Skip to content

NLP2CT/awesome-speech-translation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 

Repository files navigation

A Paper List for Speech Translation

This is a paper list for speech translation.

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

Paper List

Dataset

  • Construction and Utilization of Bilingual Speech Corpus for Simultaneous Machine Interpretation Research, InterSpeech-2005,[paper]
  • Approach to Corpus-based Interpreting Studies: Developing EPIC (European Parliament Interpreting Corpus), MuTra-2005, [paper]
  • Automatic Translation from Parallel Speech: Simultaneous Interpretation as MT Training Data, ASRU-2009, [paper]
  • The KIT Lecture Corpus for Speech Translation, LREC-2012, [paper]
  • Improved Speech-to-Text Translation with the Fisher and Callhome Spanish–English Speech Translation Corpus, IWSLT-2013, [paper]
  • Collection of a Simultaneous Translation Corpus for Comparative Analysis, LREC-2014, [paper]
  • Microsoft Speech Language Translation (MSLT) Corpus: The IWSLT 2016 release for English, French and German, IWSLT-2016, [paper]
  • The Microsoft Speech Language Translation (MSLT) Corpus for Chinese and Japanese: Conversational Test data for Machine Translation and Speech Recognition, Machine_Translation-2017, [paper]
  • Amharic-English Speech Translation in Tourism Domain, SCNLP-2017, [paper]
  • A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiment, LREC-2018, [paper]
  • Augmenting Librispeech with French Translations: A Multimodal Corpus for Direct Speech Translation Evaluation, LREC-2018, [paper]
  • A Small Griko-Italian Speech Translation Corpus, SLTU-2019, [paper]
  • MuST-C: a Multilingual Speech Translation Corpus, NAACL-2019, [paper]
  • MaSS: A Large and Clean Multilingual Corpus of Sentence-aligned Spoken Utterances Extracted from the Bible, Arxiv-2019, [paper]
  • How2: A Large-scale Dataset for Multimodal Language Understanding, NIPS-2018, [paper]
  • LibriVoxDeEn: A Corpus for German-to-English Speech Translation and Speech Recognition, LREC-2020, [paper]
  • Clotho: An Audio Captioning Dataset, Arxiv-2019, [paper]
  • Europarl-St: A Multilingual Corpus For Speech Translation Of Parliamentary Debates, ICASSP-2020, [paper]
  • CoVoST: A Diverse Multilingual Speech-To-Text Translation Corpus, Arxiv-2020, [paper]
  • MuST-Cinema: a Speech-to-Subtitles corpus, Arxiv-2020, [paper]
  • CoVoST 2: A Massively Multilingual Speech-to-Text Translation Corpus, Arxiv-2020, [paper]

Pipeline ST

  • Phonetically-Oriented Word Error Alignment for Speech Recognition Error Analysis in Speech Translation, ASRU-2015,[paper]
  • Learning a Translation Model from Word Lattices, InterSpeech-2016, [paper]
  • Learning a Lexicon and Translation Model from Phoneme Lattices, EMNLP-2016, [paper]
  • Neural Lattice-to-Sequence Models for Uncertain Inputs, EMNLP-2017, [paper]
  • Using Spoken Word Posterior Features in Neural Machine Translation, IWSLT-2018, [paper]
  • Towards robust neural machine translation, ACL-2018, [paper]
  • Assessing the Tolerance of Neural Machine Translation Systems Against Speech Recognition Errors, InterSpeech-2019, [paper]
  • Lattice Transformer for Speech Translation, ACL-2019, [paper]
  • Self-Attentional Models for Lattice Inputs, ACL-2019, [paper]
  • Breaking the Data Barrier: Towards Robust Speech Translation via Adversarial Stability Training, IWSLT-2019, [paper]
  • Neural machine translation with acoustic embedding, ASRU-2019
  • Machine Translation in Pronunciation Space, Arxiv-2020, [paper]
  • Diversity by Phonetics and its Application in Neural Machine Translation, AAAI-2020, [paper]
  • Robust Neural Machine Translation for Clean and Noisy Speech Transcripts, IWSLT-2019, [paper]
  • ELITR Non-Native Speech Translation at IWSLT 2020, IWSLT-2020, [paper]
  • Subtitles to Segmentation: Improving Low-Resource Speech-to-Text Translation Pipelines, CLSST@LREC 2020, [paper]
  • Cascaded Models With Cyclic Feedback For Direct Speech Translation, [paper]
  • Sentence Boundary Augmentation For Neural Machine Translation Robustness, [paper]
  • A Technical Report: But Speech Translation Systems, [paper]

