Skip to content

Latest commit

 

History

History
521 lines (347 loc) · 46.8 KB

references.md

File metadata and controls

521 lines (347 loc) · 46.8 KB

References

References & Information

1

A. C. Andersen. The beagle as an experimental dog. Iowa State University Press. University of Michigan. 616 pages. 1970.

2

N. Balakrishnan (Editor). Methods and Applications of Statistics in Clinical Trials, Volume 2: Planning, Analysis, and Inferential Methods. John Wiley and Sons. 2014.

3

L. Baxter, H. Zhu, D. Mackensen, and R. Jain. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Research. 54. 1517-28. 1994.

4

L.Z. Benet. Basic Principles and Its Use as a Tool in Drug Metabolism. in: Drug Metabolism and Drug Toxicity. J.R. Mitchell. M.G. Horning. Raven Press. New York, USA. pp. 199. 1984.

5

L.M. Berezhkovskiy. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. Journal of Pharmaceutical Sciences. 93(6). 1628-40. 2004.

6

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Transactions on Mathematical Software, 31(3), pp. 363-396, 2005.

7

P. Costa and J. M. Sousa Lobo. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 13(2). 123-33. 2001.

8

C. Crone and D.G. Levitt. Capillary permeability to small solutes. in Handbook of Physiology: The Cardiovascular System: Microcirculation. E.M. Renkin. C.C. Michel. American Physiological Society. Bethesda, MD, USA. pp. 411–466. 1984.

9

C. Dordas and P. H. Brown. Permeability of Boric Acids across Lipid Bilayers and Factors Affecting it. Journal of Membrane Biology. 175. 95-105. 2000.

10

J.B. Dressman, K. Thelen, and E. Jantratid. Towards Quantitative Prediction of Oral Drug Absorption. Clinical Pharmacokinetics. 47(10). 655-67. 2008.

11

A. N. Edginton, S. Willmann, B. Voith, and W. Schmitt. A mechanistic approach to the scaling of clearance in children. Clinical Pharmacokinetics. 45. 683-704. 2006.

12

A. N. Edginton, W. Schmitt, and S. Willmann. Application of physiology-based pharmacokinetic and pharmacodynamic modeling towards individualized propofol target controlled infusion. Advances in Therapy. 23. 143-158. 2006.

13

A. N. Edginton, W. Schmitt, and S. Willmann. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clinical Pharmacokinetics. 45. 1013-1034. 2006.

14

A. N. Edginton, F.P. Theil, W. Schmitt, and S. Willmann. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opinion on Drug Metabolism & Toxicology. 4(9). 1143-52. 2008.

15

A.N. Edginton, G. Ahr, S. Willmann, and H. Stass. Defining the Role of Macrophages in Local Moxifloxacin Tissue Concentrations using Biopsy Data and Whole-Body Physiologically Based Pharmacokinetic Modelling. Clinical Pharmacokinetics. 48(3). 181-7. 2009.

16

A. N. Edginton and G. Joshi. Have physiologically-based pharmacokinetic models delivered?. Expert Opin Drug Metab Toxicol. 929-34. 7(8). 2011.

17

A. N. Edginton and S. Willmann. Physiology-based simulations of a pathological condition : prediction of pharmacokinetics in patients with liver cirrhosis. Clinical Pharmacokinetics. 47(11). 743-52. 2008.

18

T. Eissing, L. Kuepfer, C. Becker, M. Block, K. Coboeken, T. Gaub, L. Goerlitz, J. Jaeger, R. Loosen, B. Ludewig, M. Meyer, C. Niederalt, M. Sevestre, H. U. Siegmund, J. Solodenko, K. Thelen, U. Telle, W. Weiss, T. Wendl, S. Willmann, and J. Lippert. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 4. 2. 2011.

19

T. Eissing, J. Lippert, and S. Willmann. Pharmacogenomics of Codeine, Morphine, and Morphine-6-Glucuronide: Model-Based Analysis of the Influence of CYP2D6 Activity, UGT2B7 Activity, Renal Impairment, and CYP3A4 Inhibition. Mol Diagn Ther. 43-53. 16(1). 2012.

20

C.T. Ekstrom (Editor). Introduction to Statistical Data Analysis for the Life Sciences, Second Edition. CRC Press. 2014.

21

B. I. Escher and R. P. Schwarzenbach. Partitioning of Substituted Phenols in Liposome-Water, Biomembrane-Water, and Octanol-Water Systems. Environmental Science and Technology. 30. 260-270. 1996.

22

P. Espie, D. Tytgat, M. L. Sargentini-Maier, I. Poggesi, and J. B. Watelet. Physiologically based pharmacokinetics (PBPK). Drug Metab Rev. 41. 391-407. 2009.

23

L. Fahrmeir, T. Kneib, and S. Lang. Regression Modelle, Methoden und Anwendungen. Springer Verlag. 2009.

24

F. Frezard and A. Garnier-Suillerot. Permeability of Lipid Bilayer to Anthracycline Derivates. Role of the Bylayer Composition and of the Temperature. Biochimica et Biophysica Acta. 1389. 13-22. 1998.

25

E. Galia, E. Nicolaides, D. Härter, R. Läbenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharmaceutical Research. 15. 698-705. 1998.

26

A. Garg and J. Balthasar. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. Journal of Pharmacokinetics and Pharmacodynamics. 34. 687-709. 2007.

