-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
fpn.py
231 lines (212 loc) · 9.18 KB
/
fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import XavierUniform
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ..shape_spec import ShapeSpec
__all__ = ['FPN']
@register
@serializable
class FPN(nn.Layer):
"""
Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
Args:
in_channels (list[int]): input channels of each level which can be
derived from the output shape of backbone by from_config
out_channel (int): output channel of each level
spatial_scales (list[float]): the spatial scales between input feature
maps and original input image which can be derived from the output
shape of backbone by from_config
has_extra_convs (bool): whether to add extra conv to the last level.
default False
extra_stage (int): the number of extra stages added to the last level.
default 1
use_c5 (bool): Whether to use c5 as the input of extra stage,
otherwise p5 is used. default True
norm_type (string|None): The normalization type in FPN module. If
norm_type is None, norm will not be used after conv and if
norm_type is string, bn, gn, sync_bn are available. default None
norm_decay (float): weight decay for normalization layer weights.
default 0.
freeze_norm (bool): whether to freeze normalization layer.
default False
relu_before_extra_convs (bool): whether to add relu before extra convs.
default False
"""
def __init__(self,
in_channels,
out_channel,
spatial_scales=[0.25, 0.125, 0.0625, 0.03125],
has_extra_convs=False,
extra_stage=1,
use_c5=True,
norm_type=None,
norm_decay=0.,
freeze_norm=False,
relu_before_extra_convs=True):
super(FPN, self).__init__()
self.out_channel = out_channel
for s in range(extra_stage):
spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
self.spatial_scales = spatial_scales
self.has_extra_convs = has_extra_convs
self.extra_stage = extra_stage
self.use_c5 = use_c5
self.relu_before_extra_convs = relu_before_extra_convs
self.norm_type = norm_type
self.norm_decay = norm_decay
self.freeze_norm = freeze_norm
self.lateral_convs = []
self.fpn_convs = []
fan = out_channel * 3 * 3
# stage index 0,1,2,3 stands for res2,res3,res4,res5 on ResNet Backbone
# 0 <= st_stage < ed_stage <= 3
st_stage = 4 - len(in_channels)
ed_stage = st_stage + len(in_channels) - 1
for i in range(st_stage, ed_stage + 1):
if i == 3:
lateral_name = 'fpn_inner_res5_sum'
else:
lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
in_c = in_channels[i - st_stage]
if self.norm_type is not None:
lateral = self.add_sublayer(
lateral_name,
ConvNormLayer(
ch_in=in_c,
ch_out=out_channel,
filter_size=1,
stride=1,
norm_type=self.norm_type,
norm_decay=self.norm_decay,
freeze_norm=self.freeze_norm,
initializer=XavierUniform(fan_out=in_c)))
else:
lateral = self.add_sublayer(
lateral_name,
nn.Conv2D(
in_channels=in_c,
out_channels=out_channel,
kernel_size=1,
weight_attr=ParamAttr(
initializer=XavierUniform(fan_out=in_c))))
self.lateral_convs.append(lateral)
fpn_name = 'fpn_res{}_sum'.format(i + 2)
if self.norm_type is not None:
fpn_conv = self.add_sublayer(
fpn_name,
ConvNormLayer(
ch_in=out_channel,
ch_out=out_channel,
filter_size=3,
stride=1,
norm_type=self.norm_type,
norm_decay=self.norm_decay,
freeze_norm=self.freeze_norm,
initializer=XavierUniform(fan_out=fan)))
else:
fpn_conv = self.add_sublayer(
fpn_name,
nn.Conv2D(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
initializer=XavierUniform(fan_out=fan))))
self.fpn_convs.append(fpn_conv)
# add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
if self.has_extra_convs:
for i in range(self.extra_stage):
lvl = ed_stage + 1 + i
if i == 0 and self.use_c5:
in_c = in_channels[-1]
else:
in_c = out_channel
extra_fpn_name = 'fpn_{}'.format(lvl + 2)
if self.norm_type is not None:
extra_fpn_conv = self.add_sublayer(
extra_fpn_name,
ConvNormLayer(
ch_in=in_c,
ch_out=out_channel,
filter_size=3,
stride=2,
norm_type=self.norm_type,
norm_decay=self.norm_decay,
freeze_norm=self.freeze_norm,
initializer=XavierUniform(fan_out=fan)))
else:
extra_fpn_conv = self.add_sublayer(
extra_fpn_name,
nn.Conv2D(
in_channels=in_c,
out_channels=out_channel,
kernel_size=3,
stride=2,
padding=1,
weight_attr=ParamAttr(
initializer=XavierUniform(fan_out=fan))))
self.fpn_convs.append(extra_fpn_conv)
@classmethod
def from_config(cls, cfg, input_shape):
return {
'in_channels': [i.channels for i in input_shape],
'spatial_scales': [1.0 / i.stride for i in input_shape],
}
def forward(self, body_feats):
laterals = []
num_levels = len(body_feats)
for i in range(num_levels):
laterals.append(self.lateral_convs[i](body_feats[i]))
for i in range(1, num_levels):
lvl = num_levels - i
upsample = F.interpolate(
laterals[lvl],
scale_factor=2.,
mode='nearest', )
laterals[lvl - 1] += upsample
fpn_output = []
for lvl in range(num_levels):
fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))
if self.extra_stage > 0:
# use max pool to get more levels on top of outputs (Faster R-CNN, Mask R-CNN)
if not self.has_extra_convs:
assert self.extra_stage == 1, 'extra_stage should be 1 if FPN has not extra convs'
fpn_output.append(F.max_pool2d(fpn_output[-1], 1, stride=2))
# add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
else:
if self.use_c5:
extra_source = body_feats[-1]
else:
extra_source = fpn_output[-1]
fpn_output.append(self.fpn_convs[num_levels](extra_source))
for i in range(1, self.extra_stage):
if self.relu_before_extra_convs:
fpn_output.append(self.fpn_convs[num_levels + i](F.relu(
fpn_output[-1])))
else:
fpn_output.append(self.fpn_convs[num_levels + i](
fpn_output[-1]))
return fpn_output
@property
def out_shape(self):
return [
ShapeSpec(
channels=self.out_channel, stride=1. / s)
for s in self.spatial_scales
]