End-to-end ST

  • Towards Speech Translation of Non Written Languages, IEEE-2006, [paper]
  • Towards speech-to-text translation without speech recognition, EACL-2017, [paper]
  • Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation, NIPS-2016, [paper]
  • An Attentional Model for Speech Translation Without Transcription, NAACL-2016, [paper]
  • An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages, EMNLP-2016, [paper]
  • A Case Study on Using Speech-to-translation Alignments for Language Documentation, ComputEL-2017, [paper]
  • Spoken Term Discovery for Language Documentation Using Translations, SCNLP-2017, [paper]
  • Sequence-to-sequence Models Can Directly Translate Foreign Speech, InterSpeech-2017, [paper]
  • Structured-based Curriculum Learning for End-to-end English-Japanese Speech Translation, InterSpeech-2017, [paper]
  • End-to-End Speech Translation with the Transformer, IberSPEECH-2018, [paper]
  • Towards Fluent Translations from Disfluent Speech, SLT-2018, [paper]
  • Low-resource Speech-to-text Translation, InterSpeech-2018, [paper]
  • End-to-End Automatic Speech Translation of Audiobooks, ICASSP-2018, [paper]
  • Tied Multitask Learning for Neural Speech Translation, NAACL-2018, [paper]
  • Towards Unsupervised Speech to Text Translation, ICASSP-2019, [paper]
  • Leveraging Weakly Supervised Data to Improve End-to-End Speech-to-Text Translation, ICASSP-2019, [paper]
  • Towards End-to-end Speech-to-text Translation with Two-pass Decoding, ICASSP-2019, [paper]
  • Attention-Passing Models for Robust and Data-Efficient End-to-End Speech Translation, TACL-2019, [paper]
  • Direct speech-to-speech translation with a sequence-to-sequence model, InterSpeech-2019, [paper]
  • Attention-Passing Models for Robust and Data-Efficient End-to-End Speech Translation, TACL-2019, [paper]
  • End-to-End Speech Translation with Knowledge Distillation, InterSpeech-2019, [paper]
  • Fluent Translations from Disfluent Speech in End-to-End Speech Translation, NAACL-2019, [paper]
  • Pre-Training On High-Resource Speech Recognition Improves Low-Resource Speech-To-Text Translation, NAACL-2019, [[paper]
  • Exploring Phoneme-Level Speech Representations for End-to-End Speech Translation, ACL-2019, [paper]
  • Leveraging Out-of-Task Data for End-to-End Automatic Speech Translation, Arxiv-2019, [paper]
  • Bridging the Gap between Pre-Training and Fine-Tuning for End-to-End Speech Translation, AAAI-2020, [paper]
  • Adapting Transformer to End-to-end Spoken Language Translation, InterSpeech-2019, [paper]
  • Unsupervised phonetic and word level discovery for speech to speech translation for unwritten languages, InterSpeech-2019, [paper]
  • Simuls2s: End-to-end Simultaneous Speech To Speech Translation, ICLR-2019(under review), [paper]
  • Speech-To-Speech Translation Between Untranscribed Unknown Languages, ASRU-2019, [paper]
  • A comparative study on end-to-end speech to text translation, ASRU-2019, [paper]
  • Instance-Based Model Adaptation For Direct Speech Translation, ICASSP-2020, [paper]
  • Analyzing Asr Pretraining For Low-Resource Speech-To-Text Translation, ICASSP-2020, [paper]
  • ON-TRAC Consortium End-to-End Speech Translation Systems for the IWSLT 2019 Shared Task, IWSLT-2019, [paper]
  • Harnessing Indirect Training Data for End-to-End Automatic Speech Translation: Tricks of the Trade, IWSLT-2019, [paper]
  • Data Efficient Direct Speech-to-Text Translation with Modality Agnostic Meta-Learning, ICASSP-2020, [paper]
  • Enhancing Transformer for End-to-end Speech-to-Text Translation, EAMT-2019, [paper]
  • On Using SpecAugment for End-to-End Speech Translation, IWSLT-2019, [paper]