27

[Henri P. Gavin. The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. 2016.](https://people.duke.edu/%7Ehpgavin/ https://people.duke.edu/~hpgavin/ce281/lm.pdf)

28

X. Ge, S. Yamamoto, S. Tsutsumi, Y. Midorikawa, S. Ihara, S. M. Wang, and H. Aburatani. Interpreting expression profiles of cancers by genome- wide survey of breadth of expression in normal tissues. Genomics.. 86(2). 127-41. 2005.

29

R. Gebhardt. Metabolic zonation of the liver: Regulation and implications for liver function. Pharmacol. Ther.. 53(3). 275-354. 1992.

30

J. A. Goldsmith, N. Randall, and S. D. Ross. On methods of expressing dissolution rate data.. J Pharm Pharmacol. 30(6). 347-9. 1978.

31

H. W. Haagard. The Absorption, Distribution and Elimination of Ethyl Ether. The Journal of Biological Chemistry. 59. 753-770. 1924.

32

M. W. Härter, J. Keldenich, and W. Schmitt. in Handbook of Combinatorial Chemistry. Vol. 2. K. C. Nicholaou. R. Hanko. W. Hartwig. Wiley-VCH. Weinheim, Germany. 2002.

33

W. L. Hayton. Maturation and Growth of Renal Function: Dosing Renally Cleared Drugs in Children. AAPS PharmSci. 2(1). E3. 2002.

34

P. Holliger and P. J. Hudson. Engineered antibody fragments and the rise of single domains. Nat Biotechnol.. 23(9). 1126-36. 2005.

35

H. G. Holzhutter, D. Drasdo, T. Preusser, J. Lippert, and A. M. Henney. The virtual liver: a multidisciplinary, multilevel challenge for systems biology. Wiley Interdiscip Rev Syst Biol Med. 2012.

36

R. Kawei, M. Lemaire, J. L. Steimer, A. Bruelisauer, W. Niederberger, and M. Rowland. Physiology Based Pharmacokinetic Study on a Cyclosporin Derivate, SDZ IMM 125. Journal of Pharmacokinetics and Biopharmaceutics. 22. 327-365. 1994.

37

G. Kersting, S. Willmann, G. Wurthwein, J. Lippert, J. Boos, and G. Hempel. Physiologically based pharmacokinetic modelling of high- and low-dose etoposide: from adults to children. Cancer Chemother Pharmacol. 397-405. 69(2). 2012.

38

B. Krippendorf, R. Neuhaus, and P. Lienau. Mechanism-Based Inhibition: Deriving KI and kinact Directly from Time-Dependent IC50 Values. J. of Biomolecular Screening. 14((8). 2009.

39

L. Kuepfer, J. Lippert, and T. Eissing. Multiscale mechanistic modeling in pharmaceutical research and development. Adv Exp Med Biol. 543-61. 736. 2012.

40

F. Langenbucher. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol.. 24(12). 979-81. 1972.

41

D. G. Levitt. Physiologically based pharmacokinetic modeling of arterial- antecubital vein concentration difference. BMC Clinical Pharmacology. 4. 2. 2004.

42

E. D. Lobo, R. J. Hansen, and J. P. Balthasar. Antibody Pharmacokinetics and Pharmacodynamics. J. Pharm. Sci.. 93(11). 2645-2668. 2004.

43

A. Loidl-Stahlhofen, T. Hartmann, M. Schöttner, C. Röhring, H. Brodowsky, J. Schmitt, and J. Keldenich. Multilamellar Liposomes and Solid- Supported Lipid Membranes (TRANSIL): Screening of Lipid-Water Partitioning Toward a High-Throughput Scale. Pharmaceutical Research. 18. 1782-1788. 2001.

44

G. Loizou, M. Spendiff, H.A. Barton, J. Bessems, F.Y. Bois, M.B. d'Yvoire, H. Buist, H.J. Clewell 3rd, B. Meek, U. Gundert-Remy, G. Goerlitz, and W. Schmitt. Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps. Regulatory Toxicology and Pharmacology. 50(3). 400-11. 2008.

45

K. Madsen, H.B. Nielsen, and O. Tingleff. METHODS FOR NON- LINEAR LEAST SQUARES PROBLEMS. 2nd Edition, April 2004.

46

M. Meyer, S. Schneckener, B. Ludewig, L. Kuepfer, and J. Lippert. Using expression data for quantification of active processes in physiologically- based pharmacokinetic modeling. Drug Metab Dispos. 2012.

47

John A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal. 7. 308-313. 1965.

48

I. Nestorov. Whole-body physiologically based pharmacokinetic models. Exp Opin Drug Metab Toxicol. 3. 235-249. 2007.

49

M. Nishimura, H. Yaguti, H. Yoshitsugu, S. Naito, and T. Satoh. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi.. 123(5). 369-75. 2003.

50

M. Nishimura and S. Naito. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 20(6). 452-77. 2005.

51

M. Nishimura and S. Naito. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet. 21(5). 357-74. 2006.

52

P. Poulin, K. Schoenlein, and F.P. Theil. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. Journal of Pharmaceutical Sciences. 90(4). 436-47. 2001.

