forked from checkpoint-restore/criu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pstree.c
843 lines (689 loc) · 18.6 KB
/
pstree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
#include <sys/mman.h>
#include <unistd.h>
#include <stdlib.h>
#include "cr_options.h"
#include "pstree.h"
#include "util.h"
#include "lock.h"
#include "namespaces.h"
#include "files.h"
#include "tty.h"
#include "mount.h"
#include "asm/dump.h"
#include "protobuf.h"
#include "protobuf/pstree.pb-c.h"
struct pstree_item *root_item;
void core_entry_free(CoreEntry *core)
{
if (core->tc && core->tc->timers)
xfree(core->tc->timers->posix);
if (core->thread_core)
xfree(core->thread_core->creds->groups);
arch_free_thread_info(core);
xfree(core);
}
#ifndef RLIM_NLIMITS
# define RLIM_NLIMITS 16
#endif
CoreEntry *core_entry_alloc(int th, int tsk)
{
size_t sz;
CoreEntry *core = NULL;
void *m;
sz = sizeof(CoreEntry);
if (tsk) {
sz += sizeof(TaskCoreEntry) + TASK_COMM_LEN;
if (th) {
sz += sizeof(TaskRlimitsEntry);
sz += RLIM_NLIMITS * sizeof(RlimitEntry *);
sz += RLIM_NLIMITS * sizeof(RlimitEntry);
sz += sizeof(TaskTimersEntry);
sz += 3 * sizeof(ItimerEntry); /* 3 for real, virt and prof */
}
}
if (th) {
CredsEntry *ce = NULL;
sz += sizeof(ThreadCoreEntry) + sizeof(ThreadSasEntry) + sizeof(CredsEntry);
sz += CR_CAP_SIZE * sizeof(ce->cap_inh[0]);
sz += CR_CAP_SIZE * sizeof(ce->cap_prm[0]);
sz += CR_CAP_SIZE * sizeof(ce->cap_eff[0]);
sz += CR_CAP_SIZE * sizeof(ce->cap_bnd[0]);
/*
* @groups are dynamic and allocated
* on demand.
*/
}
m = xmalloc(sz);
if (m) {
core = xptr_pull(&m, CoreEntry);
core_entry__init(core);
core->mtype = CORE_ENTRY__MARCH;
if (tsk) {
core->tc = xptr_pull(&m, TaskCoreEntry);
task_core_entry__init(core->tc);
core->tc->comm = xptr_pull_s(&m, TASK_COMM_LEN);
memzero(core->tc->comm, TASK_COMM_LEN);
if (th) {
TaskRlimitsEntry *rls;
TaskTimersEntry *tte;
int i;
rls = core->tc->rlimits = xptr_pull(&m, TaskRlimitsEntry);
task_rlimits_entry__init(rls);
rls->n_rlimits = RLIM_NLIMITS;
rls->rlimits = xptr_pull_s(&m, sizeof(RlimitEntry *) * RLIM_NLIMITS);
for (i = 0; i < RLIM_NLIMITS; i++) {
rls->rlimits[i] = xptr_pull(&m, RlimitEntry);
rlimit_entry__init(rls->rlimits[i]);
}
tte = core->tc->timers = xptr_pull(&m, TaskTimersEntry);
task_timers_entry__init(tte);
tte->real = xptr_pull(&m, ItimerEntry);
itimer_entry__init(tte->real);
tte->virt = xptr_pull(&m, ItimerEntry);
itimer_entry__init(tte->virt);
tte->prof = xptr_pull(&m, ItimerEntry);
itimer_entry__init(tte->prof);
}
}
if (th) {
CredsEntry *ce;
core->thread_core = xptr_pull(&m, ThreadCoreEntry);
thread_core_entry__init(core->thread_core);
core->thread_core->sas = xptr_pull(&m, ThreadSasEntry);
thread_sas_entry__init(core->thread_core->sas);
ce = core->thread_core->creds = xptr_pull(&m, CredsEntry);
creds_entry__init(ce);
ce->n_cap_inh = CR_CAP_SIZE;
ce->n_cap_prm = CR_CAP_SIZE;
ce->n_cap_eff = CR_CAP_SIZE;
ce->n_cap_bnd = CR_CAP_SIZE;
ce->cap_inh = xptr_pull_s(&m, CR_CAP_SIZE * sizeof(ce->cap_inh[0]));
ce->cap_prm = xptr_pull_s(&m, CR_CAP_SIZE * sizeof(ce->cap_prm[0]));
ce->cap_eff = xptr_pull_s(&m, CR_CAP_SIZE * sizeof(ce->cap_eff[0]));