  • Synchronous Speech Recognition and Speech-to-Text Translation with Interactive Decoding, AAAI-2020, [paper]
  • From Speech-To-Speech Translation To Automatic Dubbing, Arxiv-2020, [paper]
  • Skinaugment: Auto-Encoding Speaker Conversions For Automaticspeech Translation, ICASSP-2020, [paper]
  • Speech Translation and the End-to-End Promise:Taking Stock of Where We Are, ACL-2020 theme track, [paper]
  • Curriculum Pre-training for End-to-End Speech Translation, ACL-2020, [paper]
  • Jointly Trained Transformers models for Spoken Language Translation, Arxiv-2020, [paper]
  • ESPnet-ST: All-in-One Speech Translation Toolkit, Arxiv-2020, [paper]
  • Relative Positional Encoding for Speech Recognition and Direct Translation, Arxiv-2020, [paper]
  • Worse WER, but Better BLEU? Leveraging Word Embedding asIntermediate in Multitask End-to-End Speech Translation, ACL-2020, [paper]
  • ON-TRAC Consortium for End-to-End and Simultaneous SpeechTranslation Challenge Tasks at IWSLT 2020, IWSLT-2020, [paper]
  • Phone Features Improve Speech Translation, ACL-2020, [paper]
  • Low-Latency Sequence-to-Sequence Speech Recognition and Translation by Partial Hypothesis Selection, Arxiv-2020, [paper]
  • End-to-End Speech-Translation with Knowledge Distillation: FBK@IWSLT2020, IWSLT2020, [paper]
  • Self-Training for End-to-End Speech Translation, INTERSPEECH2020 (submitted), [paper]
  • CSTNet: Contrastive Speech Translation Network for Self-Supervised Speech Representation Learning, INTERSPEECH2020 (submitted), [paper]
  • Is 42 the Answer to Everything in Subtitling-oriented Speech Translation?, IWSLT2020, [paper]
  • End-To-End Speech Translation With Self-Contained Vocabulary Manipulation, ICASSP2020
  • End-to-End Speech Translation With Transcoding by Multi-Task Learning for Distant Language Pairs, TASLP-2020, [paper]
  • UWSpeech: Speech to Speech Translation for Unwritten Languages, Arxiv-2020, [paper]
  • Gender in Danger? Evaluating Speech Translation Technology on the MuST-SHE Corpus, ACL-2020, [paper]
  • Improving Cross-Lingual Transfer Learning for End-to-End SpeechRecognition with Speech Translation, INTERSPEECH2020 (submitted), [paper]
  • Self-Supervised Representations Improve End-to-End Speech Translation, Arxiv-2020, [paper]
  • SimulSpeech: End-to-End Simultaneous Speech to Text Translation, ACL-2020, [paper]
  • Consistent Transcription and Translation of Speech, TACL-2020, [paper]
  • Contextualized Translation of Automatically Segmented Speech, INTERSPEECH-2020, [paper]
  • On Target Segmentation for Direct Speech Translation, AMTA-2020, [paper]
  • End-to-End Speech Translation with Adversarial Training, WAST-2020, [paper]
  • SDST: Successive Decoding for Speech-to-text Translation, Arxiv-2020, [paper]
  • TED: Triple Supervision Decouples End-to-end Speech-to-text Translation, Arxiv-2020, [paper]
  • Investigating Self-supervised Pre-training for End-to-end Speech Translation, ICML-2020 workshop, [paper], [code]
  • FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ, AACL-2020 demo, [paper]
  • Adaptive Feature Selection for End-to-End Speech Translation, EMNLP2020 Findings, [paper], [code]
  • A General Multi-Task Learning Framework To Leverage Text Data For Speech To Text Tasks, Arxiv-2020, [paper]
  • MAM: Masked Acoustic Modeling for End-to-End Speech-to-Text Translation, Arxiv-2020, [paper]
  • Evaluating Gender Bias In Speech Translation, ICASSP-2021 (submitted), [paper]
  • Cross-Modal Transfer Learning For Multilingual Speech-To-Text Translation, Arxiv-2020, [paper]
  • Bridging the Modality Gap for Speech-to-Text Translation, Arxiv-2020, [paper]