53

P. Poulin and F. P. Theil. A Priori Prediction of Tissue: Plasma Partition Coefficients of Drugs to Facilitate the Use of Physiologically-Based Pharmacokinetic Models in Drug Discovery. Journal of Pharmaceutical Sciences. 89. 16-35. 2000.

54

P. Poulin and F.P. Theil. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. Journal of Pharmaceutical Sciences. 91(1). 129-56. 2002.

55

P. Poulin and F.P. Theil. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. Journal of Pharmaceutical Sciences. 91(5). 1358-70. 2002.

56

NJ. Proctor, GT. Tucker, and A. Rostami-Hodjegan. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors.. Xenobiotica. 34(2). 151-78. 2004.

57

B. Rippe and B. Haraldsson. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol Scand.. 131(3). pp 411-28. 1987.

58

B. Rippe and B. Haraldsson. Transport of macromolecules across microvascular walls: the two-pore theory. Am Physiological Soc.. 74. pp 163-219. 1994.

59

T. Rodgers, D. Leahy, and M. Rowland. Physiologically Based Pharmacokinetic Modeling 1: Predicting the Tissue Distribution of Moderate-to-Strong Bases. Journal of Pharmaceutical Sciences. 94. 1259-1275. 2005.

60

T. Rodgers, D. Leahy, and M. Rowland. Tissue Distribution of Basic Drugs: Accounting for Enantiomeric, Compound and Regional Differences Amongst beta-Blocking Drugs in Rat. Journal of Pharmaceutical Sciences. 94. 1237-1248. 2005.

61

T. Rodgers and M. Rowland. Physiologically Based Pharmacokinetic Modeling 2: Predicting the Tissue Distribution of Acids, Very Weak Bases, Neutrals and Zwitterions. Journal of Pharmaceutical Sciences. 95. 1238-1257. 2006.

62

T. Rodgers and M. Rowland. Mechanistic Approaches to Volume of Distrubtion Predictions: Understanding the Processes. Pharmaceutical Research. 24. 918-933. 2007.

63

AD. Rodrigues. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol. 465-80. 57 (5). 1999.

64

A. Rostami-Hodjegan and GT. Tucker. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data.. Nat Rev Drug Discov. 6(2). 140-8. 2007.

65

M. Rowland and T.N. Tozer. Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications. 4th edition. D.B. Troy. Lippincott Williams and Wilkins. Philadelphia, PA 19106. pp. 199. 1984.

66

T. Sawamato, S. Haruta, Y. Kurosaki, K. Higaki, and T. Kimura. Prediction of the Plasma Concentration Profiles of Orally Administered Drugs in Rats on the Basis of Gastrointestinal Transit Kinetics and Absorbability. Journal of Pharmaceutical Pharmacology. 49. 450-457. 1997.

67

J. Schlender. A report including the description of the physiology base of the Japanese population implemented in PK-Sim®.

68

W. Schmitt. General approach for the calculation of tissue to plasma partition coefficients. Toxicology In Vitro. 22(2). 457-67. 2008.

69

W. Schmitt and S. Willmann. Physiology-based pharmacokinetic modeling: ready to be used. Drug Discov Today. 2. 125-132. 2005.

70

L. F. Shampine. Solving ODEs and DDEs with residual control. Appl. Num. Math.. 52. 113-127. 2005.

71

P. Sidhu, H. T. Peng, B. Cheung, and A. Edginton. Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach. Can J Physiol Pharmacol. 365-82. 89(5). 2011.

72

R.B. Silvermann. Mechanism-based enzyme inhibitors. Methods in Enzymology. 249. 1995.

73

A. Strougo, T. Eissing, A. Yassen, S. Willmann, M. Danhof, and J. Freijer. First dose in children: physiological insights into pharmacokinetic scaling approaches and their implications in paediatric drug development. J Pharmacokinet Pharmacodyn. 2012.

74

G. Tanaka and H. Kawamura. Anatomical and physiological characteristics for Asian reference man: Male and female of different ages: Tanaka model. Division of Radioecology. National Institute of Radiological Sciences. Hitachinaka 311-12 Japan. Report Number NIRS-M-115. 1996.

75

A. Terenji, S. Willmann, J. Osterholz, P. Hering, and H. J. Schwarzmaier. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law. Lasers Surg Med. 365-70. 36(5). 2005.

76

F. P. Theil, T. W. Guentert, S. Haddad, and P. Poulin. Utility of Physiologically Based Pharmacokinetic Models to Drug Development and Rational Drug Discovery Candidate Selection. Toxicology Letters. 138. 29-49. 2003.

77

K. Thelen and J.B. Dressman. Cytochrome P450-mediated metabolism in the human gut wall. Journal of Pharmacokinetics and Pharmacodynamics. 61(5). 541-58. 2009.

78

K. Thelen, E. Jantratid, J. B. Dressman, J. Lippert, and S. Willmann. Analysis of nifedipine absorption from soft gelatin capsules using PBPK modeling and biorelevant dissolution testing. J Pharm Sci. 2899-904. 99(6). 2010.

79

K. Thelen, K. Coboeken, S. Willmann, R. Burghaus, J. B. Dressman, and J. Lippert. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 5324-45. 100(12). 2011.

80

K. Thelen, K. Coboeken, S. Willmann, J. B. Dressman, and J. Lippert. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part II: extension to describe performance of solid dosage forms. J Pharm Sci. 1267-80. 101(3). 2012.