ce->cap_bnd = xptr_pull_s(&m, CR_CAP_SIZE * sizeof(ce->cap_bnd[0]));
if (arch_alloc_thread_info(core)) {
xfree(core);
core = NULL;
}
}
}
return core;
}
int pstree_alloc_cores(struct pstree_item *item)
{
unsigned int i;
item->core = xzalloc(sizeof(*item->core) * item->nr_threads);
if (!item->core)
return -1;
for (i = 0; i < item->nr_threads; i++) {
if (item->threads[i].real == item->pid.real)
item->core[i] = core_entry_alloc(1, 1);
else
item->core[i] = core_entry_alloc(1, 0);
if (!item->core[i])
goto err;
}
return 0;
err:
pstree_free_cores(item);
return -1;
}
void pstree_free_cores(struct pstree_item *item)
{
unsigned int i;
if (item->core) {
for (i = 1; i < item->nr_threads; i++)
core_entry_free(item->core[i]);
xfree(item->core);
item->core = NULL;
}
}
void free_pstree(struct pstree_item *root_item)
{
struct pstree_item *item = root_item, *parent;
while (item) {
if (!list_empty(&item->children)) {
item = list_first_entry(&item->children, struct pstree_item, sibling);
continue;
}
parent = item->parent;
list_del(&item->sibling);
pstree_free_cores(item);
xfree(item->threads);
xfree(item);
item = parent;
}
}
struct pstree_item *__alloc_pstree_item(bool rst)
{
struct pstree_item *item;
int sz;
if (!rst) {
sz = sizeof(*item) + sizeof(struct dmp_info);
item = xzalloc(sz);
if (!item)
return NULL;
} else {
sz = sizeof(*item) + sizeof(struct rst_info);
item = shmalloc(sz);
if (!item)
return NULL;
memset(item, 0, sz);
vm_area_list_init(&rsti(item)->vmas);
}
INIT_LIST_HEAD(&item->children);
INIT_LIST_HEAD(&item->sibling);
item->pid.virt = -1;
item->pid.real = -1;
item->born_sid = -1;
return item;
}
struct pstree_item *alloc_pstree_helper(void)
{
struct pstree_item *ret;
ret = alloc_pstree_item_with_rst();
if (ret) {
ret->state = TASK_HELPER;
rsti(ret)->clone_flags = CLONE_FILES | CLONE_FS;
task_entries->nr_helpers++;
}
return ret;
}
/* Deep first search on children */
struct pstree_item *pstree_item_next(struct pstree_item *item)
{
if (!list_empty(&item->children))
return list_first_entry(&item->children, struct pstree_item, sibling);
while (item->parent) {
if (item->sibling.next != &item->parent->children)
return list_entry(item->sibling.next, struct pstree_item, sibling);
item = item->parent;
}
return NULL;
}
/* Preorder traversal of pstree item */
int preorder_pstree_traversal(struct pstree_item *item, int (*f)(struct pstree_item *))
{
struct pstree_item *cursor;
if (f(item) < 0)
return -1;
list_for_each_entry(cursor, &item->children, sibling) {
if (preorder_pstree_traversal(cursor, f) < 0)
return -1;
}
return 0;
}
int dump_pstree(struct pstree_item *root_item)
{
struct pstree_item *item = root_item;
PstreeEntry e = PSTREE_ENTRY__INIT;
int ret = -1, i;
struct cr_img *img;
pr_info("\n");
pr_info("Dumping pstree (pid: %d)\n", root_item->pid.real);
pr_info("----------------------------------------\n");
/*
* Make sure we're dumping session leader, if not an
* appropriate option must be passed.
*
* Also note that if we're not a session leader we
* can't get the situation where the leader sits somewhere
* deeper in process tree, thus top-level checking for
* leader is enough.