Multilingual ST

  • Multilingual End-To-End Speech Translation, ASRU-2019, [paper]
  • One-To-Many Multilingual End-To-End Speech Translation, ASRU-2019, [paper]

Multimodal MT

  • Transformer-based Cascaded Multimodal Speech Translation, Arxiv-2019, [paper]
  • Towards Multimodal Simultaneous Neural Machine Translation, Arxiv-2020, [paper]
  • Towards Automatic Face-to-Face Translation, Arxiv-2020, [paper], [code]

Streaming MT

  • Simultaneous translation of lectures and speeches, Machine Translation-2007, [paper]
  • Real-time incremental speech-to-speech translation of dialogs, NAACL-2012, [paper]
  • Incremental segmentation and decoding strategies for simultaneous translation, IJCNLP-2013, [paper]
  • Don't Until the Final Verb Wait: Reinforcement learning for simultaneous machine translation, EMNLP-2014, [paper]
  • Segmentation strategies for streaming speech translation, NAACL-2013, [paper]
  • Optimizing segmentation strategies for simultaneous speech translation, ACL-2014, [paper]
  • Syntax-based simultaneous translation through prediction of unseen syntactic constituents, ACL-IJCNLP-2015, [paper]
  • Simultaneous machine translation using deep reinforcement learning, ICML-2016, [paper]
  • Interpretese vs. translationese: The uniqueness of human strategies in simultaneous interpretation, NAACL-2016, [paper]
  • Can neural machine translation do simultaneous translation?, Arxiv-2016, [paper]
  • Learning to translate in real-time with neural machine translation, EACL-2017, [paper]
  • Incremental Decoding and Training Methods for Simultaneous Translation in Neural Machine Translation, NAACL-2018, [paper]
  • Prediction Improves Simultaneous Neural Machine Translation, EMNLP-2018, [paper]
  • STACL: Simultaneous Translation with Implicit Anticipation and Controllable Latency using Prefix-to-Prefix Framework, ACL-2019, [paper]
  • Simultaneous Translation with Flexible Policy via Restricted Imitation Learning, ACL-2019, [paper]
  • Monotonic Infinite Lookback Attention for Simultaneous Machine Translation, ACL-2019, [paper]
  • Thinking Slow about Latency Evaluation for Simultaneous Machine Translation, Arxiv-2019, [paper]
  • DuTongChuan: Context-aware Translation Model for Simultaneous Interpreting, Arxiv-2019, [paper]
  • Monotonic Multihead Attention, ICLR-2020(under review), [paper]
  • How To Do Simultaneous Translation Better With Consecutive Neural Machine Translation, Arxiv-2019, [paper]
  • Simultaneous Neural Machine Translation using Connectionist Temporal Classification, Arxiv-2019, [paper]
  • Re-Translation Strategies For Long Form, Simultaneous, Spoken Language Translation, ICASSP-2020, [paper]
  • Learning Coupled Policies for Simultaneous Machine Translation, Arxiv-2020, [paper]
  • Re-translation versus Streaming for Simultaneous Translation, Arxiv-2020, [paper]
  • Efficient Wait-k Models for Simultaneous Machine Translation, Arxiv-2020, [paper]
  • Opportunistic Decoding with Timely Correction for Simultaneous Translation, ACL-2020, [paper]
  • Neural Simultaneous Speech Translation Using Alignment-Based Chunking, IWSLT2020, [paper]
  • Dynamic Masking for Improved Stability in Spoken Language Translation, Arxiv-2020, [paper]
  • Learn to Use Future Informationin Simultaneous Translation, Arxiv-2020, [paper]
  • Presenting Simultaneous Translation in Limited Space, ITAT WAFNL 2020, [paper]
  • Fluent and Low-latency Simultaneous Speech-to-Speech Translation with Self-adaptive Training, EMNLP2020 Findings, [paper]
  • Improving Simultaneous Translation with Pseudo References, [paper]