81

K. Thelen, K. Coboeken, Y. Jia, J.B. Dressman, S. Willmann. Dynamically simulating the effect of food on gastric emptying using a detailed physiological model for gastrointestinal transit and absorption. PAGE meeting 2012. Venice, Italy. 2012.

82

Third National Health and Nutrition Examination Survey, (NHANES III). 1997. National Center for Health Statistics Hyattsville, MD 20782

83

Expressed Sequence Tags (EST) from UniGene. 2010. National Center for Biotechnology Information (NCBI)

84

Annals of the ICRP. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. J. Valentin. Vol. 32 (3-4). 2002.

85

P. H. van der Graaf and N. Benson. Systems pharmacology: bridging systems biology and pharmacokineticspharmacodynamics (PKPD) in drug discovery and development. Pharm Res. 1460-4. 28(7). 2011.

86

B. van Ommen, J. de Jongh, J. van de Sandt, B. Blaauboer, E. Hissink, J. Bogaards, and P. Bladeren. Computer-aided Biokinetic Modelling Combined with In Vitro Data. Toxicology In Vitro. 9. 537-542. 1995.

87

M. Vossen, M. Sevestre, C. Niederalt, I. J. Jang, S. Willmann, and A. N. Edginton. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models. Theor Biol Med Model. 13. 4. 2007.

88

W. Wang, E. Q. Wang, and J.P. Balthasar. Monoclonal Antibody Pharmacokinetics and Pharmacodynamics. Clin Pharmacol Ther.. 548-58. 84(5). 2008.

89

O. Weber, S. Willmann, H. Bischoff, V. Li, A. Vakalopoulos, K. Lustig, F. T. Hafner, R. Heinig, C. Schmeck, and K. Buehner. Prediction of a potentially effective dose in humans for BAY 60-5521, a potent inhibitor of cholesteryl ester transfer protein (CETP) by allometric species scaling and combined pharmacodynamic and physiologically-based pharmacokinetic modelling. Br J Clin Pharmacol. 219-31. 73(2). 2012.

90

S. Willmann, H. J. Schwarzmaier, A. Terenji, I. V. Yaroslavsky, and P. Hering. Quantitative microspectrophotometry in turbid media. Appl Opt. 4904-13. 38(22). 1999.

91

S. Willmann, A. Terenji, H. Busse, I. V. Yaroslavsky, A. N. Yaroslavsky, H. J. Schwarzmaier, and P. Hering. Scattering delay time of Mie scatterers determined from steady-state and time-resolved optical spectroscopy. J Opt Soc Am A Opt Image Sci Vis. 745-9. 17(4). 2000.

92

S. Willmann, J. Lippert, M. Sevestre, J. Solodenko, F. Fois, and W. Schmitt. PK-Sim®: A physiologically based pharmacokinetic 'whole-body' model. Biosilico. 1. 121-124. 2003.

93

S. Willmann, W. Schmitt, J. Keldenich, and J. B. Dressman. A Physiologic Model for Simulating Gastrointestinal Flow and Drug Absorption in Rats. Pharmaceutical Research. 20. 1766-1771. 2003.

94

S. Willmann, A. Terenji, J. Osterholz, J. Meister, P. Hering, and H.J. Schwarzmaier. Small-volume frequency-domain oximetry: phantom experiments and first in vivo results. J Biomed Opt. 618-28. 8(4). 2003.

95

S. Willmann, W. Schmitt, J. Keldenich, J. Lippert, and J. B. Dressman. A Physiological Model for the Estimation of Fraction Dose Absorbed in Humans. Journal of Medical Chemistry. 47. 4022-4031. 2004.

96

S. Willmann, J. Lippert, and W. Schmitt. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opinion on Drug Metabolism and Toxicology. 1. 159-168. 2005.

97

S. Willmann, K. Hoehn, A. N. Edginton, M. Sevestre, J. Solodenko, W. Weiss, J. Lippert, and W. Schmitt. Development of a physiologically-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. Journal of Pharmacokinetics and Pharmacodynamics. 34(3). 401-431. 2007.

98

S. Willmann, A.N. Edginton, and J.B. Dressman. Development and validation of a physiology-based model for the prediction of oral absorption in monkeys. Pharmaceutical Research. 24(7). 1275-82. 2007.

99

S. Willmann, A.N. Edginton, M. Kleine-Besten, E. Jantratid, K. Thelen, and J.B. Dressman. Whole-Body Physiologically-Based Pharmacokinetic Population Modelling of Oral Drug Administration: Inter-Individual Variability of Cimetidine Absorption. Journal of Pharmacokinetics and Pharmacodynamics. 61. 891-9. 2009.

100

S. Willmann, A.N. Edginton, K. Coboeken, G. Ahr, and J. Lippert. Risk to the Breast-Fed Neonate From Codeine Treatment to the Mother: A Quantitative Mechanistic Modeling Study. Clinical Pharmacology and Therapeutics. advance online publication. 2009.

101

S. Willmann. The in silico Child. Can computer simulations replace clinical pharmacokinetic studies?. Original: Das In-silico-Child. Konnen Computer-Simulationen klinisch-pharmakokinetische Studien ersetzen?. Pharm Unserer Zeit. 62-7. 38(1). 2009.