*/
if (root_item->pid.virt != root_item->sid) {
if (!opts.shell_job) {
pr_err("The root process %d is not a session leader. "
"Consider using --" OPT_SHELL_JOB " option\n", item->pid.virt);
return -1;
}
}
img = open_image(CR_FD_PSTREE, O_DUMP);
if (!img)
return -1;
for_each_pstree_item(item) {
pr_info("Process: %d(%d)\n", item->pid.virt, item->pid.real);
e.pid = item->pid.virt;
e.ppid = item->parent ? item->parent->pid.virt : 0;
e.pgid = item->pgid;
e.sid = item->sid;
e.n_threads = item->nr_threads;
e.threads = xmalloc(sizeof(e.threads[0]) * e.n_threads);
if (!e.threads)
goto err;
for (i = 0; i < item->nr_threads; i++)
e.threads[i] = item->threads[i].virt;
ret = pb_write_one(img, &e, PB_PSTREE);
xfree(e.threads);
if (ret)
goto err;
}
ret = 0;
err:
pr_info("----------------------------------------\n");
close_image(img);
return ret;
}
static int max_pid = 0;
static int prepare_pstree_for_shell_job(void)
{
pid_t current_sid = getsid(getpid());
pid_t current_gid = getpgid(getpid());
struct pstree_item *pi;
pid_t old_sid;
pid_t old_gid;
if (!opts.shell_job)
return 0;
if (root_item->sid == root_item->pid.virt)
return 0;
/*
* Migration of a root task group leader is a bit tricky.
* When a task yields SIGSTOP, the kernel notifies the parent
* with SIGCHLD. This means when task is running in a
* shell, the shell obtains SIGCHLD and sends a task to
* the background.
*
* The situation gets changed once we restore the
* program -- our tool become an additional stub between
* the restored program and the shell. So to be able to
* notify the shell with SIGCHLD from our restored
* program -- we make the root task to inherit the
* process group from us.
*
* Not that clever solution but at least it works.
*/
old_sid = root_item->sid;
old_gid = root_item->pgid;
pr_info("Migrating process tree (GID %d->%d SID %d->%d)\n",
old_gid, current_gid, old_sid, current_sid);
for_each_pstree_item(pi) {
if (pi->pgid == old_gid)
pi->pgid = current_gid;
if (pi->sid == old_sid)
pi->sid = current_sid;
}
max_pid = max((int)current_sid, max_pid);
max_pid = max((int)current_gid, max_pid);
return 0;
}
static int read_pstree_image(void)
{
int ret = 0, i;
struct cr_img *img;
struct pstree_item *pi, *parent = NULL;
pr_info("Reading image tree\n");
img = open_image(CR_FD_PSTREE, O_RSTR);
if (!img)
return -1;
while (1) {
PstreeEntry *e;
ret = pb_read_one_eof(img, &e, PB_PSTREE);
if (ret <= 0)
break;
ret = -1;
pi = alloc_pstree_item_with_rst();
if (pi == NULL)
break;
pi->pid.virt = e->pid;
max_pid = max((int)e->pid, max_pid);
pi->pgid = e->pgid;
max_pid = max((int)e->pgid, max_pid);
pi->sid = e->sid;
max_pid = max((int)e->sid, max_pid);
if (e->ppid == 0) {
if (root_item) {
pr_err("Parent missed on non-root task "
"with pid %d, image corruption!\n", e->pid);
goto err;
}
root_item = pi;
pi->parent = NULL;
} else {
/*
* Fast path -- if the pstree image is not edited, the
* parent of any item should have already being restored
* and sit among the last item's ancestors.
*/
while (parent) {
if (parent->pid.virt == e->ppid)
break;
parent = parent->parent;
}
if (parent == NULL) {
for_each_pstree_item(parent) {
if (parent->pid.virt == e->ppid)
break;
}
if (parent == NULL) {
pr_err("Can't find a parent for %d\n", pi->pid.virt);
pstree_entry__free_unpacked(e, NULL);
xfree(pi);
goto err;
}
}
pi->parent = parent;
list_add(&pi->sibling, &parent->children);
}
parent = pi;
pi->nr_threads = e->n_threads;
pi->threads = xmalloc(e->n_threads * sizeof(struct pid));
if (!pi->threads)
break;
for (i = 0; i < e->n_threads; i++) {
pi->threads[i].real = -1;
pi->threads[i].virt = e->threads[i];
max_pid = max((int)e->threads[i], max_pid);
}
task_entries->nr_threads += e->n_threads;
task_entries->nr_tasks++;
pstree_entry__free_unpacked(e, NULL);
{
struct cr_img *img;
img = open_image(CR_FD_IDS, O_RSTR, pi->pid.virt);
if (!img)
goto err;
ret = pb_read_one_eof(img, &pi->ids, PB_IDS);
close_image(img);
}
if (ret == 0)
continue;
if (ret < 0)
goto err;
if (pi->ids->has_mnt_ns_id) {
if (rst_add_ns_id(pi->ids->mnt_ns_id, pi, &mnt_ns_desc))
goto err;
}
}
err:
close_image(img);
return ret;
}
static int prepare_pstree_ids(void)
{
struct pstree_item *item, *child, *helper, *tmp;
LIST_HEAD(helpers);
pid_t current_pgid = getpgid(getpid());
/*
* Some task can be reparented to init. A helper task should be added
* for restoring sid of such tasks. The helper tasks will be exited
* immediately after forking children and all children will be
* reparented to init.
