generation of global tiles used on the web. -It contains classes implementing coordinate conversions for: - - - GlobalMercator (based on EPSG:3857) - for Google Maps, Yahoo Maps, Bing Maps compatible tiles - - GlobalGeodetic (based on EPSG:4326) - for OpenLayers Base Map and Google Earth compatible tiles - -More info at: - -http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification -http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation -http://msdn.microsoft.com/en-us/library/bb259689.aspx -http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates - -Created by Klokan Petr Pridal on 2008-07-03. -Google Summer of Code 2008, project GDAL2Tiles for OSGEO. - -In case you use this class in your product, translate it to another language -or find it useful for your project please let me know. -My email: klokan at klokan dot cz. -I would like to know where it was used. - -Class is available under the open-source GDAL license (www.gdal.org). -""" - -MAXZOOMLEVEL = 32 - - -class GlobalMercator(object): - r""" - TMS Global Mercator Profile - --------------------------- - - Functions necessary for generation of tiles in Spherical Mercator projection, - EPSG:3857. - - Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps, - UK Ordnance Survey OpenSpace API, ... - and you can overlay them on top of base maps of those web mapping applications. - - Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). - - What coordinate conversions do we need for TMS Global Mercator tiles:: - - LatLon <-> Meters <-> Pixels <-> Tile - - WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid - lat/lon XY in meters XY pixels Z zoom XYZ from TMS - EPSG:4326 EPSG:387 - .----. --------- -- TMS - / \ <-> | | <-> /----/ <-> Google - \ / | | /--------/ QuadTree - ----- --------- /------------/ - KML, public WebMapService Web Clients TileMapService - - What is the coordinate extent of Earth in EPSG:3857? - - [-20037508.342789244, -20037508.342789244, - 20037508.342789244, 20037508.342789244] - Constant 20037508.342789244 comes from the circumference of the Earth in meters, - which is 40 thousand kilometers, the coordinate origin is in the middle of extent. - In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 - $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857 - Polar areas with abs(latitude) bigger then 85.05112878 are clipped off. - - What are zoom level constants (pixels/meter) for pyramid with EPSG:3857? - - whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile, - every lower zoom level resolution is always divided by two - initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062 - - What is the difference between TMS and Google Maps/QuadTree tile name convention? - - The tile raster itself is the same (equal extent, projection, pixel size), - there is just different identification of the same raster tile. - Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ. - Google placed the origin [0,0] to the top-left corner, reference is XYZ. - Microsoft is referencing tiles by a QuadTree name, defined on the website: - http://msdn2.microsoft.com/en-us/library/bb259689.aspx - - The lat/lon coordinates are using WGS84 datum, yes? - - Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum. - Well, the web clients like Google Maps are projecting those coordinates by - Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if - the were on the WGS84 ellipsoid. - - From MSDN documentation: - To simplify the calculations, we use the spherical form of projection, not - the ellipsoidal form. Since the projection is used only for map display, - and not for displaying numeric coordinates, we don't need the extra precision - of an ellipsoidal projection. The spherical projection causes approximately - 0.33 percent scale distortion in the Y direction, which is not visually - noticeable. - - How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4? - - You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform. - All of the tools supports -t_srs 'epsg:3857'. - - For other GIS programs check the exact definition of the projection: - More info at http://spatialreference.org/ref/user/google-projection/ - The same projection is designated as EPSG:3857. WKT definition is in the - official EPSG database. - - Proj4 Text: - +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 - +k=1.0 +units=m +nadgrids=@null +no_defs - - Human readable WKT format of EPSG:3857: - PROJCS["Google Maps Global Mercator", - GEOGCS["WGS 84", - DATUM["WGS_1984", - SPHEROID["WGS 84",6378137,298.257223563, - AUTHORITY["EPSG","7030"]], - AUTHORITY["EPSG","6326"]], - PRIMEM["Greenwich",0], - UNIT["degree",0.0174532925199433], - AUTHORITY["EPSG","4326"]], - PROJECTION["Mercator_1SP"], - PARAMETER["central_meridian",0], - PARAMETER["scale_factor",1], - PARAMETER["false_easting",0], - PARAMETER["false_northing",0], - UNIT["metre",1, - AUTHORITY["EPSG","9001"]]] - """ - - def __init__(self, tileSize=256): - "Initialize the TMS Global Mercator pyramid" - self.tileSize = tileSize - self.initialResolution = 2 * math.pi * 6378137 / self.tileSize - # 156543.03392804062 for tileSize 256 pixels - self.originShift = 2 * math.pi * 6378137 / 2.0 - # 20037508.342789244 - - def LatLonToMeters(self, lat, lon): - "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857" - - mx = lon * self.originShift / 180.0 - my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / \ - (math.pi / 180.0) - - my = my * self.originShift / 180.0 - return mx, my - - def MetersToLatLon(self, mx, my): - "Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum" - - lon = (mx / self.originShift) * 180.0 - lat = (my / self.originShift) * 180.0 - - lat = 180 / math.pi * \ - (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) - return lat, lon - - def PixelsToMeters(self, px, py, zoom): - "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" - - res = self.Resolution(zoom) - mx = px * res - self.originShift - my = py * res - self.originShift - return mx, my - - def MetersToPixels(self, mx, my, zoom): - "Converts EPSG:3857 to pyramid pixel coordinates in given zoom level" - - res = self.Resolution(zoom) - px = (mx + self.originShift) / res - py = (my + self.originShift) / res - return px, py - - def PixelsToTile(self, px, py): - "Returns a tile covering region in given pixel coordinates" - - tx = int(math.ceil(px / float(self.tileSize)) - 1) - ty = int(math.ceil(py / float(self.tileSize)) - 1) - return tx, ty - - def PixelsToRaster(self, px, py, zoom): - "Move the origin of pixel coordinates to top-left corner" - - mapSize = self.tileSize << zoom - return px, mapSize - py - - def MetersToTile(self, mx, my, zoom): - "Returns tile for given mercator coordinates" - - px, py = self.MetersToPixels(mx, my, zoom) - return self.PixelsToTile(px, py) - - def TileBounds(self, tx, ty, zoom): - "Returns bounds of the given tile in EPSG:3857 coordinates" - - minx, miny = self.PixelsToMeters( - tx*self.tileSize, ty*self.tileSize, zoom) - maxx, maxy = self.PixelsToMeters( - (tx+1)*self.tileSize, (ty+1)*self.tileSize, zoom) - return (minx, miny, maxx, maxy) - - def TileLatLonBounds(self, tx, ty, zoom): - "Returns bounds of the given tile in latitude/longitude using WGS84 datum" - - bounds = self.TileBounds(tx, ty, zoom) - minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) - maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) - - return (minLat, minLon, maxLat, maxLon) - - def Resolution(self, zoom): - "Resolution (meters/pixel) for given zoom level (measured at Equator)" - - # return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom) - return self.initialResolution / (2**zoom) - - def ZoomForPixelSize(self, pixelSize): - "Maximal scaledown zoom of the pyramid closest to the pixelSize." - - for i in range(MAXZOOMLEVEL): - if pixelSize > self.Resolution(i): - if i != -1: - return i-1 - else: - return 0 # We don't want to scale up - - def GoogleTile(self, tx, ty, zoom): - "Converts TMS tile coordinates to Google Tile coordinates" - - # coordinate origin is moved from bottom-left to top-left corner of the extent - return tx, (2**zoom - 1) - ty - - def QuadTree(self, tx, ty, zoom): - "Converts TMS tile coordinates to Microsoft QuadTree" - - quadKey = "" - ty = (2**zoom - 1) - ty - for i in range(zoom, 0, -1): - digit = 0 - mask = 1 << (i-1) - if (tx & mask) != 0: - digit += 1 - if (ty & mask) != 0: - digit += 2 - quadKey += str(digit) - - return quadKey - - -class GlobalGeodetic(object): - r""" - TMS Global Geodetic Profile - --------------------------- - - Functions necessary for generation of global tiles in Plate Carre projection, - EPSG:4326, "unprojected profile". - - Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters) - and you can overlay the tiles on top of OpenLayers base map. - - Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). - - What coordinate conversions do we need for TMS Global Geodetic tiles? - - Global Geodetic tiles are using geodetic coordinates (latitude,longitude) - directly as planar coordinates XY (it is also called Unprojected or Plate - Carre). We need only scaling to pixel pyramid and cutting to tiles. - Pyramid has on top level two tiles, so it is not square but rectangle. - Area [-180,-90,180,90] is scaled to 512x256 pixels. - TMS has coordinate origin (for pixels and tiles) in bottom-left corner. - Rasters are in EPSG:4326 and therefore are compatible with Google Earth. - - LatLon <-> Pixels <-> Tiles - - WGS84 coordinates Pixels in pyramid Tiles in pyramid - lat/lon XY pixels Z zoom XYZ from TMS - EPSG:4326 - .----. ---- - / \ <-> /--------/ <-> TMS - \ / /--------------/ - ----- /--------------------/ - WMS, KML Web Clients, Google Earth TileMapService - """ - - def __init__(self, tmscompatible, tileSize=256): - self.tileSize = tileSize - if tmscompatible is not None: - # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) - # Adhers to OSGeo TMS spec - # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic - self.resFact = 180.0 / self.tileSize - else: - # Defaults the resolution factor to 1.40625 (1 tile @ level 0) - # Adheres OpenLayers, MapProxy, etc default resolution for WMTS - self.resFact = 360.0 / self.tileSize - - def LonLatToPixels(self, lon, lat, zoom): - "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" - - res = self.resFact / 2**zoom - px = (180 + lon) / res - py = (90 + lat) / res - return px, py - - def PixelsToTile(self, px, py): - "Returns coordinates of the tile covering region in pixel coordinates" - - tx = int(math.ceil(px / float(self.tileSize)) - 1) - ty = int(math.ceil(py / float(self.tileSize)) - 1) - return tx, ty - - def LonLatToTile(self, lon, lat, zoom): - "Returns the tile for zoom which covers given lon/lat coordinates" - - px, py = self.LonLatToPixels(lon, lat, zoom) - return self.PixelsToTile(px, py) - - def Resolution(self, zoom): - "Resolution (arc/pixel) for given zoom level (measured at Equator)" - - return self.resFact / 2**zoom - - def ZoomForPixelSize(self, pixelSize): - "Maximal scaledown zoom of the pyramid closest to the pixelSize." - - for i in range(MAXZOOMLEVEL): - if pixelSize > self.Resolution(i): - if i != 0: - return i-1 - else: - return 0 # We don't want to scale up - - def TileBounds(self, tx, ty, zoom): - "Returns bounds of the given tile" - res = self.resFact / 2**zoom - return ( - tx*self.tileSize*res - 180, - ty*self.tileSize*res - 90, - (tx+1)*self.tileSize*res - 180, - (ty+1)*self.tileSize*res - 90 - ) - - def TileLatLonBounds(self, tx, ty, zoom): - "Returns bounds of the given tile in the SWNE form" - b = self.TileBounds(tx, ty, zoom) - return (b[1], b[0], b[3], b[2]) - - -class Zoomify(object): - """ - Tiles compatible with the Zoomify viewer - ---------------------------------------- - """ - - def __init__(self, width, height, tilesize=256, tileformat='jpg'): - """Initialization of the Zoomify tile tree""" - - self.tilesize = tilesize - self.tileformat = tileformat - imagesize = (width, height) - tiles = (math.ceil(width / tilesize), math.ceil(height / tilesize)) - - # Size (in tiles) for each tier of pyramid. - self.tierSizeInTiles = [] - self.tierSizeInTiles.append(tiles) - - # Image size in pixels for each pyramid tierself - self.tierImageSize = [] - self.tierImageSize.append(imagesize) - - while (imagesize[0] > tilesize or imagesize[1] > tilesize): - imagesize = (math.floor( - imagesize[0] / 2), math.floor(imagesize[1] / 2)) - tiles = (math.ceil(imagesize[0] / tilesize), - math.ceil(imagesize[1] / tilesize)) - self.tierSizeInTiles.append(tiles) - self.tierImageSize.append(imagesize) - - self.tierSizeInTiles.reverse() - self.tierImageSize.reverse() - - # Depth of the Zoomify pyramid, number of tiers (zoom levels) - self.numberOfTiers = len(self.tierSizeInTiles) - - # Number of tiles up to the given tier of pyramid. - self.tileCountUpToTier = [] - self.tileCountUpToTier[0] = 0 - for i in range(1, self.numberOfTiers+1): - self.tileCountUpToTier.append( - self.tierSizeInTiles[i-1][0] * self.tierSizeInTiles[i-1][1] + - self.tileCountUpToTier[i-1] - ) - - def tilefilename(self, x, y, z): - """Returns filename for tile with given coordinates""" - - tileIndex = x + y * \ - self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] - return os.path.join("TileGroup%.0f" % math.floor(tileIndex / 256), - "%s-%s-%s.%s" % (z, x, y, self.tileformat)) - - -class Gdal2TilesError(Exception): - pass - - -class GDAL2Tiles(object): - - def process(self): - """The main processing function, runs all the main steps of processing""" - - # Opening and preprocessing of the input file - self.open_input() - - # Generation of main metadata files and HTML viewers - self.generate_metadata() - - # 1bto4b - if self.isDEMtile: - for z in range(self.tminz, self.tmaxz + int(abs(math.log(self.tilesize, 2) - 8))): # 1bto4b - self.generate_base_tiles(z) - print(' Zoom ' + str(z) + ' tiles done!') - else: - # Generation of the lowest tiles - self.generate_base_tiles(self.tmaxz) - - # Generation of the overview tiles (higher in the pyramid) - self.generate_overview_tiles() - - def error(self, msg, details=""): - """Print an error message and stop the processing""" - if details: - self.parser.error(msg + "\n\n" + details) - else: - self.parser.error(msg) - - def progressbar(self, complete=0.0): - """Print progressbar for float value 0..1""" - gdal.TermProgress_nocb(complete) - - def gettempfilename(self, suffix): - """Returns a temporary filename""" - if '_' in os.environ: - # tempfile.mktemp() crashes on some Wine versions (the one of Ubuntu 12.04 particularly) - if os.environ['_'].find('wine') >= 0: - tmpdir = '.' - if 'TMP' in os.environ: - tmpdir = os.environ['TMP'] - import time - import random - random.seed(time.time()) - random_part = 'file%d' % random.randint(0, 1000000000) - return os.path.join(tmpdir, random_part + suffix) - - import tempfile - return tempfile.mktemp(suffix) - - def stop(self): - """Stop the rendering immediately""" - self.stopped = True - - def __init__(self, arguments): - """Constructor function - initialization""" - self.out_drv = None - self.mem_drv = None - self.in_ds = None - self.out_ds = None - self.out_srs = None - self.nativezoom = None - self.tminmax = None - self.tsize = None - self.mercator = None - self.geodetic = None - self.alphaband = None - self.dataBandsCount = None - self.out_gt = None - self.tileswne = None - self.swne = None - self.ominx = None - self.omaxx = None - self.omaxy = None - self.ominy = None - - # MMGIS - self.isRasterBounded = False - - # 1bto4b - self.isDEMtile = False - - # MMGIS - self.fminx = None - self.fmaxx = None - self.fminy = None - self.fmaxy = None - self.fPixelSize = None - - self.stopped = False - self.input = None - self.output = None - - # Tile format - self.tilesize = 256 - self.tiledriver = 'PNG' - self.tileext = 'png' - - # Should we read bigger window of the input raster and scale it down? - # Note: Modified later by open_input() - # Not for 'near' resampling - # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) - # Not for 'raster' profile - self.scaledquery = True - # How big should be query window be for scaling down - # Later on reset according the chosen resampling algorightm - self.querysize = 4 * self.tilesize - - # Should we use Read on the input file for generating overview tiles? - # Note: Modified later by open_input() - # Otherwise the overview tiles are generated from existing underlying tiles - self.overviewquery = False - - # RUN THE ARGUMENT PARSER: - - self.optparse_init() - self.options, self.args = self.parser.parse_args(args=arguments) - if not self.args: - self.error("No input file specified") - - # POSTPROCESSING OF PARSED ARGUMENTS: - - # Workaround for old versions of GDAL - try: - if ((self.options.verbose and self.options.resampling == 'near') or - gdal.TermProgress_nocb): - pass - except Exception: - self.error( - "This version of GDAL is not supported. Please upgrade to 1.6+.") - - # Is output directory the last argument? - - # Test output directory, if it doesn't exist - if (os.path.isdir(self.args[-1]) or - (len(self.args) > 1 and not os.path.exists(self.args[-1]))): - self.output = self.args[-1] - self.args = self.args[:-1] - - # More files on the input not directly supported yet - - if (len(self.args) > 1): - self.error("Processing of several input files is not supported.", - "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " - "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(self.args)) - - self.input = self.args[0] - - # MMGIS - if self.options.extentworld: - extentworld = self.options.extentworld.split(",") - self.isRasterBounded = True - self.fminx = float(extentworld[0]) - self.fmaxx = float(extentworld[2]) - self.fminy = float(extentworld[3]) - self.fmaxy = float(extentworld[1]) - self.fPixelSize = float(extentworld[4]) - - # 1bto4b - if self.options.isDEMtile: - self.isDEMtile = True - self.tilesize = 32 - self.querysize = 4 * self.tilesize - - # Default values for not given options - - if not self.output: - # Directory with input filename without extension in actual directory - self.output = os.path.splitext(os.path.basename(self.input))[0] - - if not self.options.title: - self.options.title = os.path.basename(self.input) - - if self.options.url and not self.options.url.endswith('/'): - self.options.url += '/' - if self.options.url: - self.options.url += os.path.basename(self.output) + '/' - - # Supported options - - self.resampling = None - - if self.options.resampling == 'average': - try: - if gdal.RegenerateOverview: - pass - except Exception: - self.error("'average' resampling algorithm is not available.", - "Please use -r 'near' argument or upgrade to newer version of GDAL.") - - elif self.options.resampling == 'antialias': - try: - if numpy: # pylint:disable=W0125 - pass - except Exception: - self.error("'antialias' resampling algorithm is not available.", - "Install PIL (Python Imaging Library) and numpy.") - - elif self.options.resampling == 'near': - self.resampling = gdal.GRA_NearestNeighbour - self.querysize = self.tilesize - - elif self.options.resampling == 'bilinear': - self.resampling = gdal.GRA_Bilinear - self.querysize = self.tilesize * 2 - - elif self.options.resampling == 'cubic': - self.resampling = gdal.GRA_Cubic - - elif self.options.resampling == 'cubicspline': - self.resampling = gdal.GRA_CubicSpline - - elif self.options.resampling == 'lanczos': - self.resampling = gdal.GRA_Lanczos - - # User specified zoom levels - self.tminz = None - self.tmaxz = None - if self.options.zoom: - minmax = self.options.zoom.split('-', 1) - minmax.extend(['']) - zoom_min, zoom_max = minmax[:2] - self.tminz = int(zoom_min) - if zoom_max: - self.tmaxz = int(zoom_max) - else: - self.tmaxz = int(zoom_min) - - # KML generation - self.kml = self.options.kml - - # Check if the input filename is full ascii or not - try: - os.path.basename(self.input).encode('ascii') - except UnicodeEncodeError: - full_ascii = False - else: - full_ascii = True - - # LC_CTYPE check - if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""): - if not self.options.quiet: - print("\nWARNING: " - "You are running gdal2tiles.py with a LC_CTYPE environment variable that is " - "not UTF-8 compatible, and your input file contains non-ascii characters. " - "The generated sample googlemaps, openlayers or " - "leaflet files might contain some invalid characters as a result\n") - - # Output the results - if self.options.verbose: - print("Options:", self.options) - print("Input:", self.input) - print("Output:", self.output) - print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) - print('') - - def optparse_init(self): - """Prepare the option parser for input (argv)""" - - from optparse import OptionParser, OptionGroup - usage = "Usage: %prog [options] input_file(s) [output]" - p = OptionParser(usage, version="%prog " + __version__) - p.add_option("-p", "--profile", dest='profile', - type='choice', choices=profile_list, - help=("Tile cutting profile (%s) - default 'mercator' " - "(Google Maps compatible)" % ",".join(profile_list))) - p.add_option("-r", "--resampling", dest="resampling", - type='choice', choices=resampling_list, - help="Resampling method (%s) - default 'average'" % ",".join(resampling_list)) - p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS", - help="The spatial reference system used for the source input data") - p.add_option('-z', '--zoom', dest="zoom", - help="Zoom levels to render (format:'2-5' or '10').") - p.add_option('-e', '--resume', dest="resume", action="store_true", - help="Resume mode. Generate only missing files.") - p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA", - help="NODATA transparency value to assign to the input data") - p.add_option('-d', '--tmscompatible', dest="tmscompatible", action="store_true", - help=("When using the geodetic profile, specifies the base resolution " - "as 0.703125 or 2 tiles at zoom level 0.")) - p.add_option("-v", "--verbose", - action="store_true", dest="verbose", - help="Print status messages to stdout") - p.add_option("-q", "--quiet", - action="store_true", dest="quiet", - help="Disable messages and status to stdout") - # MMGIS - p.add_option("-x", "--extentworld", dest="extentworld", - help="The full world meter extent (comma-separated as minx,maxx,miny,maxy,pixelsize) of an inner raster profile.") - # 1bto4b - p.add_option("-m", "--dem", action="store_true", dest="isDEMtile", - help="Indicate if the input is a Digital Elevation Model") - # KML options - g = OptionGroup(p, "KML (Google Earth) options", - "Options for generated Google Earth SuperOverlay metadata") - g.add_option("-k", "--force-kml", dest='kml', action="store_true", - help=("Generate KML for Google Earth - default for 'geodetic' profile and " - "'raster' in EPSG:4326. For a dataset with different projection use " - "with caution!")) - g.add_option("-n", "--no-kml", dest='kml', action="store_false", - help="Avoid automatic generation of KML files for EPSG:4326") - g.add_option("-u", "--url", dest='url', - help="URL address where the generated tiles are going to be published") - p.add_option_group(g) - - # HTML options - g = OptionGroup(p, "Web viewer options", - "Options for generated HTML viewers a la Google Maps") - g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list, - help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list)) - g.add_option("-t", "--title", dest='title', - help="Title of the map") - g.add_option("-c", "--copyright", dest='copyright', - help="Copyright for the map") - g.add_option("-g", "--googlekey", dest='googlekey', - help="Google Maps API key from http://code.google.com/apis/maps/signup.html") - g.add_option("-b", "--bingkey", dest='bingkey', - help="Bing Maps API key from https://www.bingmapsportal.com/") - p.add_option_group(g) - - p.set_defaults(verbose=False, profile="mercator", kml=False, url='', - webviewer='all', copyright='', resampling='average', resume=False, - googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE') - - self.parser = p - - # ------------------------------------------------------------------------- - def open_input(self): - """Initialization of the input raster, reprojection if necessary""" - gdal.AllRegister() - - self.out_drv = gdal.GetDriverByName(self.tiledriver) - self.mem_drv = gdal.GetDriverByName('MEM') - - if not self.out_drv: - raise Exception("The '%s' driver was not found, is it available in this GDAL build?", - self.tiledriver) - if not self.mem_drv: - raise Exception( - "The 'MEM' driver was not found, is it available in this GDAL build?") - - # Open the input file - - if self.input: - self.in_ds = gdal.Open(self.input, gdal.GA_ReadOnly) - else: - raise Exception("No input file was specified") - - if self.options.verbose: - print("Input file:", - "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, - self.in_ds.RasterCount)) - - if not self.in_ds: - # Note: GDAL prints the ERROR message too - self.error( - "It is not possible to open the input file '%s'." % self.input) - - # Read metadata from the input file - if self.in_ds.RasterCount == 0: - self.error("Input file '%s' has no raster band" % self.input) - - if self.in_ds.GetRasterBand(1).GetRasterColorTable(): - self.error("Please convert this file to RGB/RGBA and run gdal2tiles on the result.", - "From paletted file you can create RGBA file (temp.vrt) by:\n" - "gdal_translate -of vrt -expand rgba %s temp.vrt\n" - "then run:\n" - "gdal2tiles temp.vrt" % self.input) - - # Get NODATA value - in_nodata = [] - for i in range(1, self.in_ds.RasterCount+1): - if self.in_ds.GetRasterBand(i).GetNoDataValue() is not None: - in_nodata.append(self.in_ds.GetRasterBand(i).GetNoDataValue()) - if self.options.srcnodata: - nds = list(map(float, self.options.srcnodata.split(','))) - if len(nds) < self.in_ds.RasterCount: - in_nodata = ( - nds * self.in_ds.RasterCount)[:self.in_ds.RasterCount] - else: - in_nodata = nds - - if self.options.verbose: - print("NODATA: %s" % in_nodata) - - if self.options.verbose: - print("Preprocessed file:", - "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, - self.in_ds.RasterCount)) - - in_srs = None - - if self.options.s_srs: - in_srs = osr.SpatialReference() - in_srs.SetFromUserInput(self.options.s_srs) - in_srs_wkt = in_srs.ExportToWkt() - else: - in_srs_wkt = self.in_ds.GetProjection() - if not in_srs_wkt and self.in_ds.GetGCPCount() != 0: - in_srs_wkt = self.in_ds.GetGCPProjection() - if in_srs_wkt: - in_srs = osr.SpatialReference() - in_srs.ImportFromWkt(in_srs_wkt) - - self.out_srs = osr.SpatialReference() - - if self.options.profile == 'mercator': - self.out_srs.ImportFromEPSG(3857) - elif self.options.profile == 'geodetic': - self.out_srs.ImportFromEPSG(4326) - else: - self.out_srs = in_srs - - # Are the reference systems the same? Reproject if necessary. - - self.out_ds = None - - if self.options.profile