102

S. Willmann, K. Thelen, C. Becker, J. B. Dressman, and J. Lippert. Mechanism-based prediction of particle size-dependent dissolution and absorption: cilostazol pharmacokinetics in dogs. Eur J Pharm Biopharm. 83-94. 76(1). 2010.

103

Y. Wu and F. Kesisoglou. Immediate Release Oral Dosage Forms: Formulation Screening in the Pharmaceutical Industry. in: Oral Drug Absorption: Prediction and Assessment. J. J. Dressman. C. Reppas. Informa Healthcare. New York, USA. pp. 323. 2009.

104

J. Yang, M. Jamei, and K. Rowland Yeo. Theoretical assessment of a new experimental protocol for determining kinetic values describing mechanism (time)-based enzyme inhibition . European Journal in Pharmaceutical Sciences. 31. 2007.

105

H. Zischka, C. J. Gloeckner, C. Klein, S. Willmann, M. Swiatek-de Lange, and M. Ueffing. Improved mass spectrometric identification of gel- separated hydrophobic membrane proteins after sodium dodecyl sulfate removal by ion-pair extraction. Proteomics. 3776-82. 4(12). 2004.

106

Hanke N, Frechen S, Moj D, Britz H, Eissing T, Wendl T, Lehr T. PBPK models for CYP3A4 and P‐gp DDI prediction: a modeling network of rifampicin, itraconazole, clarithromycin, midazolam, alfentanil and digoxin.

107

Dallmann A, Ince I, Solodenko J, et al. Physiologically Based Pharmacokinetic Modeling of Renally Cleared Drugs in Pregnant Women. Clin Pharmacokinet. 2017;56(12):1525-1541. doi:10.1007/s40262-017-0538-0

108

Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy. Clin Pharmacokinet. 2017;56(11):1303-1330. doi:10.1007/s40262-017-0539-z

109

Dallmann A, Ince I, Coboeken K, Eissing T, Hempel G. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways. Clin Pharmacokinet. 2018;57(6):749-768. doi:10.1007/s40262-017-0594-5

110

Dallmann A, Solodenko J, Ince I, Eissing T. Applied Concepts in PBPK Modeling: How to Extend an Open Systems Pharmacology Model to the Special Population of Pregnant Women. CPT Pharmacometrics Syst Pharmacol. 2018;7(7):419-431. doi:10.1002/psp4.12300

111

Claassen K, Thelen K, Coboeken K, et al. Development of a Physiologically-Based Pharmacokinetic Model for Preterm Neonates: Evaluation with In Vivo Data. Curr Pharm Des. 2015;21(39):5688-5698. doi:10.2174/1381612821666150901110533

112

Mavroudis PD, Hermes HE, Teutonico D, Preuss TG, Schneckener S. Development and validation of a physiology-based model for the prediction of pharmacokinetics/toxicokinetics in rabbits. PLoS One. 2018;13(3):e0194294. Published 2018 Mar 21. doi:10.1371/journal.pone.0194294

113

Schlender JF, Meyer M, Thelen K, et al. Development of a Whole-Body Physiologically Based Pharmacokinetic Approach to Assess the Pharmacokinetics of Drugs in Elderly Individuals. Clin Pharmacokinet. 2016;55(12):1573-1589. doi:10.1007/s40262-016-0422-3

114

Niederalt C, Kuepfer L, Solodenko J, et al. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn. 2018;45(2):235-257. doi:10.1007/s10928-017-9559-4

115

Lippert J, Burghaus R, Edginton A, et al. Open Systems Pharmacology Community-An Open Access, Open Source, Open Science Approach to Modeling and Simulation in Pharmaceutical Sciences. CPT Pharmacometrics Syst Pharmacol. 2019;8(12):878-882. doi:10.1002/psp4.12473

116

Kuepfer L, Niederalt C, Wendl T, et al. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT Pharmacometrics Syst Pharmacol. 2016;5(10):516-531. doi:10.1002/psp4.12134

117

EFPIA MID3 Workgroup, Marshall SF, Burghaus R, et al. Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation. CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122. doi:10.1002/psp4.12049

118

Schneckener S, Preuss TG, Kuepfer L, Witt J. A workflow to build PBTK models for novel species. Arch Toxicol. 2020;94(11):3847-3860. doi:10.1007/s00204-020-02922-z

119

Ince I, Solodenko J, Frechen S, et al. Predictive Pediatric Modeling and Simulation Using Ontogeny Information. J Clin Pharmacol. 2019;59 Suppl 1:S95-S103. doi:10.1002/jcph.1497

120

Sjögren E, Tarning J, Barnes KI, Jonsson EN. A Physiologically-Based Pharmacokinetic Framework for Prediction of Drug Exposure in Malnourished Children. Pharmaceutics. 2021;13(2):204. Published 2021 Feb 2. doi:10.3390/pharmaceutics13020204

121

Frechen S, Solodenko J, Wendl T, et al. A generic framework for the physiologically-based pharmacokinetic platform qualification of PK-Sim and its application to predicting cytochrome P450 3A4-mediated drug-drug interactions. CPT Pharmacometrics Syst Pharmacol. 2021;10(6):633-644. doi:10.1002/psp4.12636

122

Paul R.V. Malik, Cindy H.T. Yeung, Shams Ismaeil, Urooj Advani, Sebastian Djie, Andrea N. Edginton. A Physiological Approach to Pharmacokinetics in Chronic Kidney Disease

123

FDA Meeting: Development of Best Practices in Physiologically Based Pharmacokinetic Modeling to Support Clinical Pharmacology Regulatory Decision-Making

124

Peters and Dolgos. Requirements to Establishing Confidence in Physiologically Based Pharmacokinetic (PBPK) Models and Overcoming Some of the Challenges to Meeting Them.

