-
Notifications
You must be signed in to change notification settings - Fork 788
/
evaluation.py
88 lines (71 loc) · 2.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""script for ensemble and evaluation."""
import os
import sys
import csv
import numpy as np
from sklearn.metrics import f1_score
label_file = sys.argv[1]
prob_file_1 = sys.argv[2]
prob_file_2 = sys.argv[3]
prob_file_3 = sys.argv[4]
prob_file_4 = sys.argv[5]
def get_labels(input_file):
"""
get labels labels true labels file.
"""
readers = csv.reader(open(input_file, "r"), delimiter=',')
lines = []
for line in readers:
lines.append(int(line[2]))
return lines
def get_probs(input_file):
"""
get probs from input file.
"""
return [float(i.strip('\n')) for i in open(input_file)]
def get_pred(probs, threshold=0.5):
"""
get prediction from probs.
"""
pred = []
for p in probs:
if p >= threshold:
pred.append(1)
else:
pred.append(0)
return pred
def vote(pred_list):
"""
get vote result from prediction list.
"""
pred_list = np.array(pred_list).transpose()
preds = []
for p in pred_list:
counts = np.bincount(p)
preds.append(np.argmax(counts))
return preds
def cal_f1(preds, labels):
"""
calculate f1 score.
"""
return f1_score(np.array(labels), np.array(preds))
labels = get_labels(label_file)
file_list = [prob_file_1, prob_file_2, prob_file_3, prob_file_4]
pred_list = []
for f in file_list:
pred_list.append(get_pred(get_probs(f)))
pred_ensemble = vote(pred_list)
print("all model ensemble(vote) f1: %.5f " % cal_f1(pred_ensemble, labels))