in ('mercator', 'geodetic'): - - if ((self.in_ds.GetGeoTransform() == (0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) and - (self.in_ds.GetGCPCount() == 0)): - self.error("There is no georeference - neither affine transformation (worldfile) " - "nor GCPs. You can generate only 'raster' profile tiles.", - "Either gdal2tiles with parameter -p 'raster' or use another GIS " - "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs") - - if in_srs: - if ((in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or - (self.in_ds.GetGCPCount() != 0)): - # Generation of VRT dataset in tile projection, - # default 'nearest neighbour' warping - self.out_ds = gdal.AutoCreateWarpedVRT( - self.in_ds, in_srs_wkt, self.out_srs.ExportToWkt()) - - if self.options.verbose: - print("Warping of the raster by AutoCreateWarpedVRT " - "(result saved into 'tiles.vrt')") - self.out_ds.GetDriver().CreateCopy("tiles.vrt", self.out_ds) - - # Correction of AutoCreateWarpedVRT for NODATA values - if in_nodata != []: - tempfilename = self.gettempfilename('-gdal2tiles.vrt') - self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) - # open as a text file - s = open(tempfilename).read() - # Add the warping options - s = s.replace( - "", - """ - - - - """) - # replace BandMapping tag for NODATA bands.... - for i in range(len(in_nodata)): - s = s.replace( - '' % ( - (i+1), (i+1)), - """ - - %i - 0 - %i - 0 - - """ % ((i+1), (i+1), in_nodata[i], in_nodata[i])) - # save the corrected VRT - open(tempfilename, "w").write(s) - # open by GDAL as self.out_ds - self.out_ds = gdal.Open(tempfilename) - # delete the temporary file - os.unlink(tempfilename) - - # set NODATA_VALUE metadata - self.out_ds.SetMetadataItem( - 'NODATA_VALUES', ' '.join([str(i) for i in in_nodata])) - - if self.options.verbose: - print("Modified warping result saved into 'tiles1.vrt'") - open("tiles1.vrt", "w").write(s) - - # Correction of AutoCreateWarpedVRT for Mono (1 band) and RGB (3 bands) files - # without NODATA: - # equivalent of gdalwarp -dstalpha - if in_nodata == [] and self.out_ds.RasterCount in [1, 3]: - tempfilename = self.gettempfilename('-gdal2tiles.vrt') - self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) - # open as a text file - s = open(tempfilename).read() - # Add the warping options - s = s.replace( - "", - """ - - Alpha - - - """ % (self.out_ds.RasterCount + 1)) - s = s.replace( - "", - """ - %i - - """ % (self.out_ds.RasterCount + 1)) - s = s.replace( - "", - """ - - - """) - # save the corrected VRT - open(tempfilename, "w").write(s) - # open by GDAL as self.out_ds - self.out_ds = gdal.Open(tempfilename) - # delete the temporary file - os.unlink(tempfilename) - - if self.options.verbose: - print( - "Modified -dstalpha warping result saved into 'tiles1.vrt'") - open("tiles1.vrt", "w").write(s) - s = ''' - ''' - - else: - self.error("Input file has unknown SRS.", - "Use --s_srs ESPG:xyz (or similar) to provide source reference system.") - - if self.out_ds and self.options.verbose: - print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % ( - self.out_ds.RasterXSize, self.out_ds.RasterYSize, self.out_ds.RasterCount)) - - if not self.out_ds: - self.out_ds = self.in_ds - - # - # Here we should have a raster (out_ds) in the correct Spatial Reference system - # - - # Get alpha band (either directly or from NODATA value) - self.alphaband = self.out_ds.GetRasterBand(1).GetMaskBand() - if ((self.alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or - self.out_ds.RasterCount == 4 or - self.out_ds.RasterCount == 2): - self.dataBandsCount = self.out_ds.RasterCount - 1 - else: - self.dataBandsCount = self.out_ds.RasterCount - - # KML test - isepsg4326 = False - srs4326 = osr.SpatialReference() - srs4326.ImportFromEPSG(4326) - if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): - self.kml = True - isepsg4326 = True - if self.options.verbose: - print("KML autotest OK!") - - # Read the georeference - self.out_gt = self.out_ds.GetGeoTransform() - - # Test the size of the pixel - - # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) - if (self.out_gt[2], self.out_gt[4]) != (0, 0): - self.error("Georeference of the raster contains rotation or skew. " - "Such raster is not supported. Please use gdalwarp first.") - - # Here we expect: pixel is square, no rotation on the raster - - # Output Bounds - coordinates in the output SRS - self.ominx = self.out_gt[0] - self.omaxx = self.out_gt[0] + self.out_ds.RasterXSize * self.out_gt[1] - self.omaxy = self.out_gt[3] - self.ominy = self.out_gt[3] - self.out_ds.RasterYSize * self.out_gt[1] - - # Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15 - - # MMGIS - def linearScale(domain, rang, value): - return ( - ((rang[1] - rang[0]) * (value - domain[0])) / - (domain[1] - domain[0]) + - rang[0] - ) - # MMGIS - self.out_ds.fRasterXSize = self.out_ds.RasterXSize - self.out_ds.fRasterYSize = self.out_ds.RasterYSize - self.out_ds.fRasterXOrigin = 0 - self.out_ds.fRasterYOrigin = 0 - self.out_ds.PixelSize = self.out_gt[1] - self.out_ds.fPixelSize = self.fPixelSize - # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) - # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) - if self.isRasterBounded: - self.out_ds.fRasterXSize = int(math.floor(self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / ( - self.omaxx - self.ominx) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) - self.out_ds.fRasterYSize = int(math.ceil(self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / ( - self.omaxy - self.ominy) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) - self.out_ds.fRasterXSizeRaw = int(math.floor( - self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) - self.out_ds.fRasterYSizeRaw = int(math.ceil( - self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) - # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize ) - self.out_ds.fRasterXOrigin = int(math.floor(linearScale( - [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.out_gt[0]))) - self.out_ds.fRasterYOrigin = int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [self.out_ds.fRasterYSize, 0], self.out_gt[3]))) - self.out_ds.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ - 0, self.out_ds.fRasterXSize], self.out_gt[0]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) - self.out_ds.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ - self.out_ds.fRasterYSize, 0], self.out_gt[3]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) - self.out_ds.fRasterXWidth = int(math.floor(linearScale( - [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.omaxx))) - self.out_ds.fRasterXOrigin - self.out_ds.fRasterYHeight = int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [0, self.out_ds.fRasterYSize], self.omaxy))) - self.out_ds.fRasterYOrigin - - if self.options.verbose: - print("Bounds (output srs):", round(self.ominx, 13), - self.ominy, self.omaxx, self.omaxy) - - # print("Input Raster Size: ", self.out_ds.RasterXSize, self.out_ds.RasterYSize) - # print("fmaxx-fminx", self.fmaxx - self.fminx, "omaxx-ominx", self.omaxx - self.ominx, "fmaxy-fminy", self.fmaxy - self.fminy, "omaxy-ominy", self.omaxy - self.ominy) - # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize) - # print("Full Raster Size Raw: ", self.out_ds.fRasterXSizeRaw, self.out_ds.fRasterYSizeRaw) - # print("Raster Origin: ", self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin) - # print("Raster Origin Raw: ", self.out_ds.fRasterXOriginRaw, self.out_ds.fRasterYOriginRaw) - # print("Raster Width Height: ", self.out_ds.fRasterXWidth, self.out_ds.fRasterYHeight) - - # Calculating ranges for tiles in different zoom levels - if self.options.profile == 'mercator': - - self.mercator = GlobalMercator() - - # Function which generates SWNE in LatLong for given tile - self.tileswne = self.mercator.TileLatLonBounds - - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, 32)) - for tz in range(0, 32): - tminx, tminy = self.mercator.MetersToTile( - self.ominx, self.ominy, tz) - tmaxx, tmaxy = self.mercator.MetersToTile( - self.omaxx, self.omaxy, tz) - # crop tiles extending world limits (+-180,+-90) - tminx, tminy = max(0, tminx), max(0, tminy) - tmaxx, tmaxy = min(2**tz-1, tmaxx), min(2**tz-1, tmaxy) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - - # TODO: Maps crossing 180E (Alaska?) - - # Get the minimal zoom level (map covers area equivalent to one tile) - if self.tminz is None: - self.tminz = self.mercator.ZoomForPixelSize( - self.out_gt[1] * max(self.out_ds.RasterXSize, - self.out_ds.RasterYSize) / float(self.tilesize)) - - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tmaxz is None: - self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) - - if self.options.verbose: - print("Bounds (latlong):", - self.mercator.MetersToLatLon(self.ominx, self.ominy), - self.mercator.MetersToLatLon(self.omaxx, self.omaxy)) - print('MinZoomLevel:', self.tminz) - print("MaxZoomLevel:", - self.tmaxz, - "(", - self.mercator.Resolution(self.tmaxz), - ")") - - if self.options.profile == 'geodetic': - - self.geodetic = GlobalGeodetic(self.options.tmscompatible) - - # Function which generates SWNE in LatLong for given tile - self.tileswne = self.geodetic.TileLatLonBounds - - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, 32)) - for tz in range(0, 32): - tminx, tminy = self.geodetic.LonLatToTile( - self.ominx, self.ominy, tz) - tmaxx, tmaxy = self.geodetic.LonLatToTile( - self.omaxx, self.omaxy, tz) - # crop tiles extending world limits (+-180,+-90) - tminx, tminy = max(0, tminx), max(0, tminy) - tmaxx, tmaxy = min(2**(tz+1)-1, tmaxx), min(2**tz-1, tmaxy) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - - # TODO: Maps crossing 180E (Alaska?) - - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tminz is None: - self.tminz = self.geodetic.ZoomForPixelSize( - self.out_gt[1] * max(self.out_ds.RasterXSize, - self.out_ds.RasterYSize) / float(self.tilesize)) - - # Get the maximal zoom level - # (closest possible zoom level up on the resolution of raster) - if self.tmaxz is None: - self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) - - if self.options.verbose: - print("Bounds (latlong):", self.ominx, - self.ominy, self.omaxx, self.omaxy) - - # MMGIS - if self.options.profile == 'raster' and self.isRasterBounded: - - def log2(x): - return math.log10(x) / math.log10(2) - - # MMGIS added 'f'* - self.nativezoom = int( - max(math.ceil(log2(self.out_ds.fRasterXSizeRaw/float(self.tilesize))), - math.ceil(log2(self.out_ds.fRasterYSizeRaw/float(self.tilesize))))) - - self.basenativezoom = int( - max(math.ceil(log2(self.out_ds.fRasterXSize/float(self.tilesize))), - math.ceil(log2(self.out_ds.fRasterYSize/float(self.tilesize))))) - - # MMGIS - self.out_ds.fWorldXSize = int( - float(self.out_ds.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) - self.out_ds.fWorldYSize = int( - float(self.out_ds.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) - self.out_ds.fRasterXOriginWorld = int(float( - self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXOrigin) / self.out_ds.fRasterXSize)) - self.out_ds.fRasterYOriginWorld = int(float( - self.out_ds.fWorldYSize) * (float(self.out_ds.fRasterYOrigin) / self.out_ds.fRasterYSize)) - self.out_ds.fRasterXSizeWorld = int(float( - self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXWidth) / self.out_ds.fRasterXSize)) - self.out_ds.fRasterYSizeWorld = int(float( - self.out_ds.RasterYSize) * (float(self.out_ds.fRasterXSizeWorld) / self.out_ds.RasterXSize)) - # print("World Size", self.out_ds.fWorldXSize, self.out_ds.fWorldYSize) - # print("Raster Origin World", self.out_ds.fRasterXOriginWorld, self.out_ds.fRasterYOriginWorld) - # print("Raster Size World", self.out_ds.fRasterXSizeWorld, self.out_ds.fRasterYSizeWorld) - - if self.options.verbose: - print("Native zoom of the raster:", self.nativezoom) - - # Get the minimal zoom level (whole raster in one tile) - if self.tminz is None: - self.tminz = 0 - - # Get the maximal zoom level (native resolution of the raster) - if self.tmaxz is None: - self.tmaxz = self.nativezoom - - # MMGIS added 'f'* - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, self.tmaxz+1)) - self.tsize = list(range(0, self.tmaxz+1)) - # print("Raster Size:", self.out_ds.RasterXSize,self.out_ds.RasterYSize) - # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) - # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) - for tz in range(0, self.tmaxz+1): - tsize = 2.0**(self.tmaxz-tz)*self.tilesize - toffsetx = int(math.floor( - 2.0**(tz) * self.out_ds.fRasterXOriginRaw / self.out_ds.fRasterXSizeRaw)) - toffsety = int(math.floor( - 2.0**(tz) * (self.out_ds.fRasterYOriginRaw) / self.out_ds.fRasterYSizeRaw)) - # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - toffsetx = int(math.floor( - self.out_ds.fRasterXOriginWorld / tsize)) - toffsety = int(math.floor( - self.out_ds.fRasterYOriginWorld / tsize)) - # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - tmaxx = int(math.floor( - self.out_ds.fRasterXSizeWorld / tsize)) + toffsetx + 1 - - tmaxy = int(math.floor( - self.out_ds.fRasterYSizeWorld / tsize)) + toffsety + 1 - self.tsize[tz] = math.ceil(tsize) - #tminx = toffsetx - tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 - tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 - - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - # print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) - - elif self.options.profile == 'raster': - - def log2(x): - return math.log10(x) / math.log10(2) - self.nativezoom = int( - max(math.ceil(log2(self.out_ds.RasterXSize/float(self.tilesize))), - math.ceil(log2(self.out_ds.RasterYSize/float(self.tilesize))))) - - if self.options.verbose: - print("Native zoom of the raster:", self.nativezoom) - - # Get the minimal zoom level (whole raster in one tile) - if self.tminz is None: - self.tminz = 0 - - # Get the maximal zoom level (native resolution of the raster) - if self.tmaxz is None: - self.tmaxz = self.nativezoom - - # Generate table with min max tile coordinates for all zoomlevels - self.tminmax = list(range(0, self.tmaxz+1)) - self.tsize = list(range(0, self.tmaxz+1)) - for tz in range(0, self.tmaxz+1): - tsize = 2.0**(self.tmaxz-tz)*self.tilesize - tminx, tminy = 0, 0 - tmaxx = int(math.ceil(self.out_ds.RasterXSize / tsize)) - 1 - tmaxy = int(math.ceil(self.out_ds.RasterYSize / tsize)) - 1 - self.tsize[tz] = math.ceil(tsize) - self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - - # Function which generates SWNE in LatLong for given tile - if self.kml and in_srs_wkt: - ct = osr.CoordinateTransformation(in_srs, srs4326) - - def rastertileswne(x, y, z): - # X-pixel size in level - pixelsizex = (2**(self.tmaxz-z) * self.out_gt[1]) - west = self.out_gt[0] + x*self.tilesize*pixelsizex - east = west + self.tilesize*pixelsizex - south = self.ominy + y*self.tilesize*pixelsizex - north = south + self.tilesize*pixelsizex - if not isepsg4326: - # Transformation to EPSG:4326 (WGS84 datum) - west, south = ct.TransformPoint(west, south)[:2] - east, north = ct.TransformPoint(east, north)[:2] - return south, west, north, east - - self.tileswne = rastertileswne - else: - self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa - - def generate_metadata(self): - """ - Generation of main metadata files and HTML viewers (metadata related to particular - tiles are generated during the tile processing). - """ - - if not os.path.exists(self.output): - os.makedirs(self.output) - - if self.options.profile == 'mercator': - - south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) - north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) - south, west = max(-85.05112878, south), max(-180.0, west) - north, east = min(85.05112878, north), min(180.0, east) - self.swne = (south, west, north, east) - - # Generate googlemaps.html - if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'googlemaps.html'))): - f = open(os.path.join(self.output, 'googlemaps.html'), 'wb') - f.write(self.generate_googlemaps().encode('utf-8')) - f.close() - - # Generate openlayers.html - if self.options.webviewer in ('all', 'openlayers'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'openlayers.html'))): - f = open(os.path.join(self.output, 'openlayers.html'), 'wb') - f.write(self.generate_openlayers().encode('utf-8')) - f.close() - - # Generate leaflet.html - if self.options.webviewer in ('all', 'leaflet'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'leaflet.html'))): - f = open(os.path.join(self.output, 'leaflet.html'), 'wb') - f.write(self.generate_leaflet().encode('utf-8')) - f.close() - - elif self.options.profile == 'geodetic': - - west, south = self.ominx, self.ominy - east, north = self.omaxx, self.omaxy - south, west = max(-90.0, south), max(-180.0, west) - north, east = min(90.0, north), min(180.0, east) - self.swne = (south, west, north, east) - - # Generate openlayers.html - if self.options.webviewer in ('all', 'openlayers'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'openlayers.html'))): - f = open(os.path.join(self.output, 'openlayers.html'), 'wb') - f.write(self.generate_openlayers().encode('utf-8')) - f.close() - - elif self.options.profile == 'raster': - - west, south = self.ominx, self.ominy - east, north = self.omaxx, self.omaxy - - # MMGIS - if self.isRasterBounded: - west = self.fminx - east = self.fmaxx - south = self.fminy - north = self.fmaxy - - self.swne = (south, west, north, east) - - # Generate openlayers.html - if self.options.webviewer in ('all', 'openlayers'): - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'openlayers.html'))): - f = open(os.path.join(self.output, 'openlayers.html'), 'wb') - f.write(self.generate_openlayers().encode('utf-8')) - f.close() - - # Generate tilemapresource.xml. - if not self.options.resume or not os.path.exists(os.path.join(self.output, 'tilemapresource.xml')): - f = open(os.path.join(self.output, 'tilemapresource.xml'), 'wb') - f.write(self.generate_tilemapresource().encode('utf-8')) - f.close() - - if self.kml: - # TODO: Maybe problem for not automatically generated tminz - # The root KML should contain links to all tiles in the tminz level - children = [] - xmin, ymin, xmax, ymax = self.tminmax[self.tminz] - for x in range(xmin, xmax+1): - for y in range(ymin, ymax+1): - children.append([x, y, self.tminz]) - # Generate Root KML - if self.kml: - if (not self.options.resume or not - os.path.exists(os.path.join(self.output, 'doc.kml'))): - f = open(os.path.join(self.output, 'doc.kml'), 'wb') - f.write(self.generate_kml( - None, None, None, children).encode('utf-8')) - f.close() - - def generate_base_tiles(self, tz): - """ - Generation of the base tiles (the lowest in the pyramid) directly from the input raster - """ - - if self.isDEMtile: - print("Generating Tiles at Zoom " + str(tz) + ": ") - - if not self.options.quiet: - print("Generating Base Tiles:") - - if self.options.verbose: - print('') - print("Tiles generated from the max zoom level:") - print("----------------------------------------") - print('') - - ds = self.out_ds - - querysize = self.querysize - - # 1bto4b - if self.isDEMtile: - tilebands = 4 - querysize = self.tilesize - else: - tilebands = self.dataBandsCount + 1 - tz = self.tmaxz - - try: - self.tminmax[tz] - except IndexError: - print(" Won't make zoom level " + str(tz)) - return - - # Set the bounds - tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] - - if self.options.verbose: - print("dataBandsCount: ", self.dataBandsCount) - print("tilebands: ", tilebands) - - tcount = (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) - ti = 0 - - for ty in range(tmaxy, tminy-1, -1): - for tx in range(tminx, tmaxx+1): - - if self.stopped: - break - ti += 1 - tilefilename = os.path.join( - self.output, str(tz), str(tx), "%s.%s" % (ty, self.tileext)) - if self.options.verbose: - print(ti, '/', tcount, tilefilename) - - if self.options.resume and os.path.exists(tilefilename): - if self.options.verbose: - print("Tile generation skipped because of --resume") - else: - self.progressbar(ti / float(tcount)) - continue - - # Create directories for the tile - if not os.path.exists(os.path.dirname(tilefilename)): - os.makedirs(os.path.dirname(tilefilename)) - - if self.options.profile == 'mercator': - # Tile bounds in EPSG:3857 - b = self.mercator.TileBounds(tx, ty, tz) - elif self.options.profile == 'geodetic': - b = self.geodetic.TileBounds(tx, ty, tz) - - # Don't scale up by nearest neighbour, better change the querysize - # to the native resolution (and return smaller query tile) for scaling - - if self.options.profile in ('mercator', 'geodetic'): - rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) - - # Pixel size in the raster covering query geo extent - nativesize = wb[0] + wb[2] - if self.options.verbose: - print("\tNative Extent (querysize", - nativesize, "): ", rb, wb) - - # Tile bounds in raster coordinates for ReadRaster query - rb, wb = self.geo_query( - ds, b[0], b[3], b[2], b[1], querysize=querysize) - - rx, ry, rxsize, rysize = rb - wx, wy, wxsize, wysize = wb - wxsize -= 1 # 1bto4b - wysize -= 1 # 1bto4b - - # MMGIS - elif self.isRasterBounded: # 'raster' profile: - - # tilesize in raster coordinates for actual zoom - tsize = int(self.tsize[tz]) - xsize = self.out_ds.fWorldXSize - ysize = self.out_ds.fWorldYSize - if tz >= self.tmaxz: - querysize = self.tilesize - - rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld - #print("rx", rx) - rxsize = 0 - rxsize = tsize - - rysize = 0 - rysize = tsize - - ry = ysize - (ty * tsize) - rysize - \ - self.out_ds.fRasterYOriginWorld - - wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tilesize) - wysize = int(rysize/float(tsize) * self.tilesize) - if wysize != self.tilesize: - wy = self.tilesize - wysize - - if rx < 0: - rxsize = tsize + rx - wx = -rx - wxsize = int(rxsize/float(tsize) * self.tilesize) - rx = 0 - if ry < 0: - rysize = tsize + ry - wy = -ry - wysize = int(rysize/float(tsize) * self.tilesize) - ry = 0 - if rx + rxsize > self.out_ds.fRasterXSizeWorld: - rxsize = self.out_ds.fRasterXSizeWorld - rx - wxsize = int(rxsize/float(tsize) * self.tilesize) - if ry + rysize > self.out_ds.fRasterYSizeWorld: - rysize = self.out_ds.fRasterYSizeWorld - ry - wysize = int(rysize/float(tsize) * self.tilesize) - - # Convert rx, ry back to non-world coordinates - rx = int(float(self.out_ds.RasterXSize) * - (float(rx) / self.out_ds.fRasterXSizeWorld)) - ry = int(float(self.out_ds.RasterYSize) * - (float(ry) / self.out_ds.fRasterYSizeWorld)) - rxsize = int(float(self.out_ds.RasterXSize) * - (float(rxsize) / self.out_ds.fRasterXSizeWorld)) - rysize = int(float(self.out_ds.RasterYSize) * - (float(rysize) / self.out_ds.fRasterYSizeWorld)) - - wxsize -= 1 # 1bto4b - wysize -= 1 # 1bto4b - - #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin)) - else: # 'raster' profile: - # tilesize in raster coordinates for actual zoom - tsize = int(self.tsize[tz]) - xsize = self.out_ds.RasterXSize # size of the raster in pixels - ysize = self.out_ds.RasterYSize - if tz >= self.tmaxz: - querysize = self.tilesize - - rx = (tx) * tsize - rxsize = 0 - if tx == tmaxx: - rxsize = xsize % tsize - if rxsize == 0: - rxsize = tsize - - rysize = 0 - if ty == tmaxy: - rysize = ysize % tsize - if rysize == 0: - rysize = tsize - ry = ysize - (ty * tsize) - rysize - - wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tilesize) - wysize = int(rysize/float(tsize) * self.tilesize) - if wysize != self.tilesize: - wy = self.tilesize - wysize - - if self.options.verbose: - print("\tReadRaster Extent: ", - (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)) - - # Query is in 'nearest neighbour' but can be bigger in then the tilesize - # We scale down the query to the tilesize by supplied algorithm. - - # Tile dataset in memory - - # 1bto4b - if self.isDEMtile: - dstile = self.mem_drv.Create( - '', self.tilesize, self.tilesize, tilebands, gdal.GDT_Byte) - else: - dstile = self.mem_drv.Create( - '', self.tilesize, self.tilesize, tilebands) - - data = alpha = None - # Read the source raster if anything is going inside the tile as per the computed - # geo_query - if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: - # 1bto4b - if self.isDEMtile: - data = ds.GetRasterBand(1).ReadRaster( - rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) - else: - data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize, - band_list=list(range(1, self.dataBandsCount+1))) - alpha = self.alphaband.ReadRaster( - rx, ry, rxsize, rysize, wxsize, wysize) - - # The tile in memory is a transparent file by default. Write pixel values into it if - # any - if data: - # 1bto4b - both this full if and else - if self.isDEMtile: - if (wxsize * wysize) > 0: - data = struct.unpack('f' * wxsize * wysize, data) - else: - return - - if self.tilesize == querysize: - # Interpolate the values from four surrounding - - # This takes our 1d list of WxH data and pads it with a rect of none values - dataPad = list(data) - for i in reversed(range(1, wysize)): - dataPad.insert(wxsize * i, 0) - dataPad.insert(wxsize * i, 0) - for i in range(wxsize + 3): - dataPad.insert(0, 0) - for i in range(wxsize + 3): - dataPad.append(0) - - dataIn = [] - # Resample based on average of four - # averaging over: i, i + 1, i + wxsize, i + wxsize + 1 - for y in range(wysize+2 - 1): - for x in range(wxsize+2 - 1): - i = x+(y*(wxsize+2)) - nW = dataPad[i] - nE = dataPad[i+1] - sW = dataPad[i+(wxsize+2)] - sE = dataPad[i+(wxsize+2)+1] - dataIn.append((nW + nE + sW + sE)/float(4)) - - # Get the surrounding eight tiles - # Get NW - if tx - 1 >= tminx and ty + 1 <= tmaxy: - rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW = getTilePxBounds(self, - tx - 1, ty + 1, tz, ds) - wxsizeNW -= 1 - wysizeNW -= 1 - if wxsizeNW != 0 and wysizeNW != 0: - dataNW = ds.GetRasterBand(1).ReadRaster( - rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW, buf_type=gdal.GDT_Float32) - if dataNW is not None and (wxsizeNW * wysizeNW) > 0: - dataNW = struct.unpack( - 'f' * wxsizeNW * wysizeNW, dataNW) - else: - dataNW = None - else: - dataNW = None - - # Get N - if ty + 1 <= tmaxy: - rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN = getTilePxBounds( - self, tx, ty + 1, tz, ds) - wxsizeN -= 1 - wysizeN -= 1 - if wxsizeN != 0 and wysizeN != 0: - dataN = ds.GetRasterBand(1).ReadRaster( - rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN, buf_type=gdal.GDT_Float32) - if dataN is not None and (wxsizeN * wysizeN) > 0: - dataN = struct.unpack( - 'f' * wxsizeN * wysizeN, dataN) - else: - dataN = None - else: - dataN = None - # Get NE - if tx + 1 <= tmaxx and ty + 1 <= tmaxy: - rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE = getTilePxBounds( - self, tx + 1, ty + 1, tz, ds) - wxsizeNE -= 1 - wysizeNE -= 1 - if wxsizeNE != 0 and wysizeNE != 0: - dataNE = ds.GetRasterBand(1).ReadRaster( - rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE, buf_type=gdal.GDT_Float32) - if dataNE is not None and (wxsizeNE * wysizeNE) > 0: - dataNE = struct.unpack( - 'f' * wxsizeNE * wysizeNE, dataNE) - else: - dataNE = None - else: - dataNE = None - # Get E - if tx + 1 <= tmaxx: - rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE = getTilePxBounds( - self, tx + 1, ty, tz, ds) - wxsizeE -= 1 - wysizeE -= 1 - if wxsizeE != 0 and wysizeE != 0: - dataE = ds.GetRasterBand(1).ReadRaster( - rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE, buf_type=gdal.GDT_Float32) - if dataE is not None and (wxsizeE * wysizeE) > 0: - dataE = struct.unpack( - 'f' * wxsizeE * wysizeE, dataE) - else: - dataE = None - else: - dataE = None - # Get SE - if tx + 1 <= tmaxx and ty - 1 >= tminy: - rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE = getTilePxBounds( - self, tx + 1, ty - 1, tz, ds) - wxsizeSE -= 1 - wysizeSE -= 1 - if wxsizeSE != 0 and wysizeSE != 0: - dataSE = ds.GetRasterBand(1).ReadRaster( - rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE, buf_type=gdal.GDT_Float32) - if dataSE is not None and (wxsizeSE * wysizeSE) > 0: - dataSE = struct.unpack( - 'f' * wxsizeSE * wysizeSE, dataSE) - else: - dataSE = None - else: - dataSE = None - # Get S - if ty - 1 >= tminy: - rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS = getTilePxBounds( - self, tx, ty - 1, tz, ds) - wxsizeS -= 1 - wysizeS -= 1 - if wxsizeS != 0 and wysizeS != 0: - dataS = ds.GetRasterBand(1).ReadRaster( - rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS, buf_type=gdal.GDT_Float32) - if dataS is not None and (wxsizeS * wysizeS) > 0: - dataS = struct.unpack( - 'f' * wxsizeS * wysizeS, dataS) - else: - dataS = None - else: - dataS = None - # Get SW - if tx - 1 >= tminx and ty - 1 >= tminy: - rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW = getTilePxBounds( - self, tx - 1, ty - 1, tz, ds) - wxsizeSW -= 1 - wysizeSW -= 1 - if wxsizeSW != 0 and wysizeSW != 0: - dataSW = ds.GetRasterBand(1).ReadRaster( - rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW, buf_type=gdal.GDT_Float32) - if dataSW is not None and (wxsizeSW * wysizeSW) > 0: - dataSW = struct.unpack( - 'f' * wxsizeSW * wysizeSW, dataSW) - else: - dataSW = None - else: - dataSW = None - # Get W - if tx - 1 >= tminx: - rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW = getTilePxBounds( - self, tx - 1, ty, tz, ds) - wxsizeW -= 1 - wysizeW -= 1 - if wxsizeW != 0 and wysizeW != 0: - dataW = ds.GetRasterBand(1).ReadRaster( - rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW, buf_type=gdal.GDT_Float32) - if dataW is not None and (wxsizeW * wysizeW) > 0: - dataW = struct.unpack( - 'f' * wxsizeW * wysizeW, dataW) - else: - dataW = None - else: - dataW = None - - # NW (uses N, NW, W) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataN is not None: - fN = dataN[len(dataN)-wxsizeN] - values = values + 1 - if dataNW is not None: - fNW = dataNW[len(dataNW)-1] - values = values + 1 - if dataW is not None: - fW = dataW[wxsizeW-1] - values = values + 1 - dataIn[0] = ((dataIn[0]*4) + fN + - fNW + fW)/float(values) - - # NE (uses N, NE, E) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataN is not None: - fN = dataN[len(dataN)-1] - values = values + 1 - if dataNE is not None: - fNE = dataNE[len(dataNE)-wxsizeNE] - values = values + 1 - if dataE is not None: - fE = dataE[0] - values = values + 1 - dataIn[wxsize] = ( - (dataIn[wxsize]*4) + fN + fNE + fE)/float(values) - - # SE (uses S, SE, E) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataS is not None: - fS = dataS[wxsizeS-1] - values = values + 1 - if dataSE is not None: - fSE = dataSE[0] - values = values + 1 - if dataE is not None: - fE = dataE[len(dataE)-wxsizeE] - values = values + 1 - dataIn[len(dataIn)-1] = ((dataIn[len(dataIn)-1] - * 4) + fS + fSE + fE)/float(values) - - # SW (uses S, SW, W) - fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 - values = 1 - if dataS is not None: - fS = dataS[0] - values = values + 1 - if dataSW is not None: - fSW = dataSW[wxsizeSW-1] - values = values + 1 - if dataW is not None: - fW = dataW[len(dataW)-1] - values = values + 1 - dataIn[len( - dataIn)-wxsize-1] = ((dataIn[len(dataIn)-wxsize-1]*4) + fS + fSW + fW)/float(values) - - # Then the edges minus corners - # N - if dataN is not None: - for i in range(1, wxsize): - dataIn[i] = ( - (dataIn[i]*4) + dataN[len(dataN)-wxsizeN-1+i] + dataN[len(dataN)-wxsizeN-1+i+1])/float(4) - else: - for i in range(1, wxsize): - dataIn[i] = (dataIn[i]*4)/float(2) - - # E - if dataE is not None: - for i in range(1, wysize): - dataIn[((i+1)*(wxsize+1)-1)] = ((dataIn[((i+1)*(wxsize+1)-1)] - * 4) + dataE[(i-1)*wxsizeE] + dataE[i*wxsizeE])/float(4) - else: - for i in range(1, wysize): - dataIn[( - (i+1)*(wxsize+1)-1)] = (dataIn[((i+1)*(wxsize+1)-1)]*4)/float(2) - - # S - if dataS is not None: - for i in range(1, wxsize): - dataIn[len(dataIn)-wxsize-1+i] = ( - (dataIn[len(dataIn)-wxsize-1+i]*4) + dataS[i-1] + dataS[i])/float(4) - else: - for i in range(1, wxsize): - dataIn[len( - dataIn)-wxsize-1+i] = (dataIn[len(dataIn)-wxsize-1+i]*4)/float(2) - - # W - if dataW is not None: - for i in range(1, wysize): - dataIn[(i)*(wxsize+1)] = ((dataIn[(i)*(wxsize+1)]*4) + - dataW[i*wxsizeW-1] + dataW[(i+1)*wxsizeW-1])/float(4) - else: - for i in range(1, wysize): - dataIn[(i)*(wxsize+1)] = (dataIn[(i) - * (wxsize+1)]*4)/float(2) - - data1 = [] - data2 = [] - data3 = [] - data4 = [] - for f in dataIn: - f = str(binary(f)) - data1.append(int(f[:8], 2)) - data2.append(int(f[8:16], 2)) - data3.append(int(f[16:24], 2)) - data4.append(int(f[24:], 2)) - - data1s = '' - data2s = '' - data3s = '' - data4s = '' - indx = 0 - for v in data1: - data1s += struct.pack('B', data1[indx]) - data2s += struct.pack('B', data2[indx]) - data3s += struct.pack('B', data3[indx]) - data4s += struct.pack('B', data4[indx]) - indx += 1 - dstile.GetRasterBand(1).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data1s, buf_type=gdal.GDT_Byte) - dstile.GetRasterBand(2).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data2s, buf_type=gdal.GDT_Byte) - dstile.GetRasterBand(3).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data3s, buf_type=gdal.GDT_Byte) - dstile.GetRasterBand(4).WriteRaster( - wx, wy, wxsize + 1, wysize + 1, data4s, buf_type=gdal.GDT_Byte) - elif wxsize != 0 and wysize != 0: - # Big ReadRaster query in memory scaled to the tilesize - all but 'near' algo - dsquery = self.mem_drv.Create( - '', querysize, querysize, tilebands, gdal.GDT_Byte) # 1bto4b - # TODO: fill the null value in case a tile without alpha is produced (now only png tiles are supported) - # for i in range(1, tilebands+1): - # dsquery.GetRasterBand(1).Fill(tilenodata) - # dsquery.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1,self.dataBandsCount+1)))###############1bto4b - # dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])###############################1bto4b - - # 1bto4b - data = ds.GetRasterBand(1).ReadRaster( - rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) - - data = struct.unpack('f' * wxsize * wysize, data) - data1 = [] - data2 = [] - data3 = [] - data4 = [] - for f in data: - f = str(binary(f)) - data1.append(int(f[:8], 2)) - data2.append(int(f[8:16], 2)) - data3.append(int(f[16:24], 2)) - data4.append(int(f[24:], 2)) - - data1s = '' - data2s = '' - data3s = '' - data4s = '' - indx = 0 - for v in data1: - data1s += struct.pack('B', data1[indx]) - data2s += struct.pack('B', data2[indx]) - data3s += struct.pack('B', data3[indx]) - data4s += struct.pack('B', data4[indx]) - indx += 1 - - dsquery.GetRasterBand(1).WriteRaster( - wx, wy, wxsize, wysize, data1s, buf_type=gdal.GDT_Byte) - dsquery.GetRasterBand(2).WriteRaster( - wx, wy, wxsize, wysize, data2s, buf_type=gdal.GDT_Byte) - dsquery.GetRasterBand(3).WriteRaster( - wx, wy, wxsize, wysize, data3s, buf_type=gdal.GDT_Byte) - dsquery.GetRasterBand(4).WriteRaster( - wx, wy, wxsize, wysize, data4s, buf_type=gdal.GDT_Byte) - # sys.exit('done') - # 1bto4b - - self.scale_query_to_tile( - dsquery, dstile, tilefilename) - del dsquery - - else: - if self.tilesize == querysize: - # Use the ReadRaster result directly in tiles ('nearest neighbour' query) - dstile.WriteRaster(wx, wy, wxsize, wysize, data, - band_list=list(range(1, self.dataBandsCount+1))) - dstile.WriteRaster( - wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) - - # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, - # MrSID) the ReadRaster function returns high-quality raster (not ugly - # nearest neighbour) - # TODO: Use directly 'near' for WaveLet files - else: - # Big ReadRaster query in memory scaled to the tilesize - all but 'near' - # algo - dsquery = self.mem_drv.Create( - '', querysize, querysize, tilebands) - # TODO: fill the null value in case a tile without alpha is produced (now - # only png tiles are supported) - dsquery.WriteRaster(wx, wy, wxsize, wysize, data, - band_list=list(range(1, self.dataBandsCount+1))) - dsquery.WriteRaster( - wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) - - self.scale_query_to_tile( - dsquery, dstile, tilefilename) - del dsquery - - del data - - if self.options.resampling != 'antialias': - # Write a copy of tile to png/jpg - self.out_drv.CreateCopy(tilefilename, dstile, strict=0) - - del dstile - - # Create a KML file for this tile. - if self.kml: - kmlfilename = os.path.join( - self.output, str(tz), str(tx), '%d.kml' % ty) - if not self.options.resume or not os.path.exists(kmlfilename): - f = open(kmlfilename, 'wb') - f.write(self.generate_kml(tx, ty, tz).encode('utf-8')) - f.close() - - if not self.options.verbose and not self.options.quiet: - self.progressbar(ti / float(tcount)) - - def generate_overview_tiles(self): - """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" - - if not self.options.quiet: - print("Generating Overview Tiles:") - - # 1bto4b - if self.isDEMtile: - tilebands = 4 - else: - tilebands = self.dataBandsCount + 1 - - # Usage of existing tiles: from 4 underlying tiles generate one as overview. - - tcount = 0 - for tz in range(self.tmaxz-1, self.tminz-1, -1): - tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] - tcount += (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) - - ti = 0 - - for tz in range(self.tmaxz-1, self.tminz-1, -1): - tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] - for ty in range(tmaxy, tminy-1, -1): - for tx in range(tminx, tmaxx+1): - - if self.stopped: - break - - ti += 1 - tilefilename = os.path.join(self.output, - str(tz), - str(tx), - "%s.%s" % (ty, self.tileext)) - - if self.options.verbose: - print(ti, '/', tcount, tilefilename) - - if self.options.resume and os.path.exists(tilefilename): - if self.options.verbose: - print("Tile generation skipped because of --resume") - else: - self.progressbar(ti / float(tcount)) - continue - - # Create directories for the tile - if not os.path.exists(os.path.dirname(tilefilename)): - os.makedirs(os.path.dirname(tilefilename)) - - dsquery = self.mem_drv.Create( - '', 2*self.tilesize, 2*self.tilesize, tilebands) - # TODO: fill the null value - dstile = self.mem_drv.Create( - '', self.tilesize, self.tilesize, tilebands) - - # TODO: Implement more clever walking on the tiles with cache functionality - # probably walk should start with reading of four tiles from top left corner - # Hilbert curve - - children = [] - # Read the tiles and write them to query window - for y in range(2*ty, 2*ty+2): - for x in range(2*tx, 2*tx+2): - minx, miny, maxx, maxy = self.tminmax[tz+1] - if x >= minx and x <= maxx and y >= miny and y <= maxy: - dsquerytile = gdal.Open( - os.path.join(self.output, str(tz+1), str(x), - "%s.%s" % (y, self.tileext)), - gdal.GA_ReadOnly) - if (ty == 0 and y == 1) or (ty != 0 and (y % (2*ty)) != 0): - tileposy = 0 - else: - tileposy = self.tilesize - if tx: - tileposx = x % (2*tx) * self.tilesize - elif tx == 0 and x == 1: - tileposx = self.tilesize - else: - tileposx = 0 - dsquery.WriteRaster( - tileposx, tileposy, self.tilesize, self.tilesize, - dsquerytile.ReadRaster( - 0, 0, self.tilesize, self.tilesize), - band_list=list(range(1, tilebands+1))) - children.append([x, y, tz+1]) - - self.scale_query_to_tile(dsquery, dstile, tilefilename) - # Write a copy of tile to png/jpg - if self.options.resampling != 'antialias': - # Write a copy of tile to png/jpg - self.out_drv.CreateCopy(tilefilename, dstile, strict=0) - - if self.options.verbose: - print("\tbuild from zoom", tz+1, - " tiles:", (2*tx, 2*ty), (2*tx+1, 2*ty), - (2*tx, 2*ty+1), (2*tx+1, 2*ty+1)) - - # Create a KML file for this tile. - if self.kml: - f = open(os.path.join( - self.output, '%d/%d/%d.kml' % (tz, tx, ty)), 'wb') - f.write(self.generate_kml( - tx, ty, tz, children).encode('utf-8')) - f.close() - - if not self.options.verbose and not self.options.quiet: - self.progressbar(ti / float(tcount)) - - def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): - """ - For given dataset and query in cartographic coordinates returns parameters for ReadRaster() - in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the - extent is returned in the native resolution of dataset ds. - - raises Gdal2TilesError if the dataset does not contain anything inside this geo_query - """ - geotran = ds.GetGeoTransform() - rx = int((ulx - geotran[0]) / geotran[1] + 0.001) - ry = int((uly - geotran[3]) / geotran[5] + 0.001) - rxsize = int((lrx - ulx) / geotran[1] + 0.5) - rysize = int((lry - uly) / geotran[5] + 0.5) - - if not querysize: - wxsize, wysize = rxsize, rysize - else: - wxsize, wysize = querysize, querysize - - # Coordinates should not go out of the bounds of the raster - wx = 0 - if rx < 0: - rxshift = abs(rx) - wx = int(wxsize * (float(rxshift) / rxsize)) - wxsize = wxsize - wx - rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) - rx = 0 - if rx+rxsize > ds.RasterXSize: - wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) - rxsize = ds.RasterXSize - rx - - wy = 0 - if ry < 0: - ryshift = abs(ry) - wy = int(wysize * (float(ryshift) / rysize)) - wysize = wysize - wy - rysize = rysize - int(rysize * (float(ryshift) / rysize)) - ry = 0 - if ry+rysize > ds.RasterYSize: - wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) - rysize = ds.RasterYSize - ry - - return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) - - def scale_query_to_tile(self, dsquery, dstile, tilefilename=''): - """Scales down query dataset to the tile dataset""" - - querysize = dsquery.RasterXSize - tilesize = dstile.RasterXSize - tilebands = dstile.RasterCount - - if self.options.resampling == 'average': - - # Function: gdal.RegenerateOverview() - for i in range(1, tilebands+1): - # Black border around NODATA - res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), - 'average') - if res != 0: - self.error("RegenerateOverview() failed on %s, error %d" % ( - tilefilename, res)) - - elif self.options.resampling == 'antialias': - - # Scaling by PIL (Python Imaging Library) - improved Lanczos - array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) - for i in range(tilebands): - array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1), - 0, 0, querysize, querysize) - im = Image.fromarray(array, 'RGBA') # Always four bands - im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) - if os.path.exists(tilefilename): - im0 = Image.open(tilefilename) - im1 = Image.composite(im1, im0, im1) - im1.save(tilefilename, self.tiledriver) - - else: - - # Other algorithms are implemented by gdal.ReprojectImage(). - dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, - tilesize / float(querysize))) - dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) - - res = gdal.ReprojectImage( - dsquery, dstile, None, None, self.resampling) - if res != 0: - self.error("ReprojectImage() failed on %s, error %d" % - (tilefilename, res)) - - def generate_tilemapresource(self): - """ - Template for tilemapresource.xml. Returns filled string. Expected variables: - title, north, south, east, west, isepsg4326, projection, publishurl, - zoompixels, tilesize, tileformat, profile - """ - - args = {} - args['title'] = self.options.title - args['south'], args['west'], args['north'], args['east'] = self.swne - args['tilesize'] = self.tilesize - args['tileformat'] = self.tileext - args['publishurl'] = self.options.url - args['profile'] = self.options.profile - - if self.options.profile == 'mercator': - args['srs'] = "EPSG:3857" - elif self.options.profile == 'geodetic': - args['srs'] = "EPSG:4326" - elif self.options.s_srs: - args['srs'] = self.options.s_srs - elif self.out_srs: - args['srs'] = self.out_srs.ExportToWkt() - else: - args['srs'] = "" - - s = """ - - %(title)s - - %(srs)s - - - - -""" % args # noqa - for z in range(self.tminz, self.tmaxz+1): - if self.options.profile == 'raster': - s += """ \n""" % ( - args['publishurl'], z, (2**(self.nativezoom-z) * self.out_gt[1]), z) - elif self.options.profile == 'mercator': - s += """ \n""" % ( - args['publishurl'], z, 156543.0339/2**z, z) - elif self.options.profile == 'geodetic': - s += """ \n""" % ( - args['publishurl'], z, 0.703125/2**z, z) - s += """ - - """ - return s - - def generate_kml(self, tx, ty, tz, children=None, **args): - """ - Template for the KML. Returns filled string. - """ - if not children: - children = [] - - args['tx'], args['ty'], args['tz'] = tx, ty, tz - args['tileformat'] = self.tileext - if 'tilesize' not in args: - args['tilesize'] = self.tilesize - - if 'minlodpixels' not in args: - args['minlodpixels'] = int(args['tilesize'] / 2) - if 'maxlodpixels' not in args: - args['maxlodpixels'] = int(args['tilesize'] * 8) - if children == []: - args['maxlodpixels'] = -1 - - if tx is None: - tilekml = False - args['title'] = self.options.title - else: - tilekml = True - args['title'] = "%d/%d/%d.kml" % (tz, tx, ty) - args['south'], args['west'], args['north'], args['east'] = self.tileswne( - tx, ty, tz) - - if tx == 0: - args['drawOrder'] = 2 * tz + 1 - elif tx is not None: - args['drawOrder'] = 2 * tz - else: - args['drawOrder'] = 0 - - url = self.options.url - if not url: - if tilekml: - url = "../../" - else: - url = "" - - s = """ - - - %(title)s - - """ % args - if tilekml: - s += """ - - - %(north).14f - %(south).14f - %(east).14f - %(west).14f - - - %(minlodpixels)d - %(maxlodpixels)d - - - - %(drawOrder)d - - %(ty)d.%(tileformat)s - - - %(north).14f - %(south).14f - %(east).14f - %(west).14f - - - """ % args - - for cx, cy, cz in children: - csouth, cwest, cnorth, ceast = self.tileswne(cx, cy, cz) - s += """ - - %d/%d/%d.%s - - - %.14f - %.14f - %.14f - %.14f - - - %d - -1 - - - - %s%d/%d/%d.kml - onRegion - - - - """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, - args['minlodpixels'], url, cz, cx, cy) - - s += """ - - """ - return s - - def generate_googlemaps(self): - """ - Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. - It returns filled string. Expected variables: - title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, - publishurl - """ - args = {} - args['title'] = self.options.title - args['googlemapskey'] = self.options.googlekey - args['south'], args['west'], args['north'], args['east'] = self.swne - args['minzoom'] = self.tminz - args['maxzoom'] = self.tmaxz - args['tilesize'] = self.tilesize - args['tileformat'] = self.tileext - args['publishurl'] = self.options.url - args['copyright'] = self.options.copyright - - s = r""" - - - %(title)s - - - - - - - - -
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC - -
-
- - - """ % args # noqa - - return s - - def generate_leaflet(self): - """ - Template for leaflet.html implementing overlay of tiles for 'mercator' profile. - It returns filled string. Expected variables: - title, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl - """ - - args = {} - args['title'] = self.options.title.replace('"', '\\"') - args['htmltitle'] = self.options.title - args['south'], args['west'], args['north'], args['east'] = self.swne - args['centerlon'] = (args['north'] + args['south']) / 2. - args['centerlat'] = (args['west'] + args['east']) / 2. - args['minzoom'] = self.tminz - args['maxzoom'] = self.tmaxz - args['beginzoom'] = self.tmaxz - args['tilesize'] = self.tilesize # not used - args['tileformat'] = self.tileext - args['publishurl'] = self.options.url # not used - args['copyright'] = self.options.copyright.replace('"', '\\"') - - s = """ - - - - - %(htmltitle)s - - - - - - - - - - -
- - - - - - - """ % args # noqa - - return s - - def generate_openlayers(self): - """ - Template for openlayers.html implementing overlay of available Spherical Mercator layers. - - It returns filled string. Expected variables: - title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl - """ - - args = {} - args['title'] = self.options.title - args['bingkey'] = self.options.bingkey - args['south'], args['west'], args['north'], args['east'] = self.swne - args['minzoom'] = self.tminz - args['maxzoom'] = self.tmaxz - args['tilesize'] = self.tilesize - args['tileformat'] = self.tileext - args['publishurl'] = self.options.url - args['copyright'] = self.options.copyright - if self.options.tmscompatible: - args['tmsoffset'] = "-1" - else: - args['tmsoffset'] = "" - if self.options.profile == 'raster': - args['rasterzoomlevels'] = self.tmaxz+1 - args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1] - - s = r""" - - %(title)s - - """ % args # noqa - - if self.options.profile == 'mercator': - s += """ - - """ % args - - s += """ - - - - - -
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC - -
-
- - - """ % args # noqa - - return s - - -def main(): - argv = gdal.GeneralCmdLineProcessor(sys.argv) - if argv: - gdal2tiles = GDAL2Tiles(argv[1:]) - gdal2tiles.process() - - -if __name__ == '__main__': - main() - -# vim: set tabstop=4 shiftwidth=4 expandtab: +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# ****************************************************************************** +# $Id$ +# +# Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/) +# Support: BRGM (http://www.brgm.fr) +# Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory. +# - generate Google Earth metadata (KML SuperOverlay) +# - generate simple HTML viewer based on Google Maps and OpenLayers +# - support of global tiles (Spherical Mercator) for compatibility +# with interactive web maps a la Google Maps +# Author: Klokan Petr Pridal, klokan at klokan dot cz +# Web: http://www.klokan.cz/projects/gdal2tiles/ +# GUI: http://www.maptiler.org/ +# +############################################################################### +# Copyright (c) 2008, Klokan Petr Pridal +# Copyright (c) 2010-2013, Even Rouault +# +# Permission is hereby granted, free of charge, to any person obtaining a +# copy of this software and associated documentation files (the "Software"), +# to deal in the Software without restriction, including without limitation +# the rights to use, copy, modify, merge, publish, distribute, sublicense, +# and/or sell copies of the Software, and to permit persons to whom the +# Software is furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included +# in all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL +# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +# DEALINGS IN THE SOFTWARE. +# ****************************************************************************** + +import math +import os +import sys + +from osgeo import gdal +from osgeo import osr + +import struct # 1bto4b + + +def binary(num): # 1bto4b + # 1bto4b + return ''.join(bin(ord(c)).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) + +# 1bto4b + +def getTilePxBounds(self, tx, ty, tz, ds): + + querysize = self.tilesize + + if self.isRasterBounded: # 'raster' profile: + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.out_ds.fWorldXSize + ysize = self.out_ds.fWorldYSize + if tz >= self.tmaxz: + querysize = self.tilesize + + rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld + #print("rx", rx) + rxsize = 0 + rxsize = tsize + + rysize = 0 + rysize = tsize + + ry = ysize - (ty * tsize) - rysize - \ + self.out_ds.fRasterYOriginWorld + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tilesize) + if wysize != self.tilesize: + wy = self.tilesize - wysize + + if rx < 0: + rxsize = tsize + rx + wx = -rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + rx = 0 + if ry < 0: + rysize = tsize + ry + wy = -ry + wysize = int(rysize/float(tsize) * self.tilesize) + ry = 0 + if rx + rxsize > self.out_ds.fRasterXSizeWorld: + rxsize = self.out_ds.fRasterXSizeWorld - rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + if ry + rysize > self.out_ds.fRasterYSizeWorld: + rysize = self.out_ds.fRasterYSizeWorld - ry + wysize = int(rysize/float(tsize) * self.tilesize) + + # Convert rx, ry back to non-world coordinates + rx = int(float(self.out_ds.RasterXSize) * + (float(rx) / self.out_ds.fRasterXSizeWorld)) + ry = int(float(self.out_ds.RasterYSize) * + (float(ry) / self.out_ds.fRasterYSizeWorld)) + rxsize = int(float(self.out_ds.RasterXSize) * + (float(rxsize) / self.out_ds.fRasterXSizeWorld)) + rysize = int(float(self.out_ds.RasterYSize) * + (float(rysize) / self.out_ds.fRasterYSizeWorld)) + else: + b = self.mercator.TileBounds(tx, ty, tz) + rb, wb = self.geo_query( + ds, b[0], b[3], b[2], b[1], querysize=querysize) + rx, ry, rxsize, rysize = rb + wx, wy, wxsize, wysize = wb + + return [rx, ry, rxsize, rysize, wxsize, wysize] + + +try: + from PIL import Image + import numpy + import osgeo.gdal_array as gdalarray +except Exception: + # 'antialias' resampling is not available + pass + +__version__ = "$Id$" + +resampling_list = ('average', 'near', 'bilinear', 'cubic', + 'cubicspline', 'lanczos', 'antialias') +profile_list = ('mercator', 'geodetic', 'raster') +webviewer_list = ('all', 'google', 'openlayers', 'leaflet', 'none') + +# ============================================================================= +# ============================================================================= +# ============================================================================= + +__doc__globalmaptiles = """ +globalmaptiles.py + +Global Map Tiles as defined in Tile Map Service (TMS) Profiles +============================================================== + +Functions necessary for generation of global tiles used on the web. +It contains classes implementing coordinate conversions for: + + - GlobalMercator (based on EPSG:3857) + for Google Maps, Yahoo Maps, Bing Maps compatible tiles + - GlobalGeodetic (based on EPSG:4326) + for OpenLayers Base Map and Google Earth compatible tiles + +More info at: + +http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification +http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation +http://msdn.microsoft.com/en-us/library/bb259689.aspx +http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates + +Created by Klokan Petr Pridal on 2008-07-03. +Google Summer of Code 2008, project GDAL2Tiles for OSGEO. + +In case you use this class in your product, translate it to another language +or find it useful for your project please let me know. +My email: klokan at klokan dot cz. +I would like to know where it was used. + +Class is available under the open-source GDAL license (www.gdal.org). +""" + +MAXZOOMLEVEL = 32 + + +class GlobalMercator(object): + r""" + TMS Global Mercator Profile + --------------------------- + + Functions necessary for generation of tiles in Spherical Mercator projection, + EPSG:3857. + + Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps, + UK Ordnance Survey OpenSpace API, ... + and you can overlay them on top of base maps of those web mapping applications. + + Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). + + What coordinate conversions do we need for TMS Global Mercator tiles:: + + LatLon <-> Meters <-> Pixels <-> Tile + + WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid + lat/lon XY in meters XY pixels Z zoom XYZ from TMS + EPSG:4326 EPSG:387 + .