-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize.py
170 lines (130 loc) · 5.49 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import print_function
import copy
import warnings
import graphviz
import matplotlib.pyplot as plt
import numpy as np
def plot_stats(statistics, ylog=False, view=False, filename='avg_fitness.svg'):
"""Plots the population's average and best fitness."""
if plt is None:
warnings.warn("Matplotlib is not available. Cannot plot statistics.")
return
generation = range(len(statistics.most_fit_genomes))
best_fitness = [c.fitness for c in statistics.most_fit_genomes]
avg_fitness = np.array(statistics.get_fitness_mean())
stdev_fitness = np.array(statistics.get_fitness_stdev())
plt.plot(generation, avg_fitness, 'b-', label="Average")
plt.plot(generation, avg_fitness - stdev_fitness, 'g--', label="-1 SD")
plt.plot(generation, avg_fitness + stdev_fitness, 'g--', label="+1 SD")
plt.plot(generation, best_fitness, 'r-', label="Best")
plt.title("Population's Average and Best Fitness")
plt.xlabel("Generations")
plt.ylabel("Fitness")
plt.grid(True)
plt.legend(loc="best")
if ylog:
plt.yscale('symlog')
plt.savefig(filename)
if view:
plt.show()
plt.close()
def plot_spikes(spikes, view=False, filename=None, title=None):
"""Plots the trains for a single spiking neuron."""
t_values = [t for t, I, v, u, f in spikes]
v_values = [v for t, I, v, u, f in spikes]
u_values = [u for t, I, v, u, f in spikes]
I_values = [I for t, I, v, u, f in spikes]
f_values = [f for t, I, v, u, f in spikes]
fig, axs = plt.subplots(4, 1, figsize=(10, 8), sharex=True)
axs[0].plot(t_values, v_values, 'g-')
axs[0].set_ylabel("Potential (mV)")
axs[0].grid(True)
axs[1].plot(t_values, f_values, 'r-')
axs[1].set_ylabel("Fired")
axs[1].grid(True)
axs[2].plot(t_values, u_values, 'r-')
axs[2].set_ylabel("Recovery (u)")
axs[2].grid(True)
axs[3].plot(t_values, I_values, 'r-o')
axs[3].set_ylabel("Current (I)")
axs[3].set_xlabel("Time (ms)")
axs[3].grid(True)
if title:
plt.suptitle(f"Izhikevich's Spiking Neuron Model ({title})")
else:
plt.suptitle("Izhikevich's Spiking Neuron Model")
if filename:
plt.savefig(filename)
if view:
plt.show()
plt.close()
return fig
def plot_species(statistics, view=False, filename='speciation.svg'):
"""Visualizes speciation throughout evolution."""
if plt is None:
warnings.warn("Matplotlib is not available. Cannot plot species statistics.")
return
species_sizes = statistics.get_species_sizes()
num_generations = len(species_sizes)
curves = np.array(species_sizes).T
fig, ax = plt.subplots(figsize=(10, 6))
ax.stackplot(range(num_generations), *curves, labels=[f"Species {i+1}" for i in range(len(curves))])
plt.title("Speciation")
plt.ylabel("Size per Species")
plt.xlabel("Generations")
plt.legend(loc="best")
plt.savefig(filename)
if view:
plt.show()
plt.close()
def draw_net(config, genome, view=False, filename=None, node_names=None, show_disabled=True, prune_unused=False,
node_colors=None, fmt='svg'):
"""Draws a neural network with arbitrary topology from a genome."""
if graphviz is None:
warnings.warn("Graphviz is not available. Cannot draw the network.")
return
node_names = node_names or {}
node_colors = node_colors or {}
node_attrs = {
'shape': 'circle',
'fontsize': '9',
'height': '0.2',
'width': '0.2'}
dot = graphviz.Digraph(format=fmt, node_attr=node_attrs)
inputs = set(config.genome_config.input_keys)
outputs = set(config.genome_config.output_keys)
for k in inputs:
name = node_names.get(k, str(k))
input_attrs = {'style': 'filled', 'shape': 'box', 'fillcolor': node_colors.get(k, 'lightgray')}
dot.node(name, _attributes=input_attrs)
for k in outputs:
name = node_names.get(k, str(k))
node_attrs = {'style': 'filled', 'fillcolor': node_colors.get(k, 'lightblue')}
dot.node(name, _attributes=node_attrs)
if prune_unused:
connections = {(cg.in_node_id, cg.out_node_id) for cg in genome.connections.values() if cg.enabled or show_disabled}
used_nodes = set(outputs)
pending = set(outputs)
while pending:
new_pending = set()
for a, b in connections:
if b in pending and a not in used_nodes:
new_pending.add(a)
used_nodes.add(a)
pending = new_pending
else:
used_nodes = set(genome.nodes.keys())
for n in used_nodes:
if n not in inputs and n not in outputs:
attrs = {'style': 'filled', 'fillcolor': node_colors.get(n, 'white')}
dot.node(str(n), _attributes=attrs)
for cg in genome.connections.values():
if cg.enabled or show_disabled:
input_name = node_names.get(cg.in_node_id, str(cg.in_node_id))
output_name = node_names.get(cg.out_node_id, str(cg.out_node_id))
style = 'solid' if cg.enabled else 'dotted'
color = 'green' if cg.weight > 0 else 'red'
width = str(0.1 + abs(cg.weight / 5.0))
dot.edge(input_name, output_name, _attributes={'style': style, 'color': color, 'penwidth': width})
dot.render(filename, view=view)
return dot