125

FDA, Center for Drug Evaluation and. 2019. “Physiologically Based Pharmacokinetic Analyses — Format and Content Guidance for Industry.” U.S. Food and Drug Administration. October 18, 2019.

126

EMA Guideline: Guideline on the qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation.

127

Frechen, S., Rostami-Hodjegan, A. Quality Assurance of PBPK Modeling Platforms and Guidance on Building, Evaluating, Verifying and Applying PBPK Models Prudently under the Umbrella of Qualification: Why, When, What, How and By Whom?. Pharm Res 39, 1733–1748 (2022)

128

Shebley et al. Physiologically Based Pharmacokinetic Model Qualification and Reporting Procedures for Regulatory Submissions: A Consortium Perspective.

129

Miller et al. Physiologically Based Pharmacokinetic Modelling for First‐In‐Human Predictions: An Updated Model Building Strategy Illustrated with Challenging Industry Case Studies.

130

OECD (2021), Guidance document on the characterisation, validation and reporting of Physiologically Based Kinetic (PBK) models for regulatory purposes, OECD Series on Testing and Assessment, No. 331, OECD Publishing, Paris

131

Calvier, Elisa A. M., Thu Thuy Nguyen, Trevor N. Johnson, Amin Rostami-Hodjegan, Dick Tibboel, Elke H. J. Krekels, and Catherijne A. J. Knibbe. 2018. “Can Population Modelling Principles Be Used to Identify Key PBPK Parameters for Paediatric Clearance Predictions? An Innovative Application of Optimal Design Theory.” Pharmaceutical Research 35 (11): 209.

132

Dallmann, André, Ibrahim Ince, Juri Solodenko, Michaela Meyer, Stefan Willmann, Thomas Eissing, and Georg Hempel. 2017. “Physiologically Based Pharmacokinetic Modeling of Renally Cleared Drugs in Pregnant Women.” Clinical Pharmacokinetics 56 (12): 1525–41.

133

Doki, Kosuke, Adam S. Darwich, Nikunjkumar Patel, and Amin Rostami-Hodjegan. 2017. “Virtual Bioequivalence for Achlorhydric Subjects: The Use of PBPK Modelling to Assess the Formulation-Dependent Effect of Achlorhydria.” European Journal of Pharmaceutical Sciences 109 (November): 111–20.

134

Fendt, Rebekka, Hofmann, Ute, Schneider, Annika R.P., Schaeffeler, Elke, Burghaus, Rolf, et al. 2021. “Data-Driven Personalization of a Physiologically Based Pharmacokinetic Model for Caffeine: A Systematic Assessment” CPT: Pharmacometrics & Systems Pharmacology.

135

Grimstein, Manuela, Yuching Yang, Xinyuan Zhang, Joseph Grillo, Shiew-Mei Huang, Issam Zineh, and Yaning Wang. 2019. “Physiologically Based Pharmacokinetic Modeling in Regulatory Science: An Update From the U.S. Food and Drug Administration’s Office of Clinical Pharmacology.” Journal of Pharmaceutical Sciences 108 (1): 21–25.

136

Heimbach, Tycho, Yuan Chen, Jun Chen, Vaishali Dixit, Neil Parrott, Sheila Annie Peters, Italo Poggesi, et al. 2020. “Physiologically-Based Pharmacokinetic Modeling in Renal and Hepatic Impairment Populations: A Pharmaceutical Industry Perspective.” Clinical Pharmacology & Therapeutics n/a (n/a).

137

Kuemmel, Colleen, Yan, Yuching, Zhang, Xiyuan, Florian, Jeffry, Zhu, Hao et al. 2019.” Consideration of a Credibility Assessment Framework in Model-Informed Drug Development: Potential Application to PBPK Modeling and Simulation” CPT: Pharmacometrics & Systems Pharmacology.

138

Lin, Wen, Jing-He Yan, Tycho Heimbach, and Handan He. 2018. “Pediatric Physiologically Based Pharmacokinetic Model Development: Current Status and Challenges.” Current Pharmacology Reports 4 (6): 491–501.

139

Loisios-Konstantinidis, Ioannis, Rodrigo Cristofoletti, Nikoletta Fotaki, David B. Turner, and Jennifer Dressman. 2020. “Establishing Virtual Bioequivalence and Clinically Relevant Specifications Using in Vitro Biorelevant Dissolution Testing and Physiologically-Based Population Pharmacokinetic Modeling. Case Example: Naproxen.” European Journal of Pharmaceutical Sciences 143 (February): 105170.

140

Loisios-Konstantinidis, Ioannis, Bart Hens, Amitava Mitra, Sarah Kim, Chang Chiann, and Rodrigo Cristofoletti. 2020. “Using Physiologically Based Pharmacokinetic Modeling to Assess the Risks of Failing Bioequivalence Criteria: A Tale of Two Ibuprofen Products.” The AAPS Journal 22 (5): 113.