----. --------- -- TMS + / \ <-> | | <-> /----/ <-> Google + \ / | | /--------/ QuadTree + ----- --------- /------------/ + KML, public WebMapService Web Clients TileMapService + + What is the coordinate extent of Earth in EPSG:3857? + + [-20037508.342789244, -20037508.342789244, + 20037508.342789244, 20037508.342789244] + Constant 20037508.342789244 comes from the circumference of the Earth in meters, + which is 40 thousand kilometers, the coordinate origin is in the middle of extent. + In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 + $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857 + Polar areas with abs(latitude) bigger then 85.05112878 are clipped off. + + What are zoom level constants (pixels/meter) for pyramid with EPSG:3857? + + whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile, + every lower zoom level resolution is always divided by two + initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062 + + What is the difference between TMS and Google Maps/QuadTree tile name convention? + + The tile raster itself is the same (equal extent, projection, pixel size), + there is just different identification of the same raster tile. + Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ. + Google placed the origin [0,0] to the top-left corner, reference is XYZ. + Microsoft is referencing tiles by a QuadTree name, defined on the website: + http://msdn2.microsoft.com/en-us/library/bb259689.aspx + + The lat/lon coordinates are using WGS84 datum, yes? + + Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum. + Well, the web clients like Google Maps are projecting those coordinates by + Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if + the were on the WGS84 ellipsoid. + + From MSDN documentation: + To simplify the calculations, we use the spherical form of projection, not + the ellipsoidal form. Since the projection is used only for map display, + and not for displaying numeric coordinates, we don't need the extra precision + of an ellipsoidal projection. The spherical projection causes approximately + 0.33 percent scale distortion in the Y direction, which is not visually + noticeable. + + How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4? + + You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform. + All of the tools supports -t_srs 'epsg:3857'. + + For other GIS programs check the exact definition of the projection: + More info at http://spatialreference.org/ref/user/google-projection/ + The same projection is designated as EPSG:3857. WKT definition is in the + official EPSG database. + + Proj4 Text: + +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 + +k=1.0 +units=m +nadgrids=@null +no_defs + + Human readable WKT format of EPSG:3857: + PROJCS["Google Maps Global Mercator", + GEOGCS["WGS 84", + DATUM["WGS_1984", + SPHEROID["WGS 84",6378137,298.257223563, + AUTHORITY["EPSG","7030"]], + AUTHORITY["EPSG","6326"]], + PRIMEM["Greenwich",0], + UNIT["degree",0.0174532925199433], + AUTHORITY["EPSG","4326"]], + PROJECTION["Mercator_1SP"], + PARAMETER["central_meridian",0], + PARAMETER["scale_factor",1], + PARAMETER["false_easting",0], + PARAMETER["false_northing",0], + UNIT["metre",1, + AUTHORITY["EPSG","9001"]]] + """ + + def __init__(self, tileSize=256): + "Initialize the TMS Global Mercator pyramid" + self.tileSize = tileSize + self.initialResolution = 2 * math.pi * 6378137 / self.tileSize + # 156543.03392804062 for tileSize 256 pixels + self.originShift = 2 * math.pi * 6378137 / 2.0 + # 20037508.342789244 + + def LatLonToMeters(self, lat, lon): + "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857" + + mx = lon * self.originShift / 180.0 + my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / \ + (math.pi / 180.0) + + my = my * self.originShift / 180.0 + return mx, my + + def MetersToLatLon(self, mx, my): + "Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum" + + lon = (mx / self.originShift) * 180.0 + lat = (my / self.originShift) * 180.0 + + lat = 180 / math.pi * \ + (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) + return lat, lon + + def PixelsToMeters(self, px, py, zoom): + "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" + + res = self.Resolution(zoom) + mx = px * res - self.originShift + my = py * res - self.originShift + return mx, my + + def MetersToPixels(self, mx, my, zoom): + "Converts EPSG:3857 to pyramid pixel coordinates in given zoom level" + + res = self.Resolution(zoom) + px = (mx + self.originShift) / res + py = (my + self.originShift) / res + return px, py + + def PixelsToTile(self, px, py): + "Returns a tile covering region in given pixel coordinates" + + tx = int(math.ceil(px / float(self.tileSize)) - 1) + ty = int(math.ceil(py / float(self.tileSize)) - 1) + return tx, ty + + def PixelsToRaster(self, px, py, zoom): + "Move the origin of pixel coordinates to top-left corner" + + mapSize = self.tileSize << zoom + return px, mapSize - py + + def MetersToTile(self, mx, my, zoom): + "Returns tile for given mercator coordinates" + + px, py = self.MetersToPixels(mx, my, zoom) + return self.PixelsToTile(px, py) + + def TileBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in EPSG:3857 coordinates" + + minx, miny = self.PixelsToMeters( + tx*self.tileSize, ty*self.tileSize, zoom) + maxx, maxy = self.PixelsToMeters( + (tx+1)*self.tileSize, (ty+1)*self.tileSize, zoom) + return (minx, miny, maxx, maxy) + + def TileLatLonBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in latitude/longitude using WGS84 datum" + + bounds = self.TileBounds(tx, ty, zoom) + minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) + maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) + + return (minLat, minLon, maxLat, maxLon) + + def Resolution(self, zoom): + "Resolution (meters/pixel) for given zoom level (measured at Equator)" + + # return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom) + return self.initialResolution / (2**zoom) + + def ZoomForPixelSize(self, pixelSize): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(MAXZOOMLEVEL): + if pixelSize > self.Resolution(i): + if i != -1: + return i-1 + else: + return 0 # We don't want to scale up + + def GoogleTile(self, tx, ty, zoom): + "Converts TMS tile coordinates to Google Tile coordinates" + + # coordinate origin is moved from bottom-left to top-left corner of the extent + return tx, (2**zoom - 1) - ty + + def QuadTree(self, tx, ty, zoom): + "Converts TMS tile coordinates to Microsoft QuadTree" + + quadKey = "" + ty = (2**zoom - 1) - ty + for i in range(zoom, 0, -1): + digit = 0 + mask = 1 << (i-1) + if (tx & mask) != 0: + digit += 1 + if (ty & mask) != 0: + digit += 2 + quadKey += str(digit) + + return quadKey + + +class GlobalGeodetic(object): + r""" + TMS Global Geodetic Profile + --------------------------- + + Functions necessary for generation of global tiles in Plate Carre projection, + EPSG:4326, "unprojected profile". + + Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters) + and you can overlay the tiles on top of OpenLayers base map. + + Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). + + What coordinate conversions do we need for TMS Global Geodetic tiles? + + Global Geodetic tiles are using geodetic coordinates (latitude,longitude) + directly as planar coordinates XY (it is also called Unprojected or Plate + Carre). We need only scaling to pixel pyramid and cutting to tiles. + Pyramid has on top level two tiles, so it is not square but rectangle. + Area [-180,-90,180,90] is scaled to 512x256 pixels. + TMS has coordinate origin (for pixels and tiles) in bottom-left corner. + Rasters are in EPSG:4326 and therefore are compatible with Google Earth. + + LatLon <-> Pixels <-> Tiles + + WGS84 coordinates Pixels in pyramid Tiles in pyramid + lat/lon XY pixels Z zoom XYZ from TMS + EPSG:4326 + .----. ---- + / \ <-> /--------/ <-> TMS + \ / /--------------/ + ----- /--------------------/ + WMS, KML Web Clients, Google Earth TileMapService + """ + + def __init__(self, tmscompatible, tileSize=256): + self.tileSize = tileSize + if tmscompatible is not None: + # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) + # Adhers to OSGeo TMS spec + # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic + self.resFact = 180.0 / self.tileSize + else: + # Defaults the resolution factor to 1.40625 (1 tile @ level 0) + # Adheres OpenLayers, MapProxy, etc default resolution for WMTS + self.resFact = 360.0 / self.tileSize + + def LonLatToPixels(self, lon, lat, zoom): + "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" + + res = self.resFact / 2**zoom + px = (180 + lon) / res + py = (90 + lat) / res + return px, py + + def PixelsToTile(self, px, py): + "Returns coordinates of the tile covering region in pixel coordinates" + + tx = int(math.ceil(px / float(self.tileSize)) - 1) + ty = int(math.ceil(py / float(self.tileSize)) - 1) + return tx, ty + + def LonLatToTile(self, lon, lat, zoom): + "Returns the tile for zoom which covers given lon/lat coordinates" + + px, py = self.LonLatToPixels(lon, lat, zoom) + return self.PixelsToTile(px, py) + + def Resolution(self, zoom): + "Resolution (arc/pixel) for given zoom level (measured at Equator)" + + return self.resFact / 2**zoom + + def ZoomForPixelSize(self, pixelSize): + "Maximal scaledown zoom of the pyramid closest to the pixelSize." + + for i in range(MAXZOOMLEVEL): + if pixelSize > self.Resolution(i): + if i != 0: + return i-1 + else: + return 0 # We don't want to scale up + + def TileBounds(self, tx, ty, zoom): + "Returns bounds of the given tile" + res = self.resFact / 2**zoom + return ( + tx*self.tileSize*res - 180, + ty*self.tileSize*res - 90, + (tx+1)*self.tileSize*res - 180, + (ty+1)*self.tileSize*res - 90 + ) + + def TileLatLonBounds(self, tx, ty, zoom): + "Returns bounds of the given tile in the SWNE form" + b = self.TileBounds(tx, ty, zoom) + return (b[1], b[0], b[3], b[2]) + + +class Zoomify(object): + """ + Tiles compatible with the Zoomify viewer + ---------------------------------------- + """ + + def __init__(self, width, height, tilesize=256, tileformat='jpg'): + """Initialization of the Zoomify tile tree""" + + self.tilesize = tilesize + self.tileformat = tileformat + imagesize = (width, height) + tiles = (math.ceil(width / tilesize), math.ceil(height / tilesize)) + + # Size (in tiles) for each tier of pyramid. + self.tierSizeInTiles = [] + self.tierSizeInTiles.append(tiles) + + # Image size in pixels for each pyramid tierself + self.tierImageSize = [] + self.tierImageSize.append(imagesize) + + while (imagesize[0] > tilesize or imagesize[1] > tilesize): + imagesize = (math.floor( + imagesize[0] / 2), math.floor(imagesize[1] / 2)) + tiles = (math.ceil(imagesize[0] / tilesize), + math.ceil(imagesize[1] / tilesize)) + self.tierSizeInTiles.append(tiles) + self.tierImageSize.append(imagesize) + + self.tierSizeInTiles.reverse() + self.tierImageSize.reverse() + + # Depth of the Zoomify pyramid, number of tiers (zoom levels) + self.numberOfTiers = len(self.tierSizeInTiles) + + # Number of tiles up to the given tier of pyramid. + self.tileCountUpToTier = [] + self.tileCountUpToTier[0] = 0 + for i in range(1, self.numberOfTiers+1): + self.tileCountUpToTier.append( + self.tierSizeInTiles[i-1][0] * self.tierSizeInTiles[i-1][1] + + self.tileCountUpToTier[i-1] + ) + + def tilefilename(self, x, y, z): + """Returns filename for tile with given coordinates""" + + tileIndex = x + y * \ + self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] + return os.path.join("TileGroup%.0f" % math.floor(tileIndex / 256), + "%s-%s-%s.%s" % (z, x, y, self.tileformat)) + + +class Gdal2TilesError(Exception): + pass + + +class GDAL2Tiles(object): + + def process(self): + """The main processing function, runs all the main steps of processing""" + + # Opening and preprocessing of the input file + self.open_input() + + # Generation of main metadata files and HTML viewers + self.generate_metadata() + + # 1bto4b + if self.isDEMtile: + for z in range(self.tminz, self.tmaxz + int(abs(math.log(self.tilesize, 2) - 8))): # 1bto4b + self.generate_base_tiles(z) + print(' Zoom ' + str(z) + ' tiles done!') + else: + # Generation of the lowest tiles + self.generate_base_tiles(self.tmaxz) + + # Generation of the overview tiles (higher in the pyramid) + self.generate_overview_tiles() + + def error(self, msg, details=""): + """Print an error message and stop the processing""" + if details: + self.parser.error(msg + "\n\n" + details) + else: + self.parser.error(msg) + + def progressbar(self, complete=0.0): + """Print progressbar for float value 0..1""" + gdal.TermProgress_nocb(complete) + + def gettempfilename(self, suffix): + """Returns a temporary filename""" + if '_' in os.environ: + # tempfile.mktemp() crashes on some Wine versions (the one of Ubuntu 12.04 particularly) + if os.environ['_'].find('wine') >= 0: + tmpdir = '.' + if 'TMP' in os.environ: + tmpdir = os.environ['TMP'] + import time + import random + random.seed(time.time()) + random_part = 'file%d' % random.randint(0, 1000000000) + return os.path.join(tmpdir, random_part + suffix) + + import tempfile + return tempfile.mktemp(suffix) + + def stop(self): + """Stop the rendering immediately""" + self.stopped = True + + def __init__(self, arguments): + """Constructor function - initialization""" + self.out_drv = None + self.mem_drv = None + self.in_ds = None + self.out_ds = None + self.out_srs = None + self.nativezoom = None + self.tminmax = None + self.tsize = None + self.mercator = None + self.geodetic = None + self.alphaband = None + self.dataBandsCount = None + self.out_gt = None + self.tileswne = None + self.swne = None + self.ominx = None + self.omaxx = None + self.omaxy = None + self.ominy = None + + # MMGIS + self.isRasterBounded = False + + # 1bto4b + self.isDEMtile = False + + # MMGIS + self.fminx = None + self.fmaxx = None + self.fminy = None + self.fmaxy = None + self.fPixelSize = None + + self.stopped = False + self.input = None + self.output = None + + # Tile format + self.tilesize = 256 + self.tiledriver = 'PNG' + self.tileext = 'png' + + # Should we read bigger window of the input raster and scale it down? + # Note: Modified later by open_input() + # Not for 'near' resampling + # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) + # Not for 'raster' profile + self.scaledquery = True + # How big should be query window be for scaling down + # Later on reset according the chosen resampling algorightm + self.querysize = 4 * self.tilesize + + # Should we use Read on the input file for generating overview tiles? + # Note: Modified later by open_input() + # Otherwise the overview tiles are generated from existing underlying tiles + self.overviewquery = False + + # RUN THE ARGUMENT PARSER: + + self.optparse_init() + self.options, self.args = self.parser.parse_args(args=arguments) + if not self.args: + self.error("No input file specified") + + # POSTPROCESSING OF PARSED ARGUMENTS: + + # Workaround for old versions of GDAL + try: + if ((self.options.verbose and self.options.resampling == 'near') or + gdal.TermProgress_nocb): + pass + except Exception: + self.error( + "This version of GDAL is not supported. Please upgrade to 1.6+.") + + # Is output directory the last argument? + + # Test output directory, if it doesn't exist + if (os.path.isdir(self.args[-1]) or + (len(self.args) > 1 and not os.path.exists(self.args[-1]))): + self.output = self.args[-1] + self.args = self.args[:-1] + + # More files on the input not directly supported yet + + if (len(self.args) > 1): + self.error("Processing of several input files is not supported.", + "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " + "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(self.args)) + + self.input = self.args[0] + + # MMGIS + if self.options.extentworld: + extentworld = self.options.extentworld.split(",") + self.isRasterBounded = True + self.fminx = float(extentworld[0]) + self.fmaxx = float(extentworld[2]) + self.fminy = float(extentworld[3]) + self.fmaxy = float(extentworld[1]) + self.fPixelSize = float(extentworld[4]) + + # 1bto4b + if self.options.isDEMtile: + self.isDEMtile = True + self.tilesize = 32 + self.querysize = 4 * self.tilesize + + # Default values for not given options + + if not self.output: + # Directory with input filename without extension in actual directory + self.output = os.path.splitext(os.path.basename(self.input))[0] + + if not self.options.title: + self.options.title = os.path.basename(self.input) + + if self.options.url and not self.options.url.endswith('/'): + self.options.url += '/' + if self.options.url: + self.options.url += os.path.basename(self.output) + '/' + + # Supported options + + self.resampling = None + + if self.options.resampling == 'average': + try: + if gdal.RegenerateOverview: + pass + except Exception: + self.error("'average' resampling algorithm is not available.", + "Please use -r 'near' argument or upgrade to newer version of GDAL.") + + elif self.options.resampling == 'antialias': + try: + if numpy: # pylint:disable=W0125 + pass + except Exception: + self.error("'antialias' resampling algorithm is not available.", + "Install PIL (Python Imaging Library) and numpy.") + + elif self.options.resampling == 'near': + self.resampling = gdal.GRA_NearestNeighbour + self.querysize = self.tilesize + + elif self.options.resampling == 'bilinear': + self.resampling = gdal.GRA_Bilinear + self.querysize = self.tilesize * 2 + + elif self.options.resampling == 'cubic': + self.resampling = gdal.GRA_Cubic + + elif self.options.resampling == 'cubicspline': + self.resampling = gdal.GRA_CubicSpline + + elif self.options.resampling == 'lanczos': + self.resampling = gdal.GRA_Lanczos + + # User specified zoom levels + self.tminz = None + self.tmaxz = None + if self.options.zoom: + minmax = self.options.zoom.split('-', 1) + minmax.extend(['']) + zoom_min, zoom_max = minmax[:2] + self.tminz = int(zoom_min) + if zoom_max: + self.tmaxz = int(zoom_max) + else: + self.tmaxz = int(zoom_min) + + # KML generation + self.kml = self.options.kml + + # Check if the input filename is full ascii or not + try: + os.path.basename(self.input).encode('ascii') + except UnicodeEncodeError: + full_ascii = False + else: + full_ascii = True + + # LC_CTYPE check + if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""): + if not self.options.quiet: + print("\nWARNING: " + "You are running gdal2tiles.py with a LC_CTYPE environment variable that is " + "not UTF-8 compatible, and your input file contains non-ascii characters. " + "The generated sample googlemaps, openlayers or " + "leaflet files might contain some invalid characters as a result\n") + + # Output the results + if self.options.verbose: + print("Options:", self.options) + print("Input:", self.input) + print("Output:", self.output) + print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) + print('') + + def optparse_init(self): + """Prepare the option parser for input (argv)""" + + from optparse import OptionParser, OptionGroup + usage = "Usage: %prog [options] input_file(s) [output]" + p = OptionParser(usage, version="%prog " + __version__) + p.add_option("-p", "--profile", dest='profile', + type='choice', choices=profile_list, + help=("Tile cutting profile (%s) - default 'mercator' " + "(Google Maps compatible)" % ",".join(profile_list))) + p.add_option("-r", "--resampling", dest="resampling", + type='choice', choices=resampling_list, + help="Resampling method (%s) - default 'average'" % ",".join(resampling_list)) + p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS", + help="The spatial reference system used for the source input data") + p.add_option('-z', '--zoom', dest="zoom", + help="Zoom levels to render (format:'2-5' or '10').") + p.add_option('-e', '--resume', dest="resume", action="store_true", + help="Resume mode. Generate only missing files.") + p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA", + help="NODATA transparency value to assign to the input data") + p.add_option('-d', '--tmscompatible', dest="tmscompatible", action="store_true", + help=("When using the geodetic profile, specifies the base resolution " + "as 0.703125 or 2 tiles at zoom level 0.")) + p.add_option("-v", "--verbose", + action="store_true", dest="verbose", + help="Print status messages to stdout") + p.add_option("-q", "--quiet", + action="store_true", dest="quiet", + help="Disable messages and status to stdout") + # MMGIS + p.add_option("-x", "--extentworld", dest="extentworld", + help="The full world meter extent (comma-separated as minx,maxx,miny,maxy,pixelsize) of an inner raster profile.") + # 1bto4b + p.add_option("-m", "--dem", action="store_true", dest="isDEMtile", + help="Indicate if the input is a Digital Elevation Model") + # KML options + g = OptionGroup(p, "KML (Google Earth) options", + "Options for generated Google Earth SuperOverlay metadata") + g.add_option("-k", "--force-kml", dest='kml', action="store_true", + help=("Generate KML for Google Earth - default for 'geodetic' profile and " + "'raster' in EPSG:4326. For a dataset with different projection use " + "with caution!")) + g.add_option("-n", "--no-kml", dest='kml', action="store_false", + help="Avoid automatic generation of KML files for EPSG:4326") + g.add_option("-u", "--url", dest='url', + help="URL address where the generated tiles are going to be published") + p.add_option_group(g) + + # HTML options + g = OptionGroup(p, "Web viewer options", + "Options for generated HTML viewers a la Google Maps") + g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list, + help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list)) + g.add_option("-t", "--title", dest='title', + help="Title of the map") + g.add_option("-c", "--copyright", dest='copyright', + help="Copyright for the map") + g.add_option("-g", "--googlekey", dest='googlekey', + help="Google Maps API key from http://code.google.com/apis/maps/signup.html") + g.add_option("-b", "--bingkey", dest='bingkey', + help="Bing Maps API key from https://www.bingmapsportal.com/") + p.add_option_group(g) + + p.set_defaults(verbose=False, profile="mercator", kml=False, url='', + webviewer='all', copyright='', resampling='average', resume=False, + googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE') + + self.parser = p + + # ------------------------------------------------------------------------- + def open_input(self): + """Initialization of the input raster, reprojection if necessary""" + gdal.AllRegister() + + self.out_drv = gdal.GetDriverByName(self.tiledriver) + self.mem_drv = gdal.GetDriverByName('MEM') + + if not self.out_drv: + raise Exception("The '%s' driver was not found, is it available in this GDAL build?", + self.tiledriver) + if not self.mem_drv: + raise Exception( + "The 'MEM' driver was not found, is it available in this GDAL build?") + + # Open the input file + + if self.input: + self.in_ds = gdal.Open(self.input, gdal.GA_ReadOnly) + else: + raise Exception("No input file was specified") + + if self.options.verbose: + print("Input file:", + "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, + self.in_ds.RasterCount)) + + if not self.in_ds: + # Note: GDAL prints the ERROR message too + self.error( + "It is not possible to open the input file '%s'." % self.input) + + # Read metadata from the input file + if self.in_ds.RasterCount == 0: + self.error("Input file '%s' has no raster band" % self.input) + + if self.in_ds.GetRasterBand(1).GetRasterColorTable(): + self.error("Please convert this file to RGB/RGBA and run gdal2tiles on the result.", + "From paletted file you can create RGBA file (temp.vrt) by:\n" + "gdal_translate -of vrt -expand rgba %s temp.vrt\n" + "then run:\n" + "gdal2tiles temp.vrt" % self.input) + + # Get NODATA value + in_nodata = [] + for i in range(1, self.in_ds.RasterCount+1): + if self.in_ds.GetRasterBand(i).GetNoDataValue() is not None: + in_nodata.append(self.in_ds.GetRasterBand(i).GetNoDataValue()) + if self.options.srcnodata: + nds = list(map(float, self.options.srcnodata.split(','))) + if len(nds) < self.in_ds.RasterCount: + in_nodata = ( + nds * self.in_ds.RasterCount)[:self.in_ds.RasterCount] + else: + in_nodata = nds + + if self.options.verbose: + print("NODATA: %s" % in_nodata) + + if self.options.verbose: + print("Preprocessed file:", + "( %sP x %sL - %s bands)" % (self.in_ds.RasterXSize, self.in_ds.RasterYSize, + self.in_ds.RasterCount)) + + in_srs = None + + if self.options.s_srs: + in_srs = osr.SpatialReference() + in_srs.SetFromUserInput(self.options.s_srs) + in_srs_wkt = in_srs.ExportToWkt() + else: + in_srs_wkt = self.in_ds.GetProjection() + if not in_srs_wkt and self.in_ds.GetGCPCount() != 0: + in_srs_wkt = self.in_ds.GetGCPProjection() + if in_srs_wkt: + in_srs = osr.SpatialReference() + in_srs.ImportFromWkt(in_srs_wkt) + + self.out_srs = osr.SpatialReference() + + if self.options.profile == 'mercator': + self.out_srs.ImportFromEPSG(3857) + elif self.options.profile == 'geodetic': + self.out_srs.ImportFromEPSG(4326) + else: + self.out_srs = in_srs + + # Are the reference systems the same? Reproject if necessary. + + self.out_ds = None + + if self.options.profile in ('mercator', 'geodetic'): + + if ((self.in_ds.GetGeoTransform() == (0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) and + (self.in_ds.GetGCPCount() == 0)): + self.error("There is no georeference - neither affine transformation (worldfile) " + "nor GCPs. You can generate only 'raster' profile tiles.", + "Either gdal2tiles with parameter -p 'raster' or use another GIS " + "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs") + + if in_srs: + if ((in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or + (self.in_ds.GetGCPCount() != 0)): + # Generation of VRT dataset in tile projection, + # default 'nearest