Related Works

Spoken Language Understanding

  • Understanding Semantics from Speech Through Pre-training, Arxiv-2019, [paper]
  • Learning ASR-Robust Contextualized Embeddings for Spoken Language Understanding, Arxiv-2019, [paper]
  • A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding, Arxiv-2019, [paper]
  • Incremental processing of noisy user utterances in the spoken language understanding task, W-NUT-2019, [paper]
  • Adapting pretrained transformer to lattices for spoken language understanding, ASRU-2019
  • Efficient semi-supervised learning for natural language understanding by optimizing diversity, ASRU-2019, [paper]
  • Joint learning of word and label embeddings for sequence labelling in spoken language understanding, ASRU-2019, [paper]
  • Transfer learning for context-aware spoken language understanding, ASRU-2019, [paper]
  • Speech Sentiment Analysis Via Pre-Trained Features From End-To-End Asr Models, Arxiv-2019, [paper]
  • Recent Advances in End-to-End Spoken Language Understanding, Arxiv-2019, [paper]
  • Modeling Inter-Speaker Relationship In Xlnet For Contextual Spoken Language Understanding, ICASSP-2020, [paper]
  • A Data Efficient End-To-End Spoken Language Understanding Architecture, ICASSP-2020, [paper]
  • End-to-end speech-to-dialog-act recognition, Arxiv-2020, [paper]
  • Pretrained Semantic Speech Embeddings for End-to-End Spoken Language Understanding via Cross-Modal Teacher-Student Learning, Interspeech-2020, [paper]
  • Speech to Text Adaptation: Towards an Efficient Cross-Modal Distillation, Arxiv-2020, [paper]
  • Semantic Complexity in End-to-End Spoken Language Understanding, INTERSPEECH-2020, [paper]
  • Speech To Semantics: Improve ASR and NLU Jointly via All-Neural Interfaces, INTERSPEECH-2020, [paper]
  • Deep F-measure Maximization for End-to-End Speech Understanding, INTERSPEECH-2020, [paper]
  • Large-scale Transfer Learning for Low-resource Spoken Language Understanding, INTERSPEECH-2020, [paper]
  • End-to-End Neural Transformer Based Spoken Language Understanding, INTERSPEECH-2020, [paper]
  • End-to-End Spoken Language Understanding Without Full Transcripts, INTERSPEECH-2020, [paper]
  • Semi-Supervised Speech-Language Joint Pretraining For Spoken Language Understanding, Arxiv-2020, [paper]
  • Speech Model Pre-training for End-to-End Spoken Language Understandin, INTERSPEECH-2019, [paper], [code]
  • Using Speech Synthesis To Train End-To-End Spoken Language Understanding Models, ICASSP-2020, [paper], [code]
  • Leveraging Unpaired Text Data For Training End-To-End Speech-To-Intent Systems, INTERSPEECH-2020, [paper]
  • St-Bert: Cross-Modal Language Model Pre-Training For End-To-End Spoken Language Understanding, Arxiv-2020, [paper]
  • Semi-Supervised Spoken Language Understanding Via Self-Supervised Speech And Language Model Pretraining, ICASSP-2021(submitted), [paper], [code]
  • Two-Stage Textual Knowledge Distillation To Speech Encoder For Spoken Language Understanding, Arxiv-2020, [paper]
  • Orthros: Non-Autoregressive End-To-End Speech Translation With Dual-Decoder, Arxiv-2020, [paper]

Automated audio captioning (AAC)

  • Effects Of Word-Frequency Based Pre- Annd Post- Processings For Audio Captioning, DCASE-2020, [paper]

Named Entity Recognition

  • End-to-end Named Entity Recognition from English Speech, INTERSPEECH2020(submitted), [paper]

Text Normalization

  • A Hybrid Text Normalization System Using Multi-Head Self-Attention For Mandarin, ICASSP-2020, [paper]
  • A Unified Sequence-To-Sequence Front-End Model For Mandarin Text-To-Speech Synthesis, ICASSP-2020, [paper]

Disfluency Detection

  • Semi-Supervised Disfluency Detection, COLING-2018, [paper]
  • Adapting Translation Models for Transcript Disfluency Detection, AAAI-2019, [paper]
  • Giving Attention to the Unexpected:Using Prosody Innovations in Disfluency Detection, Arxiv-2019, [paper]
  • Multi-Task Self-Supervised Learning for Disfluency Detection, AAAI-2020, [paper]
  • Improving Disfluency Detection by Self-Training a Self-Attentive Model, Arxiv-2020, [paper]
  • Combining Self-Training and Self-Supervised Learning for Unsupervised Disfluency Detection, EMNLP-2020, [paper], [code]

Punctuation Prediction

  • Controllable Time-Delay Transformer for Real-Time Punctuation Prediction and Disfluency Detection, ICASSP-2020,[paper]
  • Punctuation Prediction in Spontaneous Conversations: Can We Mitigate ASR Errors with Retrofitted Word Embeddings, INTERSPEECH-2020 (submitted), [paper]
  • Multimodal Semi-supervised Learning Framework for Punctuation Prediction in Conversational Speech, INTERSPEECH-2020, [paper]

Workshop

Copyright

By volunteers from Institute of Automation,Chinese Academy of Sciences.
Welcome to open an issue or make a pull request!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published