141

Morcos, Peter N., Yumi Cleary, Carolina Sturm‐Pellanda, Elena Guerini, Markus Abt, Massimiliano Donzelli, Faye Vazvaei, Bogdana Balas, Neil Parrott, and Li Yu. 2018. “Effect of Hepatic Impairment on the Pharmacokinetics of Alectinib.” The Journal of Clinical Pharmacology 58 (12): 1618–28.

142

Peters, Sheila Annie, and Hugues Dolgos. 2019. “Requirements to Establishing Confidence in Physiologically Based Pharmacokinetic (PBPK) Models and Overcoming Some of the Challenges to Meeting Them.” Clinical Pharmacokinetics 58 (11): 1355–71.

143

Rimmler, Christer, Christian Lanckohr, Ceren Akamp, Dagmar Horn, Manfred Fobker, Karsten Wiebe, Bassam Redwan, Bjoern Ellger, Robin Koeck, and Georg Hempel. 2019. “Physiologically Based Pharmacokinetic Evaluation of Cefuroxime in Perioperative Antibiotic Prophylaxis.” British Journal of Clinical Pharmacology 85 (12): 2864–77.

144

Tan, Ming-Liang, Ping Zhao, Lei Zhang, Yunn-Fang Ho, Manthena V. S. Varma, Sibylle Neuhoff, Thomas D. Nolin, Aleksandra Galetin, and Shiew-Mei Huang. 2019. “Use of Physiologically Based Pharmacokinetic Modeling to Evaluate the Effect of Chronic Kidney Disease on the Disposition of Hepatic CYP2C8 and OATP1B Drug Substrates.” Clinical Pharmacology & Therapeutics 105 (3): 719–29.

145

Türk, Denise, Nina Hanke, and Thorsten Lehr. 2020. “A Physiologically-Based Pharmacokinetic Model of Trimethoprim for MATE1, OCT1, OCT2, and CYP2C8 Drug–Drug–Gene Interaction Predictions.” Pharmaceutics 12 (11): 1074.

146

Wagner, C., P. Zhao, Y. Pan, V. Hsu, J. Grillo, S. M. Huang, and V. Sinha. 2015. “Application of Physiologically Based Pharmacokinetic (PBPK) Modeling to Support Dose Selection: Report of an FDA Public Workshop on PBPK.” CPT: Pharmacometrics & Systems Pharmacology 4 (4): 226–30.

147

Yun, Yejin Esther, and Andrea N. Edginton. 2019. “Model Qualification of the PK-Sim® Pediatric Module for Pediatric Exposure Assessment of CYP450 Metabolized Compounds.” Journal of Toxicology and Environmental Health. Part A 82 (14): 789–814.

148

Zhao, P, L Zhang, J A Grillo, Q Liu, J M Bullock, Y J Moon, P Song, et al. 2011. “Applications of Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation During Regulatory Review.” Clinical Pharmacology & Therapeutics 89 (2): 259–67.

149

Zhou, Diansong, Terry Podoll, Yan Xu, Ganesh Moorthy, Karthick Vishwanathan, Joseph Ware, J. Greg Slatter, and Nidal Al‐Huniti. 2019. “Evaluation of the Drug–Drug Interaction Potential of Acalabrutinib and Its Active Metabolite, ACP-5862, Using a Physiologically-Based Pharmacokinetic Modeling Approach.” CPT: Pharmacometrics & Systems Pharmacology 8 (7): 489–99.

150

Zhuang, Xiaomei, and Chuang Lu. 2016. “PBPK Modeling and Simulation in Drug Research and Development.” Acta Pharmaceutica Sinica. B 6 (5): 430–40.

151

Kuemmel, C., Yang, Y., Zhang, X., Florian, J., Zhu, H., Tegenge, M., Huang, S.-M., Wang, Y., Morrison, T., & Zineh, I. (2020). Consideration of a Credibility Assessment Framework in Model-Informed Drug Development: Potential Application to Physiologically-Based Pharmacokinetic Modeling and Simulation. CPT: Pharmacometrics & Systems Pharmacology, 9(1), 21–28

152

Rüdesheim, S., Wojtyniak, J.-G., Selzer, D., Hanke, N., Mahfoud, F., Schwab, M., & Lehr, T. (2020). Physiologically Based Pharmacokinetic Modeling of Metoprolol Enantiomers and α-Hydroxymetoprolol to Describe CYP2D6 Drug-Gene Interactions. Pharmaceutics, 12(12).

153

Utsey, K., Gastonguay, M. S., Russell, S., Freling, R., Riggs, M. M., & Elmokadem, A. (2020). Quantification of the Impact of Partition Coefficient Prediction Methods on Physiologically Based Pharmacokinetic Model Output Using a Standardized Tissue Composition. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 48(10), 903–916.

154

Peters and Dolgos. Requirements to Establishing Confidence in Physiologically Based Pharmacokinetic (PBPK) Models and Overcoming Some of the Challenges to Meeting Them.

155

McNally, K., Cotton, R., & Loizou, G. D. (2011). A Workflow for Global Sensitivity Analysis of PBPK Models. Frontiers in Pharmacology, 2, 31.