neighbour' warping + self.out_ds = gdal.AutoCreateWarpedVRT( + self.in_ds, in_srs_wkt, self.out_srs.ExportToWkt()) + + if self.options.verbose: + print("Warping of the raster by AutoCreateWarpedVRT " + "(result saved into 'tiles.vrt')") + self.out_ds.GetDriver().CreateCopy("tiles.vrt", self.out_ds) + + # Correction of AutoCreateWarpedVRT for NODATA values + if in_nodata != []: + tempfilename = self.gettempfilename('-gdal2tiles.vrt') + self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) + # open as a text file + s = open(tempfilename).read() + # Add the warping options + s = s.replace( + "", + """ + + + + """) + # replace BandMapping tag for NODATA bands.... + for i in range(len(in_nodata)): + s = s.replace( + '' % ( + (i+1), (i+1)), + """ + + %i + 0 + %i + 0 + + """ % ((i+1), (i+1), in_nodata[i], in_nodata[i])) + # save the corrected VRT + open(tempfilename, "w").write(s) + # open by GDAL as self.out_ds + self.out_ds = gdal.Open(tempfilename) + # delete the temporary file + os.unlink(tempfilename) + + # set NODATA_VALUE metadata + self.out_ds.SetMetadataItem( + 'NODATA_VALUES', ' '.join([str(i) for i in in_nodata])) + + if self.options.verbose: + print("Modified warping result saved into 'tiles1.vrt'") + open("tiles1.vrt", "w").write(s) + + # Correction of AutoCreateWarpedVRT for Mono (1 band) and RGB (3 bands) files + # without NODATA: + # equivalent of gdalwarp -dstalpha + if in_nodata == [] and self.out_ds.RasterCount in [1, 3]: + tempfilename = self.gettempfilename('-gdal2tiles.vrt') + self.out_ds.GetDriver().CreateCopy(tempfilename, self.out_ds) + # open as a text file + s = open(tempfilename).read() + # Add the warping options + s = s.replace( + "", + """ + + Alpha + + + """ % (self.out_ds.RasterCount + 1)) + s = s.replace( + "", + """ + %i + + """ % (self.out_ds.RasterCount + 1)) + s = s.replace( + "", + """ + + + """) + # save the corrected VRT + open(tempfilename, "w").write(s) + # open by GDAL as self.out_ds + self.out_ds = gdal.Open(tempfilename) + # delete the temporary file + os.unlink(tempfilename) + + if self.options.verbose: + print( + "Modified -dstalpha warping result saved into 'tiles1.vrt'") + open("tiles1.vrt", "w").write(s) + s = ''' + ''' + + else: + self.error("Input file has unknown SRS.", + "Use --s_srs ESPG:xyz (or similar) to provide source reference system.") + + if self.out_ds and self.options.verbose: + print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % ( + self.out_ds.RasterXSize, self.out_ds.RasterYSize, self.out_ds.RasterCount)) + + if not self.out_ds: + self.out_ds = self.in_ds + + # + # Here we should have a raster (out_ds) in the correct Spatial Reference system + # + + # Get alpha band (either directly or from NODATA value) + self.alphaband = self.out_ds.GetRasterBand(1).GetMaskBand() + if ((self.alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or + self.out_ds.RasterCount == 4 or + self.out_ds.RasterCount == 2): + self.dataBandsCount = self.out_ds.RasterCount - 1 + else: + self.dataBandsCount = self.out_ds.RasterCount + + # KML test + isepsg4326 = False + srs4326 = osr.SpatialReference() + srs4326.ImportFromEPSG(4326) + if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): + self.kml = True + isepsg4326 = True + if self.options.verbose: + print("KML autotest OK!") + + # Read the georeference + self.out_gt = self.out_ds.GetGeoTransform() + + # Test the size of the pixel + + # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) + if (self.out_gt[2], self.out_gt[4]) != (0, 0): + self.error("Georeference of the raster contains rotation or skew. " + "Such raster is not supported. Please use gdalwarp first.") + + # Here we expect: pixel is square, no rotation on the raster + + # Output Bounds - coordinates in the output SRS + self.ominx = self.out_gt[0] + self.omaxx = self.out_gt[0] + self.out_ds.RasterXSize * self.out_gt[1] + self.omaxy = self.out_gt[3] + self.ominy = self.out_gt[3] - self.out_ds.RasterYSize * self.out_gt[1] + + # Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15 + + # MMGIS + def linearScale(domain, rang, value): + return ( + ((rang[1] - rang[0]) * (value - domain[0])) / + (domain[1] - domain[0]) + + rang[0] + ) + # MMGIS + self.out_ds.fRasterXSize = self.out_ds.RasterXSize + self.out_ds.fRasterYSize = self.out_ds.RasterYSize + self.out_ds.fRasterXOrigin = 0 + self.out_ds.fRasterYOrigin = 0 + self.out_ds.PixelSize = self.out_gt[1] + self.out_ds.fPixelSize = self.fPixelSize + # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) + # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) + if self.isRasterBounded: + self.out_ds.fRasterXSize = int(math.floor(self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / ( + self.omaxx - self.ominx) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) + self.out_ds.fRasterYSize = int(math.ceil(self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / ( + self.omaxy - self.ominy) * (self.out_ds.PixelSize / self.out_ds.fPixelSize))) + self.out_ds.fRasterXSizeRaw = int(math.floor( + self.out_ds.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) + self.out_ds.fRasterYSizeRaw = int(math.ceil( + self.out_ds.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) + # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize ) + self.out_ds.fRasterXOrigin = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.out_gt[0]))) + self.out_ds.fRasterYOrigin = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [self.out_ds.fRasterYSize, 0], self.out_gt[3]))) + self.out_ds.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ + 0, self.out_ds.fRasterXSize], self.out_gt[0]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) + self.out_ds.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ + self.out_ds.fRasterYSize, 0], self.out_gt[3]) * (self.out_ds.fPixelSize / self.out_ds.PixelSize))) + self.out_ds.fRasterXWidth = int(math.floor(linearScale( + [self.fminx, self.fmaxx], [0, self.out_ds.fRasterXSize], self.omaxx))) - self.out_ds.fRasterXOrigin + self.out_ds.fRasterYHeight = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.out_ds.fRasterYSize], self.omaxy))) - self.out_ds.fRasterYOrigin + + if self.options.verbose: + print("Bounds (output srs):", round(self.ominx, 13), + self.ominy, self.omaxx, self.omaxy) + + # print("Input Raster Size: ", self.out_ds.RasterXSize, self.out_ds.RasterYSize) + # print("fmaxx-fminx", self.fmaxx - self.fminx, "omaxx-ominx", self.omaxx - self.ominx, "fmaxy-fminy", self.fmaxy - self.fminy, "omaxy-ominy", self.omaxy - self.ominy) + # print("Full Raster Size: ", self.out_ds.fRasterXSize, self.out_ds.fRasterYSize) + # print("Full Raster Size Raw: ", self.out_ds.fRasterXSizeRaw, self.out_ds.fRasterYSizeRaw) + # print("Raster Origin: ", self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin) + # print("Raster Origin Raw: ", self.out_ds.fRasterXOriginRaw, self.out_ds.fRasterYOriginRaw) + # print("Raster Width Height: ", self.out_ds.fRasterXWidth, self.out_ds.fRasterYHeight) + + # Calculating ranges for tiles in different zoom levels + if self.options.profile == 'mercator': + + self.mercator = GlobalMercator() + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.mercator.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, 32)) + for tz in range(0, 32): + tminx, tminy = self.mercator.MetersToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.mercator.MetersToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2**tz-1, tmaxx), min(2**tz-1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the minimal zoom level (map covers area equivalent to one tile) + if self.tminz is None: + self.tminz = self.mercator.ZoomForPixelSize( + self.out_gt[1] * max(self.out_ds.RasterXSize, + self.out_ds.RasterYSize) / float(self.tilesize)) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) + + if self.options.verbose: + print("Bounds (latlong):", + self.mercator.MetersToLatLon(self.ominx, self.ominy), + self.mercator.MetersToLatLon(self.omaxx, self.omaxy)) + print('MinZoomLevel:', self.tminz) + print("MaxZoomLevel:", + self.tmaxz, + "(", + self.mercator.Resolution(self.tmaxz), + ")") + + if self.options.profile == 'geodetic': + + self.geodetic = GlobalGeodetic(self.options.tmscompatible) + + # Function which generates SWNE in LatLong for given tile + self.tileswne = self.geodetic.TileLatLonBounds + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, 32)) + for tz in range(0, 32): + tminx, tminy = self.geodetic.LonLatToTile( + self.ominx, self.ominy, tz) + tmaxx, tmaxy = self.geodetic.LonLatToTile( + self.omaxx, self.omaxy, tz) + # crop tiles extending world limits (+-180,+-90) + tminx, tminy = max(0, tminx), max(0, tminy) + tmaxx, tmaxy = min(2**(tz+1)-1, tmaxx), min(2**tz-1, tmaxy) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # TODO: Maps crossing 180E (Alaska?) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tminz is None: + self.tminz = self.geodetic.ZoomForPixelSize( + self.out_gt[1] * max(self.out_ds.RasterXSize, + self.out_ds.RasterYSize) / float(self.tilesize)) + + # Get the maximal zoom level + # (closest possible zoom level up on the resolution of raster) + if self.tmaxz is None: + self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) + + if self.options.verbose: + print("Bounds (latlong):", self.ominx, + self.ominy, self.omaxx, self.omaxy) + + # MMGIS + if self.options.profile == 'raster' and self.isRasterBounded: + + def log2(x): + return math.log10(x) / math.log10(2) + + # MMGIS added 'f'* + self.nativezoom = int( + max(math.ceil(log2(self.out_ds.fRasterXSizeRaw/float(self.tilesize))), + math.ceil(log2(self.out_ds.fRasterYSizeRaw/float(self.tilesize))))) + + self.basenativezoom = int( + max(math.ceil(log2(self.out_ds.fRasterXSize/float(self.tilesize))), + math.ceil(log2(self.out_ds.fRasterYSize/float(self.tilesize))))) + + # MMGIS + self.out_ds.fWorldXSize = int( + float(self.out_ds.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) + self.out_ds.fWorldYSize = int( + float(self.out_ds.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) + self.out_ds.fRasterXOriginWorld = int(float( + self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXOrigin) / self.out_ds.fRasterXSize)) + self.out_ds.fRasterYOriginWorld = int(float( + self.out_ds.fWorldYSize) * (float(self.out_ds.fRasterYOrigin) / self.out_ds.fRasterYSize)) + self.out_ds.fRasterXSizeWorld = int(float( + self.out_ds.fWorldXSize) * (float(self.out_ds.fRasterXWidth) / self.out_ds.fRasterXSize)) + self.out_ds.fRasterYSizeWorld = int(float( + self.out_ds.RasterYSize) * (float(self.out_ds.fRasterXSizeWorld) / self.out_ds.RasterXSize)) + # print("World Size", self.out_ds.fWorldXSize, self.out_ds.fWorldYSize) + # print("Raster Origin World", self.out_ds.fRasterXOriginWorld, self.out_ds.fRasterYOriginWorld) + # print("Raster Size World", self.out_ds.fRasterXSizeWorld, self.out_ds.fRasterYSizeWorld) + + if self.options.verbose: + print("Native zoom of the raster:", self.nativezoom) + + # Get the minimal zoom level (whole raster in one tile) + if self.tminz is None: + self.tminz = 0 + + # Get the maximal zoom level (native resolution of the raster) + if self.tmaxz is None: + self.tmaxz = self.nativezoom + + # MMGIS added 'f'* + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, self.tmaxz+1)) + self.tsize = list(range(0, self.tmaxz+1)) + # print("Raster Size:", self.out_ds.RasterXSize,self.out_ds.RasterYSize) + # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) + # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) + for tz in range(0, self.tmaxz+1): + tsize = 2.0**(self.tmaxz-tz)*self.tilesize + toffsetx = int(math.floor( + 2.0**(tz) * self.out_ds.fRasterXOriginRaw / self.out_ds.fRasterXSizeRaw)) + toffsety = int(math.floor( + 2.0**(tz) * (self.out_ds.fRasterYOriginRaw) / self.out_ds.fRasterYSizeRaw)) + # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + toffsetx = int(math.floor( + self.out_ds.fRasterXOriginWorld / tsize)) + toffsety = int(math.floor( + self.out_ds.fRasterYOriginWorld / tsize)) + # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + tmaxx = int(math.floor( + self.out_ds.fRasterXSizeWorld / tsize)) + toffsetx + 1 + + tmaxy = int(math.floor( + self.out_ds.fRasterYSizeWorld / tsize)) + toffsety + 1 + self.tsize[tz] = math.ceil(tsize) + #tminx = toffsetx + tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 + tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 + + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + # print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) + + elif self.options.profile == 'raster': + + def log2(x): + return math.log10(x) / math.log10(2) + self.nativezoom = int( + max(math.ceil(log2(self.out_ds.RasterXSize/float(self.tilesize))), + math.ceil(log2(self.out_ds.RasterYSize/float(self.tilesize))))) + + if self.options.verbose: + print("Native zoom of the raster:", self.nativezoom) + + # Get the minimal zoom level (whole raster in one tile) + if self.tminz is None: + self.tminz = 0 + + # Get the maximal zoom level (native resolution of the raster) + if self.tmaxz is None: + self.tmaxz = self.nativezoom + + # Generate table with min max tile coordinates for all zoomlevels + self.tminmax = list(range(0, self.tmaxz+1)) + self.tsize = list(range(0, self.tmaxz+1)) + for tz in range(0, self.tmaxz+1): + tsize = 2.0**(self.tmaxz-tz)*self.tilesize + tminx, tminy = 0, 0 + tmaxx = int(math.ceil(self.out_ds.RasterXSize / tsize)) - 1 + tmaxy = int(math.ceil(self.out_ds.RasterYSize / tsize)) - 1 + self.tsize[tz] = math.ceil(tsize) + self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + + # Function which generates SWNE in LatLong for given tile + if self.kml and in_srs_wkt: + ct = osr.CoordinateTransformation(in_srs, srs4326) + + def rastertileswne(x, y, z): + # X-pixel size in level + pixelsizex = (2**(self.tmaxz-z) * self.out_gt[1]) + west = self.out_gt[0] + x*self.tilesize*pixelsizex + east = west + self.tilesize*pixelsizex + south = self.ominy + y*self.tilesize*pixelsizex + north = south + self.tilesize*pixelsizex + if not isepsg4326: + # Transformation to EPSG:4326 (WGS84 datum) + west, south = ct.TransformPoint(west, south)[:2] + east, north = ct.TransformPoint(east, north)[:2] + return south, west, north, east + + self.tileswne = rastertileswne + else: + self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa + + def generate_metadata(self): + """ + Generation of main metadata files and HTML viewers (metadata related to particular + tiles are generated during the tile processing). + """ + + if not os.path.exists(self.output): + os.makedirs(self.output) + + if self.options.profile == 'mercator': + + south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) + north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) + south, west = max(-85.05112878, south), max(-180.0, west) + north, east = min(85.05112878, north), min(180.0, east) + self.swne = (south, west, north, east) + + # Generate googlemaps.html + if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'googlemaps.html'))): + f = open(os.path.join(self.output, 'googlemaps.html'), 'wb') + f.write(self.generate_googlemaps().encode('utf-8')) + f.close() + + # Generate openlayers.html + if self.options.webviewer in ('all', 'openlayers'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'openlayers.html'))): + f = open(os.path.join(self.output, 'openlayers.html'), 'wb') + f.write(self.generate_openlayers().encode('utf-8')) + f.close() + + # Generate leaflet.html + if self.options.webviewer in ('all', 'leaflet'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'leaflet.html'))): + f = open(os.path.join(self.output, 'leaflet.html'), 'wb') + f.write(self.generate_leaflet().encode('utf-8')) + f.close() + + elif self.options.profile == 'geodetic': + + west, south = self.ominx, self.ominy + east, north = self.omaxx, self.omaxy + south, west = max(-90.0, south), max(-180.0, west) + north, east = min(90.0, north), min(180.0, east) + self.swne = (south, west, north, east) + + # Generate openlayers.html + if self.options.webviewer in ('all', 'openlayers'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'openlayers.html'))): + f = open(os.path.join(self.output, 'openlayers.html'), 'wb') + f.write(self.generate_openlayers().encode('utf-8')) + f.close() + + elif self.options.profile == 'raster': + + west, south = self.ominx, self.ominy + east, north = self.omaxx, self.omaxy + + # MMGIS + if self.isRasterBounded: + west = self.fminx + east = self.fmaxx + south = self.fminy + north = self.fmaxy + + self.swne = (south, west, north, east) + + # Generate openlayers.html + if self.options.webviewer in ('all', 'openlayers'): + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'openlayers.html'))): + f = open(os.path.join(self.output, 'openlayers.html'), 'wb') + f.write(self.generate_openlayers().encode('utf-8')) + f.close() + + # Generate tilemapresource.xml. + if not self.options.resume or not os.path.exists(os.path.join(self.output, 'tilemapresource.xml')): + f = open(os.path.join(self.output, 'tilemapresource.xml'), 'wb') + f.write(self.generate_tilemapresource().encode('utf-8')) + f.close() + + if self.kml: + # TODO: Maybe problem for not automatically generated tminz + # The root KML should contain links to all tiles in the tminz level + children = [] + xmin, ymin, xmax, ymax = self.tminmax[self.tminz] + for x in range(xmin, xmax+1): + for y in range(ymin, ymax+1): + children.append([x, y, self.tminz]) + # Generate Root KML + if self.kml: + if (not self.options.resume or not + os.path.exists(os.path.join(self.output, 'doc.kml'))): + f = open(os.path.join(self.output, 'doc.kml'), 'wb') + f.write(self.generate_kml( + None, None, None, children).encode('utf-8')) + f.close() + + def generate_base_tiles(self, tz): + """ + Generation of the base tiles (the lowest in the pyramid) directly from the input raster + """ + + if self.isDEMtile: + print("Generating Tiles at Zoom " + str(tz) + ": ") + + if not self.options.quiet: + print("Generating Base Tiles:") + + if self.options.verbose: + print('') + print("Tiles generated from the max zoom level:") + print("----------------------------------------") + print('') + + ds = self.out_ds + + querysize = self.querysize + + # 1bto4b + if self.isDEMtile: + tilebands = 4 + querysize = self.tilesize + else: + tilebands = self.dataBandsCount + 1 + tz = self.tmaxz + + try: + self.tminmax[tz] + except IndexError: + print(" Won't make zoom level " + str(tz)) + return + + # Set the bounds + tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] + + if self.options.verbose: + print("dataBandsCount: ", self.dataBandsCount) + print("tilebands: ", tilebands) + + tcount = (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) + ti = 0 + + for ty in range(tmaxy, tminy-1, -1): + for tx in range(tminx, tmaxx+1): + + if self.stopped: + break + ti += 1 + tilefilename = os.path.join( + self.output, str(tz), str(tx), "%s.%s" % (ty, self.tileext)) + if self.options.verbose: + print(ti, '/', tcount, tilefilename) + + if self.options.resume and os.path.exists(tilefilename): + if self.options.verbose: + print("Tile generation skipped because of --resume") + else: + self.progressbar(ti / float(tcount)) + continue + + # Create directories for the tile + if not os.path.exists(os.path.dirname(tilefilename)): + os.makedirs(os.path.dirname(tilefilename)) + + if self.options.profile == 'mercator': + # Tile bounds in EPSG:3857 + b = self.mercator.TileBounds(tx, ty, tz) + elif self.options.profile == 'geodetic': + b = self.geodetic.TileBounds(tx, ty, tz) + + # Don't scale up by nearest neighbour, better change the querysize + # to the native resolution (and return smaller query tile) for scaling + + if self.options.profile in ('mercator', 'geodetic'): + rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) + + # Pixel size in the raster covering query geo extent + nativesize = wb[0] + wb[2] + if self.options.verbose: + print("\tNative Extent (querysize", + nativesize, "): ", rb, wb) + + # Tile bounds in raster coordinates for ReadRaster query + rb, wb = self.geo_query( + ds, b[0], b[3], b[2], b[1], querysize=querysize) + + rx, ry, rxsize, rysize = rb + wx, wy, wxsize, wysize = wb + wxsize -= 1 # 1bto4b + wysize -= 1 # 1bto4b + + # MMGIS + elif self.isRasterBounded: # 'raster' profile: + + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.out_ds.fWorldXSize + ysize = self.out_ds.fWorldYSize + if tz >= self.tmaxz: + querysize = self.tilesize + + rx = (tx) * tsize - self.out_ds.fRasterXOriginWorld + #print("rx", rx) + rxsize = 0 + rxsize = tsize + + rysize = 0 + rysize = tsize + + ry = ysize - (ty * tsize) - rysize - \ + self.out_ds.fRasterYOriginWorld + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tilesize) + if wysize != self.tilesize: + wy = self.tilesize - wysize + + if rx < 0: + rxsize = tsize + rx + wx = -rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + rx = 0 + if ry < 0: + rysize = tsize + ry + wy = -ry + wysize = int(rysize/float(tsize) * self.tilesize) + ry = 0 + if rx + rxsize > self.out_ds.fRasterXSizeWorld: + rxsize = self.out_ds.fRasterXSizeWorld - rx + wxsize = int(rxsize/float(tsize) * self.tilesize) + if ry + rysize > self.out_ds.fRasterYSizeWorld: + rysize = self.out_ds.fRasterYSizeWorld - ry + wysize = int(rysize/float(tsize) * self.tilesize) + + # Convert rx, ry back to non-world coordinates + rx = int(float(self.out_ds.RasterXSize) * + (float(rx) / self.out_ds.fRasterXSizeWorld)) + ry = int(float(self.out_ds.RasterYSize) * + (float(ry) / self.out_ds.fRasterYSizeWorld)) + rxsize = int(float(self.out_ds.RasterXSize) * + (float(rxsize) / self.out_ds.fRasterXSizeWorld)) + rysize = int(float(self.out_ds.RasterYSize) * + (float(rysize) / self.out_ds.fRasterYSizeWorld)) + + wxsize -= 1 # 1bto4b + wysize -= 1 # 1bto4b + + #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.out_ds.fRasterXOrigin, self.out_ds.fRasterYOrigin)) + else: # 'raster' profile: + # tilesize in raster coordinates for actual zoom + tsize = int(self.tsize[tz]) + xsize = self.out_ds.RasterXSize # size of the raster in pixels + ysize = self.out_ds.RasterYSize + if tz >= self.tmaxz: + querysize = self.tilesize + + rx = (tx) * tsize + rxsize = 0 + if tx == tmaxx: + rxsize = xsize % tsize + if rxsize == 0: + rxsize = tsize + + rysize = 0 + if ty == tmaxy: + rysize = ysize % tsize + if rysize == 0: + rysize = tsize + ry = ysize - (ty * tsize) - rysize + + wx, wy = 0, 0 + wxsize = int(rxsize/float(tsize) * self.tilesize) + wysize = int(rysize/float(tsize) * self.tilesize) + if wysize != self.tilesize: + wy = self.tilesize - wysize + + if self.options.verbose: + print("\tReadRaster Extent: ", + (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)) + + # Query is in 'nearest neighbour' but can be bigger in then the tilesize + # We scale down the query to the tilesize by supplied algorithm. + + # Tile dataset in memory + + # 1bto4b + if self.isDEMtile: + dstile = self.mem_drv.Create( + '', self.tilesize, self.tilesize, tilebands, gdal.GDT_Byte) + else: + dstile = self.mem_drv.Create( + '', self.tilesize, self.tilesize, tilebands) + + data = alpha = None + # Read the source raster if anything is going inside the tile as per the computed + # geo_query + if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: + # 1bto4b + if self.isDEMtile: + data = ds.GetRasterBand(1).ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) + else: + data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize, + band_list=list(range(1, self.dataBandsCount+1))) + alpha = self.alphaband.ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize) + + # The tile in memory is a transparent file by default. Write pixel values into it if + # any + if data: + # 1bto4b - both this full if and else + if self.isDEMtile: + if (wxsize * wysize) > 0: + data = struct.unpack('f' * wxsize * wysize, data) + else: + return + + if self.tilesize == querysize: + # Interpolate the values from four surrounding + + # This takes our 1d list of WxH data and pads it with a rect of none values + dataPad = list(data) + for i in reversed(range(1, wysize)): + dataPad.insert(wxsize * i, 0) + dataPad.insert(wxsize * i, 0) + for i in range(wxsize + 3): + dataPad.insert(0, 0) + for i in range(wxsize + 3): + dataPad.append(0) + + dataIn = [] + # Resample based on average of four + # averaging over: i, i + 1, i + wxsize, i + wxsize + 1 + for y in range(wysize+2 - 1): + for x in range(wxsize+2 - 1): + i = x+(y*(wxsize+2)) + nW = dataPad[i] + nE = dataPad[i+1] + sW = dataPad[i+(wxsize+2)] + sE = dataPad[i+(wxsize+2)+1] + dataIn.append((nW + nE + sW + sE)/float(4)) + + # Get the surrounding eight tiles + # Get NW + if tx - 1 >= tminx and ty + 1 <= tmaxy: + rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW = getTilePxBounds(self, + tx - 1, ty + 1, tz, ds) + wxsizeNW -= 1 + wysizeNW -= 1 + if wxsizeNW != 0 and wysizeNW != 0: + dataNW = ds.GetRasterBand(1).ReadRaster( + rxNW, ryNW, rxsizeNW, rysizeNW, wxsizeNW, wysizeNW, buf_type=gdal.GDT_Float32) + if dataNW is not None and (wxsizeNW * wysizeNW) > 0: + dataNW = struct.unpack( + 'f' * wxsizeNW * wysizeNW, dataNW) + else: + dataNW = None + else: + dataNW = None + + # Get N + if ty + 1 <= tmaxy: + rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN = getTilePxBounds( + self, tx, ty + 1, tz, ds) + wxsizeN -= 1 + wysizeN -= 1 + if wxsizeN != 0 and wysizeN != 0: + dataN = ds.GetRasterBand(1).ReadRaster( + rxN, ryN, rxsizeN, rysizeN, wxsizeN, wysizeN, buf_type=gdal.GDT_Float32) + if dataN is not None and (wxsizeN * wysizeN) > 0: + dataN = struct.unpack( + 'f' * wxsizeN * wysizeN, dataN) + else: + dataN = None + else: + dataN = None + # Get NE + if tx + 1 <= tmaxx and ty + 1 <= tmaxy: + rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE = getTilePxBounds( + self, tx + 1, ty + 1, tz, ds) + wxsizeNE -= 1 + wysizeNE -= 1 + if wxsizeNE != 0 and wysizeNE != 0: + dataNE = ds.GetRasterBand(1).ReadRaster( + rxNE, ryNE, rxsizeNE, rysizeNE, wxsizeNE, wysizeNE, buf_type=gdal.GDT_Float32) + if dataNE is not None and (wxsizeNE * wysizeNE) > 0: + dataNE = struct.unpack( + 'f' * wxsizeNE * wysizeNE, dataNE) + else: + dataNE = None + else: + dataNE = None + # Get E + if tx + 1 <= tmaxx: + rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE = getTilePxBounds( + self, tx + 1, ty, tz, ds) + wxsizeE -= 1 + wysizeE -= 1 + if wxsizeE != 0 and wysizeE != 0: + dataE = ds.GetRasterBand(1).ReadRaster( + rxE, ryE, rxsizeE, rysizeE, wxsizeE, wysizeE, buf_type=gdal.GDT_Float32) + if dataE is not None and (wxsizeE * wysizeE) > 0: + dataE = struct.unpack( + 'f' * wxsizeE * wysizeE, dataE) + else: + dataE = None + else: + dataE = None + # Get SE + if tx + 1 <= tmaxx and ty - 1 >= tminy: + rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE = getTilePxBounds( + self, tx + 1, ty - 1, tz, ds) + wxsizeSE -= 1 + wysizeSE -= 1 + if wxsizeSE != 0 and wysizeSE != 0: + dataSE = ds.GetRasterBand(1).ReadRaster( + rxSE, rySE, rxsizeSE, rysizeSE, wxsizeSE, wysizeSE, buf_type=gdal.GDT_Float32) + if dataSE is not None and (wxsizeSE * wysizeSE) > 0: + dataSE = struct.unpack( + 'f' * wxsizeSE * wysizeSE, dataSE) + else: + dataSE = None + else: + dataSE = None + # Get S + if ty - 1 >= tminy: + rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS = getTilePxBounds( + self, tx, ty - 1, tz, ds) + wxsizeS -= 1 + wysizeS -= 1 + if wxsizeS != 0 and wysizeS != 0: + dataS = ds.GetRasterBand(1).ReadRaster( + rxS, ryS, rxsizeS, rysizeS, wxsizeS, wysizeS, buf_type=gdal.GDT_Float32) + if dataS is not None and (wxsizeS * wysizeS) > 0: + dataS = struct.unpack( + 'f' * wxsizeS * wysizeS, dataS) + else: + dataS = None + else: + dataS = None + # Get SW + if tx - 1 >= tminx and ty - 1 >= tminy: + rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW = getTilePxBounds( + self, tx - 1, ty - 1, tz, ds) + wxsizeSW -= 1 + wysizeSW -= 1 + if wxsizeSW != 0 and wysizeSW != 0: + dataSW = ds.GetRasterBand(1).ReadRaster( + rxSW, rySW, rxsizeSW, rysizeSW, wxsizeSW, wysizeSW, buf_type=gdal.GDT_Float32) + if dataSW is not None and (wxsizeSW * wysizeSW) > 0: + dataSW = struct.unpack( + 'f' * wxsizeSW * wysizeSW, dataSW) + else: + dataSW = None + else: + dataSW = None + # Get W + if tx - 1 >= tminx: + rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW = getTilePxBounds( + self, tx - 1, ty, tz, ds) + wxsizeW -= 1 + wysizeW -= 1 + if wxsizeW != 0 and wysizeW != 0: + dataW = ds.GetRasterBand(1).ReadRaster( + rxW, ryW, rxsizeW, rysizeW, wxsizeW, wysizeW, buf_type=gdal.GDT_Float32) + if dataW is not None and (wxsizeW * wysizeW) > 0: + dataW = struct.unpack( + 'f' * wxsizeW * wysizeW, dataW) + else: + dataW = None + else: + dataW = None + + # NW (uses N, NW, W) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataN is not None: + fN = dataN[len(dataN)-wxsizeN] + values = values + 1 + if dataNW is not None: + fNW = dataNW[len(dataNW)-1] + values = values + 1 + if dataW is not None: + fW = dataW[wxsizeW-1] + values = values + 1 + dataIn[0] = ((dataIn[0]*4) + fN + + fNW + fW)/float(values) + + # NE (uses N, NE, E) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataN is not None: + fN = dataN[len(dataN)-1] + values = values + 1 + if dataNE is not None: + fNE = dataNE[len(dataNE)-wxsizeNE] + values = values + 1 + if dataE is not None: + fE = dataE[0] + values = values + 1 + dataIn[wxsize] = ( + (dataIn[wxsize]*4) + fN + fNE + fE)/float(values) + + # SE (uses S, SE, E) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataS is not None: + fS = dataS[wxsizeS-1] + values = values + 1 + if dataSE is not None: + fSE = dataSE[0] + values = values + 1 + if dataE is not None: + fE = dataE[len(dataE)-wxsizeE] + values = values + 1 + dataIn[len(dataIn)-1] = ((dataIn[len(dataIn)-1] + * 4) + fS + fSE + fE)/float(values) + + # SW (uses S, SW, W) + fN = fNE = fE = fSE = fS = fSW = fW = fNW = 0 + values = 1 + if dataS is not None: + fS = dataS[0] + values = values + 1 + if dataSW is not None: + fSW = dataSW[wxsizeSW-1] + values = values + 1 + if dataW is not None: + fW = dataW[len(dataW)-1] + values = values + 1 + dataIn[len( + dataIn)-wxsize-1] = ((dataIn[len(dataIn)-wxsize-1]*4) + fS + fSW + fW)/float(values) + + # Then the edges minus corners + # N + if dataN is not None: + for i in range(1, wxsize): + dataIn[i] = ( + (dataIn[i]*4) + dataN[len(dataN)-wxsizeN-1+i] + dataN[len(dataN)-wxsizeN-1+i+1])/float(4) + else: + for i in range(1, wxsize): + dataIn[i] = (dataIn[i]*4)/float(2) + + # E + if dataE is not None: + for i in range(1, wysize): + dataIn[((i+1)*(wxsize+1)-1)] = ((dataIn[((i+1)*(wxsize+1)-1)] + * 4) + dataE[(i-1)*wxsizeE] + dataE[i*wxsizeE])/float(4) + else: + for i in range(1, wysize): + dataIn[( + (i+1)*(wxsize+1)-1)] = (dataIn[((i+1)*(wxsize+1)-1)]*4)/float(2) + + # S + if dataS is not None: + for i in range(1, wxsize): + dataIn[len(dataIn)-wxsize-1+i] = ( + (dataIn[len(dataIn)-wxsize-1+i]*4) + dataS[i-1] + dataS[i])/float(4) + else: + for i in range(1, wxsize): + dataIn[len( + dataIn)-wxsize-1+i] = (dataIn[len(dataIn)-wxsize-1+i]*4)/float(2) + + # W + if dataW is not None: + for i in range(1, wysize): + dataIn[(i)*(wxsize+1)] = ((dataIn[(i)*(wxsize+1)]*4) + + dataW[i*wxsizeW-1] + dataW[(i+1)*wxsizeW-1])/float(4) + else: + for i in range(1, wysize): + dataIn[(i)*(wxsize+1)] = (dataIn[(i) + * (wxsize+1)]*4)/float(2) + + data1 = [] + data2 = [] + data3 = [] + data4 = [] + for f in dataIn: + f = str(binary(f)) + data1.append(int(f[:8], 2)) + data2.append(int(f[8:16], 2)) + data3.append(int(f[16:24], 2)) + data4.append(int(f[24:], 2)) + + data1s = '' + data2s = '' + data3s = '' + data4s = '' + indx = 0 + for v in data1: + data1s += struct.pack('B', data1[indx]) + data2s += struct.pack('B', data2[indx]) + data3s += struct.pack('B', data3[indx]) + data4s += struct.pack('B', data4[indx]) + indx += 1 + dstile.GetRasterBand(1).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data1s, buf_type=gdal.GDT_Byte) + dstile.GetRasterBand(2).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data2s, buf_type=gdal.GDT_Byte) + dstile.GetRasterBand(3).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data3s, buf_type=gdal.GDT_Byte) + dstile.GetRasterBand(4).WriteRaster( + wx, wy, wxsize + 1, wysize + 1, data4s, buf_type=gdal.GDT_Byte) + elif wxsize != 0 and wysize != 0: + # Big ReadRaster query in memory scaled to the tilesize - all but 'near' algo + dsquery = self.mem_drv.Create( + '', querysize, querysize, tilebands, gdal.GDT_Byte) # 1bto4b + # TODO: fill the null value in case a tile without alpha is produced (now only png tiles are supported) + # for i in range(1, tilebands+1): + # dsquery.GetRasterBand(1).Fill(tilenodata) + # dsquery.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1,self.dataBandsCount+1)))###############1bto4b + # dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])###############################1bto4b + + # 1bto4b + data = ds.GetRasterBand(1).ReadRaster( + rx, ry, rxsize, rysize, wxsize, wysize, buf_type=gdal.GDT_Float32) + + data = struct.unpack('f' * wxsize * wysize, data) + data1 = [] + data2 = [] + data3 = [] + data4 = [] + for f in data: + f = str(binary(f)) + data1.append(int(f[:8], 2)) + data2.append(int(f[8:16], 2)) + data3.append(int(f[16:24], 2)) + data4.append(int(f[24:], 2)) + + data1s = '' + data2s = '' + data3s = '' + data4s = '' + indx = 0 + for v in data1: + data1s += struct.pack('B', data1[indx]) + data2s += struct.pack('B', data2[indx]) + data3s += struct.pack('B', data3[indx]) + data4s += struct.pack('B', data4[indx]) + indx += 1 + + dsquery.GetRasterBand(1).WriteRaster( + wx, wy, wxsize, wysize, data1s, buf_type=gdal.GDT_Byte) + dsquery.GetRasterBand(2).WriteRaster( + wx, wy, wxsize, wysize, data2s, buf_type=gdal.GDT_Byte) + dsquery.GetRasterBand(3).WriteRaster( + wx, wy, wxsize, wysize, data3s, buf_type=gdal.GDT_Byte) + dsquery.GetRasterBand(4).WriteRaster( + wx, wy, wxsize, wysize, data4s, buf_type=gdal.GDT_Byte) + # sys.exit('done') + # 1bto4b + + self.scale_query_to_tile( + dsquery, dstile, tilefilename) + del dsquery + + else: + if self.tilesize == querysize: + # Use the ReadRaster result directly in tiles ('nearest neighbour' query) + dstile.WriteRaster(wx, wy, wxsize, wysize, data, + band_list=list(range(1, self.dataBandsCount+1))) + dstile.WriteRaster( + wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) + + # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, + # MrSID) the ReadRaster function returns high-quality raster (not ugly + # nearest neighbour) + # TODO: Use directly 'near' for WaveLet files + else: + # Big ReadRaster query in memory scaled to the tilesize - all but 'near' + # algo + dsquery = self.mem_drv.Create( + '', querysize, querysize, tilebands) + # TODO: fill the null value in case a tile without alpha is produced (now + # only png tiles are supported) + dsquery.WriteRaster(wx, wy, wxsize, wysize, data, + band_list=list(range(1, self.dataBandsCount+1))) + dsquery.WriteRaster( + wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) + + self.scale_query_to_tile( + dsquery, dstile, tilefilename) + del dsquery + + del data + + if self.options.resampling != 'antialias': + # Write a copy of tile to png/jpg + self.out_drv.CreateCopy(tilefilename, dstile, strict=0) + + del dstile + + # Create a KML file for this tile. + if self.kml: + kmlfilename = os.path.join( + self.output, str(tz), str(tx), '%d.kml' % ty) + if not self.options.resume or not os.path.exists(kmlfilename): + f = open(kmlfilename, 'wb') + f.write(self.generate_kml(tx, ty, tz).encode('utf-8')) + f.close() + + if not self.options.verbose and not self.options.quiet: + self.progressbar(ti / float(tcount)) + + def generate_overview_tiles(self): + """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" + + if not self.options.quiet: + print("Generating Overview Tiles:") + + # 1bto4b + if self.isDEMtile: + tilebands = 4 + else: + tilebands = self.dataBandsCount + 1 + + # Usage of existing tiles: from 4 underlying tiles generate one as overview. + + tcount = 0 + for tz in range(self.tmaxz-1, self.tminz-1, -1): + tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] + tcount += (1+abs(tmaxx-tminx)) * (1+abs(tmaxy-tminy)) + + ti = 0 + + for tz in range(self.tmaxz-1, self.tminz-1, -1): + tminx, tminy, tmaxx, tmaxy = self.tminmax[tz] + for ty in range(tmaxy, tminy-1, -1): + for tx in range(tminx, tmaxx+1): + + if self.stopped: + break + + ti += 1 + tilefilename = os.path.join(self.output, + str(tz), + str(tx), + "%s.%s" % (ty, self.tileext)) + + if self.options.verbose: + print(ti, '/', tcount, tilefilename) + + if self.options.resume and os.path.exists(tilefilename): + if self.options.verbose: + print("Tile generation skipped because of --resume") + else: + self.progressbar(ti / float(tcount)) + continue + + # Create directories for the tile + if not os.path.exists(os.path.dirname(tilefilename)): + os.makedirs(os.path.dirname(tilefilename)) + + dsquery = self.mem_drv.Create( + '', 2*self.tilesize, 2*self.tilesize, tilebands) + # TODO: fill the null value + dstile = self.mem_drv.Create( + '', self.tilesize, self.tilesize, tilebands) + + # TODO: Implement more clever walking on the tiles with cache functionality + # probably walk should start with reading of four tiles from top left corner + # Hilbert curve + + children = [] + # Read the tiles and write them to query window + for y in range(2*ty, 2*ty+2): + for x in range(2*tx, 2*tx+2): + minx, miny, maxx, maxy = self.tminmax[tz+1] + if x >= minx and x <= maxx and y >= miny and y <= maxy: + dsquerytile = gdal.Open( + os.path.join(self.output, str(tz+1), str(x), + "%s.%s" % (y, self.tileext)), + gdal.GA_ReadOnly) + if (ty == 0 and y == 1) or (ty != 0 and (y % (2*ty)) != 0): + tileposy = 0 + else: + tileposy = self.tilesize + if tx: + tileposx = x % (2*tx) * self.tilesize + elif tx == 0 and x == 1: + tileposx = self.tilesize + else: + tileposx = 0 + dsquery.WriteRaster( + tileposx, tileposy, self.tilesize, self.tilesize, + dsquerytile.ReadRaster( + 0, 0, self.tilesize, self.tilesize), + band_list=list(range(1, tilebands+1))) + children.append([x, y, tz+1]) + + self.scale_query_to_tile(dsquery, dstile, tilefilename) + # Write a copy of tile to png/jpg + if self.options.resampling != 'antialias': + # Write a copy of tile to png/jpg + self.out_drv.CreateCopy(tilefilename, dstile, strict=0) + + if self.options.verbose: + print("\tbuild from zoom", tz+1, + " tiles:", (2*tx, 2*ty), (2*tx+1, 2*ty), + (2*tx, 2*ty+1), (2*tx+1, 2*ty+1)) + + # Create a KML file for this tile. + if self.kml: + f = open(os.path.join( + self.output, '%d/%d/%d.kml' % (tz, tx, ty)), 'wb') + f.write(self.generate_kml( + tx, ty, tz, children).encode('utf-8')) + f.close() + + if not self.options.verbose and not self.options.quiet: + self.progressbar(ti / float(tcount)) + + def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): + """ + For given dataset and query in cartographic coordinates returns parameters for ReadRaster() + in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the + extent is returned in the native resolution of dataset ds. + + raises Gdal2TilesError if the dataset does not contain anything inside this geo_query + """ + geotran = ds.GetGeoTransform() + rx = int((ulx - geotran[0]) / geotran[1] + 0.001) + ry = int((uly - geotran[3]) / geotran[5] + 0.001) + rxsize = int((lrx - ulx) / geotran[1] + 0.5) + rysize = int((lry - uly) / geotran[5] + 0.5) + + if not querysize: + wxsize, wysize = rxsize, rysize + else: + wxsize, wysize = querysize, querysize + + # Coordinates should not go out of the bounds of the raster + wx = 0 + if rx < 0: + rxshift = abs(rx) + wx = int(wxsize * (float(rxshift) / rxsize)) + wxsize = wxsize - wx + rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) + rx = 0 + if rx+rxsize > ds.RasterXSize: + wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) + rxsize = ds.RasterXSize - rx + + wy = 0 + if ry < 0: + ryshift = abs(ry) + wy = int(wysize * (float(ryshift) / rysize)) + wysize = wysize - wy + rysize = rysize - int(rysize * (float(ryshift) / rysize)) + ry = 0 + if ry+rysize > ds.RasterYSize: + wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) + rysize = ds.RasterYSize - ry + + return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) + + def scale_query_to_tile(self, dsquery, dstile, tilefilename=''): + """Scales down query dataset to the tile dataset""" + + querysize = dsquery.RasterXSize + tilesize = dstile.RasterXSize + tilebands = dstile.RasterCount + + if self.options.resampling == 'average': + + # Function: gdal.RegenerateOverview() + for i in range(1, tilebands+1): + # Black border around NODATA + res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), + 'average') + if res != 0: + self.error("RegenerateOverview() failed on %s, error %d" % ( + tilefilename, res)) + + elif self.options.resampling == 'antialias': + + # Scaling by PIL (Python Imaging Library) - improved Lanczos + array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) + for i in range(tilebands): + array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1), + 0, 0, querysize, querysize) + im = Image.fromarray(array, 'RGBA') # Always four bands + im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) + if os.path.exists(tilefilename): + im0 = Image.open(tilefilename) + im1 = Image.composite(im1, im0, im1) + im1.save(tilefilename, self.tiledriver) + + else: + + # Other algorithms are implemented by gdal.ReprojectImage(). + dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, + tilesize / float(querysize))) + dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) + + res = gdal.ReprojectImage( + dsquery, dstile, None, None, self.resampling) + if res != 0: + self.error("ReprojectImage() failed on %s, error %d" % + (tilefilename, res)) + + def generate_tilemapresource(self): + """ + Template for tilemapresource.xml. Returns filled string. Expected variables: + title, north, south, east, west, isepsg4326, projection, publishurl, + zoompixels, tilesize, tileformat, profile + """ + + args = {} + args['title'] = self.options.title + args['south'], args['west'], args['north'], args['east'] = self.swne + args['tilesize'] = self.tilesize + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url + args['profile'] = self.options.profile + + if self.options.profile == 'mercator': + args['srs'] = "EPSG:3857" + elif self.options.profile == 'geodetic': + args['srs'] = "EPSG:4326" + elif self.options.s_srs: + args['srs'] = self.options.s_srs + elif self.out_srs: + args['srs'] = self.out_srs.ExportToWkt() + else: + args['srs'] = "" + + s = """ + + %(title)s + + %(srs)s + + + + +""" % args # noqa + for z in range(self.tminz, self.tmaxz+1): + if self.options.profile == 'raster': + s += """ \n""" % ( + args['publishurl'], z, (2**(self.nativezoom-z) * self.out_gt[1]), z) + elif self.options.profile == 'mercator': + s += """ \n""" % ( + args['publishurl'], z, 156543.0339/2**z, z) + elif self.options.profile == 'geodetic': + s += """ \n""" % ( + args['publishurl'], z, 0.703125/2**z, z) + s += """ + + """ + return s + + def generate_kml(self, tx, ty, tz, children=None, **args): + """ + Template for the KML. Returns filled string. + """ + if not children: + children = [] + + args['tx'], args['ty'], args['tz'] = tx, ty, tz + args['tileformat'] = self.tileext + if 'tilesize' not in args: + args['tilesize'] = self.tilesize + + if 'minlodpixels' not in args: + args['minlodpixels'] = int(args['tilesize'] / 2) + if 'maxlodpixels' not in args: + args['maxlodpixels'] = int(args['tilesize'] * 8) + if children == []: + args['maxlodpixels'] = -1 + + if tx is None: + tilekml = False + args['title'] = self.options.title + else: + tilekml = True + args['title'] = "%d/%d/%d.kml" % (tz, tx, ty) + args['south'], args['west'], args['north'], args['east'] = self.tileswne( + tx, ty, tz) + + if tx == 0: + args['drawOrder'] = 2 * tz + 1 + elif tx is not None: + args['drawOrder'] = 2 * tz + else: + args['drawOrder'] = 0 + + url = self.options.url + if not url: + if tilekml: + url = "../../" + else: + url = "" + + s = """ + + + %(title)s + + """ % args + if tilekml: + s += """ + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + + %(minlodpixels)d + %(maxlodpixels)d + + + + %(drawOrder)d + + %(ty)d.%(tileformat)s + + + %(north).14f + %(south).14f + %(east).14f + %(west).14f + + + """ % args + + for cx, cy, cz in children: + csouth, cwest, cnorth, ceast = self.tileswne(cx, cy, cz) + s += """ + + %d/%d/%d.%s + + + %.14f + %.14f + %.14f + %.14f + + + %d + -1 + + + + %s%d/%d/%d.kml + onRegion + + + + """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, + args['minlodpixels'], url, cz, cx, cy) + + s += """ + + """ + return s + + def generate_googlemaps(self): + """ + Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. + It returns filled string. Expected variables: + title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, + publishurl + """ + args = {} + args['title'] = self.options.title + args['googlemapskey'] = self.options.googlekey + args['south'], args['west'], args['north'], args['east'] = self.swne + args['minzoom'] = self.tminz + args['maxzoom'] = self.tmaxz + args['tilesize'] = self.tilesize + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url + args['copyright'] = self.options.copyright + + s = r""" + + + %(title)s + + + + + + + + +
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC + +
+
+ + + """ % args # noqa + + return s + + def generate_leaflet(self): + """ + Template for leaflet.html implementing overlay of tiles for 'mercator' profile. + It returns filled string. Expected variables: + title, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl + """ + + args = {} + args['title'] = self.options.title.replace('"', '\\"') + args['htmltitle'] = self.options.title + args['south'], args['west'], args['north'], args['east'] = self.swne + args['centerlon'] = (args['north'] + args['south']) / 2. + args['centerlat'] = (args['west'] + args['east']) / 2. + args['minzoom'] = self.tminz + args['maxzoom'] = self.tmaxz + args['beginzoom'] = self.tmaxz + args['tilesize'] = self.tilesize # not used + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url # not used + args['copyright'] = self.options.copyright.replace('"', '\\"') + + s = """ + + + + + %(htmltitle)s + + + + + + + + + + +
+ + + + + + + """ % args # noqa + + return s + + def generate_openlayers(self): + """ + Template for openlayers.html implementing overlay of available Spherical Mercator layers. + + It returns filled string. Expected variables: + title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl + """ + + args = {} + args['title'] = self.options.title + args['bingkey'] = self.options.bingkey + args['south'], args['west'], args['north'], args['east'] = self.swne + args['minzoom'] = self.tminz + args['maxzoom'] = self.tmaxz + args['tilesize'] = self.tilesize + args['tileformat'] = self.tileext + args['publishurl'] = self.options.url + args['copyright'] = self.options.copyright + if self.options.tmscompatible: + args['tmsoffset'] = "-1" + else: + args['tmsoffset'] = "" + if self.options.profile == 'raster': + args['rasterzoomlevels'] = self.tmaxz+1 + args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1] + + s = r""" + + %(title)s + + """ % args # noqa + + if self.options.profile == 'mercator': + s += """ + + """ % args + + s += """ + + + + + +
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC + +
+
+ + + """ % args # noqa + + return s + + +def main(): + argv = gdal.GeneralCmdLineProcessor(sys.argv) + if argv: + gdal2tiles = GDAL2Tiles(argv[1:]) + gdal2tiles.process() + + +if __name__ == '__main__': + main() + +# vim: set tabstop=4 shiftwidth=4 expandtab: diff --git a/auxiliary/gdal2customtiles/gdal2tiles_3.5.2.py b/auxiliary/gdal2customtiles/legacy/gdal2tiles_3.5.2.py similarity index 100% rename from auxiliary/gdal2customtiles/gdal2tiles_3.5.2.py rename to auxiliary/gdal2customtiles/legacy/gdal2tiles_3.5.2.py diff --git a/auxiliary/gdal2customtiles/rasters2customtiles_3.5.2.py b/auxiliary/gdal2customtiles/legacy/rasters2customtiles_3.5.2.py similarity index 100% rename from auxiliary/gdal2customtiles/rasters2customtiles_3.5.2.py rename to auxiliary/gdal2customtiles/legacy/rasters2customtiles_3.5.2.py diff --git a/auxiliary/gdal2customtiles/legacy/readme.md b/auxiliary/gdal2customtiles/legacy/readme.md new file mode 100644 index 00000000..91152fd2 --- /dev/null +++ b/auxiliary/gdal2customtiles/legacy/readme.md @@ -0,0 +1,68 @@ +# gdal2customtiles + +This wraps together: + +- gdal2tiles4extent.py +- gdal2tiles1bto4b_v3.py + +--- + +## Raster Extents: + +Tile partial world rasters. + +**Requires:** + +- `-p raster` + - This is necessary for generating tiles with a custom extent. +- `-x` OR `--extentworld` followed by values `ulx,uly,lrx,lry,pixel_resolution` + - The extentworld is the full bounding area of the projection for the planetary body. The extentworld is the full bounding area of the projection for the planetary body. Units are in meters using upper left (ul) and lower right (lr) order. These values are reported from gdalinfo. Units are in meters using upper left (ul) and lower right (lr) order. These values are reported from gdalinfo. Values are separated by commas with no spaces. + +**Example:** + +``` +python gdal2customtiles.py -p raster --extentworld -4022404.001,4022036.893,-4022036.893,4022404.001,367.108150109358121 input.tif output_dir +``` + +_Notes:_ + +- Only works if set zoom (-z 0-10) encompasses the native zoom of the raster. +- 'ERROR 5's are expected. + +--- + +## Digital Elevation Model Tiles: + +Generate Digital Elevation Maps (DEMs) tiles. + +Any 32-bit image data can be encoded into the RGBA channels of a PNG. MMGIS uses this file type to create terrain meshes as well as for a data layer. + +- Certain resampling methods can corrupt `--dem` results. + +**Requires:** + +- `-m` or `--dem` + +**Example:** + +``` +python gdal2customtiles.py -p raster --extentworld -4022404.001,4022036.893,-4022036.893,4022404.001,367.108150109358121 --dem inputdem.tif output_dir +``` + +_Notes:_ + +- Does not include the convenience of rasterstotiles.py yet. +- Can only tile 32-bit images with --dem option. + +## gdal2tiles_3.5.2.py + +- `rasters2customtiles_3.5.2.py` and `gdal2tiles_3.5.2.py` support only the `--dem` option (and not `--raster` yet). `-m` no longer works and must be `--dem`. Tested with gdal 3.4.3. Upgraded to support multi-processes. See `python rasters2customtiles_3.5.2.py --help`. Unlike `gda2customtiles.py`, does not seam-match DEM tiles (better for Data Layers and Viewshed Tool, bad for 3D Globe). +- Adds the resampling algorithm `near-composite` that uses nearest-neighbor and ovarlays the new tile onto the old tile (if any in output directory) +- Certain resampling methods can corrupt `--dem` results. +- To support the value 0, all 0 data values get mapped to to the value 2^31 (2147483648) (RGBA=79,0,0,0) and then decoded by the MMGIS reader back to 0. This avoids clashes with other nondata-like values writing to 0,0,0,0 in the outputted pngs. + +**Example:** + +``` +python gdal2tiles_3.5.2.py --dem input.tif output_dir --srcnodata=-9999 -r near-composite --tilesize=128 +``` diff --git a/auxiliary/gdal2customtiles/rasters2customtiles.py b/auxiliary/gdal2customtiles/rasters2customtiles.py new file mode 100644 index 00000000..d89444d9 --- /dev/null +++ b/auxiliary/gdal2customtiles/rasters2customtiles.py @@ -0,0 +1,151 @@ +import sys +import subprocess +import optparse +from osgeo import gdal, osr + + +def optparse_init() -> optparse.OptionParser: + """Prepare the option parser for input (argv)""" + + usage = "Usage: %prog [options] input_file [output]" + p = optparse.OptionParser(usage) + p.add_option( + "--dem", + action="store_true", + dest="isDEMtile", + help="Indicate if the input is a Digital Elevation Model" + ) + p.add_option( + "--processes", + dest="processes", + type="int", + help="Number of processes to use for tiling", + ) + p.add_option( + "--tilesize", + dest="tilesize", + metavar="PIXELS", + type="int", + help="Width and height in pixel of a tile. Defaults to 256 (or 32 for --dem)", + ) + p.add_option( + "-z", + "--zoom", + dest="zoom", + help="Zoom levels to render (format:'2-5', '10-' or '10').", + ) + p.add_option( + "-e", + "--resume", + dest="resume", + action="store_true", + help="Resume mode. Generate only missing files.", + ) + p.add_option( + "-a", + "--srcnodata", + dest="srcnodata", + metavar="NODATA", + help="Value in the input dataset considered as transparent", + ) + return p + + +def GetExtent(gt, cols, rows): + ''' Return list of corner coordinates from a geotransform + + @type gt: C{tuple/list} + @param gt: geotransform + @type cols: C{int} + @param cols: number of columns in the dataset + @type rows: C{int} + @param rows: number of rows in the dataset + @rtype: C{[float,...,float]} + @return: coordinates of each corner + ''' + ext = [] + xarr = [0, cols] + yarr = [0, rows] + + for px in xarr: + for py in yarr: + x = gt[0]+(px*gt[1])+(py*gt[2]) + y = gt[3]+(px*gt[4])+(py*gt[5]) + ext.append([x, y]) + yarr.reverse() + return ext + + +def ReprojectCoords(coords, src_srs, tgt_srs): + ''' Reproject a list of x,y coordinates. + + @type geom: C{tuple/list} + @param geom: List of [[x,y],...[x,y]] coordinates + @type src_srs: C{osr.SpatialReference} + @param src_srs: OSR SpatialReference object + @type tgt_srs: C{osr.SpatialReference} + @param tgt_srs: OSR SpatialReference object + @rtype: C{tuple/list} + @return: List of transformed [[x,y],...