*/
list_for_each_entry(item, &root_item->children, sibling) {
/*
* If a child belongs to the root task's session or it's
* a session leader himself -- this is a simple case, we
* just proceed in a normal way.
*/
if (item->sid == root_item->sid || item->sid == item->pid.virt)
continue;
helper = alloc_pstree_helper();
if (helper == NULL)
return -1;
helper->sid = item->sid;
helper->pgid = item->sid;
helper->pid.virt = item->sid;
helper->parent = root_item;
helper->ids = root_item->ids;
list_add_tail(&helper->sibling, &helpers);
pr_info("Add a helper %d for restoring SID %d\n",
helper->pid.virt, helper->sid);
child = list_entry(item->sibling.prev, struct pstree_item, sibling);
item = child;
/*
* Stack on helper task all children with target sid.
*/
list_for_each_entry_safe_continue(child, tmp, &root_item->children, sibling) {
if (child->sid != helper->sid)
continue;
if (child->sid == child->pid.virt)
continue;
pr_info("Attach %d to the temporary task %d\n",
child->pid.virt, helper->pid.virt);
child->parent = helper;
list_move(&child->sibling, &helper->children);
}
}
/* Try to connect helpers to session leaders */
for_each_pstree_item(item) {
if (!item->parent) /* skip the root task */
continue;
if (item->state == TASK_HELPER)
continue;
if (item->sid != item->pid.virt) {
struct pstree_item *parent;
if (item->parent->sid == item->sid)
continue;
/* the task could fork a child before and after setsid() */
parent = item->parent;
while (parent && parent->pid.virt != item->sid) {
if (parent->born_sid != -1 && parent->born_sid != item->sid) {
pr_err("Can't determinate with which sid (%d or %d)"
"the process %d was born\n",
parent->born_sid, item->sid, parent->pid.virt);
return -1;
}
parent->born_sid = item->sid;
pr_info("%d was born with sid %d\n", parent->pid.virt, item->sid);
parent = parent->parent;
}
if (parent == NULL) {
pr_err("Can't find a session leader for %d\n", item->sid);
return -1;
}
continue;
}
pr_info("Session leader %d\n", item->sid);
/* Try to find helpers, who should be connected to the leader */
list_for_each_entry(child, &helpers, sibling) {
if (child->state != TASK_HELPER)
continue;
if (child->sid != item->sid)
continue;
child->pgid = item->pgid;
child->pid.virt = ++max_pid;
child->parent = item;
list_move(&child->sibling, &item->children);
pr_info("Attach %d to the task %d\n",
child->pid.virt, item->pid.virt);
break;
}
}
/* All other helpers are session leaders for own sessions */
list_splice(&helpers, &root_item->children);
/* Add a process group leader if it is absent */
for_each_pstree_item(item) {
struct pstree_item *gleader;
if (!item->pgid || item->pid.virt == item->pgid)
continue;
for_each_pstree_item(gleader) {
if (gleader->pid.virt == item->pgid)
break;
}
if (gleader) {
rsti(item)->pgrp_leader = gleader;
continue;
}
/*
* If the PGID is eq to current one -- this
* means we're inheriting group from the current
* task so we need to escape creating a helper here.
