SENet 是 2017 年 ImageNet 分类比赛的冠军方案,其提出了一个全新的 SE 结构,该结构可以迁移到任何其他网络中,其通过控制 scale 的大小,把每个通道间重要的特征增强,不重要的特征减弱,从而让提取的特征指向性更强。
该系列模型的 FLOPs、参数量以及 T4 GPU 上的预测耗时如下图所示。
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPs (G) |
Params (M) |
---|---|---|---|---|---|---|
SE_ResNeXt50_32x4d | 0.784 | 0.940 | 0.789 | 0.945 | 8.020 | 26.160 |
SE_ResNeXt50_vd_32x4d | 0.802 | 0.949 | 10.760 | 26.280 | ||
SE_ResNeXt101_32x4d | 0.7939 | 0.9443 | 0.793 | 0.950 | 15.020 | 46.280 |
Models | Size | Latency(ms) bs=1 |
Latency(ms) bs=4 |
Latency(ms) bs=8 |
---|---|---|---|---|
SE_ResNeXt50_32x4d | 224 | 2.95 | 10.77 | 14.51 |
SE_ResNeXt50_vd_32x4d | 224 | 3.06 | 10.91 | 15.53 |
SE_ResNeXt101_32x4d | 224 | 5.78 | 21.04 | 28.67 |
备注: 精度类型为 FP32,推理过程使用 TensorRT-8.0.3.4。
Models | Size | Latency(ms) FP16 bs=1 |
Latency(ms) FP16 bs=4 |
Latency(ms) FP16 bs=8 |
Latency(ms) FP32 bs=1 |
Latency(ms) FP32 bs=4 |
Latency(ms) FP32 bs=8 |
---|---|---|---|---|---|---|---|
SE_ResNeXt50_32x4d | 224 | 9.06957 | 11.37898 | 18.86282 | 8.74121 | 13.563 | 23.01954 |
SE_ResNeXt50_vd_32x4d | 224 | 9.25016 | 11.85045 | 25.57004 | 9.17134 | 14.76192 | 19.914 |
SE_ResNeXt101_32x4d | 224 | 19.34455 | 20.6104 | 32.20432 | 18.82604 | 25.31814 | 41.97758 |
备注: 推理过程使用 TensorRT-8.0.3.4。
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考ResNet50 模型快速体验。
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 ppcls/configs/ImageNet/SENet/
中提供了该模型的训练配置,启动训练方法可以参考:ResNet50 模型训练、评估和预测。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程。
Inference 的获取可以参考 ResNet50 推理模型准备 。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考ResNet50 基于 Python 预测引擎推理 完成模型的推理预测。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。