[x,y]] coordinates + ''' + trans_coords = [] + transform = osr.CoordinateTransformation(src_srs, tgt_srs) + for x, y in coords: + x, y, z = transform.TransformPoint(x, y) + trans_coords.append([x, y]) + return trans_coords + + +def AutoGdalTranslate(geo_extent, cols, rows, raster): + gdal_translate = "gdal_translate -of VRT -a_srs EPSG:4326 -gcp 0 0 " + str(geo_extent[0][0]) + " " + str(geo_extent[0][1]) + " -gcp " + str(cols) + " 0 " + str(geo_extent[3][0]) + " " + str( + geo_extent[3][1]) + " -gcp " + str(cols) + " " + str(rows) + " " + str(geo_extent[2][0]) + " " + str(geo_extent[2][1]) + " " + raster + " " + raster[:-4] + ".vrt" + print(f"Running: {gdal_translate}\n") + subprocess.Popen(gdal_translate) + + +def AutoGdal2Tiles(raster, options, outputdir): + dem = "" + if options.isDEMtile is True: + dem = " --dem" + processes = "" + if options.processes is not None: + processes = f" --processes={options.processes}" + tilesize = "" + if options.tilesize is not None: + tilesize = f" --tilesize={options.tilesize}" + zoom = "" + if options.zoom is not None: + zoom = f" --zoom={options.zoom}" + resume = "" + if options.resume is True: + resume = " --resume" + srcnodata = " --srcnodata=0,0,0" + if options.srcnodata is not None: + srcnodata = f" --srcnodata={options.srcnodata}" + output = "" + if outputdir is not None: + output = f" {outputdir}" + gdal2tiles = f"python gdal2customtiles.py -n{dem}{processes}{tilesize}{zoom}{resume}{srcnodata} {raster[:-4]}.vrt{output}" + print(f"Running: {gdal2tiles}\n") + subprocess.Popen(gdal2tiles) + + +parser = optparse_init() +options, args = parser.parse_args(args=sys.argv) + +raster = args[1] +ds = gdal.Open(raster) + +gt = ds.GetGeoTransform() +cols = ds.RasterXSize +rows = ds.RasterYSize +extent = GetExtent(gt, cols, rows) + +src_srs = osr.SpatialReference() +src_srs.ImportFromWkt(ds.GetProjection()) +tgt_srs = src_srs.CloneGeogCS() + +geo_extent = ReprojectCoords(extent, src_srs, tgt_srs) + +AutoGdalTranslate(geo_extent, cols, rows, raster) +AutoGdal2Tiles(raster, options, args[2]) diff --git a/auxiliary/gdal2customtiles/readme.md b/auxiliary/gdal2customtiles/readme.md index bc83600f..da1cab9e 100644 --- a/auxiliary/gdal2customtiles/readme.md +++ b/auxiliary/gdal2customtiles/readme.md @@ -1,33 +1,38 @@ -# gdal2customtiles +# gdal2customtiles.py -This wraps together: +_Python 3.10.5_ -- gdal2tiles4extent.py -- gdal2tiles1bto4b_v3.py +Accepts all [gdal2tiles.py](https://gdal.org/programs/gdal2tiles.html) options. Built off of GDAL 3.5.2 and tested with GDAL 3.4.3, it adds the following new features and capabilities. --- ## Raster Extents: -Tile partial world rasters. +Tile partial world rasters. Useful for tiling non-mercator and non-geodetic projected data. **Requires:** - `-p raster` - This is necessary for generating tiles with a custom extent. -- `-x` OR `--extentworld` followed by values `ulx,uly,lrx,lry,pixel_resolution` +- `--extentworld` followed by values `ulx,uly,lrx,lry,pixel_resolution` - The extentworld is the full bounding area of the projection for the planetary body. The extentworld is the full bounding area of the projection for the planetary body. Units are in meters using upper left (ul) and lower right (lr) order. These values are reported from gdalinfo. Units are in meters using upper left (ul) and lower right (lr) order. These values are reported from gdalinfo. Values are separated by commas with no spaces. -**Example:** +#### Example: ``` -python gdal2customtiles.py -p raster --extentworld -4022404.001,4022036.893,-4022036.893,4022404.001,367.108150109358121 input.tif output_dir +python gdal2customtiles.py -p raster --extentworld -931100.000,931100.000,931100.000,-931100.000,100 inputs/WAC_GLOBAL_P900S0000_100M.tif outputs/WAC_GLOBAL_P900S0000_100M +python gdal2customtiles.py -p raster --extentworld -931100.000,931100.000,931100.000,-931100.000,100 inputs/ldem_87s_5mpp_hillshade.tif outputs/ldem_87s_5mpp_hillshade ``` +- `WAC_GLOBAL_P900S0000_100M.tif` is in Lunar South Polar projection (IAU2000:30120). Its data covers the full bounds of that projection's world-space (it's world extent/"extentworld") thus we use its bounds and pixel resolution directly from its metadata: `--extentworld -931100.000,931100.000,931100.000,-931100.000,100` + + - _Note: If your basemap does not cover the full world-space, you would need to compute the world-space's bounds and its resolution relative to your datasets_ + +- `ldem_87s_5mpp_hillshade.tif` is also in Lunar South Polar projection (IAU2000:30120). Its data only covers a small region of the projection's world-space. We still use the previous `--extentworld -931100.000,931100.000,931100.000,-931100.000,100` + _Notes:_ - Only works if set zoom (-z 0-10) encompasses the native zoom of the raster. -- 'ERROR 5's are expected. --- @@ -35,9 +40,7 @@ _Notes:_ Generate Digital Elevation Maps (DEMs) tiles. -Any 32-bit image data can be encoded into the RGBA channels of a PNG. MMGIS uses this file type to create terrain meshes as well as for a data layer. - -- Certain resampling methods can corrupt `--dem` results. +Any 32-bit image data can be encoded into the RGBA channels of a PNG. MMGIS uses this file type to create terrain meshes as well as for Data Layers. **Requires:** @@ -51,18 +54,33 @@ python gdal2customtiles.py -p raster --extentworld -4022404.001,4022036.893,-402 _Notes:_ -- Does not include the convenience of rasterstotiles.py yet. - Can only tile 32-bit images with --dem option. - -## gdal2tiles_3.5.2.py - -- `rasters2customtiles_3.5.2.py` and `gdal2tiles_3.5.2.py` support only the `--dem` option (and not `--raster` yet). `-m` no longer works and must be `--dem`. Tested with gdal 3.4.3. Upgraded to support multi-processes. See `python rasters2customtiles_3.5.2.py --help`. Unlike `gda2customtiles.py`, does not seam-match DEM tiles (better for Data Layers and Viewshed Tool, bad for 3D Globe). -- Adds the resampling algorithm `near-composite` that uses nearest-neighbor and ovarlays the new tile onto the old tile (if any in output directory) +- Current `--dem` tiles do not seam-match tile edges. This may or may not be desired (not seam-matching is better for Data Layers and the Viewshed Tool, but bad for MMGIS' 3D Globe/LithoSphere). If seam-matching is desired use `legacy/gdal2customtiles.py` or `legacy/gdal2customtiles_py27.py` - Certain resampling methods can corrupt `--dem` results. - To support the value 0, all 0 data values get mapped to to the value 2^31 (2147483648) (RGBA=79,0,0,0) and then decoded by the MMGIS reader back to 0. This avoids clashes with other nondata-like values writing to 0,0,0,0 in the outputted pngs. +--- + +## Compositing Tiles: + +Adds the resampling algorithm `near-composite` that uses nearest-neighbor resampling and overlays the new tile onto the old tile (if any in output directory). This makes it possible to accumulate or combine tilesets at the indivdual tile image level. Data in tiles can be overwritten by this process so be cognizant of run order and input extents. + **Example:** ``` -python gdal2tiles_3.5.2.py --dem input.tif output_dir --srcnodata=-9999 -r near-composite --tilesize=128 +python gdal2customtiles.py -r near-composite --srcnodata=-9999 --processes=40 --tilesize=128 --dem input_A.tif output_dir +python gdal2customtiles.py -r near-composite --srcnodata=-9999 --processes=40 --tilesize=128 --dem input_B.tif output_dir ``` + +_Notes:_ + +- Nodata values are treated as transparent and will not overwrite existing pixels in the output tile images. + +--- + +# raster2customtiles.py + +A convience script that wraps gda2customtiles.py. Translates the input data into EPSG:4326 and sets proper ground control points. Might be outdated. Use gdal2customtiles directly for the most control. + +**Usage:** +`rasters2customtiles.py [options] input_file [output]` or see `--help` diff --git a/docs/pages/Scripts/scripts.markdown b/docs/pages/Scripts/scripts.markdown index 7f0cf86a..5c2ec7f4 100644 --- a/docs/pages/Scripts/scripts.markdown +++ b/docs/pages/Scripts/scripts.markdown @@ -7,46 +7,53 @@ nav_order: 8 # Scripts -Supporting scripts for LithoSphere can be found within `/scripts` at the project's root. Scripts can help with processing and formatting data. Only the significant ones will be detailed below and otherwise check them from READMEs. +On the supporting scripts inside `/auxiliary`. -## gdal2customtiles.py +Scripts can help with processing and formatting data. Only the significant ones will be detailed below and otherwise check them from READMEs. -This wraps together: +# gdal2customtiles.py -- gdal2tiles4extent.py -- gdal2tiles1bto4b_v3.py +_Python 3.10.5_ + +Accepts all [gdal2tiles.py](https://gdal.org/programs/gdal2tiles.html) options. Built off of GDAL 3.5.2 and tested with GDAL 3.4.3, it adds the following new features and capabilities. --- -### Raster Extents: +## Raster Extents: -Tile partial world rasters. +Tile partial world rasters. Useful for tiling non-mercator and non-geodetic projected data. **Requires:** - `-p raster` - This is necessary for generating tiles with a custom extent. -- `-x` OR `--extentworld` followed by values `ulx,uly,lrx,lry,pixel_resolution` +- `--extentworld` followed by values `ulx,uly,lrx,lry,pixel_resolution` - The extentworld is the full bounding area of the projection for the planetary body. The extentworld is the full bounding area of the projection for the planetary body. Units are in meters using upper left (ul) and lower right (lr) order. These values are reported from gdalinfo. Units are in meters using upper left (ul) and lower right (lr) order. These values are reported from gdalinfo. Values are separated by commas with no spaces. -**Example:** +#### Example: ``` -python gdal2customtiles.py -p raster --extentworld -4022404.001,4022036.893,-4022036.893,4022404.001,367.108150109358121 input.tif output_dir +python gdal2customtiles.py -p raster --extentworld -931100.000,931100.000,931100.000,-931100.000,100 inputs/WAC_GLOBAL_P900S0000_100M.tif outputs/WAC_GLOBAL_P900S0000_100M +python gdal2customtiles.py -p raster --extentworld -931100.000,931100.000,931100.000,-931100.000,100 inputs/ldem_87s_5mpp_hillshade.tif outputs/ldem_87s_5mpp_hillshade ``` +- `WAC_GLOBAL_P900S0000_100M.tif` is in Lunar South Polar projection (IAU2000:30120). Its data covers the full bounds of that projection's world-space (it's world extent/"extentworld") thus we use its bounds and pixel resolution directly from its metadata: `--extentworld -931100.000,931100.000,931100.000,-931100.000,100` + + - _Note: If your basemap does not cover the full world-space, you would need to compute the world-space's bounds and its resolution relative to your datasets_ + +- `ldem_87s_5mpp_hillshade.tif` is also in Lunar South Polar projection (IAU2000:30120). Its data only covers a small region of the projection's world-space. We still use the previous `--extentworld -931100.000,931100.000,931100.000,-931100.000,100` + _Notes:_ - Only works if set zoom (-z 0-10) encompasses the native zoom of the raster. -- 'ERROR 5's are expected. --- -### Digital Elevation Model Tiles: +## Digital Elevation Model Tiles: Generate Digital Elevation Maps (DEMs) tiles. -Any 32-bit image data can be encoded into the RGBA channels of a PNG. MMGIS uses this file type to create terrain meshes as well as for a data layer. +Any 32-bit image data can be encoded into the RGBA channels of a PNG. MMGIS uses this file type to create terrain meshes as well as for Data Layers. **Requires:** @@ -60,5 +67,35 @@ python gdal2customtiles.py -p raster --extentworld -4022404.001,4022036.893,-402 _Notes:_ -- Does not include the convenience of rasterstotiles.py yet. - Can only tile 32-bit images with --dem option. +- Current `--dem` tiles do not seam-match tile edges. This may or may not be desired (not seam-matching is better for Data Layers and the Viewshed Tool, but bad for MMGIS' 3D Globe/LithoSphere). If seam-matching is desired use `legacy/gdal2customtiles.py` or `legacy/gdal2customtiles_py27.py` +- Certain resampling methods can corrupt `--dem` results. +- To support the value 0, all 0 data values get mapped to to the value 2^31 (2147483648) (RGBA=79,0,0,0) and then decoded by the MMGIS reader back to 0. This avoids clashes with other nondata-like values writing to 0,0,0,0 in the outputted pngs. + +--- + +## Compositing Tiles: + +Adds the resampling algorithm `near-composite` that uses nearest-neighbor resampling and overlays the new tile onto the old tile (if any in output directory). This makes it possible to accumulate or combine tilesets at the indivdual tile image level. Data in tiles can be overwritten by this process so be cognizant of run order and input extents. + +**Example:** + +``` +python gdal2customtiles.py -r near-composite --srcnodata=-9999 --processes=40 --tilesize=128 --dem input_A.tif output_dir +python gdal2customtiles.py -r near-composite --srcnodata=-9999 --processes=40 --tilesize=128 --dem input_B.tif output_dir +``` + +_Notes:_ + +- Nodata values are treated as transparent and will not overwrite existing pixels in the output tile images. + +--- + +# raster2customtiles.py + +_Python 3.10.5_ + +A convience script that wraps gda2customtiles.py. Translates the input data into EPSG:4326 and sets proper ground control points. Might be outdated. Use gdal2customtiles directly for the most control. + +**Usage:** +`rasters2customtiles.py [options] input_file [output]` or see `--help` From f4ccc4e5ee62ae8dd05a170e7e222f8e5886b749 Mon Sep 17 00:00:00 2001 From: tariqksoliman Date: Tue, 23 May 2023 17:53:12 -0700 Subject: [PATCH 3/6] #383 gdal2customtiles extentworld working, overview tiles not working --- .../gdal2customtiles/gdal2customtiles.py | 155 ++++++++++++++---- 1 file changed, 119 insertions(+), 36 deletions(-) diff --git a/auxiliary/gdal2customtiles/gdal2customtiles.py b/auxiliary/gdal2customtiles/gdal2customtiles.py index e11a77f5..0f660d65 100644 --- a/auxiliary/gdal2customtiles/gdal2customtiles.py +++ b/auxiliary/gdal2customtiles/gdal2customtiles.py @@ -1042,7 +1042,6 @@ def scale_query_to_tile(dsquery, dstile, options, tilefilename=""): im1.save(tilefilename, options.tiledriver, **params) else: - if options.resampling == "near": gdal_resampling = gdal.GRA_NearestNeighbour @@ -1485,7 +1484,6 @@ def create_base_tile(tile_job_info: "TileJobInfo", tile_detail: "TileDetail") -> # Query is in 'nearest neighbour' but can be bigger in then the tile_size # We scale down the query to the tile_size by supplied algorithm. - if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: try: alpha = alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize) @@ -2548,31 +2546,38 @@ def linearScale(domain, rang, value): self.warped_input_dataset.fRasterYOrigin = 0 self.warped_input_dataset.PixelSize = self.out_gt[1] self.warped_input_dataset.fPixelSize = self.fPixelSize - # print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) - # print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) - if self.isRasterBounded: + print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) + print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) + print("px_size", self.warped_input_dataset.PixelSize, "fpx_size", self.warped_input_dataset.fPixelSize) + if self.isRasterBounded: + print("Orig Raster Size: ", self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize ) self.warped_input_dataset.fRasterXSize = int(math.floor(self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( self.omaxx - self.ominx) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) self.warped_input_dataset.fRasterYSize = int(math.ceil(self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( self.omaxy - self.ominy) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) + print("Full Raster Size: ", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize ) self.warped_input_dataset.fRasterXSizeRaw = int(math.floor( self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) self.warped_input_dataset.fRasterYSizeRaw = int(math.ceil( self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) - # print("Full Raster Size: ", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize ) + print("Full Raster Size Raw: ", self.warped_input_dataset.fRasterXSizeRaw, self.warped_input_dataset.fRasterYSizeRaw ) self.warped_input_dataset.fRasterXOrigin = int(math.floor(linearScale( [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]))) self.warped_input_dataset.fRasterYOrigin = int(math.ceil(linearScale( [self.fminy, self.fmaxy], [self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]))) + print("Full Raster XY Origin: ", self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin ) self.warped_input_dataset.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) self.warped_input_dataset.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) + print("Full fRasterXYOriginRaw", self.warped_input_dataset.fRasterXOriginRaw, self.warped_input_dataset.fRasterYOriginRaw) self.warped_input_dataset.fRasterXWidth = int(math.floor(linearScale( [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin self.warped_input_dataset.fRasterYHeight = int(math.ceil(linearScale( [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin - + + print('TEST', [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy, -self.warped_input_dataset.fRasterYOrigin) + print("Full fRasterXWidth/Height", self.warped_input_dataset.fRasterXWidth, self.warped_input_dataset.fRasterYHeight) if self.options.verbose: print( "Bounds (output srs):", @@ -2715,9 +2720,12 @@ def log2(x): self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXWidth) / self.warped_input_dataset.fRasterXSize)) self.warped_input_dataset.fRasterYSizeWorld = int(float( self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize)) - # print("World Size", self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize) - # print("Raster Origin World", self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld) - # print("Raster Size World", self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld) + + print("Raster Size Raw", self.warped_input_dataset.fRasterXSizeRaw, self.warped_input_dataset.fRasterYSizeRaw) + print("Raster Size", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize) + print("World Size", self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize) + print("Raster Origin World", self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld) + print("Raster Size World", self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld) if self.options.verbose: print("Native zoom of the raster:", self.nativezoom) @@ -2738,29 +2746,52 @@ def log2(x): # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) for tz in range(0, self.tmaxz+1): - tsize = 2.0**(self.tmaxz-tz)*self.tile_size - toffsetx = int(math.floor( - 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) - toffsety = int(math.floor( - 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw) / self.warped_input_dataset.fRasterYSizeRaw)) - # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - toffsetx = int(math.floor( - self.warped_input_dataset.fRasterXOriginWorld / tsize)) - toffsety = int(math.floor( - self.warped_input_dataset.fRasterYOriginWorld / tsize)) - # print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - tmaxx = int(math.floor( - self.warped_input_dataset.fRasterXSizeWorld / tsize)) + toffsetx + 1 - - tmaxy = int(math.floor( - self.warped_input_dataset.fRasterYSizeWorld / tsize)) + toffsety + 1 - self.tsize[tz] = math.ceil(tsize) + #tsize = 2.0**(self.tmaxz-tz)*self.tile_size + #toffsetx = int(math.floor( + # 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) + #toffsety = int(math.floor( + # 2.0**(tz) * self.warped_input_dataset.fRasterYOriginRaw / self.warped_input_dataset.fRasterYSizeRaw)) + #print('toffsety', toffsety, tz, 2.0**(tz), self.warped_input_dataset.fRasterYOriginRaw, self.warped_input_dataset.fRasterYSizeRaw) + #print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + #toffsetx = int(math.floor( + # self.warped_input_dataset.fRasterXOriginWorld / tsize)) + #toffsety = int(math.floor( + # self.warped_input_dataset.fRasterYOriginWorld / tsize)) + #print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) + #tmaxx = int(math.floor( + # self.warped_input_dataset.fRasterXSizeWorld / tsize)) + toffsetx + 1 + + #tmaxy = int(math.floor( + # self.warped_input_dataset.fRasterYSizeWorld / tsize)) + toffsety + 1 + #self.tsize[tz] = math.ceil(tsize) #tminx = toffsetx - tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 - tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 + #tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 + #tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 + + #self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) + #print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz, "tile_size", self.tile_size) + + xRatio = self.warped_input_dataset.fRasterXSizeRaw / (2.0**(tz) * self.tile_size) + yRatio = self.warped_input_dataset.fRasterYSizeRaw / (2.0**(tz) * self.tile_size) + tminx = int(math.floor( + 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) * xRatio + tmaxx = int(math.floor( + 2.0**(tz) * (self.warped_input_dataset.fRasterXOriginRaw + self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.fRasterXSizeRaw)) * xRatio + tminy = int(2.0**(tz) - math.floor( + 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw + self.warped_input_dataset.fRasterYSizeWorld) / self.warped_input_dataset.fRasterYSizeRaw)) * yRatio + tmaxy = int(2.0**(tz) - math.floor( + 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw) / self.warped_input_dataset.fRasterYSizeRaw)) * yRatio + + tminx = int(tminx) + tmaxx = int(tmaxx) + tminy = int(tminy) + tmaxy = int(tmaxy) + + self.tsize[tz] = math.ceil(2.0**(self.tmaxz-tz)*self.tile_size) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - # print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) + + print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) elif self.options.profile == "raster": @@ -3084,6 +3115,8 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: tz = self.tmaxz + #print('xyz', tmaxx, tminx, tmaxy, tminy, tz) + # Create directories for the tiles for tx in range(tminx, tmaxx + 1): tiledirname = os.path.join(self.output_folder, str(tz), str(tx)) @@ -3140,8 +3173,61 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: # MMGIS elif self.isRasterBounded: # 'raster' profile: + #print("A", (self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize), (self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld), (self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld)) + #Pre-computed tile size + tsize = int(self.tsize[tz]) + #querysize = self.tile_size + if tz >= self.tmaxz: + querysize = self.tile_size + #Compute raster world to tile world ratio (because rasters often don't fill the full 2^z space) + xRatio = self.warped_input_dataset.fRasterXSizeRaw / (2.0**(tz) * self.tile_size) + yRatio = self.warped_input_dataset.fRasterYSizeRaw / (2.0**(tz) * self.tile_size) + + #Find read positions + rx = tx / 2.0**(tz) * self.warped_input_dataset.fWorldXSize / xRatio + ry = self.warped_input_dataset.fWorldYSize - ((ty + 1) / 2.0**(tz) * self.warped_input_dataset.fWorldYSize / yRatio) + + #Offset these read positions with the raster's origin + rx = int(rx - self.warped_input_dataset.fRasterXOriginWorld) + ry = int(ry - self.warped_input_dataset.fRasterYOriginWorld) + + #Set read size to be tile size by default + rxsize = tsize + rysize = tsize + + #Set write defaults + wx, wy = 0, 0 + wxsize = int(tsize) + wysize = int(tsize) + + #For when the read sizes exceed the bounds of the image + if rx < 0: + wx = -rx + rxsize = rxsize + rx + wxsize = wxsize + rx + rx = 0 + if ry < 0: + wy = -ry + rysize = rysize + ry + wysize = wysize + ry + ry = 0 + if rx + rxsize > self.warped_input_dataset.fRasterXSizeWorld: + rxsize = self.warped_input_dataset.fRasterXSizeWorld - rx + wxsize = rxsize + if ry + rysize > self.warped_input_dataset.fRasterYSizeWorld: + rysize = self.warped_input_dataset.fRasterYSizeWorld - ry + wysize = rysize + + if self.isDEMtile: + wxsize -= 1 # 1bto4b + wysize -= 1 # 1bto4b + + #print("Tile: ", (tz, tx, ty, tsize)) + #print("Read: ", (rx, ry, rxsize, rysize)) + #print("Write: ",(wx, wy, wxsize, wysize)) # tilesize in raster coordinates for actual zoom + """ tsize = int(self.tsize[tz]) xsize = self.warped_input_dataset.fWorldXSize ysize = self.warped_input_dataset.fWorldYSize @@ -3149,15 +3235,13 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: querysize = self.tile_size rx = (tx) * tsize - self.warped_input_dataset.fRasterXOriginWorld - #print("rx", rx) rxsize = 0 rxsize = tsize rysize = 0 rysize = tsize - ry = ysize - (ty * tsize) - rysize - \ - self.warped_input_dataset.fRasterYOriginWorld + ry = ysize - (ty * tsize) - rysize - self.warped_input_dataset.fRasterYOriginWorld wx, wy = 0, 0 wxsize = int(rxsize/float(tsize) * self.tile_size) @@ -3194,8 +3278,8 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: if self.isDEMtile: wxsize -= 1 # 1bto4b wysize -= 1 # 1bto4b - - #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin)) + """ + #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin), (self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize)) else: # 'raster' profile: tsize = int( @@ -4861,7 +4945,6 @@ def single_threaded_tiling( if not options.verbose: overview_progress_bar = ProgressBar(count) overview_progress_bar.start() - for base_tz in range(conf.tmaxz, conf.tminz, -1): base_tile_groups = group_overview_base_tiles( base_tz, output_folder, conf) From 82244a95fb00963b16eec9f659bee89167a2ea16 Mon Sep 17 00:00:00 2001 From: tariqksoliman Date: Thu, 25 May 2023 11:38:13 -0700 Subject: [PATCH 4/6] #383 Fix gdal2customtiles rasters with different pixel scales --- .../gdal2customtiles/gdal2customtiles.py | 187 ++++++------------ 1 file changed, 61 insertions(+), 126 deletions(-) diff --git a/auxiliary/gdal2customtiles/gdal2customtiles.py b/auxiliary/gdal2customtiles/gdal2customtiles.py index 0f660d65..c332123c 100644 --- a/auxiliary/gdal2customtiles/gdal2customtiles.py +++ b/auxiliary/gdal2customtiles/gdal2customtiles.py @@ -1639,7 +1639,6 @@ def create_overview_tile( options: Options, ): """Generating an overview tile from no more than 4 underlying tiles(base tiles)""" - overview_tz = base_tz - 1 overview_tx = base_tiles[0][0] >> 1 overview_ty = base_tiles[0][1] >> 1 @@ -1690,6 +1689,8 @@ def create_overview_tile( "%s.