*/
if (current_pgid == item->pgid)
continue;
helper = alloc_pstree_helper();
if (helper == NULL)
return -1;
helper->sid = item->sid;
helper->pgid = item->pgid;
helper->pid.virt = item->pgid;
helper->parent = item;
helper->ids = item->ids;
list_add(&helper->sibling, &item->children);
rsti(item)->pgrp_leader = helper;
pr_info("Add a helper %d for restoring PGID %d\n",
helper->pid.virt, helper->pgid);
}
return 0;
}
static unsigned long get_clone_mask(TaskKobjIdsEntry *i,
TaskKobjIdsEntry *p)
{
unsigned long mask = 0;
if (i->files_id == p->files_id)
mask |= CLONE_FILES;
if (i->pid_ns_id != p->pid_ns_id)
mask |= CLONE_NEWPID;
if (i->net_ns_id != p->net_ns_id)
mask |= CLONE_NEWNET;
if (i->ipc_ns_id != p->ipc_ns_id)
mask |= CLONE_NEWIPC;
if (i->uts_ns_id != p->uts_ns_id)
mask |= CLONE_NEWUTS;
if (i->mnt_ns_id != p->mnt_ns_id)
mask |= CLONE_NEWNS;
if (i->user_ns_id != p->user_ns_id)
mask |= CLONE_NEWUSER;
return mask;
}
static int prepare_pstree_kobj_ids(void)
{
struct pstree_item *item;
/* Find a process with minimal pid for shared fd tables */
for_each_pstree_item(item) {
struct pstree_item *parent = item->parent;
TaskKobjIdsEntry *ids;
unsigned long cflags;
if (!item->ids) {
if (item == root_item) {
cflags = opts.rst_namespaces_flags;
goto set_mask;
}
continue;
}
if (parent)
ids = parent->ids;
else
ids = root_ids;
/*
* Add some sanity check on image data.
*/
if (unlikely(!ids)) {
pr_err("No kIDs provided, image corruption\n");
return -1;
}
cflags = get_clone_mask(item->ids, ids);
if (cflags & CLONE_FILES) {
int ret;
/*
* There might be a case when kIDs for
* root task are the same as in root_ids,
* thus it's image corruption and we should
* exit out.
*/
if (unlikely(!item->parent)) {
pr_err("Image corruption on kIDs data\n");
return -1;
}
ret = shared_fdt_prepare(item);
if (ret)
return ret;
}
set_mask:
rsti(item)->clone_flags = cflags;
if (parent)
/*
* Mount namespaces are setns()-ed at
* restore_task_mnt_ns() explicitly,
* no need in creating it with its own
* temporary namespace.
*
* Root task is exceptional -- it will
* be born in a fresh new mount namespace
* which will be populated with all other
* namespaces' entries.
*/
rsti(item)->clone_flags &= ~CLONE_NEWNS;
cflags &= CLONE_ALLNS;
if (item == root_item) {
pr_info("Will restore in %lx namespaces\n", cflags);
root_ns_mask = cflags;
} else if (cflags & ~(root_ns_mask & CLONE_SUBNS)) {
/*
* Namespaces from CLONE_SUBNS can be nested, but in
* this case nobody can't share external namespaces of
* these types.
*
* Workaround for all other namespaces --
* all tasks should be in one namespace. And
* this namespace is either inherited from the
* criu or is created for the init task (only)
*/
pr_err("Can't restore sub-task in NS\n");
return -1;
}
}
pr_debug("NS mask to use %lx\n", root_ns_mask);
return 0;
}
int prepare_pstree(void)
{
int ret;
ret = read_pstree_image();
if (!ret)
/*
* Shell job may inherit sid/pgid from the current
* shell, not from image. Set things up for this.
*/
ret = prepare_pstree_for_shell_job();
if (!ret)
/*
* Walk the collected tree and prepare for restoring
* of shared objects at clone time
*/
ret = prepare_pstree_kobj_ids();
if (!ret)
/*
* Session/Group leaders might be dead. Need to fix
* pstree with properly injected helper tasks.
*/
ret = prepare_pstree_ids();
return ret;
}
bool restore_before_setsid(struct pstree_item *child)
{
int csid = child->born_sid == -1 ? child->sid : child->born_sid;
if (child->parent->born_sid == csid)
return true;
return false;
}
struct pstree_item *pstree_item_by_virt(pid_t virt)
{
struct pstree_item *item;
for_each_pstree_item(item) {
if (item->pid.virt == virt)
return item;
}
return NULL;
}
struct pstree_item *pstree_item_by_real(pid_t real)
{
struct pstree_item *item;
for_each_pstree_item(item) {
if (item->pid.real == real)
return item;
}
return NULL;
}
int pid_to_virt(pid_t real)
{
struct pstree_item *item;
item = pstree_item_by_real(real);
if (item)
return item->pid.virt;
return 0;
}
bool pid_in_pstree(pid_t pid)
{
return pstree_item_by_real(pid) != NULL;
}