156

Peters, S. A. (Ed.). (2012). Variability, Uncertainty, and Sensitivity Analysis. In Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations (Vol. 120, pp. 161–181). John Wiley & Sons, Inc.

157

Hsieh, N.-H., Reisfeld, B., Bois, F. Y., & Chiu, W. A. (2018). Applying a Global Sensitivity Analysis Workflow to Improve the Computational Efficiencies in Physiologically-Based Pharmacokinetic Modeling. Frontiers in Pharmacology, 9, 588.

158

Zhang, X.-Y., Trame, M. N., Lesko, L. J., & Schmidt, S. (2015). Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models. CPT: Pharmacometrics & Systems Pharmacology, 4(2), 69–79.

159

Miller, Neil A., Micaela B. Reddy, Aki T. Heikkinen, Viera Lukacova, and Neil Parrott. 2019. “Physiologically Based Pharmacokinetic Modelling for First-In-Human Predictions: An Updated Model Building Strategy Illustrated with Challenging Industry Case Studies.” Clinical Pharmacokinetics, February.

160

Cho, Hyun-Jong, Ji-Eon Kim, Dae-Duk Kim, and In-Soo Yoon. 2014. “In Vitro-in Vivo Extrapolation (IVIVE) for Predicting Human Intestinal Absorption and First-Pass Elimination of Drugs: Principles and Applications.” Drug Development and Industrial Pharmacy 40 (8): 989–98.

161

Poulin, Patrick, Hannah M. Jones, Rhys Do Jones, James W.T. Yates, Christopher R. Gibson, Jenny Y. Chien, Barbara J. Ring, et al. 2011. “PhRMA CPCDC Initiative on Predictive Models of Human Pharmacokinetics, Part 1: Goals, Properties of the Phrma Dataset, and Comparison with Literature Datasets.” Journal of Pharmaceutical Sciences 100 (10): 4050–73.

162

Berezhkovskiy, Leonid M. 2004. “Volume of Distribution at Steady State for a Linear Pharmacokinetic System with Peripheral Elimination.” Journal of Pharmaceutical Sciences 93 (6): 1628–40.

163

Poulin, P., and F. P. Theil. 2000. “A Priori Prediction of Tissue:Plasma Partition Coefficients of Drugs to Facilitate the Use of Physiologically-Based Pharmacokinetic Models in Drug Discovery.” Journal of Pharmaceutical Sciences 89 (1): 16–35.

164

Rodgers, Trudy, David Leahy, and Malcolm Rowland. 2005. “Physiologically Based Pharmacokinetic Modeling 1: Predicting the Tissue Distribution of Moderate-to-Strong Bases.” Journal of Pharmaceutical Sciences 94 (6): 1259–76.

165

Benet, Leslie Z., and Jasleen K. Sodhi. 2020. “Investigating the Theoretical Basis for In Vitro–In Vivo Extrapolation (IVIVE) in Predicting Drug Metabolic Clearance and Proposing Future Experimental Pathways.” The AAPS Journal 22 (5): 120.

166

Kumar, Vineet, Jia Yin, Sarah Billington, Bhagwat Prasad, Colin D. A. Brown, Joanne Wang, and Jashvant D. Unadkat. 2018. “The Importance of Incorporating OCT2 Plasma Membrane Expression and Membrane Potential in IVIVE of Metformin Renal Secretory Clearance.” Drug Metabolism and Disposition: The Biological Fate of Chemicals 46 (10): 1441–45.

167

Trapa, Patrick E., Matthew D. Troutman, Thomas Y. Lau, Travis T. Wager, Tristan S. Maurer, Nandini C. Patel, Mark A. West, et al. 2019. “In Vitro–In Vivo Extrapolation of Key Transporter Activity at the Blood–Brain Barrier.” Drug Metabolism and Disposition 47 (4): 405–11.

168

Kuepfer, L, C Niederalt, T Wendl, J-F Schlender, S Willmann, J Lippert, M Block, T Eissing, and D Teutonico. 2016. “Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model: Applied Concepts in PBPK Modeling.” CPT: Pharmacometrics & Systems Pharmacology 5 (10): 516–31.

169

Marshall, S. F., R. Burghaus, V. Cosson, S. Y. A. Cheung, M. Chenel, O. DellaPasqua, N. Frey, et al. 2016. “Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation.” CPT: Pharmacometrics & Systems Pharmacology 5 (3): 93–122.

170

Tan, Yu-Mei, Melissa Chan, Amechi Chukwudebe, Jeanne Domoradzki, Jeffrey Fisher, C. Eric Hack, Paul Hinderliter, et al. 2020. “PBPK Model Reporting Template for Chemical Risk Assessment Applications.” Regulatory Toxicology and Pharmacology 115 (August): 104691.

171

Schaller, S., Willmann, S., Lippert, J., Schaupp, L., Pieber, T., Schuppert, A. and Eissing, T. (2013), A Generic Integrated Physiologically based Whole-body Model of the Glucose-Insulin-Glucagon Regulatory System. CPT: Pharmacometrics & Systems Pharmacology, 2: 1-10 65.

172

Balazki, P., Schaller, S., Eissing, T. and Lehr, T. (2018), A Quantitative Systems Pharmacology Kidney Model of Diabetes Associated Renal Hyperfiltration and the Effects of SGLT Inhibitors. CPT Pharmacometrics Syst. Pharmacol., 7: 788-797.