%s" % (base_ty_real, tile_job_info.tile_extension), ) if not isfile(base_tile_path): + if options.verbose: + print("\tNo usable base tiles at path", base_tile_path) continue dsquerytile = gdal.Open(base_tile_path, gdal.GA_ReadOnly) @@ -1745,6 +1746,8 @@ def create_overview_tile( usable_base_tiles.append(base_tile) if not usable_base_tiles: + if options.verbose: + print("\tNo usable base tiles for overview zoom", base_tz, ", base tiles:", *base_tiles) return scale_query_to_tile(dsquery, dstile, options, tilefilename=tilefilename) @@ -2546,39 +2549,39 @@ def linearScale(domain, rang, value): self.warped_input_dataset.fRasterYOrigin = 0 self.warped_input_dataset.PixelSize = self.out_gt[1] self.warped_input_dataset.fPixelSize = self.fPixelSize - print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) - print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) - print("px_size", self.warped_input_dataset.PixelSize, "fpx_size", self.warped_input_dataset.fPixelSize) + + if self.isRasterBounded: - print("Orig Raster Size: ", self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize ) - self.warped_input_dataset.fRasterXSize = int(math.floor(self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( + self.warped_input_dataset.fRasterXSize = int(math.ceil(self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( self.omaxx - self.ominx) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) - self.warped_input_dataset.fRasterYSize = int(math.ceil(self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( + self.warped_input_dataset.fRasterYSize = int(math.floor(self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( self.omaxy - self.ominy) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) - print("Full Raster Size: ", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize ) - self.warped_input_dataset.fRasterXSizeRaw = int(math.floor( + self.warped_input_dataset.fRasterXSizeRaw = int(math.ceil( self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) - self.warped_input_dataset.fRasterYSizeRaw = int(math.ceil( + self.warped_input_dataset.fRasterYSizeRaw = int(math.floor( self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) - print("Full Raster Size Raw: ", self.warped_input_dataset.fRasterXSizeRaw, self.warped_input_dataset.fRasterYSizeRaw ) - self.warped_input_dataset.fRasterXOrigin = int(math.floor(linearScale( + self.warped_input_dataset.fRasterXOrigin = int(math.ceil(linearScale( [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]))) - self.warped_input_dataset.fRasterYOrigin = int(math.ceil(linearScale( + self.warped_input_dataset.fRasterYOrigin = int(math.floor(linearScale( [self.fminy, self.fmaxy], [self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]))) - print("Full Raster XY Origin: ", self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin ) - self.warped_input_dataset.fRasterXOriginRaw = int(math.floor(linearScale([self.fminx, self.fmaxx], [ + self.warped_input_dataset.fRasterXOriginRaw = int(math.ceil(linearScale([self.fminx, self.fmaxx], [ 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) - self.warped_input_dataset.fRasterYOriginRaw = int(math.ceil(linearScale([self.fminy, self.fmaxy], [ + self.warped_input_dataset.fRasterYOriginRaw = int(math.floor(linearScale([self.fminy, self.fmaxy], [ self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) - print("Full fRasterXYOriginRaw", self.warped_input_dataset.fRasterXOriginRaw, self.warped_input_dataset.fRasterYOriginRaw) - self.warped_input_dataset.fRasterXWidth = int(math.floor(linearScale( + self.warped_input_dataset.fRasterXWidth = int(math.ceil(linearScale( [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin - self.warped_input_dataset.fRasterYHeight = int(math.ceil(linearScale( + self.warped_input_dataset.fRasterYHeight = int(math.floor(linearScale( [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin - - print('TEST', [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy, -self.warped_input_dataset.fRasterYOrigin) - print("Full fRasterXWidth/Height", self.warped_input_dataset.fRasterXWidth, self.warped_input_dataset.fRasterYHeight) if self.options.verbose: + print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) + print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) + print("px_size", self.warped_input_dataset.PixelSize, "fpx_size", self.warped_input_dataset.fPixelSize) + print("Orig Raster Size: ", self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize ) + print("Full Raster Size: ", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize ) + print("Full Raster Size Raw: ", self.warped_input_dataset.fRasterXSizeRaw, self.warped_input_dataset.fRasterYSizeRaw ) + print("Full Raster XY Origin: ", self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin ) + print("Full fRasterXYOriginRaw", self.warped_input_dataset.fRasterXOriginRaw, self.warped_input_dataset.fRasterYOriginRaw) + print("Full fRasterXWidth/Height", self.warped_input_dataset.fRasterXWidth, self.warped_input_dataset.fRasterYHeight) print( "Bounds (output srs):", round(self.ominx, 13), @@ -2719,13 +2722,18 @@ def log2(x): self.warped_input_dataset.fRasterXSizeWorld = int(float( self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXWidth) / self.warped_input_dataset.fRasterXSize)) self.warped_input_dataset.fRasterYSizeWorld = int(float( - self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize)) + self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize)) - print("Raster Size Raw", self.warped_input_dataset.fRasterXSizeRaw, self.warped_input_dataset.fRasterYSizeRaw) - print("Raster Size", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize) - print("World Size", self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize) - print("Raster Origin World", self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld) - print("Raster Size World", self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld) + #self.warped_input_dataset.fRasterXSizeWorld = self.warped_input_dataset.RasterXSize + #self.warped_input_dataset.fRasterYSizeWorld = self.warped_input_dataset.RasterYSize + if self.options.verbose: + print("Raster Size Raw", self.warped_input_dataset.fRasterXSizeRaw, self.warped_input_dataset.fRasterYSizeRaw) + print("Raster Size", self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize) + print("Full Raster Size", self.warped_input_dataset.fRasterXSize, self.warped_input_dataset.fRasterYSize) + print("World Size", self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize) + print("Raster Origin", self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin) + print("Raster Origin World", self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld) + print("Raster Size World", self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld) if self.options.verbose: print("Native zoom of the raster:", self.nativezoom) @@ -2746,52 +2754,21 @@ def log2(x): # print("Pixel Size Ratio:", (self.out_ds.fPixelSize / self.out_ds.PixelSize)) # print("nativezoom", self.nativezoom, "basenativezoom", self.basenativezoom, "tminz", self.tminz, "tmaxz", self.tmaxz) for tz in range(0, self.tmaxz+1): - #tsize = 2.0**(self.tmaxz-tz)*self.tile_size - #toffsetx = int(math.floor( - # 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) - #toffsety = int(math.floor( - # 2.0**(tz) * self.warped_input_dataset.fRasterYOriginRaw / self.warped_input_dataset.fRasterYSizeRaw)) - #print('toffsety', toffsety, tz, 2.0**(tz), self.warped_input_dataset.fRasterYOriginRaw, self.warped_input_dataset.fRasterYSizeRaw) - #print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - #toffsetx = int(math.floor( - # self.warped_input_dataset.fRasterXOriginWorld / tsize)) - #toffsety = int(math.floor( - # self.warped_input_dataset.fRasterYOriginWorld / tsize)) - #print("tsize", tsize, "toffsetx", toffsetx, "toffsety", toffsety) - #tmaxx = int(math.floor( - # self.warped_input_dataset.fRasterXSizeWorld / tsize)) + toffsetx + 1 - - #tmaxy = int(math.floor( - # self.warped_input_dataset.fRasterYSizeWorld / tsize)) + toffsety + 1 - #self.tsize[tz] = math.ceil(tsize) - #tminx = toffsetx - #tminx = int(tmaxx - ((tmaxx - toffsetx) / (0.75))) - 1 - #tminy = int(tmaxy - ((tmaxy - toffsety) / (0.75))) - 1 - - #self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - #print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz, "tile_size", self.tile_size) - - xRatio = self.warped_input_dataset.fRasterXSizeRaw / (2.0**(tz) * self.tile_size) - yRatio = self.warped_input_dataset.fRasterYSizeRaw / (2.0**(tz) * self.tile_size) - tminx = int(math.floor( - 2.0**(tz) * self.warped_input_dataset.fRasterXOriginRaw / self.warped_input_dataset.fRasterXSizeRaw)) * xRatio - tmaxx = int(math.floor( - 2.0**(tz) * (self.warped_input_dataset.fRasterXOriginRaw + self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.fRasterXSizeRaw)) * xRatio - tminy = int(2.0**(tz) - math.floor( - 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw + self.warped_input_dataset.fRasterYSizeWorld) / self.warped_input_dataset.fRasterYSizeRaw)) * yRatio - tmaxy = int(2.0**(tz) - math.floor( - 2.0**(tz) * (self.warped_input_dataset.fRasterYOriginRaw) / self.warped_input_dataset.fRasterYSizeRaw)) * yRatio - tminx = int(tminx) - tmaxx = int(tmaxx) - tminy = int(tminy) - tmaxy = int(tmaxy) + xRatio = self.warped_input_dataset.fRasterXSize / (2.0**(self.basenativezoom) * self.tile_size) + yRatio = self.warped_input_dataset.fRasterYSize / (2.0**(self.basenativezoom) * self.tile_size) + tilesWide = 2.0**(tz) + tminx = math.floor(linearScale([0, self.warped_input_dataset.fRasterXSize], [0, tilesWide], self.warped_input_dataset.fRasterXOrigin) * xRatio) + tminy = math.floor(linearScale([self.warped_input_dataset.fRasterYSize, 0], [0, tilesWide], self.warped_input_dataset.fRasterYOrigin + self.warped_input_dataset.fRasterYHeight) * yRatio) + tmaxx = math.ceil(linearScale([0, self.warped_input_dataset.fRasterXSize], [0, tilesWide], self.warped_input_dataset.fRasterXOrigin + self.warped_input_dataset.fRasterXWidth) * xRatio) + tmaxy = math.ceil(linearScale([self.warped_input_dataset.fRasterYSize, 0], [0, tilesWide], self.warped_input_dataset.fRasterYOrigin) * yRatio) self.tsize[tz] = math.ceil(2.0**(self.tmaxz-tz)*self.tile_size) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) - print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz) + if self.options.verbose: + print("tminx", tminx, "tminy", tminy, "tmaxx", tmaxx, "tmaxy", tmaxy, "tz", tz, "xRatio", xRatio, "yRatio", yRatio) elif self.options.profile == "raster": @@ -3172,62 +3149,8 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: wx, wy, wxsize, wysize = wb # MMGIS - elif self.isRasterBounded: # 'raster' profile: - #print("A", (self.warped_input_dataset.fWorldXSize, self.warped_input_dataset.fWorldYSize), (self.warped_input_dataset.fRasterXSizeWorld, self.warped_input_dataset.fRasterYSizeWorld), (self.warped_input_dataset.fRasterXOriginWorld, self.warped_input_dataset.fRasterYOriginWorld)) - #Pre-computed tile size - tsize = int(self.tsize[tz]) - #querysize = self.tile_size - if tz >= self.tmaxz: - querysize = self.tile_size - - #Compute raster world to tile world ratio (because rasters often don't fill the full 2^z space) - xRatio = self.warped_input_dataset.fRasterXSizeRaw / (2.0**(tz) * self.tile_size) - yRatio = self.warped_input_dataset.fRasterYSizeRaw / (2.0**(tz) * self.tile_size) - - #Find read positions - rx = tx / 2.0**(tz) * self.warped_input_dataset.fWorldXSize / xRatio - ry = self.warped_input_dataset.fWorldYSize - ((ty + 1) / 2.0**(tz) * self.warped_input_dataset.fWorldYSize / yRatio) - - #Offset these read positions with the raster's origin - rx = int(rx - self.warped_input_dataset.fRasterXOriginWorld) - ry = int(ry - self.warped_input_dataset.fRasterYOriginWorld) - - #Set read size to be tile size by default - rxsize = tsize - rysize = tsize - - #Set write defaults - wx, wy = 0, 0 - wxsize = int(tsize) - wysize = int(tsize) - - #For when the read sizes exceed the bounds of the image - if rx < 0: - wx = -rx - rxsize = rxsize + rx - wxsize = wxsize + rx - rx = 0 - if ry < 0: - wy = -ry - rysize = rysize + ry - wysize = wysize + ry - ry = 0 - if rx + rxsize > self.warped_input_dataset.fRasterXSizeWorld: - rxsize = self.warped_input_dataset.fRasterXSizeWorld - rx - wxsize = rxsize - if ry + rysize > self.warped_input_dataset.fRasterYSizeWorld: - rysize = self.warped_input_dataset.fRasterYSizeWorld - ry - wysize = rysize - - if self.isDEMtile: - wxsize -= 1 # 1bto4b - wysize -= 1 # 1bto4b - - #print("Tile: ", (tz, tx, ty, tsize)) - #print("Read: ", (rx, ry, rxsize, rysize)) - #print("Write: ",(wx, wy, wxsize, wysize)) + elif self.isRasterBounded: # 'raster' profile: # tilesize in raster coordinates for actual zoom - """ tsize = int(self.tsize[tz]) xsize = self.warped_input_dataset.fWorldXSize ysize = self.warped_input_dataset.fWorldYSize @@ -3235,13 +3158,15 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: querysize = self.tile_size rx = (tx) * tsize - self.warped_input_dataset.fRasterXOriginWorld + rxsize = 0 rxsize = tsize rysize = 0 rysize = tsize - ry = ysize - (ty * tsize) - rysize - self.warped_input_dataset.fRasterYOriginWorld + ry = ysize - (ty * tsize) - rysize - \ + self.warped_input_dataset.fRasterYOriginWorld wx, wy = 0, 0 wxsize = int(rxsize/float(tsize) * self.tile_size) @@ -3275,11 +3200,14 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: (float(rxsize) / self.warped_input_dataset.fRasterXSizeWorld)) rysize = int(float(self.warped_input_dataset.RasterYSize) * (float(rysize) / self.warped_input_dataset.fRasterYSizeWorld)) + if self.isDEMtile: wxsize -= 1 # 1bto4b wysize -= 1 # 1bto4b - """ - #print("Extent: ", (tx, ty, tz, tsize), (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize), (self.warped_input_dataset.fRasterXOrigin, self.warped_input_dataset.fRasterYOrigin), (self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize)) + + #print("Tile: ", (tz, tx, ty, tsize)) + #print("Read: ", (rx, ry, rxsize, rysize)) + #print("Write: ",(wx, wy, wxsize, wysize)) else: # 'raster' profile: tsize = int( @@ -4855,6 +4783,10 @@ def log_progress(self, nb_items: int = 1) -> None: done = True sys.stdout.flush() + def done(self) -> None: + sys.stdout.write("\r0...10...20...30...40...50...60...70...80...90...100\nDone!") + sys.stdout.flush() + def get_tile_swne(tile_job_info, options): if options.profile == "mercator": @@ -4956,6 +4888,9 @@ def single_threaded_tiling( shutil.rmtree(os.path.dirname(conf.src_file)) + if not options.verbose and not options.quiet: + overview_progress_bar.done() + def multi_threaded_tiling( input_file: str, output_folder: str, options: Options, pool From 0e95ac40c308c18371c68b2430c6a19a89224c3a Mon Sep 17 00:00:00 2001 From: Tariq Soliman Date: Mon, 26 Jun 2023 18:26:48 -0700 Subject: [PATCH 5/6] gdal2customtiles - fix width calc, still slight offset --- .../gdal2customtiles/gdal2customtiles.py | 20 ++++++++++++++++--- 1 file changed, 17 insertions(+), 3 deletions(-) diff --git a/auxiliary/gdal2customtiles/gdal2customtiles.py b/auxiliary/gdal2customtiles/gdal2customtiles.py index c332123c..140ce684 100644 --- a/auxiliary/gdal2customtiles/gdal2customtiles.py +++ b/auxiliary/gdal2customtiles/gdal2customtiles.py @@ -2568,10 +2568,22 @@ def linearScale(domain, rang, value): 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) self.warped_input_dataset.fRasterYOriginRaw = int(math.floor(linearScale([self.fminy, self.fmaxy], [ self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) + #self.warped_input_dataset.fRasterXWidth = int(math.ceil(linearScale( + # [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin self.warped_input_dataset.fRasterXWidth = int(math.ceil(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin - self.warped_input_dataset.fRasterYHeight = int(math.floor(linearScale( - [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - int(math.ceil(linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.ominx))) + print('==x', int(math.ceil(linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))), int(math.ceil(linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.ominx)))) + print('==y', int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))), int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.ominy)))) + #self.warped_input_dataset.fRasterYHeight = int(math.floor(linearScale( + # [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin + self.warped_input_dataset.fRasterYHeight = int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - int(math.ceil(linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.ominy))) if self.options.verbose: print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) @@ -2737,6 +2749,8 @@ def log2(x): if self.options.verbose: print("Native zoom of the raster:", self.nativezoom) + print("Base native zoom of the raster:", self.basenativezoom) + print("tile_size:", self.tile_size) # Get the minimal zoom level (whole raster in one tile) if self.tminz is None: From c3323310b4ccc564fa3f609dcb3bb10068960766 Mon Sep 17 00:00:00 2001 From: tariqksoliman Date: Tue, 27 Jun 2023 10:45:40 -0700 Subject: [PATCH 6/6] gdal2customtiles raster - fix rounding issues --- .../gdal2customtiles/gdal2customtiles.py | 109 ++++++++---------- 1 file changed, 49 insertions(+), 60 deletions(-) diff --git a/auxiliary/gdal2customtiles/gdal2customtiles.py b/auxiliary/gdal2customtiles/gdal2customtiles.py index 140ce684..c07f7726 100644 --- a/auxiliary/gdal2customtiles/gdal2customtiles.py +++ b/auxiliary/gdal2customtiles/gdal2customtiles.py @@ -1460,6 +1460,7 @@ def create_base_tile(tile_job_info: "TileJobInfo", tile_detail: "TileDetail") -> wxsize = tile_detail.wxsize wysize = tile_detail.wysize querysize = tile_detail.querysize + # MMGIS isDEMtile = tile_detail.isDEMtile @@ -1569,7 +1570,7 @@ def create_base_tile(tile_job_info: "TileJobInfo", tile_detail: "TileDetail") -> band_list=list(range(1, dataBandsCount + 1)), ) dstile.WriteRaster(wx, wy, wxsize, wysize, - alpha, band_list=[tilebands]) + alpha, band_list=[tilebands]) # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, # MrSID) the ReadRaster function returns high-quality raster (not ugly @@ -2552,38 +2553,26 @@ def linearScale(domain, rang, value): if self.isRasterBounded: - self.warped_input_dataset.fRasterXSize = int(math.ceil(self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( - self.omaxx - self.ominx) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) - self.warped_input_dataset.fRasterYSize = int(math.floor(self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( - self.omaxy - self.ominy) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize))) - self.warped_input_dataset.fRasterXSizeRaw = int(math.ceil( - self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx))) - self.warped_input_dataset.fRasterYSizeRaw = int(math.floor( - self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy))) - self.warped_input_dataset.fRasterXOrigin = int(math.ceil(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]))) - self.warped_input_dataset.fRasterYOrigin = int(math.floor(linearScale( - [self.fminy, self.fmaxy], [self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]))) - self.warped_input_dataset.fRasterXOriginRaw = int(math.ceil(linearScale([self.fminx, self.fmaxx], [ - 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) - self.warped_input_dataset.fRasterYOriginRaw = int(math.floor(linearScale([self.fminy, self.fmaxy], [ - self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize))) - #self.warped_input_dataset.fRasterXWidth = int(math.ceil(linearScale( - # [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - self.warped_input_dataset.fRasterXOrigin - self.warped_input_dataset.fRasterXWidth = int(math.ceil(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))) - int(math.ceil(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.ominx))) - print('==x', int(math.ceil(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx))), int(math.ceil(linearScale( - [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.ominx)))) - print('==y', int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))), int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.ominy)))) - #self.warped_input_dataset.fRasterYHeight = int(math.floor(linearScale( - # [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - self.warped_input_dataset.fRasterYOrigin - self.warped_input_dataset.fRasterYHeight = int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy))) - int(math.ceil(linearScale( - [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.ominy))) + self.warped_input_dataset.fRasterXSize = self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / ( + self.omaxx - self.ominx) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize) + self.warped_input_dataset.fRasterYSize = self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / ( + self.omaxy - self.ominy) * (self.warped_input_dataset.PixelSize / self.warped_input_dataset.fPixelSize) + self.warped_input_dataset.fRasterXSizeRaw = self.warped_input_dataset.RasterXSize * (self.fmaxx - self.fminx) / (self.omaxx - self.ominx) + self.warped_input_dataset.fRasterYSizeRaw = self.warped_input_dataset.RasterYSize * (self.fmaxy - self.fminy) / (self.omaxy - self.ominy) + self.warped_input_dataset.fRasterXOrigin = linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) + self.warped_input_dataset.fRasterYOrigin = linearScale( + [self.fminy, self.fmaxy], [self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) + self.warped_input_dataset.fRasterXOriginRaw = linearScale([self.fminx, self.fmaxx], [ + 0, self.warped_input_dataset.fRasterXSize], self.out_gt[0]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize) + self.warped_input_dataset.fRasterYOriginRaw = linearScale([self.fminy, self.fmaxy], [ + self.warped_input_dataset.fRasterYSize, 0], self.out_gt[3]) * (self.warped_input_dataset.fPixelSize / self.warped_input_dataset.PixelSize) + self.warped_input_dataset.fRasterXWidth = linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.omaxx) - linearScale( + [self.fminx, self.fmaxx], [0, self.warped_input_dataset.fRasterXSize], self.ominx) + self.warped_input_dataset.fRasterYHeight = linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.omaxy) - linearScale( + [self.fminy, self.fmaxy], [0, self.warped_input_dataset.fRasterYSize], self.ominy) if self.options.verbose: print("ominx", self.ominx, "omaxx", self.omaxx, "ominy", self.ominy, "omaxy", self.omaxy) print("fminx", self.fminx, "fmaxx", self.fmaxx, "fminy", self.fminy, "fmaxy", self.fmaxy) @@ -2723,18 +2712,12 @@ def log2(x): math.ceil(log2(self.warped_input_dataset.fRasterYSize/float(self.tile_size))))) # MMGIS - self.warped_input_dataset.fWorldXSize = int( - float(self.warped_input_dataset.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom))) - self.warped_input_dataset.fWorldYSize = int( - float(self.warped_input_dataset.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom))) - self.warped_input_dataset.fRasterXOriginWorld = int(float( - self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXOrigin) / self.warped_input_dataset.fRasterXSize)) - self.warped_input_dataset.fRasterYOriginWorld = int(float( - self.warped_input_dataset.fWorldYSize) * (float(self.warped_input_dataset.fRasterYOrigin) / self.warped_input_dataset.fRasterYSize)) - self.warped_input_dataset.fRasterXSizeWorld = int(float( - self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXWidth) / self.warped_input_dataset.fRasterXSize)) - self.warped_input_dataset.fRasterYSizeWorld = int(float( - self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize)) + self.warped_input_dataset.fWorldXSize = float(self.warped_input_dataset.fRasterXSize) * (2**(self.nativezoom - self.basenativezoom)) + self.warped_input_dataset.fWorldYSize = float(self.warped_input_dataset.fRasterYSize) * (2**(self.nativezoom - self.basenativezoom)) + self.warped_input_dataset.fRasterXOriginWorld = float(self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXOrigin) / self.warped_input_dataset.fRasterXSize) + self.warped_input_dataset.fRasterYOriginWorld = float(self.warped_input_dataset.fWorldYSize) * (float(self.warped_input_dataset.fRasterYOrigin) / self.warped_input_dataset.fRasterYSize) + self.warped_input_dataset.fRasterXSizeWorld = float(self.warped_input_dataset.fWorldXSize) * (float(self.warped_input_dataset.fRasterXWidth) / self.warped_input_dataset.fRasterXSize) + self.warped_input_dataset.fRasterYSizeWorld = float(self.warped_input_dataset.RasterYSize) * (float(self.warped_input_dataset.fRasterXSizeWorld) / self.warped_input_dataset.RasterXSize) #self.warped_input_dataset.fRasterXSizeWorld = self.warped_input_dataset.RasterXSize #self.warped_input_dataset.fRasterYSizeWorld = self.warped_input_dataset.RasterYSize @@ -3172,7 +3155,7 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: querysize = self.tile_size rx = (tx) * tsize - self.warped_input_dataset.fRasterXOriginWorld - + rxsize = 0 rxsize = tsize @@ -3183,42 +3166,48 @@ def generate_base_tiles(self) -> Tuple[TileJobInfo, List[TileDetail]]: self.warped_input_dataset.fRasterYOriginWorld wx, wy = 0, 0 - wxsize = int(rxsize/float(tsize) * self.tile_size) - wysize = int(rysize/float(tsize) * self.tile_size) + wxsize = rxsize/float(tsize) * self.tile_size + wysize = rysize/float(tsize) * self.tile_size if wysize != self.tile_size: wy = self.tile_size - wysize if rx < 0: rxsize = tsize + rx wx = -rx - wxsize = int(rxsize/float(tsize) * self.tile_size) + wxsize = rxsize/float(tsize) * self.tile_size rx = 0 if ry < 0: rysize = tsize + ry wy = -ry - wysize = int(rysize/float(tsize) * self.tile_size) + wysize = rysize/float(tsize) * self.tile_size ry = 0 if rx + rxsize > self.warped_input_dataset.fRasterXSizeWorld: rxsize = self.warped_input_dataset.fRasterXSizeWorld - rx - wxsize = int(rxsize/float(tsize) * self.tile_size) + wxsize = rxsize/float(tsize) * self.tile_size if ry + rysize > self.warped_input_dataset.fRasterYSizeWorld: rysize = self.warped_input_dataset.fRasterYSizeWorld - ry - wysize = int(rysize/float(tsize) * self.tile_size) + wysize = rysize/float(tsize) * self.tile_size # Convert rx, ry back to non-world coordinates - rx = int(float(self.warped_input_dataset.RasterXSize) * - (float(rx) / self.warped_input_dataset.fRasterXSizeWorld)) - ry = int(float(self.warped_input_dataset.RasterYSize) * - (float(ry) / self.warped_input_dataset.fRasterYSizeWorld)) - rxsize = int(float(self.warped_input_dataset.RasterXSize) * - (float(rxsize) / self.warped_input_dataset.fRasterXSizeWorld)) - rysize = int(float(self.warped_input_dataset.RasterYSize) * - (float(rysize) / self.warped_input_dataset.fRasterYSizeWorld)) + rx = float(self.warped_input_dataset.RasterXSize) * (float(rx) / self.warped_input_dataset.fRasterXSizeWorld) + ry = float(self.warped_input_dataset.RasterYSize) * (float(ry) / self.warped_input_dataset.fRasterYSizeWorld) + rxsize = float(self.warped_input_dataset.RasterXSize) * (float(rxsize) / self.warped_input_dataset.fRasterXSizeWorld) + rysize = float(self.warped_input_dataset.RasterYSize) * (float(rysize) / self.warped_input_dataset.fRasterYSizeWorld) if self.isDEMtile: wxsize -= 1 # 1bto4b wysize -= 1 # 1bto4b + rx = round(rx) + ry = round(ry) + rxsize = math.floor(rxsize) + rysize = math.floor(rysize) + wx = round(wx) + wy = round(wy) + wxsize = round(wxsize) + wysize = round(wysize) + + #print("Tile: ", (tz, tx, ty, tsize)) #print("Read: ", (rx, ry, rxsize, rysize)) #print("Write: ",(wx, wy, wxsize, wysize))