-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
53 lines (42 loc) · 1.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from flask import Flask, render_template, request
import pickle
import numpy as np
app = Flask(__name__)
# Load your data
popular_df = pickle.load(open('popular.pkl', 'rb'))
pt = pickle.load(open('pt.pkl', 'rb'))
books = pickle.load(open('books.pkl', 'rb'))
similarity_scores = pickle.load(open('similarity_scores.pkl', 'rb'))
@app.route('/')
def index():
return render_template('index.html',
book_name=list(popular_df['Book-Title'].values),
author=list(popular_df['Book-Author'].values),
image=list(popular_df['Image-URL-M'].values),
votes=list(popular_df['num_ratings'].values),
rating=list(popular_df['avg_ratings'].values)
)
@app.route('/recommend')
def recommend_ui():
return render_template('recommend.html')
@app.route('/recommend_books', methods=['POST'])
def recommend_books():
user_input = request.form.get('user_input')
data = []
# Check if the user_input is in the index
if user_input in pt.index:
# Fetch index
index = np.where(pt.index == user_input)[0][0]
# Get similarity scores
similar_items = sorted(list(enumerate(similarity_scores[index])), key=lambda x: x[1], reverse=True)[1:11]
for i in similar_items:
item = []
temp_df = books[books['Book-Title'] == pt.index[i[0]]]
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Title'].values))
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Author'].values))
item.extend(list(temp_df.drop_duplicates('Book-Title')['Image-URL-M'].values))
data.append(item)
print(data)
return render_template('recommend.html', data=data)
if __name__ == '__main__':
app.run(host="0.0.0.0",port=8000)